101
|
Wang X, Jia P, Sun S, He X, Lu TJ, Xu F, Feng S. Evaporation-Induced Diffusion Acceleration in Liquid-Filled Porous Materials. ACS OMEGA 2021; 6:21646-21654. [PMID: 34471768 PMCID: PMC8388088 DOI: 10.1021/acsomega.1c03052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
Liquid-filled porous materials exist widely in nature and engineering fields, with the diffusion of substances in them playing an important role in system functions. Although surface evaporation is often inevitable in practical scenarios, the evaporation effects on diffusion behavior in liquid-filled porous materials have not been well explored yet. In this work, we performed noninvasive diffusion imaging experiments to observe the diffusion process of erioglaucine disodium salt dye in a liquid-filled nitrocellulose membrane under a wide range of relative humidities (RHs). We found that evaporation can significantly accelerate the diffusion rate and alter concentration distribution compared with the case without evaporation. We explained the accelerated diffusion phenomenon by the mechanism that evaporation would induce a weak flow in liquid-filled porous materials, which leads to convective diffusion, i.e., evaporation-induced flow and diffusion (EIFD). Based on the EIFD mechanism, we proposed a convective diffusion model to quantitatively predict the diffusion process in liquid-filled porous materials under evaporation and experimentally validated the model. Introducing the dimensionless Peclet (P e) number to measure the relative contribution of the evaporation effect to pure molecular diffusion, we demonstrated that even at a high RH of 95%, where the evaporation effect is usually assumed negligible in common sense, the evaporation-induced diffusion still overwhelms the molecular diffusion. The flow velocity induced by evaporation in liquid-filled porous materials was found to be 0.4-5 μm/s, comparable to flow in many biological and biomedical systems. The present analysis may help to explain the driving mechanism of tissue perfusion and provide quantitative analysis or inspire new control methods of flow and material exchange in numerous cutting-edge technologies, such as paper-based diagnostics, hydrogel-based flexible electronics, evaporation-induced electricity generation, and seawater purification.
Collapse
Affiliation(s)
- Xuefeng Wang
- The
Key Laboratory of Biomedical Information Engineering of Ministry of
Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, P. R. China
- Bioinspired
Engineering and Biomechanics Center (BEBC), Xi’an Jiaotong University, Xi’an 710049, P.
R. China
| | - Pengpeng Jia
- The
Key Laboratory of Biomedical Information Engineering of Ministry of
Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, P. R. China
- Bioinspired
Engineering and Biomechanics Center (BEBC), Xi’an Jiaotong University, Xi’an 710049, P.
R. China
| | - Shanyouming Sun
- Bioinspired
Engineering and Biomechanics Center (BEBC), Xi’an Jiaotong University, Xi’an 710049, P.
R. China
| | - Xiaocong He
- The
Key Laboratory of Biomedical Information Engineering of Ministry of
Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, P. R. China
- Bioinspired
Engineering and Biomechanics Center (BEBC), Xi’an Jiaotong University, Xi’an 710049, P.
R. China
| | - Tian Jian Lu
- State
Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China
- Nanjing
Center for Multifunctional Lightweight Materials and Structures (MLMS), Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China
| | - Feng Xu
- The
Key Laboratory of Biomedical Information Engineering of Ministry of
Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, P. R. China
- Bioinspired
Engineering and Biomechanics Center (BEBC), Xi’an Jiaotong University, Xi’an 710049, P.
R. China
| | - Shangsheng Feng
- The
Key Laboratory of Biomedical Information Engineering of Ministry of
Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, P. R. China
- Bioinspired
Engineering and Biomechanics Center (BEBC), Xi’an Jiaotong University, Xi’an 710049, P.
R. China
| |
Collapse
|
102
|
Vasse GF, Nizamoglu M, Heijink IH, Schlepütz M, van Rijn P, Thomas MJ, Burgess JK, Melgert BN. Macrophage-stroma interactions in fibrosis: biochemical, biophysical, and cellular perspectives. J Pathol 2021; 254:344-357. [PMID: 33506963 PMCID: PMC8252758 DOI: 10.1002/path.5632] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 12/18/2020] [Accepted: 01/08/2021] [Indexed: 12/16/2022]
Abstract
Fibrosis results from aberrant wound healing and is characterized by an accumulation of extracellular matrix, impairing the function of an affected organ. Increased deposition of extracellular matrix proteins, disruption of matrix degradation, but also abnormal post-translational modifications alter the biochemical composition and biophysical properties of the tissue microenvironment - the stroma. Macrophages are known to play an important role in wound healing and tissue repair, but the direct influence of fibrotic stroma on macrophage behaviour is still an under-investigated element in the pathogenesis of fibrosis. In this review, the current knowledge on interactions between macrophages and (fibrotic) stroma will be discussed from biochemical, biophysical, and cellular perspectives. Furthermore, we provide future perspectives with regard to how macrophage-stroma interactions can be examined further to ultimately facilitate more specific targeting of these interactions in the treatment of fibrosis. © 2021 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd. on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Gwenda F Vasse
- University of Groningen, University Medical Center GroningenBiomedical Engineering Department‐FB40GroningenThe Netherlands
- University of Groningen, University Medical Center Groningen, W.J. Kolff Institute for Biomedical Engineering and Materials ScienceGroningenThe Netherlands
- University of Groningen, Department of Molecular PharmacologyGroningen Research Institute for PharmacyGroningenThe Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC)GroningenThe Netherlands
| | - Mehmet Nizamoglu
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC)GroningenThe Netherlands
- University of Groningen, University Medical Center GroningenDepartment of Pathology and Medical BiologyGroningenThe Netherlands
| | - Irene H Heijink
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC)GroningenThe Netherlands
- University of Groningen, University Medical Center GroningenDepartment of Pathology and Medical BiologyGroningenThe Netherlands
- University of Groningen, University Medical Center GroningenDepartment of PulmonologyGroningenThe Netherlands
| | - Marco Schlepütz
- Immunology & Respiratory Diseases ResearchBoehringer Ingelheim Pharma GmbH & Co KGBiberach an der RissGermany
| | - Patrick van Rijn
- University of Groningen, University Medical Center GroningenBiomedical Engineering Department‐FB40GroningenThe Netherlands
- University of Groningen, University Medical Center Groningen, W.J. Kolff Institute for Biomedical Engineering and Materials ScienceGroningenThe Netherlands
| | - Matthew J Thomas
- Immunology & Respiratory Diseases ResearchBoehringer Ingelheim Pharma GmbH & Co KGBiberach an der RissGermany
| | - Janette K Burgess
- University of Groningen, University Medical Center Groningen, W.J. Kolff Institute for Biomedical Engineering and Materials ScienceGroningenThe Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC)GroningenThe Netherlands
- University of Groningen, University Medical Center GroningenDepartment of Pathology and Medical BiologyGroningenThe Netherlands
| | - Barbro N Melgert
- University of Groningen, Department of Molecular PharmacologyGroningen Research Institute for PharmacyGroningenThe Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC)GroningenThe Netherlands
| |
Collapse
|
103
|
Taïeb HM, Garske DS, Contzen J, Gossen M, Bertinetti L, Robinson T, Cipitria A. Osmotic pressure modulates single cell cycle dynamics inducing reversible growth arrest and reactivation of human metastatic cells. Sci Rep 2021; 11:13455. [PMID: 34188099 PMCID: PMC8242012 DOI: 10.1038/s41598-021-92054-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 06/02/2021] [Indexed: 02/06/2023] Open
Abstract
Biophysical cues such as osmotic pressure modulate proliferation and growth arrest of bacteria, yeast cells and seeds. In tissues, osmotic regulation takes place through blood and lymphatic capillaries and, at a single cell level, water and osmoregulation play a critical role. However, the effect of osmotic pressure on single cell cycle dynamics remains poorly understood. Here, we investigate the effect of osmotic pressure on single cell cycle dynamics, nuclear growth, proliferation, migration and protein expression, by quantitative time-lapse imaging of single cells genetically modified with fluorescent ubiquitination-based cell cycle indicator 2 (FUCCI2). Single cell data reveals that under hyperosmotic stress, distinct cell subpopulations emerge with impaired nuclear growth, delayed or growth arrested cell cycle and reduced migration. This state is reversible for mild hyperosmotic stress, where cells return to regular cell cycle dynamics, proliferation and migration. Thus, osmotic pressure can modulate the reversible growth arrest and reactivation of human metastatic cells.
Collapse
Affiliation(s)
- Hubert M. Taïeb
- grid.419564.bDepartment of Biomaterials, Max Planck Institute of Colloids and Interfaces, 14476 Potsdam, Germany
| | - Daniela S. Garske
- grid.419564.bDepartment of Biomaterials, Max Planck Institute of Colloids and Interfaces, 14476 Potsdam, Germany
| | - Jörg Contzen
- grid.6363.00000 0001 2218 4662Department of Experimental Neurology, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany ,grid.24999.3f0000 0004 0541 3699Institute of Active Polymers, Helmholtz-Zentrum Hereon, 14513 Teltow, Germany ,grid.484013.aBIH Center for Regenerative Therapies, Berlin Institute of Health at Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Manfred Gossen
- grid.24999.3f0000 0004 0541 3699Institute of Active Polymers, Helmholtz-Zentrum Hereon, 14513 Teltow, Germany ,grid.484013.aBIH Center for Regenerative Therapies, Berlin Institute of Health at Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Luca Bertinetti
- grid.419564.bDepartment of Biomaterials, Max Planck Institute of Colloids and Interfaces, 14476 Potsdam, Germany
| | - Tom Robinson
- grid.419564.bDepartment of Theory and Bio-Systems, Max Planck Institute of Colloids and Interfaces, 14476 Potsdam, Germany
| | - Amaia Cipitria
- grid.419564.bDepartment of Biomaterials, Max Planck Institute of Colloids and Interfaces, 14476 Potsdam, Germany
| |
Collapse
|
104
|
Subhan MA, Yalamarty SSK, Filipczak N, Parveen F, Torchilin VP. Recent Advances in Tumor Targeting via EPR Effect for Cancer Treatment. J Pers Med 2021; 11:571. [PMID: 34207137 PMCID: PMC8234032 DOI: 10.3390/jpm11060571] [Citation(s) in RCA: 258] [Impact Index Per Article: 64.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/11/2021] [Accepted: 06/16/2021] [Indexed: 12/11/2022] Open
Abstract
Cancer causes the second-highest rate of death world-wide. A major shortcoming inherent in most of anticancer drugs is their lack of tumor selectivity. Nanodrugs for cancer therapy administered intravenously escape renal clearance, are unable to penetrate through tight endothelial junctions of normal blood vessels and remain at a high level in plasma. Over time, the concentration of nanodrugs builds up in tumors due to the EPR effect, reaching several times higher than that of plasma due to the lack of lymphatic drainage. This review will address in detail the progress and prospects of tumor-targeting via EPR effect for cancer therapy.
Collapse
Affiliation(s)
- Md Abdus Subhan
- Department of Chemistry, Shah Jalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - Satya Siva Kishan Yalamarty
- CPBN, Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA; (S.S.K.Y.); (N.F.); (F.P.)
| | - Nina Filipczak
- CPBN, Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA; (S.S.K.Y.); (N.F.); (F.P.)
| | - Farzana Parveen
- CPBN, Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA; (S.S.K.Y.); (N.F.); (F.P.)
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Punjab 63100, Pakistan
| | - Vladimir P. Torchilin
- CPBN, Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA; (S.S.K.Y.); (N.F.); (F.P.)
- Department of Oncology, Radiotherapy and Plastic Surgery, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| |
Collapse
|
105
|
Dharma IA, Kawashima D, Baidillah MR, Darma PN, Takei M. In-vivoviscoelastic properties estimation in subcutaneous adipose tissue by integration of poroviscoelastic-mass transport model (pve-MTM) into wearable electrical impedance tomography (w-EIT). Biomed Phys Eng Express 2021; 7. [PMID: 33887715 DOI: 10.1088/2057-1976/abfaea] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 04/22/2021] [Indexed: 11/11/2022]
Abstract
In-vivoviscoelastic properties have been estimated in human subcutaneous adipose tissue (SAT) by integration of poroviscoelastic-mass transport model (pve-MTM) into wearable electrical impedance tomography (w-EIT) under the influence of external compressive pressure-P.Thepve-MTM predicts the ion concentration distributioncmod(t)by coupling the poroviscoelastic and mass transport model to describe the hydrodynamics, rheology, and transport phenomena inside SAT. Thew-EIT measures the time-difference conductivity distribution∆γ(t)in SAT resulted from the ion transport. Based on the integration, the two viscoelastic properties which are viscoelastic shear modulus of SATGvand relaxation time of SATτvare estimated by applying an iterative curve-fitting between the normalized average ion concentration distributioncˆmod(t)predicted frompve-MTM and the experimental normalized average ion concentration distributioncˆexp(t)derived fromw-EIT. Thein-vivoexperiments were conducted by applying external compressive pressure-Pon human calf boundary to induce interstitial fluid flow and ion movement in SAT. As a result, the value ofGvwas range from 4.9-6.3 kPa and the value ofτvwas range from 27.50-38.5 s with the value of average goodness-of-fit curve fittingR2 > 0.76. These values ofGvandτvwere compared to the human and animal tissue from the literature in order to verify this method. The results frompve-MTM provide evidence thatGvandτvplay a role in the predicted value ofcˆmod.
Collapse
Affiliation(s)
- Irfan Aditya Dharma
- Department of Mechanical Engineering, Graduate School of Science and Engineering, Chiba University, 1-33, Yayoicho, Inage-ku, Chiba-shi, Chiba 263-8522, Japan.,Department of Mechanical Engineering, Faculty of Industrial Technology, Universitas Islam Indonesia, Jalan Kaliurang KM. 14,5, Sleman, D.I.Yogyakarta 55584, Indonesia
| | - Daisuke Kawashima
- Department of Mechanical Engineering, Graduate School of Science and Engineering, Chiba University, 1-33, Yayoicho, Inage-ku, Chiba-shi, Chiba 263-8522, Japan
| | - Marlin Ramadhan Baidillah
- Department of Mechanical Engineering, Graduate School of Science and Engineering, Chiba University, 1-33, Yayoicho, Inage-ku, Chiba-shi, Chiba 263-8522, Japan
| | - Panji Nursetia Darma
- Department of Mechanical Engineering, Graduate School of Science and Engineering, Chiba University, 1-33, Yayoicho, Inage-ku, Chiba-shi, Chiba 263-8522, Japan
| | - Masahiro Takei
- Department of Mechanical Engineering, Graduate School of Science and Engineering, Chiba University, 1-33, Yayoicho, Inage-ku, Chiba-shi, Chiba 263-8522, Japan
| |
Collapse
|
106
|
Sarkar A, Messerli MA. Electrokinetic Perfusion Through Three-Dimensional Culture Reduces Cell Mortality. Tissue Eng Part A 2021; 27:1470-1479. [PMID: 33820474 DOI: 10.1089/ten.tea.2021.0008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Cell proliferation and survival are dependent on mass transfer. In vivo, fluid flow promotes mass transfer through the vasculature and interstitial space, providing a continuous supply of nutrients and removal of cellular waste products. In the absence of sufficient flow, mass transfer is limited by diffusion and poses significant challenges to cell survival during tissue engineering, tissue transplantation, and treatment of degenerative diseases. Artificial perfusion may overcome these challenges. In this work, we compare the efficacy of pressure driven perfusion (PDP) with electrokinetic perfusion (EKP) toward reducing cell mortality in three-dimensional cultures of Matrigel extracellular matrix. We characterize electro-osmotic flow through Matrigel to identify conditions that generate similar interstitial flow rates to those induced by pressure. We also compare changes in cell mortality induced by continuous or pulsed EKP. We report that continuous EKP significantly reduced mortality throughout the perfusion channels more consistently than PDP at similar flow rates, and pulsed EKP decreased mortality just as effectively as continuous EKP. We conclude that EKP has significant advantages over PDP for promoting tissue survival before neovascularization and angiogenesis. Impact statement Interstitial flow helps promote mass transfer and cell survival in tissues and organs. This study generated interstitial flow using pressure driven perfusion (PDP) or electrokinetic perfusion (EKP) to promote cell viability in three-dimensional cultures. EKP through charged extracellular matrices possesses significant advantages over PDP and may promote cell survival during tissue engineering, transplantations, and treatment of degenerative diseases.
Collapse
Affiliation(s)
- Anyesha Sarkar
- Department of Biology and Microbiology, South Dakota State University, Brookings, South Dakota, USA
| | - Mark A Messerli
- Department of Biology and Microbiology, South Dakota State University, Brookings, South Dakota, USA
| |
Collapse
|
107
|
Wasson EM, Dubbin K, Moya ML. Go with the flow: modeling unique biological flows in engineered in vitro platforms. LAB ON A CHIP 2021; 21:2095-2120. [PMID: 34008661 DOI: 10.1039/d1lc00014d] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Interest in recapitulating in vivo phenomena in vitro using organ-on-a-chip technology has grown rapidly and with it, attention to the types of fluid flow experienced in the body has followed suit. These platforms offer distinct advantages over in vivo models with regards to human relevance, cost, and control of inputs (e.g., controlled manipulation of biomechanical cues from fluid perfusion). Given the critical role biophysical forces play in several tissues and organs, it is therefore imperative that engineered in vitro platforms capture the complex, unique flow profiles experienced in the body that are intimately tied with organ function. In this review, we outline the complex and unique flow regimes experienced by three different organ systems: blood vasculature, lymphatic vasculature, and the intestinal system. We highlight current state-of-the-art platforms that strive to replicate physiological flows within engineered tissues while introducing potential limitations in current approaches.
Collapse
Affiliation(s)
- Elisa M Wasson
- Material Engineering Division, Lawrence Livermore National Laboratory, 7000 East Ave L-222, Livermore, CA 94551, USA.
| | - Karen Dubbin
- Material Engineering Division, Lawrence Livermore National Laboratory, 7000 East Ave L-222, Livermore, CA 94551, USA.
| | - Monica L Moya
- Material Engineering Division, Lawrence Livermore National Laboratory, 7000 East Ave L-222, Livermore, CA 94551, USA.
| |
Collapse
|
108
|
Evidence for continuity of interstitial spaces across tissue and organ boundaries in humans. Commun Biol 2021; 4:436. [PMID: 33790388 PMCID: PMC8012658 DOI: 10.1038/s42003-021-01962-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 03/02/2021] [Indexed: 12/19/2022] Open
Abstract
Bodies have continuous reticular networks, comprising collagens, elastin, glycosaminoglycans, and other extracellular matrix components, through all tissues and organs. Fibrous coverings of nerves and blood vessels create structural continuity beyond organ boundaries. We recently validated fluid flow through human fibrous tissues, though whether these interstitial spaces are continuous through the body or discontinuous, confined within individual organs, remains unclear. Here we show evidence for continuity of interstitial spaces using two approaches. Non-biological particles (tattoo pigment, colloidal silver) were tracked within colon and skin interstitial spaces and into adjacent fascia. Hyaluronic acid, a macromolecular component of interstitial spaces, was also visualized. Both techniques demonstrate interstitial continuity within and between organs including within perineurium and vascular adventitia traversing organs and the spaces between them. We suggest that there is a body-wide network of fluid-filled interstitial spaces that has significant implications for molecular signaling, cell trafficking, and the spread of malignant and infectious disease.
Collapse
|
109
|
Abstract
Recreating human organ-level function in vitro is a rapidly evolving field that integrates tissue engineering, stem cell biology, and microfluidic technology to produce 3D organoids. A critical component of all organs is the vasculature. Herein, we discuss general strategies to create vascularized organoids, including common source materials, and survey previous work using vascularized organoids to recreate specific organ functions and simulate tumor progression. Vascularization is not only an essential component of individual organ function but also responsible for coupling the fate of all organs and their functions. While some success in coupling two or more organs together on a single platform has been demonstrated, we argue that the future of vascularized organoid technology lies in creating organoid systems complete with tissue-specific microvasculature and in coupling multiple organs through a dynamic vascular network to create systems that can respond to changing physiological conditions.
Collapse
Affiliation(s)
- Venktesh S Shirure
- Department of Biomedical Engineering, University of California, Davis, California 95616, USA;
| | - Christopher C W Hughes
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California 92697, USA
| | - Steven C George
- Department of Biomedical Engineering, University of California, Davis, California 95616, USA;
| |
Collapse
|
110
|
Afadzi M, Myhre OF, Yemane PT, Bjorkoy A, Torp SH, van Wamel A, Lelu S, Angelsen BAJ, de Lange Davies C. Effect of Acoustic Radiation Force on the Distribution of Nanoparticles in Solid Tumors. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:432-445. [PMID: 32986550 DOI: 10.1109/tuffc.2020.3027072] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Acoustic radiation force (ARF) might improve the distribution of nanoparticles (NPs) in tumors. To study this, tumors growing subcutaneously in mice were exposed to focused ultrasound (FUS) either 15 min or 4 h after the injection of NPs, to investigate the effect of ARF on the transport of NPs across the vessel wall and through the extracellular matrix. Quantitative analysis of confocal microscopy images from frozen tumor sections was performed to estimate the displacement of NPs from blood vessels. Using the same experimental exposure parameters, ARF was simulated and compared with the experimental data. Enhanced interstitial transport of NPs in tumor tissues was observed when FUS (10 MHz, acoustic power 234 W/cm2, 3.3% duty cycle) was given either 15 min or 4 h after NP administration. According to acoustic simulations, the FUS generated an ARF per unit volume of 2.0×106 N/m3. The displacement of NPs was larger when FUS was applied 4 h after NP injection compared with after 15 min. This study shows that ARF might contribute to a modest improved distribution of NPs into the tumor interstitium.
Collapse
|
111
|
Lovmo MK, Yemane PT, Bjorkoy A, Hansen R, Cleveland RO, Angelsen BA, de Lange Davies C. Effect of Acoustic Radiation Force on Displacement of Nanoparticles in Collagen Gels. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:416-431. [PMID: 32746200 DOI: 10.1109/tuffc.2020.3006762] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Penetration of nanoscale therapeutic agents into the extracellular matrix (ECM) of a tumor is a limiting factor for the sufficient delivery of drugs in tumors. Ultrasound (US) in combination with microbubbles causing cavitation is reported to improve delivery of nanoparticles (NPs) and drugs to tumors. Acoustic radiation force (ARF) could also enhance the penetration of NPs in tumor ECM. In this work, a collagen gel was used as a model for tumor ECM to study the effects of ARF on the penetration of NPs as well as the deformation of collagen gels applying different US parameters (varying pressure and duty cycle). The collagen gel was characterized, and the diffusion of water and NPs was measured. The penetration of NPs into the gel was measured by confocal laser scanning microscopy and numerical simulations were performed to determine the ARF and to estimate the penetration distance and extent of deformation. ARF had no effect on the penetration of NPs into the collagen gels for the US parameters and gel used, whereas a substantial deformation was observed. The width of the deformation on the collagen gel surface corresponded to the US beam. Comparing ARF caused by attenuation within the gel and Langevin pressure caused by reflection at the gel-water surface, ARF was the prevalent mechanism for the gel deformation. The experimental and theoretical results were consistent both with respect to the NP penetration and the gel deformation.
Collapse
|
112
|
Yang F, Carmona A, Stojkova K, Garcia Huitron EI, Goddi A, Bhushan A, Cohen RN, Brey EM. A 3D human adipose tissue model within a microfluidic device. LAB ON A CHIP 2021; 21:435-446. [PMID: 33351023 PMCID: PMC7876365 DOI: 10.1039/d0lc00981d] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
An accurate in vitro model of human adipose tissue could assist in the study of adipocyte function and allow for better tools for screening new therapeutic compounds. Cell culture models on two-dimensional surfaces fall short of mimicking the three-dimensional in vivo adipose environment, while three-dimensional culture models are often unable to support long-term cell culture due, in part, to insufficient mass transport. Microfluidic systems have been explored for adipose tissue models. However, current systems have primarily focused on 2D cultured adipocytes. In this work, a 3D human adipose microtissue was engineered within a microfluidic system. Human adipose-derived stem cells (ADSCs) were used as the cell source for generating differentiated adipocytes. The ADSCs differentiated within the microfluidic system formed a dense lipid-loaded mass with the expression of adipose tissue genetic markers. Engineered adipose tissue showed a decreased adiponectin secretion and increased free fatty acid secretion with increasing shear stress. Adipogenesis markers were downregulated with increasing shear stress. Overall, this microfluidic system enables the on-chip differentiation and development of a functional 3D human adipose microtissue supported by the interstitial flow. This system could potentially serve as a platform for in vitro drug testing for adipose tissue-related diseases.
Collapse
Affiliation(s)
- Feipeng Yang
- Illinois Institute of Technology, Department of Biomedical Engineering, Chicago, 60616, USA
| | | | | | | | | | | | | | | |
Collapse
|
113
|
SONG XJ, ZHANG WB, JIA SY, WANG GJ, WANG SY, LI HY, XIONG F. A discovery of low hydraulic resistance channels along meridians in rats. WORLD JOURNAL OF ACUPUNCTURE-MOXIBUSTION 2021. [DOI: 10.1016/j.wjam.2020.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
114
|
Mammographic density as an image-based biomarker of therapy response in neoadjuvant-treated breast cancer patients. Cancer Causes Control 2020; 32:251-260. [PMID: 33377172 PMCID: PMC7870759 DOI: 10.1007/s10552-020-01379-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 12/04/2020] [Indexed: 12/24/2022]
Abstract
Purpose Personalized cancer treatment requires predictive biomarkers, including image-based biomarkers. Breast cancer (BC) patients receiving neoadjuvant chemotherapy (NACT) are in a clinically vulnerable situation with the tumor present. This study investigated whether mammographic density (MD), assessed pre-NACT, is predictive of pathological complete response (pCR). Methods A total of 495 BC patients receiving NACT in Sweden 2005–2019 were included, merged from two different cohorts. Cohort 1 was retrospectively collected (n = 295) and cohort 2 was prospectively collected (n = 200). Mammograms were scored for MD pre-NACT according to the Breast Imaging-Reporting and Data System (BI-RADS), 5th Edition. The association between MD and accomplishing pCR post-NACT was analyzed using logistic regression models—for the whole cohort, stratified by menopausal status, and in different St. Gallen surrogate subtypes. Results In comparison to patients with low MD (BI-RADS a), the multivariable-adjusted odds ratio (OR) of accomplishing pCR following NACT was on a descending scale: 0.62 (95% confidence interval (CI) 0.24–1.57), 0.38 (95% CI 0.14–1.02), and 0.32 (95% CI 0.09–1.08) for BI-RADS b, c, and d, respectively. For premenopausal patients selectively, the corresponding point estimates were lower, although wider CIs: 0.31 (95% CI 0.06–1.62), 0.24 (95% CI 0.04–1.27), and 0.13 (95% CI 0.02–0.88). Subgroup analyses based on BC subtypes resulted in imprecise estimates, i.e., wide CIs. Conclusions It seemed as though patients with higher MD at baseline were less likely to reach pCR after NACT—a finding more pronounced in premenopausal women. Larger multicenter studies are needed to enable analyses and interpretation for different BC subtypes. Supplementary Information
The online version of this article (10.1007/s10552-020-01379-w) contains supplementary material, which is available to authorized users.
Collapse
|
115
|
Loessberg-Zahl J, Beumer J, van den Berg A, Eijkel JCT, van der Meer AD. Patterning Biological Gels for 3D Cell Culture inside Microfluidic Devices by Local Surface Modification through Laminar Flow Patterning. MICROMACHINES 2020; 11:E1112. [PMID: 33339092 PMCID: PMC7765499 DOI: 10.3390/mi11121112] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/07/2020] [Accepted: 12/11/2020] [Indexed: 01/16/2023]
Abstract
Microfluidic devices are used extensively in the development of new in vitro cell culture models like organs-on-chips. A typical feature of such devices is the patterning of biological hydrogels to offer cultured cells and tissues a controlled three-dimensional microenvironment. A key challenge of hydrogel patterning is ensuring geometrical confinement of the gel, which is generally solved by inclusion of micropillars or phaseguides in the channels. Both of these methods often require costly cleanroom fabrication, which needs to be repeated even when only small changes need be made to the gel geometry, and inadvertently expose cultured cells to non-physiological and mechanically stiff structures. Here, we present a technique for facile patterning of hydrogel geometries in microfluidic chips, but without the need for any confining geometry built into the channel. Core to the technique is the use of laminar flow patterning to create a hydrophilic path through an otherwise hydrophobic microfluidic channel. When a liquid hydrogel is injected into the hydrophilic region, it is confined to this path by the surrounding hydrophobic regions. The various surface patterns that are enabled by laminar flow patterning can thereby be rendered into three-dimensional hydrogel structures. We demonstrate that the technique can be used in many different channel geometries while still giving the user control of key geometric parameters of the final hydrogel. Moreover, we show that human umbilical vein endothelial cells can be cultured for multiple days inside the devices with the patterned hydrogels and that they can be stimulated to migrate into the gel under the influence of trans-gel flows. Finally, we demonstrate that the patterned gels can withstand trans-gel flow velocities in excess of physiological interstitial flow velocities without rupturing or detaching. This novel hydrogel-patterning technique addresses fundamental challenges of existing methods for hydrogel patterning inside microfluidic chips, and can therefore be applied to improve design time and the physiological realism of microfluidic cell culture assays and organs-on-chips.
Collapse
Affiliation(s)
- Joshua Loessberg-Zahl
- BIOS/Lab on a Chip, University of Twente, 7500-AE Enschede, The Netherlands; (J.B.); (A.v.d.B.); (J.C.T.E.)
| | - Jelle Beumer
- BIOS/Lab on a Chip, University of Twente, 7500-AE Enschede, The Netherlands; (J.B.); (A.v.d.B.); (J.C.T.E.)
| | - Albert van den Berg
- BIOS/Lab on a Chip, University of Twente, 7500-AE Enschede, The Netherlands; (J.B.); (A.v.d.B.); (J.C.T.E.)
| | - Jan C. T. Eijkel
- BIOS/Lab on a Chip, University of Twente, 7500-AE Enschede, The Netherlands; (J.B.); (A.v.d.B.); (J.C.T.E.)
| | | |
Collapse
|
116
|
Uppal G, Bahcecioglu G, Zorlutuna P, Vural DC. Tissue Failure Propagation as Mediated by Circulatory Flow. Biophys J 2020; 119:2573-2583. [PMID: 33189679 DOI: 10.1016/j.bpj.2020.11.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 10/06/2020] [Accepted: 11/05/2020] [Indexed: 01/09/2023] Open
Abstract
Aging is driven by subcellular processes that are relatively well understood. However, the qualitative mechanisms and quantitative dynamics of how these micro-level failures cascade to a macro-level catastrophe in a tissue or organs remain largely unexplored. Here, we experimentally and theoretically study how cell failure propagates in an engineered tissue in the presence of advective flow. We argue that cells secrete cooperative factors, thereby forming a network of interdependence governed by diffusion and flow, which fails with a propagating front parallel to advective circulation.
Collapse
Affiliation(s)
- Gurdip Uppal
- Department of Physics, University of Notre Dame, Notre Dame, Indiana
| | - Gokhan Bahcecioglu
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana
| | - Pinar Zorlutuna
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana.
| | - Dervis Can Vural
- Department of Physics, University of Notre Dame, Notre Dame, Indiana.
| |
Collapse
|
117
|
Possenti L, Di Gregorio S, Casagrande G, Costantino ML, Rancati T, Zunino P. A global sensitivity analysis approach applied to a multiscale model of microvascular flow. Comput Methods Biomech Biomed Engin 2020; 23:1215-1224. [DOI: 10.1080/10255842.2020.1793964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- L. Possenti
- LaBS, Department of Chemistry, Materials and Chemical Engineering ’Giulio Natta’, Politecnico di Milano, Milan, Italy
- Prostate Cancer Program, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - S. Di Gregorio
- MOX, Department of Mathematics, Politecnico di Milano, Milan, Italy
| | - G. Casagrande
- LaBS, Department of Chemistry, Materials and Chemical Engineering ’Giulio Natta’, Politecnico di Milano, Milan, Italy
| | - M. L. Costantino
- LaBS, Department of Chemistry, Materials and Chemical Engineering ’Giulio Natta’, Politecnico di Milano, Milan, Italy
| | - T. Rancati
- Prostate Cancer Program, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - P. Zunino
- MOX, Department of Mathematics, Politecnico di Milano, Milan, Italy
| |
Collapse
|
118
|
Hajal C, Ibrahim L, Serrano JC, Offeddu GS, Kamm RD. The effects of luminal and trans-endothelial fluid flows on the extravasation and tissue invasion of tumor cells in a 3D in vitro microvascular platform. Biomaterials 2020; 265:120470. [PMID: 33190735 DOI: 10.1016/j.biomaterials.2020.120470] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 10/08/2020] [Accepted: 10/18/2020] [Indexed: 02/06/2023]
Abstract
Throughout the process of metastatic dissemination, tumor cells are continuously subjected to mechanical forces resulting from complex fluid flows due to changes in pressures in their local microenvironments. While these forces have been associated with invasive phenotypes in 3D matrices, their role in key steps of the metastatic cascade, namely extravasation and subsequent interstitial migration, remains poorly understood. In this study, an in vitro model of the human microvasculature was employed to subject tumor cells to physiological luminal, trans-endothelial, and interstitial flows to evaluate their effects on those key steps of metastasis. Luminal flow promoted the extravasation potential of tumor cells, possibly as a result of their increased intravascular migration speed. Trans-endothelial flow increased the speed with which tumor cells transmigrated across the endothelium as well as their migration speed in the matrix following extravasation. In addition, tumor cells possessed a greater propensity to migrate in close proximity to the endothelium when subjected to physiological flows, which may promote the successful formation of metastatic foci. These results show important roles of fluid flow during extravasation and invasion, which could determine the local metastatic potential of tumor cells.
Collapse
Affiliation(s)
- Cynthia Hajal
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Lina Ibrahim
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Jean Carlos Serrano
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Giovanni S Offeddu
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Roger D Kamm
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| |
Collapse
|
119
|
DeSantis MC, Tian C, Kim JH, Austin JL, Cheng W. Probability of Immobilization on Host Cell Surface Regulates Viral Infectivity. PHYSICAL REVIEW LETTERS 2020; 125:128101. [PMID: 33016741 PMCID: PMC7561012 DOI: 10.1103/physrevlett.125.128101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 08/18/2020] [Indexed: 06/11/2023]
Abstract
The efficiency of a virus to establish its infection in host cells varies broadly among viruses. It remains unclear if there is a key step in this process that controls viral infectivity. To address this question, we use single-particle tracking and Brownian dynamics simulation to examine human immunodeficiency virus type 1 (HIV-1) infection in cell culture. We find that the frequency of viral-cell encounters is consistent with diffusion-limited interactions. However, even under the most favorable conditions, only 1% of the viruses can become immobilized on cell surface and subsequently enter the cell. This is a result of weak interaction between viral surface gp120 and CD4 receptor, which is insufficient to form a stable complex the majority of the time. We provide the first direct quantitation for efficiencies of these events relevant to measured HIV-1 infectivity and demonstrate that immobilization on host cell surface post-virion-diffusion is the key step in viral infection. Variation of its probability controls the efficiency of a virus to infect its host cells. These results explain the low infectivity of cell-free HIV-1 in vitro and offer a potential rationale for the pervasive high efficiency of cell-to-cell transmission of animal viruses.
Collapse
Affiliation(s)
- Michael C. DeSantis
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Chunjuan Tian
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Jin H. Kim
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Jamie L. Austin
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Wei Cheng
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, Michigan 48109, USA
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
120
|
Wu C, Hormuth DA, Oliver TA, Pineda F, Lorenzo G, Karczmar GS, Moser RD, Yankeelov TE. Patient-Specific Characterization of Breast Cancer Hemodynamics Using Image-Guided Computational Fluid Dynamics. IEEE TRANSACTIONS ON MEDICAL IMAGING 2020; 39:2760-2771. [PMID: 32086203 PMCID: PMC7438313 DOI: 10.1109/tmi.2020.2975375] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The overall goal of this study is to employ quantitative magnetic resonance imaging (MRI) data to constrain a patient-specific, computational fluid dynamics (CFD) model of blood flow and interstitial transport in breast cancer. We develop image processing methodologies to generate tumor-related vasculature-interstitium geometry and realistic material properties, using dynamic contrast enhanced MRI (DCE-MRI) and diffusion weighted MRI (DW-MRI) data. These data are used to constrain CFD simulations for determining the tumor-associated blood supply and interstitial transport characteristics unique to each patient. We then perform a proof-of-principle statistical comparison between these hemodynamic characteristics in 11 malignant and 5 benign lesions from 12 patients. Significant differences between groups (i.e., malignant versus benign) were observed for the median of tumor-associated interstitial flow velocity ( P = 0.028 ), and the ranges of tumor-associated blood pressure (P = 0.016) and vascular extraction rate (P = 0.040). The implication is that malignant lesions tend to have larger magnitude of interstitial flow velocity, and higher heterogeneity in blood pressure and vascular extraction rate. Multivariable logistic models based on combinations of these hemodynamic data achieved excellent differentiation between malignant and benign lesions with an area under the receiver operator characteristic curve of 1.0, sensitivity of 1.0, and specificity of 1.0. This image-based model system is a fundamentally new way to map flow and pressure fields related to breast tumors using only non-invasive, clinically available imaging data and established laws of fluid mechanics. Furthermore, the results provide preliminary evidence for this methodology's utility for the quantitative characterization of breast cancer.
Collapse
|
121
|
Mastropasqua R, Brescia L, Di Antonio L, Guarini D, Giattini D, Zuppardi E, Agnifili L. Angiographic biomarkers of filtering bleb function after XEN gel implantation for glaucoma: an optical coherence tomography-angiography study. Acta Ophthalmol 2020; 98:e761-e767. [PMID: 32020755 DOI: 10.1111/aos.14371] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 01/14/2020] [Indexed: 12/14/2022]
Abstract
PURPOSE To evaluate, using optical coherence tomography-angiography (OCT-A), the vascular features of good bleb function after XEN gel implantation (XGI) for uncontrolled glaucoma. METHODS Forty-three patients (43 eyes), who underwent XGI, were enrolled. According to the intraocular pressure (IOP) reduction, patients were classified into Group 1 (21 eyes; success) and Group 2 (22 eyes; failure). Optical coherence tomography-angiography (OCT-A) was performed to image the vascularization of the conjunctival bleb-wall. The main outcomes were as follows: vessel displacement areas (VDAs), major vessel displacement area (MVDA; mm2 ), non-flow whole area (NFWA; mm2 ) and bleb-wall vessel density (BVD; %). Co-registered B-scans were also considered to evaluate the bleb-wall cyst-like structure density and area (BCSD, cysts/mm2 ; BCSA, mm2 ), and the bleb-wall thickness (BT, µm). RESULTS Mean postoperative follow-up was 7.5 ± 0.14 months; Group 1 and 2 IOP were 14.0 ± 2.5 and 25.3 ± 2.1 mmHg, respectively (p < 0.001). Greater VDA (p < 0.001), MVDA (p = 0.046) and NFWA (p = 0.001) values, and lower BVD (p < 0.001) was found in Group 1 compared to Group 2. Group 1 showed higher BSCD, BSCA and BT values compared to Group 2 (p < 0.001). Postoperative IOP positively correlated with BVD (r = 0.567; p = 0.003), but negatively with VDAs, MVDA (r = -0.581, p = 0.002; r = -0.619, p = 0.001, respectively), BCSD, BCSA (r = -0.580; p = 0.002; r = -0.664; p < 0.001) and BT (r = -0.627, p = 0.001). CONCLUSION Successful filtration blebs after XGI present numerous and large areas of vessel displacement within the bleb-wall, along with a rarefied vascular network. These OCT-A features can be considered angiographic biomarkers of a good aqueous humour percolation through the bleb-wall layers.
Collapse
Affiliation(s)
- Rodolfo Mastropasqua
- Institute of Ophthalmology, University of Modena and Reggio Emilia, Modena, Italy
| | - Lorenza Brescia
- Department of Medicine and Aging Sciences, Ophthalmology Clinic, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Luca Di Antonio
- Department of Medicine and Aging Sciences, Ophthalmology Clinic, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Daniele Guarini
- Department of Medicine and Aging Sciences, Ophthalmology Clinic, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Dario Giattini
- Department of Medicine and Aging Sciences, Ophthalmology Clinic, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Eduardo Zuppardi
- Department of Medicine and Aging Sciences, Ophthalmology Clinic, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Luca Agnifili
- Department of Medicine and Aging Sciences, Ophthalmology Clinic, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
122
|
Moradi Kashkooli F, Soltani M, Souri M. Controlled anti-cancer drug release through advanced nano-drug delivery systems: Static and dynamic targeting strategies. J Control Release 2020; 327:316-349. [PMID: 32800878 DOI: 10.1016/j.jconrel.2020.08.012] [Citation(s) in RCA: 249] [Impact Index Per Article: 49.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 08/07/2020] [Accepted: 08/08/2020] [Indexed: 12/14/2022]
Abstract
Advances in nanomedicine, including early cancer detection, targeted drug delivery, and personalized approaches to cancer treatment are on the rise. For example, targeted drug delivery systems can improve intracellular delivery because of their multifunctionality. Novel endogenous-based and exogenous-based stimulus-responsive drug delivery systems have been proposed to prevent the cancer progression with proper drug delivery. To control effective dose loading and sustained release, targeted permeability and individual variability can now be described in more-complex ways, such as by combining internal and external stimuli. Despite these advances in release control, certain challenges remain and are identified in this research, which emphasizes the control of drug release and applications of nanoparticle-based drug delivery systems. Using a multiscale and multidisciplinary approach, this study investigates and analyzes drug delivery and release strategies in the nanoparticle-based treatment of cancer, both mathematically and clinically.
Collapse
Affiliation(s)
- Farshad Moradi Kashkooli
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran; Department of Applied Mathematics, University of Waterloo, Waterloo, ON, Canada..
| | - M Soltani
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran; Advanced Bioengineering Initiative Center, Computational Medicine Center, K. N. Toosi University of Technology, Tehran, Iran; Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON, Canada; Centre for Biotechnology and Bioengineering (CBB), University of Waterloo, Waterloo, ON, Canada; Cancer Biology Research Center, Cancer Institute of Iran, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mohammad Souri
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran.
| |
Collapse
|
123
|
Shimizu A, Goh WH, Itai S, Karyappa R, Hashimoto M, Onoe H. ECM-based microfluidic gradient generator for tunable surface environment by interstitial flow. BIOMICROFLUIDICS 2020; 14:044106. [PMID: 32699566 PMCID: PMC7367689 DOI: 10.1063/5.0010941] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 07/08/2020] [Indexed: 05/26/2023]
Abstract
We present an extracellular matrix (ECM)-based gradient generator that provides a culture surface with continuous chemical concentration gradients created by interstitial flow. The gelatin-based microchannels harboring gradient generators and in-channel micromixers were rapidly fabricated by sacrificial molding of a 3D-printed water-soluble sacrificial mold. When fluorescent dye solutions were introduced into the channel, the micromixers enhanced mixing of two solutions joined at the junction. Moreover, the concentration gradients generated in the channel diffused to the culture surface of the device through the interstitial space facilitated by the porous nature of the ECM. To check the functionality of the gradient generator for investigating cellular responses to chemical factors, we demonstrated that human umbilical vein endothelial cells cultured on the surface shrunk in response to the concentration gradient of histamine generated by interstitial flow from the microchannel. We believe that our device could be useful for the basic biological study of the cellular response to chemical stimuli and for the in vitro platform in drug testing.
Collapse
Affiliation(s)
- Azusa Shimizu
- School of Integrated Design Engineering, Graduate School of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-Ku, Yokohama, Japan
| | - Wei Huang Goh
- Engineering Product Development, Singapore University of Technology and Design, Singapore 487372
| | - Shun Itai
- School of Integrated Design Engineering, Graduate School of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-Ku, Yokohama, Japan
| | - Rahul Karyappa
- Engineering Product Development, Singapore University of Technology and Design, Singapore 487372
| | | | - Hiroaki Onoe
- Authors to whom correspondence should be addressed: and
| |
Collapse
|
124
|
Gordon E, Schimmel L, Frye M. The Importance of Mechanical Forces for in vitro Endothelial Cell Biology. Front Physiol 2020; 11:684. [PMID: 32625119 PMCID: PMC7314997 DOI: 10.3389/fphys.2020.00684] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 05/26/2020] [Indexed: 12/12/2022] Open
Abstract
Blood and lymphatic vessels are lined by endothelial cells which constantly interact with their luminal and abluminal extracellular environments. These interactions confer physical forces on the endothelium, such as shear stress, stretch and stiffness, to mediate biological responses. These physical forces are often altered during disease, driving abnormal endothelial cell behavior and pathology. Therefore, it is critical that we understand the mechanisms by which endothelial cells respond to physical forces. Traditionally, endothelial cells in culture are grown in the absence of flow on stiff substrates such as plastic or glass. These cells are not subjected to the physical forces that endothelial cells endure in vivo, thus the results of these experiments often do not mimic those observed in the body. The field of vascular biology now realize that an intricate analysis of endothelial signaling mechanisms requires complex in vitro systems to mimic in vivo conditions. Here, we will review what is known about the mechanical forces that guide endothelial cell behavior and then discuss the advancements in endothelial cell culture models designed to better mimic the in vivo vascular microenvironment. A wider application of these technologies will provide more biologically relevant information from cultured cells which will be reproducible to conditions found in the body.
Collapse
Affiliation(s)
- Emma Gordon
- Division of Cell and Developmental Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Lilian Schimmel
- Division of Cell and Developmental Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Maike Frye
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
125
|
Huang YL, Ma Y, Wu C, Shiau C, Segall JE, Wu M. Tumor spheroids under perfusion within a 3D microfluidic platform reveal critical roles of cell-cell adhesion in tumor invasion. Sci Rep 2020; 10:9648. [PMID: 32541776 PMCID: PMC7295764 DOI: 10.1038/s41598-020-66528-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 05/11/2020] [Indexed: 12/20/2022] Open
Abstract
Tumor invasion within the interstitial space is critically regulated by the force balance between cell-extracellular matrix (ECM) and cell-cell interactions. Interstitial flows (IFs) are present in both healthy and diseased tissues. However, the roles of IFs in modulating cell force balance and subsequently tumor invasion are understudied. In this article, we develop a microfluidic model in which tumor spheroids are embedded within 3D collagen matrices with well-defined IFs. Using co-cultured tumor spheroids (1:1 mixture of metastatic and non-tumorigenic epithelial cells), we show that IFs downregulate the cell-cell adhesion molecule E-cadherin on non-tumorigenic cells and promote tumor invasion. Our microfluidic model advances current tumor invasion assays towards a more physiologically realistic model using tumor spheroids instead of single cells under perfusion. We identify a novel mechanism by which IFs can promote tumor invasion through an influence on cell-cell adhesion within the tumor and highlight the importance of biophysical parameters in regulating tumor invasion.
Collapse
Affiliation(s)
- Yu Ling Huang
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Yujie Ma
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Cindy Wu
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Carina Shiau
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Jeffrey E Segall
- Anatomy and Structural Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, 10461, New York, USA
| | - Mingming Wu
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
126
|
Griffith CM, Huang SA, Cho C, Khare TM, Rich M, Lee GH, Ligler FS, Diekman BO, Polacheck WJ. Microfluidics for the study of mechanotransduction. JOURNAL OF PHYSICS D: APPLIED PHYSICS 2020; 53:224004. [PMID: 33840837 PMCID: PMC8034607 DOI: 10.1088/1361-6463/ab78d4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Mechanical forces regulate a diverse set of biological processes at cellular, tissue, and organismal length scales. Investigating the cellular and molecular mechanisms that underlie the conversion of mechanical forces to biological responses is challenged by limitations of traditional animal models and in vitro cell culture, including poor control over applied force and highly artificial cell culture environments. Recent advances in fabrication methods and material processing have enabled the development of microfluidic platforms that provide precise control over the mechanical microenvironment of cultured cells. These devices and systems have proven to be powerful for uncovering and defining mechanisms of mechanotransduction. In this review, we first give an overview of the main mechanotransduction pathways that function at sites of cell adhesion, many of which have been investigated with microfluidics. We then discuss how distinct microfluidic fabrication methods can be harnessed to gain biological insight, with description of both monolithic and replica molding approaches. Finally, we present examples of how microfluidics can be used to apply both solid forces (substrate mechanics, strain, and compression) and fluid forces (luminal, interstitial) to cells. Throughout the review, we emphasize the advantages and disadvantages of different fabrication methods and applications of force in order to provide perspective to investigators looking to apply forces to cells in their own research.
Collapse
Affiliation(s)
- Christian M Griffith
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC and North Carolina State University, Raleigh, NC
| | - Stephanie A Huang
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC and North Carolina State University, Raleigh, NC
| | - Crescentia Cho
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC and North Carolina State University, Raleigh, NC
| | - Tanmay M Khare
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC
| | - Matthew Rich
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC and North Carolina State University, Raleigh, NC
- Thurston Arthritis Research Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC
| | - Gi-Hun Lee
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC and North Carolina State University, Raleigh, NC
| | - Frances S Ligler
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC and North Carolina State University, Raleigh, NC
| | - Brian O Diekman
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC and North Carolina State University, Raleigh, NC
- Thurston Arthritis Research Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC
| | - William J Polacheck
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC and North Carolina State University, Raleigh, NC
- McAllister Heart Institute, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC
- Cancer Cell Biology Program, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC
| |
Collapse
|
127
|
Ishihara J, Ishihara A, Sasaki K, Lee SSY, Williford JM, Yasui M, Abe H, Potin L, Hosseinchi P, Fukunaga K, Raczy MM, Gray LT, Mansurov A, Katsumata K, Fukayama M, Kron SJ, Swartz MA, Hubbell JA. Targeted antibody and cytokine cancer immunotherapies through collagen affinity. Sci Transl Med 2020; 11:11/487/eaau3259. [PMID: 30971453 DOI: 10.1126/scitranslmed.aau3259] [Citation(s) in RCA: 134] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 11/27/2018] [Accepted: 02/22/2019] [Indexed: 12/19/2022]
Abstract
Cancer immunotherapy with immune checkpoint inhibitors (CPIs) and interleukin-2 (IL-2) has demonstrated clinical efficacy but is frequently accompanied with severe adverse events caused by excessive and systemic immune system activation. Here, we addressed this need by targeting both the CPI antibodies anti-cytotoxic T lymphocyte antigen 4 antibody (αCTLA4) + anti-programmed death ligand 1 antibody (αPD-L1) and the cytokine IL-2 to tumors via conjugation (for the antibodies) or recombinant fusion (for the cytokine) to a collagen-binding domain (CBD) derived from the blood protein von Willebrand factor (VWF) A3 domain, harnessing the exposure of tumor stroma collagen to blood components due to the leakiness of the tumor vasculature. We show that intravenously administered CBD protein accumulated mainly in tumors. CBD conjugation or fusion decreases the systemic toxicity of both αCTLA4 + αPD-L1 combination therapy and IL-2, for example, eliminating hepatotoxicity with the CPI molecules and ameliorating pulmonary edema with IL-2. Both CBD-CPI and CBD-IL-2 suppressed tumor growth compared to their unmodified forms in multiple murine cancer models, and both CBD-CPI and CBD-IL-2 increased tumor-infiltrating CD8+ T cells. In an orthotopic breast cancer model, combination treatment with CPI and IL-2 eradicated tumors in 9 of 13 animals with the CBD-modified drugs, whereas it did so in only 1 of 13 animals with the unmodified drugs. Thus, the A3 domain of VWF can be used to improve safety and efficacy of systemically administered tumor drugs with high translational promise.
Collapse
Affiliation(s)
- Jun Ishihara
- Institute for Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Ako Ishihara
- Institute for Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Koichi Sasaki
- Institute for Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Steve Seung-Young Lee
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA
| | | | - Mariko Yasui
- Department of Pathology, University of Tokyo, 113-8655 Tokyo, Japan
| | - Hiroyuki Abe
- Department of Pathology, University of Tokyo, 113-8655 Tokyo, Japan
| | - Lambert Potin
- Institute for Molecular Engineering, University of Chicago, Chicago, IL 60637, USA.,Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Peyman Hosseinchi
- Institute for Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Kazuto Fukunaga
- Institute for Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Michal M Raczy
- Institute for Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Laura T Gray
- Institute for Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Aslan Mansurov
- Institute for Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Kiyomitsu Katsumata
- Institute for Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Masashi Fukayama
- Department of Pathology, University of Tokyo, 113-8655 Tokyo, Japan
| | - Stephen J Kron
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA
| | - Melody A Swartz
- Institute for Molecular Engineering, University of Chicago, Chicago, IL 60637, USA.,Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, USA
| | - Jeffrey A Hubbell
- Institute for Molecular Engineering, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
128
|
Abstract
Lymphology is evolving in search of a better management of lymphedema patients, both as to the diagnostic pathway and as to the therapeutic options. Similarly, lymphatic system is involved in a wide spectrum of pathophysiologic processes of most chronic degenerative diseases. Translational medicine integrates the interdisciplinary scientific knowledge to improve diagnostic and therapeutic options in the biomedical field. Inflammation and lymphatic function are regarded as the connecting biochemical factors in most diseases. This review focuses on the scientific publications regarding lymphatic system in connection to psycho-neuroendocrine immunology, hormesis, epigenetics and more generally nutrition and lifestyle. The interaction between lymphology and translational medicine may play a relevant role to improve management of lymphedema on the one hand, and of chronic degenerative diseases on the other.
Collapse
Affiliation(s)
- Attilio Cavezzi
- Eurocenter Venalinfa, San Benedetto del Tronto, Ascoli Piceno, Italy -
| | - Roberto Colucci
- Eurocenter Venalinfa, San Benedetto del Tronto, Ascoli Piceno, Italy
| | | | | |
Collapse
|
129
|
Rudd ND, Reibarkh M, Fang R, Mittal S, Walsh PL, Brunskill APJ, Forrest WP. Interpreting In Vitro Release Performance from Long-Acting Parenteral Nanosuspensions Using USP-4 Dissolution and Spectroscopic Techniques. Mol Pharm 2020; 17:1734-1747. [PMID: 32267708 DOI: 10.1021/acs.molpharmaceut.0c00208] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Injectable sustained release dosage forms have emerged as desirable therapeutic routes for patients that require life-long treatments. The prevalence of drug molecules with low aqueous solubility and bioavailability has added momentum toward the development of suspension-based long-acting parenteral (LAP) formulations; the previously undesirable physicochemical properties of Biopharmaceutics Classification System (BCS) Class II/IV compounds are best suited for extended release applications. Effective in vitro release (IVR) testing of crystalline suspensions affirms product quality during early-stage development and provides connections with in vivo performance. However, before in vitro-in vivo correlations (IVIVCs) can be established, it is necessary to evaluate formulation attributes that directly affect IVR properties. In this work, a series of crystalline LAP nanosuspensions were formulated with different stabilizing polymers and applied to a continuous flow-through (USP-4) dissolution method. This technique confirmed the role of salt effects on the stability of polymer-coated nanoparticles through the detection of disparate active pharmaceutical ingredient (API) release profiles. The polymer stabilizers with extended hydrophilic chains exhibited elevated intrapolymer activity from the loss of hydrogen-bond cushioning in dissolution media with heightened ionic strength, confirmed through one-dimensional (1D) 1H NMR and two-dimensional nuclear Overhauser effect spectroscopy (2D NOESY) experiments. Thus, steric repulsion within the affected nanosuspensions was limited and release rates decreased. Additionally, the strength of interaction between hydrophobic polymer components and the API crystalline surface contributed to suspension dissolution properties, confirmed through solution- and solid-state spectroscopic analyses. This study provides a unique perspective on the dynamic interface between the crystalline drug and aqueous microenvironment during dissolution.
Collapse
Affiliation(s)
- Nathan D Rudd
- Analytical Sciences, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Mikhail Reibarkh
- Analytical Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Rui Fang
- Sterile & Specialty Products, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Sachin Mittal
- Sterile & Specialty Products, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Paul L Walsh
- Analytical Sciences, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | | | - William P Forrest
- Sterile & Specialty Products, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| |
Collapse
|
130
|
Peri D, Deville M, Poignard C, Signori E, Natalini R. Numerical optimization of plasmid DNA delivery combined with hyaluronidase injection for electroporation protocol. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2020; 186:105204. [PMID: 31760303 DOI: 10.1016/j.cmpb.2019.105204] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 11/06/2019] [Accepted: 11/11/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND AND OBJECTIVE The paper focuses on the numerical strategies to optimize a plasmid DNA delivery protocol, which combines hyaluronidase and electroporation. METHODS A well-defined continuum mechanics model of muscle porosity and advanced numerical optimization strategies have been used, to propose a substantial improvement of a pre-existing experimental protocol of DNA transfer in mice. Our work suggests that a computational model might help in the definition of innovative therapeutic procedures, thanks to the fine tuning of all the involved experimental steps. This approach is particularly interesting in optimizing complex and costly protocols, to make in vivo DNA therapeutic protocols more effective. RESULTS Our preliminary work suggests that computational model might help in the definition of innovative therapeutic protocol, thanks to the fine tuning of all the involved operations. CONCLUSIONS This approach is particularly interesting in optimizing complex and costly protocols for which the number of degrees of freedom prevents a experimental test of the possible configuration.
Collapse
Affiliation(s)
- Daniele Peri
- CNR-IAC - National Research Council, Istituto per le Applicazioni del Calcolo "Mauro Picone" Via dei Taurini 19, Rome 00185, Italy.
| | - Manon Deville
- Team MONC, INRIA Bordeaux-Sud-Ouest, Institut de Mathématiques de Bordeaux, CNRS UMR 5251 & Université de Bordeaux, 351 cours de la Libération, Talence Cedex 33405, France
| | - Clair Poignard
- Team MONC, INRIA Bordeaux-Sud-Ouest, Institut de Mathématiques de Bordeaux, CNRS UMR 5251 & Université de Bordeaux, 351 cours de la Libération, Talence Cedex 33405, France
| | - Emanuela Signori
- CNR-IFT - National Research Council - Istituto di Farmacologia Traslazionale, Via Fosso del Cavaliere 100, Rome 00133, Italy.
| | - Roberto Natalini
- CNR-IAC - National Research Council, Istituto per le Applicazioni del Calcolo "Mauro Picone" Via dei Taurini 19, Rome 00185, Italy
| |
Collapse
|
131
|
Sensi F, D’Angelo E, Piccoli M, Pavan P, Mastrotto F, Caliceti P, Biccari A, Corallo D, Urbani L, Fassan M, Spolverato G, Riello P, Pucciarelli S, Agostini M. Recellularized Colorectal Cancer Patient-derived Scaffolds as in vitro Pre-clinical 3D Model for Drug Screening. Cancers (Basel) 2020; 12:681. [PMID: 32183226 PMCID: PMC7140024 DOI: 10.3390/cancers12030681] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/04/2020] [Accepted: 03/12/2020] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer (CRC) shows highly ineffective therapeutic management. An urgent unmet need is the random assignment to adjuvant chemotherapy of high-risk stage II and stage III CRC patients without any predictive factor of efficacy. In the field of drug discovery, a critical step is the preclinical evaluation of drug cytotoxicity, efficacy, and efficiency. We proposed a patient-derived 3D preclinical model for drug evaluation that could mimic in vitro the patient's disease. Surgically resected CRC tissue and adjacent healthy colon mucosa were decellularized by a detergent-enzymatic treatment. Scaffolds were recellularized with HT29 and HCT116 cells. Qualitative and quantitative characterization of matched recellularized samples were evaluated through histology, immunofluorescences, scanning electron microscopy, and DNA amount quantification. A chemosensitivity test was performed using an increasing concentration of 5-fluorouracil (5FU). In vivo studies were carried out using zebrafish (Danio rerio) animal model. Permeability test and drug absorption were also determined. The decellularization protocol allowed the preservation of the original structure and ultrastructure. Five days after recellularization with HT29 and HCT116 cell lines, the 3D CRC model exhibited reduced sensitivity to 5FU treatments compared with conventional 2D cultures. Calculated the half maximal inhibitory concentration (IC50) for HT29 treated with 5FU resulted in 11.5 µM in 3D and 1.3 µM in 2D, and for HCT116, 9.87 µM in 3D and 1.7 µM in 2D. In xenograft experiments, HT29 extravasation was detected after 4 days post-injection, and we obtained a 5FU IC50 fully comparable to that observed in the 3D CRC model. Using confocal microscopy, we demonstrated that the drug diffused through the repopulated 3D CRC scaffolds and co-localized with the cell nuclei. The bioengineered CRC 3D model could be a reliable preclinical patient-specific platform to bridge the gap between in vitro and in vivo drug testing assays and provide effective cancer treatment.
Collapse
Affiliation(s)
- Francesca Sensi
- Fondazione Istituto di Ricerca Pediatrica Città della Speranza, 35129 Padua, Italy; (F.S.); (M.P.); (D.C.)
- Department of Molecular Sciences and Nanosystems, Ca’ Foscari University of Venice, 30172 Mestre (Venice), Italy;
| | - Edoardo D’Angelo
- First Surgical Clinic, Department of Surgery, Oncology and Gastroenterology, University of Padua, 35128 Padua, Italy; (E.D.); (G.S.); (S.P.)
- LIFELAB Program, Consorzio per la Ricerca Sanitaria-CORIS, Veneto Region, 129 Padua, Italy;
| | - Martina Piccoli
- Fondazione Istituto di Ricerca Pediatrica Città della Speranza, 35129 Padua, Italy; (F.S.); (M.P.); (D.C.)
| | - Piero Pavan
- Department of Industrial Engineering, University of Padua, 35131 Padua, Italy;
| | - Francesca Mastrotto
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, 35131 Padua, Italy; (F.M.); (P.C.)
| | - Paolo Caliceti
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, 35131 Padua, Italy; (F.M.); (P.C.)
| | - Andrea Biccari
- LIFELAB Program, Consorzio per la Ricerca Sanitaria-CORIS, Veneto Region, 129 Padua, Italy;
| | - Diana Corallo
- Fondazione Istituto di Ricerca Pediatrica Città della Speranza, 35129 Padua, Italy; (F.S.); (M.P.); (D.C.)
| | - Luca Urbani
- Institute of Hepatology, Foundation for Liver Research, London SE5 9NT, UK;
- Faculty of Life Sciences & Medicine, King’s College London, London WC2R 2LS, UK
| | - Matteo Fassan
- Surgical Pathology Unit, Department of Medicine, University of Padua, 35100 Padua, Italy;
| | - Gaya Spolverato
- First Surgical Clinic, Department of Surgery, Oncology and Gastroenterology, University of Padua, 35128 Padua, Italy; (E.D.); (G.S.); (S.P.)
| | - Pietro Riello
- Department of Molecular Sciences and Nanosystems, Ca’ Foscari University of Venice, 30172 Mestre (Venice), Italy;
| | - Salvatore Pucciarelli
- First Surgical Clinic, Department of Surgery, Oncology and Gastroenterology, University of Padua, 35128 Padua, Italy; (E.D.); (G.S.); (S.P.)
| | - Marco Agostini
- Fondazione Istituto di Ricerca Pediatrica Città della Speranza, 35129 Padua, Italy; (F.S.); (M.P.); (D.C.)
- First Surgical Clinic, Department of Surgery, Oncology and Gastroenterology, University of Padua, 35128 Padua, Italy; (E.D.); (G.S.); (S.P.)
- LIFELAB Program, Consorzio per la Ricerca Sanitaria-CORIS, Veneto Region, 129 Padua, Italy;
| |
Collapse
|
132
|
Sorrin AJ, Ruhi MK, Ferlic NA, Karimnia V, Polacheck WJ, Celli JP, Huang HC, Rizvi I. Photodynamic Therapy and the Biophysics of the Tumor Microenvironment. Photochem Photobiol 2020; 96:232-259. [PMID: 31895481 PMCID: PMC7138751 DOI: 10.1111/php.13209] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 11/27/2019] [Indexed: 02/07/2023]
Abstract
Targeting the tumor microenvironment (TME) provides opportunities to modulate tumor physiology, enhance the delivery of therapeutic agents, impact immune response and overcome resistance. Photodynamic therapy (PDT) is a photochemistry-based, nonthermal modality that produces reactive molecular species at the site of light activation and is in the clinic for nononcologic and oncologic applications. The unique mechanisms and exquisite spatiotemporal control inherent to PDT enable selective modulation or destruction of the TME and cancer cells. Mechanical stress plays an important role in tumor growth and survival, with increasing implications for therapy design and drug delivery, but remains understudied in the context of PDT and PDT-based combinations. This review describes pharmacoengineering and bioengineering approaches in PDT to target cellular and noncellular components of the TME, as well as molecular targets on tumor and tumor-associated cells. Particular emphasis is placed on the role of mechanical stress in the context of targeted PDT regimens, and combinations, for primary and metastatic tumors.
Collapse
Affiliation(s)
- Aaron J. Sorrin
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA
| | - Mustafa Kemal Ruhi
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC and North Carolina State University, Raleigh, NC, 27599, USA
| | - Nathaniel A. Ferlic
- Department of Electrical and Computer Engineering, University of Maryland, College Park, MD, 20742, USA
| | - Vida Karimnia
- Department of Physics, College of Science and Mathematics, University of Massachusetts at Boston, Boston, MA, 02125, USA
| | - William J. Polacheck
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC and North Carolina State University, Raleigh, NC, 27599, USA
- Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA
| | - Jonathan P. Celli
- Department of Physics, College of Science and Mathematics, University of Massachusetts at Boston, Boston, MA, 02125, USA
| | - Huang-Chiao Huang
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Imran Rizvi
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC and North Carolina State University, Raleigh, NC, 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA
| |
Collapse
|
133
|
Norfleet DA, Park E, Kemp ML. Computational modeling of organoid development. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2020. [DOI: 10.1016/j.cobme.2019.12.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
134
|
Liver Bioreactor Design Issues of Fluid Flow and Zonation, Fibrosis, and Mechanics: A Computational Perspective. J Funct Biomater 2020; 11:jfb11010013. [PMID: 32121053 PMCID: PMC7151609 DOI: 10.3390/jfb11010013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/27/2020] [Accepted: 02/18/2020] [Indexed: 02/06/2023] Open
Abstract
Tissue engineering, with the goal of repairing or replacing damaged tissue and organs, has continued to make dramatic science-based advances since its origins in the late 1980’s and early 1990’s. Such advances are always multi-disciplinary in nature, from basic biology and chemistry through physics and mathematics to various engineering and computer fields. This review will focus its attention on two topics critical for tissue engineering liver development: (a) fluid flow, zonation, and drug screening, and (b) biomechanics, tissue stiffness, and fibrosis, all within the context of 3D structures. First, a general overview of various bioreactor designs developed to investigate fluid transport and tissue biomechanics is given. This includes a mention of computational fluid dynamic methods used to optimize and validate these designs. Thereafter, the perspective provided by computer simulations of flow, reactive transport, and biomechanics responses at the scale of the liver lobule and liver tissue is outlined, in addition to how bioreactor-measured properties can be utilized in these models. Here, the fundamental issues of tortuosity and upscaling are highlighted, as well as the role of disease and fibrosis in these issues. Some idealized simulations of the effects of fibrosis on lobule drug transport and mechanics responses are provided to further illustrate these concepts. This review concludes with an outline of some practical applications of tissue engineering advances and how efficient computational upscaling techniques, such as dual continuum modeling, might be used to quantify the transition of bioreactor results to the full liver scale.
Collapse
|
135
|
Banerjee G, Briggs M, Johnson MI. The immediate effects of kinesiology taping on cutaneous blood flow in healthy humans under resting conditions: A randomised controlled repeated-measures laboratory study. PLoS One 2020; 15:e0229386. [PMID: 32084245 PMCID: PMC7034885 DOI: 10.1371/journal.pone.0229386] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 02/05/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Kinesiology taping (KT) is used in musculoskeletal practice for preventive and rehabilitative purposes. It is claimed that KT improves blood flow in the microcirculation by creating skin convolutions and that this reduces swelling and facilitates healing of musculoskeletal injuries. There is a paucity of physiological studies evaluating the effect of KT on cutaneous blood microcirculation. OBJECTIVES The purpose of this parallel-group controlled laboratory repeated measures design study was to evaluate the effects of KT on cutaneous blood microcirculation in healthy human adults using a dual wavelength (infrared and visible-red) laser Doppler Imaging (LDI) system. KT was compared with rigid taping and no taping controls to isolate the effects associated with the elasticity of KT. METHODS Forty-five healthy male and female human adults were allocated to one of the three interventions using constrained randomisation following the pre-intervention measurement: (i) KT (ii) ST (standard taping) (iii) NT (no taping). Cutaneous blood perfusion was measured using LDI in the ventral surface of forearm at pre-intervention, during-intervention and post-intervention in a normothermic environment at resting conditions. RESULTS Mixed ANOVA of both infrared and visible-red datasets revealed no statistically significant interaction between Intervention and Time. There was statistically significant main effect for Time but not Intervention. CONCLUSION KT does not increase cutaneous blood microcirculation in healthy human adults under resting physiological conditions in a normothermic environment. On the contrary, evidence suggests that taping, regardless of the elasticity in the tape, is associated with immediate reductions in cutaneous blood flow.
Collapse
Affiliation(s)
- Gourav Banerjee
- Centre for Pain Research, School of Clinical and Applied Sciences, Leeds Beckett University, Leeds, England, United Kingdom
- * E-mail:
| | - Michelle Briggs
- Division of Nursing, Midwifery and Social Work, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, England, United Kingdom
| | - Mark I. Johnson
- Centre for Pain Research, School of Clinical and Applied Sciences, Leeds Beckett University, Leeds, England, United Kingdom
| |
Collapse
|
136
|
Punter MTJJM, Vos BE, Mulder BM, Koenderink GH. Poroelasticity of (bio)polymer networks during compression: theory and experiment. SOFT MATTER 2020; 16:1298-1305. [PMID: 31922166 DOI: 10.1039/c9sm01973a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Soft living tissues like cartilage can be considered as biphasic materials comprising a fibrous complex biopolymer network and a viscous background liquid. Here, we show by a combination of experiment and theoretical analysis that both the hydraulic permeability and the elastic properties of (bio)polymer networks can be determined with simple ramp compression experiments in a commercial rheometer. In our approximate closed-form solution of the poroelastic equations of motion, we find the normal force response during compression as a combination of network stress and fluid pressure. Choosing fibrin as a biopolymer model system with controllable pore size, measurements of the full time-dependent normal force during compression are found to be in excellent agreement with the theoretical calculations. The inferred elastic response of large-pore (μm) fibrin networks depends on the strain rate, suggesting a strong interplay between network elasticity and fluid flow. Phenomenologically extending the calculated normal force into the regime of nonlinear elasticity, we find strain-stiffening of small-pore (sub-μm) fibrin networks to occur at an onset average tangential stress at the gel-plate interface that depends on the polymer concentration in a power-law fashion. The inferred permeability of small-pore fibrin networks scales approximately inverse squared with the fibrin concentration, implying with a microscopic cubic lattice model that the number of protofibrils per fibrin fiber cross-section decreases with protein concentration. Our theoretical model provides a new method to obtain the hydraulic permeability and the elastic properties of biopolymer networks and hydrogels with simple compression experiments, and paves the way to study the relation between fluid flow and elasticity in biopolymer networks during dynamical compression.
Collapse
Affiliation(s)
- Melle T J J M Punter
- AMOLF, Theory of Biomolecular Matter, Science Park 104, 1098XG Amsterdam, The Netherlands.
| | | | | | | |
Collapse
|
137
|
Avendano A, Chang JJ, Cortes-Medina MG, Seibel AJ, Admasu BR, Boutelle CM, Bushman AR, Garg AA, DeShetler CM, Cole SL, Song JW. Integrated Biophysical Characterization of Fibrillar Collagen-Based Hydrogels. ACS Biomater Sci Eng 2020; 6:1408-1417. [PMID: 32292818 DOI: 10.1021/acsbiomaterials.9b01873] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
This paper describes an experimental characterization scheme of the biophysical properties of reconstituted hydrogel matrices based on indentation testing, quantification of transport via microfluidics, and confocal reflectance microscopy analysis. While methods for characterizing hydrogels exist and are widely used, they often do not measure diffusive and convective transport concurrently, determine the relationship between microstructure and transport properties, and decouple matrix mechanics and transport properties. Our integrated approach enabled independent and quantitative measurements of the structural, mechanical, and transport properties of hydrogels in a single study. We used fibrillar type I collagen as the base matrix and investigated the effects of two different matrix modifications: (1) cross-linking with human recombinant tissue transglutaminase II (hrTGII) and (2) supplementation with the nonfibrillar matrix constituent hyaluronic acid (HA). hrTGII modified the matrix structure and transport but not mechanical parameters. Furthermore, changes in the matrix structure due to hrTGII were seen to be dependent on the concentration of collagen. In contrast, supplementation of HA at different collagen concentrations altered the matrix microstructure and mechanical indentation behavior but not transport parameters. These experimental observations reveal the important relationship between extracellular matrix (ECM) composition and biophysical properties. The integrated techniques are versatile, robust, and accessible; and as matrix-cell interactions are instrumental for many biological processes, the methods and findings described here should be broadly applicable for characterizing hydrogel materials used for three-dimensional (3-D) tissue-engineered culture models.
Collapse
Affiliation(s)
- Alex Avendano
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Jonathan J Chang
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Marcos G Cortes-Medina
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Aaron J Seibel
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Bitania R Admasu
- Department of Materials Science and Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Cassandra M Boutelle
- Department of Integrated Systems Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Andrew R Bushman
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Ayush Arpit Garg
- Department of Biomedical Engineering and Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | | | - Sara L Cole
- Campus Microscopy and Imaging Facility, The Ohio State University, Columbus, Ohio 43210, United States
| | - Jonathan W Song
- Department of Mechanical and Aerospace Engineering and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
138
|
Rosalem GS, Las Casas EB, Lima TP, González-Torres LA. A mechanobiological model to study upstream cell migration guided by tensotaxis. Biomech Model Mechanobiol 2020; 19:1537-1549. [PMID: 32006123 DOI: 10.1007/s10237-020-01289-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 01/11/2020] [Indexed: 01/06/2023]
Abstract
Cell migration is a process of crucial importance for the human body. It is responsible for important processes such as wound healing and tumor metastasis. Migration may occur in response to stimuli of chemical, physical and mechanical nature occurring in the cellular microenvironment. The interstitial flow (IF) can generate mechanical stimuli in cells that influence the cell behavior and interactions of the cells with the extracellular matrix (ECM). One of the phenomena is upstream migration, which is observed in some tumors. In this work, we present a new approach to study the adherent cell migration in a porous medium using a mechanobiological model, attempting to understand if upstream migration can be generated exclusively by mechanical factors. The influence of IF on the behavior of cells and the extracellular matrix was considered. The model is based on a system of coupled nonlinear differential equations solved by the finite element method. Several simulations were performed to study the upstream cell migration and evaluate the effects of pressure, permeability, ECM stiffness and cellular concentration variations on the cell velocity. The results indicated that upstream migration can occur in the presence of mechanical stimuli generated by IF and that the tested parameters have a direct influence on the cellular velocity, especially the pressure and the permeability.
Collapse
Affiliation(s)
- Gabriel Santos Rosalem
- Department of Mechanical Engineering, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | - Thiago Parente Lima
- Institute of Science and Technology, Federal University of Jequitinhonha and Mucuri Valleys, Diamantina, Brazil
| | | |
Collapse
|
139
|
Follain G, Herrmann D, Harlepp S, Hyenne V, Osmani N, Warren SC, Timpson P, Goetz JG. Fluids and their mechanics in tumour transit: shaping metastasis. Nat Rev Cancer 2020; 20:107-124. [PMID: 31780785 DOI: 10.1038/s41568-019-0221-x] [Citation(s) in RCA: 254] [Impact Index Per Article: 50.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/21/2019] [Indexed: 02/07/2023]
Abstract
Metastasis is a dynamic succession of events involving the dissemination of tumour cells to distant sites within the body, ultimately reducing the survival of patients with cancer. To colonize distant organs and, therefore, systemically disseminate within the organism, cancer cells and associated factors exploit several bodily fluid systems, which provide a natural transportation route. Indeed, the flow mechanics of the blood and lymphatic circulatory systems can be co-opted to improve the efficiency of cancer cell transit from the primary tumour, extravasation and metastatic seeding. Flow rates, vessel size and shear stress can all influence the survival of cancer cells in the circulation and control organotropic seeding patterns. Thus, in addition to using these fluids as a means to travel throughout the body, cancer cells exploit the underlying physical forces within these fluids to successfully seed distant metastases. In this Review, we describe how circulating tumour cells and tumour-associated factors leverage bodily fluids, their underlying forces and imposed stresses during metastasis. As the contribution of bodily fluids and their mechanics raises interesting questions about the biology of the metastatic cascade, an improved understanding of this process might provide a new avenue for targeting cancer cells in transit.
Collapse
Affiliation(s)
- Gautier Follain
- INSERM UMR_S1109, Tumor Biomechanics, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - David Herrmann
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Sébastien Harlepp
- INSERM UMR_S1109, Tumor Biomechanics, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Vincent Hyenne
- INSERM UMR_S1109, Tumor Biomechanics, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
- CNRS SNC 505, Strasbourg, France
| | - Naël Osmani
- INSERM UMR_S1109, Tumor Biomechanics, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Sean C Warren
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Paul Timpson
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, New South Wales, Australia.
- St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia.
| | - Jacky G Goetz
- INSERM UMR_S1109, Tumor Biomechanics, Strasbourg, France.
- Université de Strasbourg, Strasbourg, France.
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France.
| |
Collapse
|
140
|
Wei J, Cheng L, Li J, Liu Y, Yin S, Xu B, Wang D, Lu H, Liu C. A microfluidic platform culturing two cell lines paralleled under in-vivo like fluidic microenvironment for testing the tumor targeting of nanoparticles. Talanta 2020; 208:120355. [PMID: 31816718 DOI: 10.1016/j.talanta.2019.120355] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 09/08/2019] [Accepted: 09/14/2019] [Indexed: 01/13/2023]
Abstract
Nanoparticles are attractive in medicine because their surfaces can be chemically modified for targeting specific disease cells, especially for cancer. Providing an in-vivo like platform is crucial to evaluate the biological behaviours of nanoparticles. This paper presents a microfluidic device that could culture two cell lines in parallel in in-vivo like fluidic microenvironments and be used for testing the tumor targeting of folic acid - cholesterol - chitosan (FACC) nanoparticles. The uniformity and uniformity of flow fields inside the cell culture units are investigated using the finite element method and particle tracking technology. HeLa and A549 cells are cultured in the microfluidic chip under continuous media supplementation, mimicking the fluid microenvironment in vivo. Cell introducing processes are presented by the flow behaviours of inks with different colours. The two cell lines are identified by detecting folate receptors on the cellular membranes. The growth curves of the two cell lines are measured. The two cell lines cultured paralleled inside the microfluidic device are treated with FITC-FACC to investigate the targeting of FACC. The tumor targeting of FACC are also detected by in vivo imaging of HeLa cells growth in nude mice models. The results indicate that the microfluidic device could provide a dynamic, uniform and stable fluidic microenvironment to test the tumor targeting of FACC nanoparticles.
Collapse
Affiliation(s)
- Juan Wei
- Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, Dalian, China
| | - Lichun Cheng
- Department of Pharmacy, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jingmin Li
- Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, Dalian, China
| | - Yuanchang Liu
- Department of Mechanical Engineering, University College London, London, NW12BX, UK
| | - Shuqing Yin
- Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, Dalian, China
| | - Bing Xu
- Department of Pharmacy, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Dan Wang
- Department of Pharmacy, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Huiyi Lu
- Department of Pharmacy, The Second Affiliated Hospital of Dalian Medical University, Dalian, China.
| | - Chong Liu
- Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, Dalian, China; Key Laboratory for Precision and Non-traditional Machining Technology of Ministry of Education, Dalian University of Technology, Dalian, China.
| |
Collapse
|
141
|
Skarping I, Förnvik D, Sartor H, Heide-Jørgensen U, Zackrisson S, Borgquist S. Mammographic density is a potential predictive marker of pathological response after neoadjuvant chemotherapy in breast cancer. BMC Cancer 2019; 19:1272. [PMID: 31888552 PMCID: PMC6937786 DOI: 10.1186/s12885-019-6485-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 12/20/2019] [Indexed: 12/12/2022] Open
Abstract
Background Our aim is to study if mammographic density (MD) prior to neoadjuvant chemotherapy is a predictive factor in accomplishing a pathological complete response (pCR) in neoadjuvant-treated breast cancer patients. Methods Data on all neoadjuvant treated breast cancer patients in Southern Sweden (2005–2016) were retrospectively identified, with patient and tumor characteristics retrieved from their medical charts. Diagnostic mammograms were used to evaluate and score MD as categorized by breast composition with the Breast Imaging-Reporting and Data System (BI-RADS) 5th edition. Logistic regression was used in complete cases to assess the odds ratios (OR) for pCR compared to BI-RADS categories (a vs b-d), adjusting for patient and pre-treatment tumor characteristics. Results A total of 302 patients were included in the study population, of which 57 (18.9%) patients accomplished pCR following neoadjuvant chemotherapy. The number of patients in the BI-RADS category a, b, c, and d were separately 16, 120, 140, and 26, respectively. In comparison to patients with BI-RADS breast composition a, patients with denser breasts had a lower OR of accomplishing pCR: BI-RADS b 0.32 (95%CI 0.07–0.1.5), BI-RADS c 0.30 (95%CI 0.06–1.45), and BI-RADS d 0.06 (95%CI 0.01–0.56). These associations were measured with lower point estimates, but wider confidence interval, in premenopausal patients; OR of accomplishing pCR for BI-RADS d in comparison to BI-RADS a: 0.03 (95%CI 0.00–0.76). Conclusions The likelihood of accomplishing pCR is indicated to be lower in breast cancer patients with higher MD, which need to be analysed in future studies for improved clinical decision-making regarding neoadjuvant treatment.
Collapse
Affiliation(s)
- Ida Skarping
- Division of Oncology and Pathology, Department of Clinical Sciences, Lund University, Skåne University Hospital, Lund, Sweden.
| | - Daniel Förnvik
- Medical Radiation Physics, Department of Translational Medicine, Lund University, Skåne University Hospital, Malmö, Sweden
| | - Hanna Sartor
- Diagnostic Radiology, Department of Translational Medicine, Lund University, Skåne University Hospital, Lund and Malmö, Sweden
| | - Uffe Heide-Jørgensen
- Department of Clinical Epidemiology, Aarhus University Hospital, Aarhus, Denmark
| | - Sophia Zackrisson
- Diagnostic Radiology, Department of Translational Medicine, Lund University, Skåne University Hospital, Lund and Malmö, Sweden
| | - Signe Borgquist
- Division of Oncology and Pathology, Department of Clinical Sciences, Lund University, Skåne University Hospital, Lund, Sweden.,Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
142
|
Bonifácio ED, González-Torres LA, Meireles AB, Guimarães MV, Araujo CA. Spatiotemporal pattern of glucose in a microfluidic device depend on the porosity and permeability of the medium: A finite element study. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2019; 182:105039. [PMID: 31472476 DOI: 10.1016/j.cmpb.2019.105039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 08/07/2019] [Accepted: 08/16/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Glucose plays an important role as a source of nutrients and influence cellular processes such as differentiation, proliferation and migration. In vitro models based on microfluidic devices represent an alternative to study several biological processes in a more reproducible and controllable method compared to in vivo models. Glucose concentration across a microfluidic chip and its behavior in experimental conditions is not completely understood. OBJECTIVE This paper investigated the spatiotemporal distribution of glucose across the hydrogel inside a microfluidic chip. The influence of different parameters, boundary and initial conditions of experiments on glucose concentration was studied. METHODS A finite element model using a two dimensional geometry was developed. With this model, patterns of glucose concentration were investigated for different combinations of flow rate of culture medium, permeability and porosity of the medium. Patterns were also studied for two hydrogels made of collagen type I and fibrin with different initial and boundary conditions for pressure and glucose concentration. RESULTS Porosity influenced significantly on the chemical gradients generated when interstitial fluid flow was null or neglectable. A difference in concentration lower than 15% was obtained at the input of microchamber and after 90 min, when porosity changed from 0.5 to 0.99. In addition, no significant effects of modifications in permeability were observed. Regarding the collagen and fibrin matrices, in the presence of a pressure gradient of 40 Pa, the permeability significantly influenced on the concentration gradients generated. CONCLUSIONS Porosity influences importantly on patterns when diffusion is the main transport mechanism. Permeability is the most influencing parameter when a fluid flow is present. Common insertion rates of culture medium does not significantly modify the patterns of glucose inside the chips. Thus, new experiments must consider the impact of such parameters on the distribution and the time span that nutrients occupy the medium. To better contribute with experimental trials, other studies involving cell-cell and cell-extracellular matrix interactions, and different chip geometries should be developed. The results of the present work could assist to develop specific systems for experimentation, to design new experiments and to improve the analysis of the obtained results.
Collapse
Affiliation(s)
- E D Bonifácio
- Mechanical Projects Laboratory - LPM, School of Mechanical Engineering - UFU, Uberlandia, Brazil; Institute of Science and Technology - UFVJM, Diamantina, Brazil.
| | | | - A B Meireles
- Pharmacy Department, Laboratory of Immunology, UFVJM and PPGCF-UFVJM, Diamantina, Brazil
| | - M V Guimarães
- Mechanical Projects Laboratory - LPM, School of Mechanical Engineering - UFU, Uberlandia, Brazil
| | - C A Araujo
- Mechanical Projects Laboratory - LPM, School of Mechanical Engineering - UFU, Uberlandia, Brazil
| |
Collapse
|
143
|
Abstract
Despite its small size, the brain consumes 25% of the body’s energy, generating its own weight in potentially toxic proteins and biological debris each year. The brain is also the only organ lacking lymph vessels to assist in removal of interstitial waste. Over the past 50 years, a picture has been developing of the brain’s unique waste removal system. Experimental observations show cerebrospinal fluid, which surrounds the brain, enters the brain along discrete pathways, crosses a barrier into the spaces between brain cells, and flushes the tissue, carrying wastes to routes exiting the brain. Dysfunction of this cerebral waste clearance system has been demonstrated in Alzheimer’s disease, traumatic brain injury, diabetes, and stroke. The activity of the system is observed to increase during sleep. In addition to waste clearance, this circuit of flow may also deliver nutrients and neurotransmitters. Here, we review the relevant literature with a focus on transport processes, especially the potential role of diffusion and advective flows.
Collapse
|
144
|
|
145
|
Wang Z, Mithieux SM, Weiss AS. Fabrication Techniques for Vascular and Vascularized Tissue Engineering. Adv Healthc Mater 2019; 8:e1900742. [PMID: 31402593 DOI: 10.1002/adhm.201900742] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 07/12/2019] [Indexed: 12/19/2022]
Abstract
Impaired or damaged blood vessels can occur at all levels in the hierarchy of vascular systems from large vasculatures such as arteries and veins to meso- and microvasculatures such as arterioles, venules, and capillary networks. Vascular tissue engineering has become a promising approach for fabricating small-diameter vascular grafts for occlusive arteries. Vascularized tissue engineering aims to fabricate meso- and microvasculatures for the prevascularization of engineered tissues and organs. The ideal small-diameter vascular graft is biocompatible, bridgeable, and mechanically robust to maintain patency while promoting tissue remodeling. The desirable fabricated meso- and microvasculatures should rapidly integrate with the host blood vessels and allow nutrient and waste exchange throughout the construct after implantation. A number of techniques used, including engineering-based and cell-based approaches, to fabricate these synthetic vasculatures are herein explored, as well as the techniques developed to fabricate hierarchical structures that comprise multiple levels of vasculature.
Collapse
Affiliation(s)
- Ziyu Wang
- School of Life and Environmental Sciences University of Sydney NSW 2006 Australia
- Charles Perkins Centre University of Sydney NSW 2006 Australia
| | - Suzanne M. Mithieux
- School of Life and Environmental Sciences University of Sydney NSW 2006 Australia
- Charles Perkins Centre University of Sydney NSW 2006 Australia
| | - Anthony S. Weiss
- School of Life and Environmental Sciences University of Sydney NSW 2006 Australia
- Charles Perkins Centre University of Sydney NSW 2006 Australia
- Bosch Institute University of Sydney NSW 2006 Australia
- Sydney Nano Institute University of Sydney NSW 2006 Australia
| |
Collapse
|
146
|
Wolf KJ, Chen J, Coombes J, Aghi MK, Kumar S. Dissecting and rebuilding the glioblastoma microenvironment with engineered materials. NATURE REVIEWS. MATERIALS 2019; 4:651-668. [PMID: 32647587 PMCID: PMC7347297 DOI: 10.1038/s41578-019-0135-y] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/24/2019] [Indexed: 05/15/2023]
Abstract
Glioblastoma (GBM) is the most aggressive and common form of primary brain cancer. Several decades of research have provided great insight into GBM progression; however, the prognosis remains poor with a median patient survival time of ~ 15 months. The tumour microenvironment (TME) of GBM plays a crucial role in mediating tumour progression and thus is being explored as a therapeutic target. Progress in the development of treatments targeting the TME is currently limited by a lack of model systems that can accurately recreate the distinct extracellular matrix composition and anatomic features of the brain, such as the blood-brain barrier and axonal tracts. Biomaterials can be applied to develop synthetic models of the GBM TME to mimic physiological and pathophysiological features of the brain, including cellular and ECM composition, mechanical properties, and topography. In this Review, we summarize key features of the GBM microenvironment and discuss different strategies for the engineering of GBM TME models, including 2D and 3D models featuring chemical and mechanical gradients, interfaces and fluid flow. Finally, we highlight the potential of engineered TME models as platforms for mechanistic discovery and drug screening as well as preclinical testing and precision medicine.
Collapse
Affiliation(s)
- Kayla J. Wolf
- University of California, Berkeley – University of California, San Francisco Graduate Program in Bioengineering, Berkeley, California, 94720, USA
- Department of Bioengineering, University of California, Berkeley, Berkeley, California, 94720, USA
| | - Joseph Chen
- Department of Bioengineering, University of California, Berkeley, Berkeley, California, 94720, USA
| | - Jason Coombes
- Department of Bioengineering, University of California, Berkeley, Berkeley, California, 94720, USA
- Division of Transplantation Immunology and Mucosal Biology, Faculty of Life Sciences and Medicine, King’s College London, London, United Kingdom
| | - Manish K. Aghi
- Department of Neurosurgery, University of California San Francisco (UCSF), San Francisco, California, 94158
| | - Sanjay Kumar
- University of California, Berkeley – University of California, San Francisco Graduate Program in Bioengineering, Berkeley, California, 94720, USA
- Department of Bioengineering, University of California, Berkeley, Berkeley, California, 94720, USA
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California, 94720, USA
| |
Collapse
|
147
|
Tran QD, Gonzalez-Rodriguez D. Quantitative characterization of viscoelastic fracture induced by time-dependent intratumoral pressure in a 3D model tumor. BIOMICROFLUIDICS 2019; 13:054107. [PMID: 31592302 PMCID: PMC6773595 DOI: 10.1063/1.5116851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 09/16/2019] [Indexed: 05/14/2023]
Abstract
In the tumor environment, interstitial pressure drives interstitial flow drainage from the tumor core to the lymphatic vessels. Recent studies have highlighted the key role of interstitial pressure in tumor development and cell migration. High intratumoral pressures, up to 60 mm Hg , have been reported in cancer patients. In a previous study, we showed that such pressure levels induce fracture in an experimental tumor model consisting of a microfluidic system holding a cellular aggregate. Here, we investigate and quantify the characteristics of tumor model fracture under a range of flow conditions. Our findings suggest a strong dependence of viscoelastic fracture behavior on the loading rate exerted by flow. The aggregate exhibits fragile fracture at high loading rates and ductile fracture at lower rates. The loading rate also modifies the permeability of the cellular aggregate, as well as the persistence time of the load required to induce fracture. The quantification parameters we propose here, evaluated for an in vitro model tumor without the extracellular matrix, could be applied to characterize tumor fracture under more realistic interstitial flow conditions.
Collapse
Affiliation(s)
- Quang D Tran
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798
| | | |
Collapse
|
148
|
Islam MT, Tasciotti E, Righetti R. Estimation of Vascular Permeability in Irregularly Shaped Cancers Using Ultrasound Poroelastography. IEEE Trans Biomed Eng 2019; 67:1083-1096. [PMID: 31331877 DOI: 10.1109/tbme.2019.2929134] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE Vascular permeability (VP) is a mechanical parameter which plays an important role in cancer initiation, metastasis, and progression. To date, there are only a few non-invasive methods that can be used to image VP in solid tumors. Most of these methods require the use of contrast agents and are expensive, limiting widespread use. METHODS In this paper, we propose a new method to image VP in tumors, which is based on the use of ultrasound poroelastography. Estimation of VP by poroelastography requires knowledge of the Young's modulus (YM), Poisson's ratio (PR), and strain time constant (TC) in the tumors. In our method, we find the ellipse which best fits the tumor (regardless of its shape) using an eigen-system-based fitting technique and estimate the YM and PR using Eshelby's elliptic inclusion formulation. A Fourier method is used to estimate the axial strain TC, which does not require any initial guess and is highly robust to noise. RESULTS It is demonstrated that the proposed method can estimate VP in irregularly shaped tumors with an accuracy of above [Formula: see text] using ultrasound simulation data with signal-to-noise ratio of 20 dB or higher. In vivo feasibility of the proposed technique is demonstrated in an orthotopic mouse model of breast cancer. CONCLUSION The proposed imaging method can provide accurate and localized estimation of VP in cancers non-invasively and cost-effectively. SIGNIFICANCE Accurate and non-invasive assessment of VP can have a significant impact on diagnosis, prognosis, and treatment of cancers.
Collapse
|
149
|
O'Keeffe A, Hyndman L, McGinty S, Riezk A, Murdan S, Croft SL. Development of an in vitro media perfusion model of Leishmania major macrophage infection. PLoS One 2019; 14:e0219985. [PMID: 31339931 PMCID: PMC6656416 DOI: 10.1371/journal.pone.0219985] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 07/04/2019] [Indexed: 01/09/2023] Open
Abstract
Background In vitro assays are widely used in studies on pathogen infectivity, immune responses, drug and vaccine discovery. However, most in vitro assays display significant differences to the in vivo situation and limited predictive properties. We applied medium perfusion methods to mimic interstitial fluid flow to establish a novel infection model of Leishmania parasites. Methods Leishmania major infection of mouse peritoneal macrophages was studied within the Quasi Vivo QV900 macro-perfusion system. Under a constant flow of culture media at a rate of 360μl/min, L. major infected macrophages were cultured either at the base of a perfusion chamber or raised on 9mm high inserts. Mathematical and computational modelling was conducted to estimate medium flow speed, shear stress and oxygen concentration. The effects of medium flow on infection rate, intracellular amastigote division, macrophage phagocytosis and macropinocytosis were measured. Results Mean fluid speeds at the macrophage cell surface were estimated to be 1.45 x 10−9 m/s and 1.23 x 10−7 m/s for cells at the base of the chamber and cells on an insert, respectively. L. major macrophage infection was significantly reduced under both media perfusion conditions compared to cells maintained under static conditions; a 85±3% infection rate of macrophages at 72 hours in static cultures compared to 62±5% for cultures under slow medium flow and 55±3% under fast medium flow. Media perfusion also decreased amastigote replication and both macrophage phagocytosis (by 44±4% under slow flow and 57±5% under fast flow compared with the static condition) and macropinocytosis (by 40±4% under slow flow and 62±5% under fast flow compared with the static condition) as measured by uptake of latex beads and pHrodo Red dextran. Conclusions Perfusion of culture medium in an in vitro L. major macrophage infection model (simulating in vivo lymphatic flow) reduced the infection rate of macrophages, the replication of the intracellular parasite, macrophage phagocytosis and macropinocytosis with greater reductions achieved under faster flow speeds.
Collapse
Affiliation(s)
- Alec O'Keeffe
- Department of Infection and Immunology, London School of Hygiene and Tropical Medicine, London, United Kingdom.,Department of Pharmaceutics, UCL School of Pharmacy, University College London, London, United Kingdom
| | - Lauren Hyndman
- Division of Biomedical Engineering, University of Glasgow, Glasgow, United Kingdom
| | - Sean McGinty
- Division of Biomedical Engineering, University of Glasgow, Glasgow, United Kingdom
| | - Alaa Riezk
- Department of Infection and Immunology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Sudaxshina Murdan
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, London, United Kingdom
| | - Simon L Croft
- Department of Infection and Immunology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| |
Collapse
|
150
|
ZHANG WB, SONG XJ, WANG Z, WANG GJ, JIA SY, TIAN YY, LI HY. Longitudinal directional movement of Alcian blue in Gephyrocharax Melanocheir fish: Revealing interstitial flow and related structure. WORLD JOURNAL OF ACUPUNCTURE-MOXIBUSTION 2019. [DOI: 10.1016/j.wjam.2019.05.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|