101
|
Rezvani Boroujeni E, Hosseini SM, Fani G, Cecchi C, Chiti F. Soluble Prion Peptide 107-120 Protects Neuroblastoma SH-SY5Y Cells against Oligomers Associated with Alzheimer's Disease. Int J Mol Sci 2020; 21:E7273. [PMID: 33019683 PMCID: PMC7582777 DOI: 10.3390/ijms21197273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/27/2020] [Accepted: 09/28/2020] [Indexed: 12/20/2022] Open
Abstract
Alzheimer's disease (AD) is the most prevalent form of dementia and soluble amyloid β (Aβ) oligomers are thought to play a critical role in AD pathogenesis. Cellular prion protein (PrPC) is a high-affinity receptor for Aβ oligomers and mediates some of their toxic effects. The N-terminal region of PrPC can interact with Aβ, particularly the region encompassing residues 95-110. In this study, we identified a soluble and unstructured prion-derived peptide (PrP107-120) that is external to this region of the sequence and was found to successfully reduce the mitochondrial impairment, intracellular ROS generation and cytosolic Ca2+ uptake induced by oligomeric Aβ42 ADDLs in neuroblastoma SH-SY5Y cells. PrP107-120 was also found to rescue SH-SY5Y cells from Aβ42 ADDL internalization. The peptide did not change the structure and aggregation pathway of Aβ42 ADDLs, did not show co-localization with Aβ42 ADDLs in the cells and showed a partial colocalization with the endogenous cellular PrPC. As a sequence region that is not involved in Aβ binding but in PrP self-recognition, the peptide was suggested to protect against the toxicity of Aβ42 oligomers by interfering with cellular PrPC and/or activating a signaling that protected the cells. These results strongly suggest that PrP107-120 has therapeutic potential for AD.
Collapse
Affiliation(s)
- Elham Rezvani Boroujeni
- Department of Microbiology and Microbial Biotechnology, Faculty of Life Science and Biotechnology, Shahid Beheshti University, Tehran 1983969411, Iran;
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale G.B Morgagni 50, 50134 Florence, Italy; (G.F.); (C.C.)
| | - Seyed Masoud Hosseini
- Department of Microbiology and Microbial Biotechnology, Faculty of Life Science and Biotechnology, Shahid Beheshti University, Tehran 1983969411, Iran;
| | - Giulia Fani
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale G.B Morgagni 50, 50134 Florence, Italy; (G.F.); (C.C.)
| | - Cristina Cecchi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale G.B Morgagni 50, 50134 Florence, Italy; (G.F.); (C.C.)
| | - Fabrizio Chiti
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale G.B Morgagni 50, 50134 Florence, Italy; (G.F.); (C.C.)
| |
Collapse
|
102
|
Jones E, Hummerich H, Viré E, Uphill J, Dimitriadis A, Speedy H, Campbell T, Norsworthy P, Quinn L, Whitfield J, Linehan J, Jaunmuktane Z, Brandner S, Jat P, Nihat A, How Mok T, Ahmed P, Collins S, Stehmann C, Sarros S, Kovacs GG, Geschwind MD, Golubjatnikov A, Frontzek K, Budka H, Aguzzi A, Karamujić-Čomić H, van der Lee SJ, Ibrahim-Verbaas CA, van Duijn CM, Sikorska B, Golanska E, Liberski PP, Calero M, Calero O, Sanchez-Juan P, Salas A, Martinón-Torres F, Bouaziz-Amar E, Haïk S, Laplanche JL, Brandel JP, Amouyel P, Lambert JC, Parchi P, Bartoletti-Stella A, Capellari S, Poleggi A, Ladogana A, Pocchiari M, Aneli S, Matullo G, Knight R, Zafar S, Zerr I, Booth S, Coulthart MB, Jansen GH, Glisic K, Blevins J, Gambetti P, Safar J, Appleby B, Collinge J, Mead S. Identification of novel risk loci and causal insights for sporadic Creutzfeldt-Jakob disease: a genome-wide association study. Lancet Neurol 2020; 19:840-848. [PMID: 32949544 PMCID: PMC8220892 DOI: 10.1016/s1474-4422(20)30273-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 07/15/2020] [Accepted: 07/17/2020] [Indexed: 12/27/2022]
Abstract
BACKGROUND Human prion diseases are rare and usually rapidly fatal neurodegenerative disorders, the most common being sporadic Creutzfeldt-Jakob disease (sCJD). Variants in the PRNP gene that encodes prion protein are strong risk factors for sCJD but, although the condition has similar heritability to other neurodegenerative disorders, no other genetic risk loci have been confirmed. We aimed to discover new genetic risk factors for sCJD, and their causal mechanisms. METHODS We did a genome-wide association study of sCJD in European ancestry populations (patients diagnosed with probable or definite sCJD identified at national CJD referral centres) with a two-stage study design using genotyping arrays and exome sequencing. Conditional, transcriptional, and histological analyses of implicated genes and proteins in brain tissues, and tests of the effects of risk variants on clinical phenotypes, were done using deep longitudinal clinical cohort data. Control data from healthy individuals were obtained from publicly available datasets matched for country. FINDINGS Samples from 5208 cases were obtained between 1990 and 2014. We found 41 genome-wide significant single nucleotide polymorphisms (SNPs) and independently replicated findings at three loci associated with sCJD risk; within PRNP (rs1799990; additive model odds ratio [OR] 1·23 [95% CI 1·17-1·30], p=2·68 × 10-15; heterozygous model p=1·01 × 10-135), STX6 (rs3747957; OR 1·16 [1·10-1·22], p=9·74 × 10-9), and GAL3ST1 (rs2267161; OR 1·18 [1·12-1·25], p=8·60 × 10-10). Follow-up analyses showed that associations at PRNP and GAL3ST1 are likely to be caused by common variants that alter the protein sequence, whereas risk variants in STX6 are associated with increased expression of the major transcripts in disease-relevant brain regions. INTERPRETATION We present, to our knowledge, the first evidence of statistically robust genetic associations in sporadic human prion disease that implicate intracellular trafficking and sphingolipid metabolism as molecular causal mechanisms. Risk SNPs in STX6 are shared with progressive supranuclear palsy, a neurodegenerative disease associated with misfolding of protein tau, indicating that sCJD might share the same causal mechanisms as prion-like disorders. FUNDING Medical Research Council and the UK National Institute of Health Research in part through the Biomedical Research Centre at University College London Hospitals National Health Service Foundation Trust.
Collapse
Affiliation(s)
- Emma Jones
- Medical Research Council Prion Unit, University College London Institute of Prion Diseases, London, UK
| | - Holger Hummerich
- Medical Research Council Prion Unit, University College London Institute of Prion Diseases, London, UK
| | - Emmanuelle Viré
- Medical Research Council Prion Unit, University College London Institute of Prion Diseases, London, UK
| | - James Uphill
- Medical Research Council Prion Unit, University College London Institute of Prion Diseases, London, UK
| | - Athanasios Dimitriadis
- Medical Research Council Prion Unit, University College London Institute of Prion Diseases, London, UK
| | - Helen Speedy
- Medical Research Council Prion Unit, University College London Institute of Prion Diseases, London, UK
| | - Tracy Campbell
- Medical Research Council Prion Unit, University College London Institute of Prion Diseases, London, UK
| | - Penny Norsworthy
- Medical Research Council Prion Unit, University College London Institute of Prion Diseases, London, UK
| | - Liam Quinn
- Medical Research Council Prion Unit, University College London Institute of Prion Diseases, London, UK
| | - Jerome Whitfield
- Medical Research Council Prion Unit, University College London Institute of Prion Diseases, London, UK
| | - Jacqueline Linehan
- Medical Research Council Prion Unit, University College London Institute of Prion Diseases, London, UK
| | - Zane Jaunmuktane
- Division of Neuropathology, University College London Hospitals National Health Service Foundation Trust, London, UK; Department of Clinical and Movement Neurosciences and Queen Square Brain Bank for Neurological Disorders, University College London Queen Square Institute of Neurology, London, UK
| | - Sebastian Brandner
- Division of Neuropathology, University College London Hospitals National Health Service Foundation Trust, London, UK; Department of Neurodegenerative Disease, University College London Queen Square Institute of Neurology, London, UK
| | - Parmjit Jat
- Medical Research Council Prion Unit, University College London Institute of Prion Diseases, London, UK
| | - Akin Nihat
- Medical Research Council Prion Unit, University College London Institute of Prion Diseases, London, UK; National Prion Clinic, University College London Hospitals National Health Service Foundation Trust, London, UK
| | - Tze How Mok
- Medical Research Council Prion Unit, University College London Institute of Prion Diseases, London, UK; National Prion Clinic, University College London Hospitals National Health Service Foundation Trust, London, UK
| | - Parvin Ahmed
- Medical Research Council Prion Unit, University College London Institute of Prion Diseases, London, UK
| | - Steven Collins
- Australian National Creutzfeldt-Jakob Disease Registry, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC, Australia
| | - Christiane Stehmann
- Australian National Creutzfeldt-Jakob Disease Registry, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC, Australia
| | - Shannon Sarros
- Australian National Creutzfeldt-Jakob Disease Registry, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC, Australia
| | - Gabor G Kovacs
- Institute of Neurology, Medical University of Vienna, Vienna, Austria; Department of Laboratory Medicine and Pathobiology and Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, Toronto, ON, Canada; Laboratory Medicine Program, Krembil Brain Institute, University Health Network, Toronto, ON, Canada
| | - Michael D Geschwind
- University of California San Francisco Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA
| | - Aili Golubjatnikov
- University of California San Francisco Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA
| | - Karl Frontzek
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Herbert Budka
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland; Medical University Vienna, Vienna, Austria
| | - Adriano Aguzzi
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | | | - Sven J van der Lee
- Department of Epidemiology, Erasmus Medical Centre, Rotterdam, Netherlands
| | | | - Cornelia M van Duijn
- Department of Epidemiology, Erasmus Medical Centre, Rotterdam, Netherlands; Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Beata Sikorska
- Department of Molecular Pathology and Neuropathology, Medical University of Lodz, Lodz, Poland
| | - Ewa Golanska
- Department of Molecular Pathology and Neuropathology, Medical University of Lodz, Lodz, Poland
| | - Pawel P Liberski
- Department of Molecular Pathology and Neuropathology, Medical University of Lodz, Lodz, Poland
| | - Miguel Calero
- Chronic Disease Programme (UFIEC-CROSADIS) and Network Centre for Biomedical Research in Neurodegenerative Diseases (CIBERNED), and Alzheimer Disease Research Unit, CIEN Foundation, Queen Sofia Foundation Alzheimer Centre, Instituto de Salud Carlos III, Madrid, Spain
| | - Olga Calero
- Chronic Disease Programme (UFIEC-CROSADIS) and Network Centre for Biomedical Research in Neurodegenerative Diseases (CIBERNED), and Alzheimer Disease Research Unit, CIEN Foundation, Queen Sofia Foundation Alzheimer Centre, Instituto de Salud Carlos III, Madrid, Spain
| | - Pascual Sanchez-Juan
- Neurology Service, University Hospital Marqués de Valdecilla, University of Cantabria, CIBERNED and IDIVAL, Santander, Spain
| | - Antonio Salas
- Unidade de Xenética, Instituto de Ciencias Forenses (INCIFOR), Facultade de Medicina, Universidade de Santiago de Compostela, and GenPoB Research Group, Instituto de Investigaciones Sanitarias (IDIS), Hospital Clínico Universitario de Santiago (SERGAS), Galicia, Spain
| | - Federico Martinón-Torres
- Translational Paediatrics and Infectious Diseases, Department of Paediatrics, Hospital Clínico Universitario de Santiago de Compostela, Galicia, Spain
| | - Elodie Bouaziz-Amar
- Department of Biochemistry and Molecular Biology, Lariboisière Hospital, AP-HP, University of Paris, Paris, France
| | - Stéphane Haïk
- Sorbonne Université, INSERM U1127, CNRS UMR 7225, Institut du Cerveau et de la Moelle épinière, Paris, France; Cellule nationale de référence des maladies de Creutzfeldt-Jakob, AP-HP, University Hospital Pitié-Salpêtrière, Paris, France
| | - Jean-Louis Laplanche
- Department of Biochemistry and Molecular Biology, Lariboisière Hospital, AP-HP, University of Paris, Paris, France
| | - Jean-Phillipe Brandel
- Sorbonne Université, INSERM U1127, CNRS UMR 7225, Institut du Cerveau et de la Moelle épinière, Paris, France; Cellule nationale de référence des maladies de Creutzfeldt-Jakob, AP-HP, University Hospital Pitié-Salpêtrière, Paris, France
| | - Phillipe Amouyel
- INSERM, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE, Labex DISTALZ, University of Lille, Lille, France
| | - Jean-Charles Lambert
- INSERM, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE, Labex DISTALZ, University of Lille, Lille, France
| | - Piero Parchi
- IRCCS, Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy; Department of Experimental, Diagnostic, and Specialty Medicine, University of Bologna, Bologna, Italy
| | | | - Sabina Capellari
- IRCCS, Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy; Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Anna Poleggi
- Department of Neuroscience, Istituto Superiore di Sanità, Rome, Italy
| | - Anna Ladogana
- Department of Neuroscience, Istituto Superiore di Sanità, Rome, Italy
| | | | - Serena Aneli
- Department of Medical Sciences, Università degli studi di Torino, Torino, Italy
| | - Giuseppe Matullo
- Department of Medical Sciences, Università degli studi di Torino, Torino, Italy
| | - Richard Knight
- National Creutzfeldt-Jakob Disease Research and Surveillance Unit, Edinburgh, UK
| | - Saima Zafar
- Department of Neurology, Clinical Dementia Centre and National Reference Centre for Creutzfeldt-Jakob Disease Surveillance, University Medical School, Göttingen, Germany; German Centre for Neurodegenerative Diseases (DZNE), Göttingen, Germany; Biomedical Engineering and Sciences Department, School of Mechanical and Manufacturing Engineering, National University of Sciences and Technology, Islamabad, Pakistan
| | - Inga Zerr
- Department of Neurology, Clinical Dementia Centre and National Reference Centre for Creutzfeldt-Jakob Disease Surveillance, University Medical School, Göttingen, Germany; German Centre for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Stephanie Booth
- Prion Disease Program, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Michael B Coulthart
- Canadian Creutzfeldt-Jakob Disease Surveillance System, Public Health Agency of Canada, Ottawa, ON, Canada
| | - Gerard H Jansen
- Department of Pathology and Laboratory Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Katie Glisic
- Departments of Pathology and Neurology, Case Western Reserve University, Cleveland, OH, USA; National Prion Disease Pathology Surveillance Center, Case Western Reserve University, Cleveland, OH, USA
| | - Janis Blevins
- Departments of Pathology and Neurology, Case Western Reserve University, Cleveland, OH, USA; National Prion Disease Pathology Surveillance Center, Case Western Reserve University, Cleveland, OH, USA
| | - Pierluigi Gambetti
- Departments of Pathology and Neurology, Case Western Reserve University, Cleveland, OH, USA; National Prion Disease Pathology Surveillance Center, Case Western Reserve University, Cleveland, OH, USA
| | - Jiri Safar
- Departments of Pathology and Neurology, Case Western Reserve University, Cleveland, OH, USA; National Prion Disease Pathology Surveillance Center, Case Western Reserve University, Cleveland, OH, USA
| | - Brian Appleby
- Departments of Pathology and Neurology, Case Western Reserve University, Cleveland, OH, USA; National Prion Disease Pathology Surveillance Center, Case Western Reserve University, Cleveland, OH, USA
| | - John Collinge
- Medical Research Council Prion Unit, University College London Institute of Prion Diseases, London, UK; National Prion Clinic, University College London Hospitals National Health Service Foundation Trust, London, UK
| | - Simon Mead
- Medical Research Council Prion Unit, University College London Institute of Prion Diseases, London, UK; National Prion Clinic, University College London Hospitals National Health Service Foundation Trust, London, UK.
| |
Collapse
|
103
|
The Role of Vesicle Trafficking Defects in the Pathogenesis of Prion and Prion-Like Disorders. Int J Mol Sci 2020; 21:ijms21197016. [PMID: 32977678 PMCID: PMC7582986 DOI: 10.3390/ijms21197016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/15/2020] [Accepted: 09/21/2020] [Indexed: 11/26/2022] Open
Abstract
Prion diseases are fatal and transmissible neurodegenerative diseases in which the cellular form of the prion protein ‘PrPc’, misfolds into an infectious and aggregation prone isoform termed PrPSc, which is the primary component of prions. Many neurodegenerative diseases, like Alzheimer’s disease, Parkinson’s disease, and polyglutamine diseases, such as Huntington’s disease, are considered prion-like disorders because of the common characteristics in the propagation and spreading of misfolded proteins that they share with the prion diseases. Unlike prion diseases, these are non-infectious outside experimental settings. Many vesicular trafficking impairments, which are observed in prion and prion-like disorders, favor the accumulation of the pathogenic amyloid aggregates. In addition, many of the vesicular trafficking impairments that arise in these diseases, turn out to be further aggravating factors. This review offers an insight into the currently known vesicular trafficking defects in these neurodegenerative diseases and their implications on disease progression. These findings suggest that these impaired trafficking pathways may represent similar therapeutic targets in these classes of neurodegenerative disorders.
Collapse
|
104
|
Osman D, Weidner A, Madhra M. Progressive ataxia and cognitive decline in a 67-year-old male: a diagnostic challenge. J R Coll Physicians Edinb 2020; 50:281-283. [PMID: 32936103 DOI: 10.4997/jrcpe.2020.313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
We report the case of a 67-year-old male who presented with a six-week history of progressive unsteadiness, cognitive impairment and weight loss, in the context of a recent bereavement. Magnetic resonance imaging (MRI) performed several weeks earlier excluded acute stroke. Examination revealed gross bilateral ataxia, bradyphrenia and physical manifestations of depression. Collateral history suggested rapidly progressing symptoms over three months. Repeat MRI head showed features suggestive of Creutzfeldt-Jakob disease (CJD) including T2 hyperintensities in the basal ganglia. Cerebrospinal ˜fluid (CSF) samples were positive for 14-3-3 protein, S100b and real-time quaking-induced conversion (RT-QuIC) proteins confirming the diagnosis of sporadic CJD (sCJD).
Collapse
Affiliation(s)
- Dina Osman
- General Internal Medicine, Cumberland Infirmary of Carlisle, Newtown Road, Carlisle, CA2 7HY, UK,
| | - Alice Weidner
- Cumberland Infirmary of Carlisle, Newtown Road, Carlisle, CA2 7HY, UK
| | - Mayuri Madhra
- Cumberland Infirmary of Carlisle, Newtown Road, Carlisle, CA2 7HY, UK
| |
Collapse
|
105
|
Cazzaniga FA, De Luca CMG, Bistaffa E, Consonni A, Legname G, Giaccone G, Moda F. Cell-free amplification of prions: Where do we stand? PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 175:325-358. [PMID: 32958239 DOI: 10.1016/bs.pmbts.2020.08.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Neurodegenerative diseases (NDs) such as Alzheimer's disease (AD), Parkinson's disease (PD), atypical parkinsonisms, frontotemporal dementia (FTLD) and prion diseases are characterized by the accumulation of misfolded proteins in the central nervous system (CNS). Although the cause for the initiation of protein aggregation is not well understood, these aggregates are disease-specific. For instance, AD is characterized by the intraneuronal accumulation of tau and extracellular deposition of amyloid-β (Aβ), PD is marked by the intraneuronal accumulation of α-synuclein, many FTLD are associated with the accumulation of TDP-43 while prion diseases show aggregates of misfolded prion protein. Hence, misfolded proteins are considered disease-specific biomarkers and their identification and localization in the CNS, collected postmortem, is required for a definitive diagnosis. With the development of two innovative cell-free amplification techniques named Protein Misfolding Cyclic Amplification (PMCA) and Real-Time Quaking-Induced Conversion (RT-QuIC), traces of disease-specific biomarkers were found in CSF and other peripheral tissues (e.g., urine, blood, and olfactory mucosa) of patients with different NDs. These techniques exploit an important feature shared by many misfolded proteins, that is their ability to interact with their normally folded counterparts and force them to undergo similar structural rearrangements. Essentially, RT-QuIC and PMCA mimic in vitro the same pathological processes of protein misfolding which occur in vivo in a very rapid manner. For this reason, they have been employed for studying different aspects of protein misfolding but, overall, they seem to be very promising for the premortem diagnosis of NDs.
Collapse
Affiliation(s)
- Federico Angelo Cazzaniga
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Unit of Neurology 5 and Neuropathology, Milan, Italy
| | | | - Edoardo Bistaffa
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Unit of Neurology 5 and Neuropathology, Milan, Italy
| | - Alessandra Consonni
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Neurology IV-Neuroimmunology and Neuromuscular Diseases Unit, Milan, Italy
| | - Giuseppe Legname
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore Di Studi Avanzati (SISSA), Trieste, Italy
| | - Giorgio Giaccone
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Unit of Neurology 5 and Neuropathology, Milan, Italy
| | - Fabio Moda
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Unit of Neurology 5 and Neuropathology, Milan, Italy.
| |
Collapse
|
106
|
Abstract
Prions are infectious agents which cause rapidly lethal neurodegenerative diseases in humans and animals following long, clinically silent incubation periods. They are composed of multichain assemblies of misfolded cellular prion protein. While it has long been assumed that prions are themselves neurotoxic, recent development of methods to obtain exceptionally pure prions from mouse brain with maintained strain characteristics, and in which defined structures-paired rod-like double helical fibers-can be definitively correlated with infectivity, allowed a direct test of this assertion. Here we report that while brain homogenates from symptomatic prion-infected mice are highly toxic to cultured neurons, exceptionally pure intact high-titer infectious prions are not directly neurotoxic. We further show that treatment of brain homogenates from prion-infected mice with sodium lauroylsarcosine destroys toxicity without diminishing infectivity. This is consistent with models in which prion propagation and toxicity can be mechanistically uncoupled.
Collapse
|
107
|
Alsiary RA, Alghrably M, Saoudi A, Al-Ghamdi S, Jaremko L, Jaremko M, Emwas AH. Using NMR spectroscopy to investigate the role played by copper in prion diseases. Neurol Sci 2020; 41:2389-2406. [PMID: 32328835 PMCID: PMC7419355 DOI: 10.1007/s10072-020-04321-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 02/29/2020] [Indexed: 12/31/2022]
Abstract
Prion diseases are a group of rare neurodegenerative disorders that develop as a result of the conformational conversion of normal prion protein (PrPC) to the disease-associated isoform (PrPSc). The mechanism that actually causes disease remains unclear. However, the mechanism underlying the conformational transformation of prion protein is partially understood-in particular, there is strong evidence that copper ions play a significant functional role in prion proteins and in their conformational conversion. Various models of the interaction of copper ions with prion proteins have been proposed for the Cu (II)-binding, cell-surface glycoprotein known as prion protein (PrP). Changes in the concentration of copper ions in the brain have been associated with prion diseases and there is strong evidence that copper plays a significant functional role in the conformational conversion of PrP. Nevertheless, because copper ions have been shown to have both a positive and negative effect on prion disease onset, the role played by Cu (II) ions in these diseases remains a topic of debate. Because of the unique properties of paramagnetic Cu (II) ions in the magnetic field, their interactions with PrP can be tracked even at single atom resolution using nuclear magnetic resonance (NMR) spectroscopy. Various NMR approaches have been utilized to study the kinetic, thermodynamic, and structural properties of Cu (II)-PrP interactions. Here, we highlight the different models of copper interactions with PrP with particular focus on studies that use NMR spectroscopy to investigate the role played by copper ions in prion diseases.
Collapse
Affiliation(s)
- Rawiah A. Alsiary
- King Abdullah International Medical Research Center (KAIMRC), Jeddah, Saudi Arabia/King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Jeddah, Saudi Arabia
| | - Mawadda Alghrably
- Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Abdelhamid Saoudi
- Oncology, Ministry of National Guard Health Affairs, Jeddah, Saudi Arabia. King Abdullah International Medical Research Center (KAIMRC), Jeddah, Saudi Arabia/King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Jeddah, Saudi Arabia
| | - Suliman Al-Ghamdi
- Oncology, Ministry of National Guard Health Affairs, Jeddah, Saudi Arabia. King Abdullah International Medical Research Center (KAIMRC), Jeddah, Saudi Arabia/King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Jeddah, Saudi Arabia
| | - Lukasz Jaremko
- Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Mariusz Jaremko
- Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Abdul-Hamid Emwas
- Imaging and Characterization Core Lab, King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| |
Collapse
|
108
|
Andrews O, Bett C, Shu Q, Kaelber N, Asher DM, Keire D, Gregori L. Processing bovine intestinal mucosa to active heparin removes spiked BSE agent. Biologicals 2020; 67:56-61. [PMID: 32773163 DOI: 10.1016/j.biologicals.2020.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/02/2020] [Accepted: 06/16/2020] [Indexed: 11/24/2022] Open
Abstract
Heparin is an anticoagulant sourced from animal tissues. In the 1990s, bovine-sourced heparin was withdrawn from the U.S. market due to a theoretical concern that the bovine spongiform encephalopathy (BSE) agent might contaminate crude heparin and spread to humans as variant Creutzfeldt-Jakob disease. Only porcine intestinal heparin is now marketed in the U.S. FDA has encouraged the reintroduction of bovine heparin. We applied a scaled-down laboratory model process to produce heparin as an active pharmaceutical ingredient (API) starting from bovine intestinal mucosa. The process consisted of two phases. To model the first phase, we applied enzymatic proteolysis, anionic resin separation and methanol precipitation of crude heparin. Bovine intestinal mucosa was spiked with BSE or scrapie agents. We assayed BSE- or scrapie-associated prion protein (PrPTSE) using the Real-Time Quaking-Induced Conversion (RT-QuIC) assay at each step. The process reduced PrPTSE by 4 log10 and 6 log10 from BSE-spiked and scrapie-spiked mucosa, respectively. To model the entire process, we spiked mucosa with scrapie agent and produced heparin API, reducing PrPTSE by 6.7 log10. The purification processes removed large amounts of PrPTSE from the final products. Heparin purification together with careful sourcing of raw materials should allow safely reintroducing bovine heparin in the U.S.
Collapse
Affiliation(s)
- Omozusi Andrews
- U.S. Food and Drug Administration, Center for Biologics Evaluation and Research, Division of Emerging and Transfusion Transmitted Diseases, Silver Spring, MD, 20993, USA
| | - Cyrus Bett
- U.S. Food and Drug Administration, Center for Biologics Evaluation and Research, Division of Emerging and Transfusion Transmitted Diseases, Silver Spring, MD, 20993, USA
| | - Qin Shu
- U.S. Food and Drug Administration, Center for Drugs Evaluation and Research, Division of Pharmaceutical Analysis, Saint Louis, MO, 63101, USA
| | - Nadine Kaelber
- U.S. Food and Drug Administration, Center for Biologics Evaluation and Research, Division of Emerging and Transfusion Transmitted Diseases, Silver Spring, MD, 20993, USA
| | - David M Asher
- U.S. Food and Drug Administration, Center for Biologics Evaluation and Research, Division of Emerging and Transfusion Transmitted Diseases, Silver Spring, MD, 20993, USA
| | - David Keire
- U.S. Food and Drug Administration, Center for Drugs Evaluation and Research, Division of Pharmaceutical Analysis, Saint Louis, MO, 63101, USA
| | - Luisa Gregori
- U.S. Food and Drug Administration, Center for Biologics Evaluation and Research, Division of Emerging and Transfusion Transmitted Diseases, Silver Spring, MD, 20993, USA.
| |
Collapse
|
109
|
A blood miRNA signature associates with sporadic Creutzfeldt-Jakob disease diagnosis. Nat Commun 2020; 11:3960. [PMID: 32769986 PMCID: PMC7414116 DOI: 10.1038/s41467-020-17655-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 07/09/2020] [Indexed: 01/07/2023] Open
Abstract
Sporadic Creutzfeldt-Jakob disease (sCJD) presents as a rapidly progressive dementia which is usually fatal within six months. No clinical blood tests are available for diagnosis or disease monitoring. Here, we profile blood microRNA (miRNA) expression in sCJD. Sequencing of 57 sCJD patients, and healthy controls reveals differential expression of hsa-let-7i-5p, hsa-miR-16-5p, hsa-miR-93-5p and hsa-miR-106b-3p. Downregulation of hsa-let-7i-5p, hsa-miR-16-5p and hsa-miR-93-5p replicates in an independent cohort using quantitative PCR, with concomitant upregulation of four mRNA targets. Absence of correlation in cross-sectional analysis with clinical phenotypes parallels the lack of association between rate of decline in miRNA expression, and rate of disease progression in a longitudinal cohort of samples from 21 patients. Finally, the miRNA signature shows a high level of accuracy in discriminating sCJD from Alzheimer’s disease. These findings highlight molecular alterations in the periphery in sCJD which provide information about differential diagnosis and improve mechanistic understanding of human prion diseases. Sporadic Creutzfeldt-Jakob disease (sCJD) is a rapidly progressive dementia. No clinical blood tests are available for diagnosis. The authors identified three miRNAs in whole-blood that are downregulated in sCJD patients, and discriminate sCJD from Alzheimer’s disease patients and healthy controls.
Collapse
|
110
|
Hosszu LLP, Conners R, Sangar D, Batchelor M, Sawyer EB, Fisher S, Cliff MJ, Hounslow AM, McAuley K, Leo Brady R, Jackson GS, Bieschke J, Waltho JP, Collinge J. Structural effects of the highly protective V127 polymorphism on human prion protein. Commun Biol 2020; 3:402. [PMID: 32728168 PMCID: PMC7391680 DOI: 10.1038/s42003-020-01126-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 07/03/2020] [Indexed: 01/02/2023] Open
Abstract
Prion diseases, a group of incurable, lethal neurodegenerative disorders of mammals including humans, are caused by prions, assemblies of misfolded host prion protein (PrP). A single point mutation (G127V) in human PrP prevents prion disease, however the structural basis for its protective effect remains unknown. Here we show that the mutation alters and constrains the PrP backbone conformation preceding the PrP β-sheet, stabilising PrP dimer interactions by increasing intermolecular hydrogen bonding. It also markedly changes the solution dynamics of the β2-α2 loop, a region of PrP structure implicated in prion transmission and cross-species susceptibility. Both of these structural changes may affect access to protein conformers susceptible to prion formation and explain its profound effect on prion disease.
Collapse
Affiliation(s)
- Laszlo L P Hosszu
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, 33 Cleveland Street, London, W1W 7FF, UK
| | - Rebecca Conners
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, 33 Cleveland Street, London, W1W 7FF, UK
- University of Bristol, School of Biochemistry, Biomedical Sciences Building, University Walk, Clifton, BS8 1TD, UK
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
| | - Daljit Sangar
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, 33 Cleveland Street, London, W1W 7FF, UK
| | - Mark Batchelor
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, 33 Cleveland Street, London, W1W 7FF, UK
| | - Elizabeth B Sawyer
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, 33 Cleveland Street, London, W1W 7FF, UK
- London School of Hygiene & Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Stuart Fisher
- Diamond Light Source, Diamond House, Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 0DE, UK
- ESRF, 71, Avenue des Martyrs, CS 40220, 38043, Grenoble Cedex 9, France
| | - Matthew J Cliff
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Andrea M Hounslow
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK
| | - Katherine McAuley
- Diamond Light Source, Diamond House, Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 0DE, UK
| | - R Leo Brady
- University of Bristol, School of Biochemistry, Biomedical Sciences Building, University Walk, Clifton, BS8 1TD, UK
| | - Graham S Jackson
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, 33 Cleveland Street, London, W1W 7FF, UK
| | - Jan Bieschke
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, 33 Cleveland Street, London, W1W 7FF, UK
| | - Jonathan P Waltho
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK
| | - John Collinge
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, 33 Cleveland Street, London, W1W 7FF, UK.
| |
Collapse
|
111
|
Béringue V, Tixador P, Andréoletti O, Reine F, Castille J, Laï TL, Le Dur A, Laisné A, Herzog L, Passet B, Rezaei H, Vilotte JL, Laude H. Host prion protein expression levels impact prion tropism for the spleen. PLoS Pathog 2020; 16:e1008283. [PMID: 32702070 PMCID: PMC7402522 DOI: 10.1371/journal.ppat.1008283] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 08/04/2020] [Accepted: 06/22/2020] [Indexed: 11/18/2022] Open
Abstract
Prions are pathogens formed from abnormal conformers (PrPSc) of the host-encoded cellular prion protein (PrPC). PrPSc conformation to disease phenotype relationships extensively vary among prion strains. In particular, prions exhibit a strain-dependent tropism for lymphoid tissues. Prions can be composed of several substrain components. There is evidence that these substrains can propagate in distinct tissues (e.g. brain and spleen) of a single individual, providing an experimental paradigm to study the cause of prion tissue selectivity. Previously, we showed that PrPC expression levels feature in prion substrain selection in the brain. Transmission of sheep scrapie isolates (termed LAN) to multiple lines of transgenic mice expressing varying levels of ovine PrPC in their brains resulted in the phenotypic expression of the dominant sheep substrain in mice expressing near physiological PrPC levels, whereas a minor substrain replicated preferentially on high expresser mice. Considering that PrPC expression levels are markedly decreased in the spleen compared to the brain, we interrogate whether spleen PrPC dosage could drive prion selectivity. The outcome of the transmission of a large cohort of LAN isolates in the spleen from high expresser mice correlated with the replication rate dependency on PrPC amount. There was a prominent spleen colonization by the substrain preferentially replicating on low expresser mice and a relative incapacity of the substrain with higher-PrPC level need to propagate in the spleen. Early colonization of the spleen after intraperitoneal inoculation allowed neuropathological expression of the lymphoid substrain. In addition, a pair of substrain variants resulting from the adaptation of human prions to ovine high expresser mice, and exhibiting differing brain versus spleen tropism, showed different tropism on transmission to low expresser mice, with the lymphoid substrain colonizing the brain. Overall, these data suggest that PrPC expression levels are instrumental in prion lymphotropism. The cause of prion phenotype variation among prion strains remains poorly understood. In particular, prions replicate in a strain-dependent manner in the spleen. This can result in prion asymptomatic carriers. Based on our previous observations that dosage of the prion precursor (PrP) determined prion substrain selection in the brain, we examine whether PrP levels in the spleen could drive prion replication in this tissue, due to the low levels of the protein. We observe that the prion substrain with higher PrP need for replication does barely replicate in the spleen, while the component with low PrP need replicates efficiently. In addition, other human co-propagating prions with differing spleen and brain tropism showed different tropism on transmission to mice expressing low PrP levels, with the lymphoid substrain colonizing the brain. PrPC expression levels may thus be instrumental in prion tropism for the lymphoid tissue. From a diagnostic point of view, given the apparent complexity of prion diseases with respect to prion substrain composition, these data advocate to type extraneural tissues or fluids for a comprehensive identification of the circulating prions in susceptible mammals.
Collapse
Affiliation(s)
- Vincent Béringue
- Université Paris-Saclay, INRAE, UVSQ, VIM Jouy-en-Josas, France
- * E-mail:
| | | | | | - Fabienne Reine
- Université Paris-Saclay, INRAE, UVSQ, VIM Jouy-en-Josas, France
| | - Johan Castille
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, France
| | - Thanh-Lan Laï
- Université Paris-Saclay, INRAE, UVSQ, VIM Jouy-en-Josas, France
| | - Annick Le Dur
- Université Paris-Saclay, INRAE, UVSQ, VIM Jouy-en-Josas, France
| | - Aude Laisné
- Université Paris-Saclay, INRAE, UVSQ, VIM Jouy-en-Josas, France
| | - Laetitia Herzog
- Université Paris-Saclay, INRAE, UVSQ, VIM Jouy-en-Josas, France
| | - Bruno Passet
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, France
| | - Human Rezaei
- Université Paris-Saclay, INRAE, UVSQ, VIM Jouy-en-Josas, France
| | - Jean-Luc Vilotte
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, France
| | - Hubert Laude
- Université Paris-Saclay, INRAE, UVSQ, VIM Jouy-en-Josas, France
| |
Collapse
|
112
|
Zhou DH, Wang J, Xiao K, Wu YZ, Maimaitiming A, Hu C, Gao LP, Chen J, Gao C, Chen C, Shi Q, Dong XP. Stilbene Compounds Inhibit the Replications of Various Strains of Prions in the Levels of Cell Culture, PMCA, and RT-QuIC Possibly via Molecular Binding. ACS Chem Neurosci 2020; 11:2117-2128. [PMID: 32511904 DOI: 10.1021/acschemneuro.0c00218] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Resveratrol shows the ability to block prion replication in a scrapie-infected cell line, SMB-S15, and remove the infectivity of the treated cell lysates in an experimental bioassay. In this study, we compared the effectiveness of three stilbene compounds, resveratrol (Res), pterostilbene (Pte), and piceatannol (Pic), on inhibiting prion propagations in the levels of cell culture, PMCA, and RT-QuIC. All three chemicals showed active suppressions on PrPSc replication in SMB-S15 cells, in which Res seemed to be the most active one, followed by Pic and Pte. Mouse PrP-based PMCA tests using the lysates of SMB-S15 cells and brain homogenates of scrapie agents S15-, 139A-, or ME7-infected mice verified that Res, Pte, and Pic inhibited the amplifications of PK-resistant signals. Res was also the most effective one. Mouse PrP-based RT-QuIC using the above seeds demonstrated that three stilbenes efficiently inhibited the fibril formation. However, Pic was the most effective one, followed by Res and Pte. Furthermore, the inhibition activities of the three stilbenes on the brain-derived prion from a 263K-infected hamster were tested with hamster PrP-based PMCA and RT-QuIC. The results indicated that Pic was the most effective one apparently, followed by Res and Pte. According to the results of Biacore, Res showed binding affinities much stronger than those of Pte, whereas both revealed markedly stronger binding affinities with mouse PrP. Our data here indicate that different stilbenes have the ability to block PrPSc replication in vitro with different prion species. The suppressive effects of stilbene compounds are likely associated with their molecular binding activities with PrPs.
Collapse
Affiliation(s)
- Dong-Hua Zhou
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Chang-Bai Road 155, Beijing 102206, China
| | - Jing Wang
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Chang-Bai Road 155, Beijing 102206, China
| | - Kang Xiao
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Chang-Bai Road 155, Beijing 102206, China
| | - Yue-Zhang Wu
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Chang-Bai Road 155, Beijing 102206, China
| | - Adalaiti Maimaitiming
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Chang-Bai Road 155, Beijing 102206, China
| | - Chao Hu
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Chang-Bai Road 155, Beijing 102206, China
| | - Li-Ping Gao
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Chang-Bai Road 155, Beijing 102206, China
| | - Jia Chen
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Chang-Bai Road 155, Beijing 102206, China
| | - Chen Gao
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Chang-Bai Road 155, Beijing 102206, China
- Chinese Center for Disease Control and Prevention, Wuhan Institute of Virology, Chinese Academy of Sciences Joint Research Center for Emerging Infectious Diseases and Biosafety, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
| | - Cao Chen
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Chang-Bai Road 155, Beijing 102206, China
| | - Qi Shi
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Chang-Bai Road 155, Beijing 102206, China
- China Academy of Chinese Medical Sciences, Beijing 100050, China
| | - Xiao-Ping Dong
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Chang-Bai Road 155, Beijing 102206, China
- Center for Global Public Health, Chinese Center for Disease Control and Prevention, Chang-Bai Road 155, Beijing 102206, China
- Chinese Center for Disease Control and Prevention, Wuhan Institute of Virology, Chinese Academy of Sciences Joint Research Center for Emerging Infectious Diseases and Biosafety, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
- China Academy of Chinese Medical Sciences, Beijing 100050, China
| |
Collapse
|
113
|
Li JJ, Ryou CS, Kim DH. Effects of SGI-1027 on Formation and Elimination of PrPSc in Prion-Infected Cells. Mol Biol 2020. [DOI: 10.1134/s0026893320030115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
114
|
Asante EA, Linehan JM, Tomlinson A, Jakubcova T, Hamdan S, Grimshaw A, Smidak M, Jeelani A, Nihat A, Mead S, Brandner S, Wadsworth JDF, Collinge J. Spontaneous generation of prions and transmissible PrP amyloid in a humanised transgenic mouse model of A117V GSS. PLoS Biol 2020; 18:e3000725. [PMID: 32516343 PMCID: PMC7282622 DOI: 10.1371/journal.pbio.3000725] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 05/06/2020] [Indexed: 12/02/2022] Open
Abstract
Inherited prion diseases are caused by autosomal dominant coding mutations in the human prion protein (PrP) gene (PRNP) and account for about 15% of human prion disease cases worldwide. The proposed mechanism is that the mutation predisposes to conformational change in the expressed protein, leading to the generation of disease-related multichain PrP assemblies that propagate by seeded protein misfolding. Despite considerable experimental support for this hypothesis, to-date spontaneous formation of disease-relevant, transmissible PrP assemblies in transgenic models expressing only mutant human PrP has not been demonstrated. Here, we report findings from transgenic mice that express human PrP 117V on a mouse PrP null background (117VV Tg30 mice), which model the PRNP A117V mutation causing inherited prion disease (IPD) including Gerstmann-Sträussler-Scheinker (GSS) disease phenotypes in humans. By studying brain samples from uninoculated groups of mice, we discovered that some mice (≥475 days old) spontaneously generated abnormal PrP assemblies, which after inoculation into further groups of 117VV Tg30 mice, produced a molecular and neuropathological phenotype congruent with that seen after transmission of brain isolates from IPD A117V patients to the same mice. To the best of our knowledge, the 117VV Tg30 mouse line is the first transgenic model expressing only mutant human PrP to show spontaneous generation of transmissible PrP assemblies that directly mirror those generated in an inherited prion disease in humans. Transgenic mice expressing the human prion protein containing a mutation linked to the inherited prion disease Gerstmann-Sträussler-Scheinker disease develop spontaneous neuropathology. This represents the first human prion protein transgenic model to show spontaneous generation of transmissible prion assemblies that directly mirror those generated in humans.
Collapse
Affiliation(s)
- Emmanuel A. Asante
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, London, United Kingdom
- * E-mail: (EAA); (JDFW); (JC)
| | | | - Andrew Tomlinson
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, London, United Kingdom
| | - Tatiana Jakubcova
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, London, United Kingdom
| | - Shyma Hamdan
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, London, United Kingdom
| | - Andrew Grimshaw
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, London, United Kingdom
| | - Michelle Smidak
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, London, United Kingdom
| | - Asif Jeelani
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, London, United Kingdom
| | - Akin Nihat
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, London, United Kingdom
| | - Simon Mead
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, London, United Kingdom
| | - Sebastian Brandner
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, London, United Kingdom
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology and Division of Neuropathology, the National Hospital For Neurology and Neurosurgery, University College London NHS Foundation Trust, Queen Square, London United Kingdom
| | - Jonathan D. F. Wadsworth
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, London, United Kingdom
- * E-mail: (EAA); (JDFW); (JC)
| | - John Collinge
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, London, United Kingdom
- * E-mail: (EAA); (JDFW); (JC)
| |
Collapse
|
115
|
Abstract
The prion protein, PrP, can adopt at least 2 conformations, the overwhelmingly prevalent cellular conformation (PrPC) and the scrapie conformation (PrPSc). PrPC features a globular C-terminal domain containing 3 α-helices and a short β-sheet and a long flexible N-terminal tail whose exact conformation in vivo is not yet known and a metastable subdomain with β-strand propensity has been identified within it. The PrPSc conformation is very rare and has the characteristics of an amyloid. Furthermore, PrPSc is a prion, i.e., it is infectious. This involves 2 steps: (1) PrPSc can template PrPC and coerce it to adopt the PrPSc conformation and (2) PrPSc can be transmitted between individuals, by oral, parenteral, and other routes and thus propagate as an infectious agent. However, this is a simplification: On the one hand, PrPSc is not a single conformation, but rather, a set of alternative similar but distinct conformations. Furthermore, other amyloid conformations of PrP exist with different biochemical and propagative properties. In this issue of PLOS Biology, Asante and colleagues describe the first murine model of familial human prion disease and demonstrate the emergence and propagation of 2 PrP amyloid conformers. Of these, one causes neurodegeneration, whereas the other does not. With its many conformers, PrP is a truly protean protein.
Collapse
Affiliation(s)
- Jesús R. Requena
- CIMUS Biomedical Research Institute & Department of Medical Sciences, University of Santiago de Compostela-IDIS, Santiago de Compostela, Spain
| |
Collapse
|
116
|
Roseman GP, Wu B, Wadolkowski MA, Harris DA, Millhauser GL. Intrinsic toxicity of the cellular prion protein is regulated by its conserved central region. FASEB J 2020; 34:8734-8748. [PMID: 32385908 DOI: 10.1096/fj.201902749rr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 04/08/2020] [Accepted: 04/20/2020] [Indexed: 11/11/2022]
Abstract
The conserved central region (CR) of PrPC has been hypothesized to serve as a passive linker connecting the protein's toxic N-terminal and globular C-terminal domains. Yet, deletion of the CR causes neonatal fatality in mice, implying the CR possesses a protective function. The CR encompasses the regulatory α-cleavage locus, and additionally facilitates a regulatory metal ion-promoted interaction between the PrPC N- and C-terminal domains. To elucidate the role of the CR and determine why CR deletion generates toxicity, we designed PrPC constructs wherein either the cis-interaction or α-cleavage are selectively prevented. These constructs were interrogated using nuclear magnetic resonance, electrophysiology, and cell viability assays. Our results demonstrate the CR is not a passive linker and the native sequence is crucial for its protective role over the toxic N-terminus, irrespective of α-cleavage or the cis-interaction. Additionally, we find that the CR facilitates homodimerization of PrPC , attenuating the toxicity of the N-terminus.
Collapse
Affiliation(s)
- Graham P Roseman
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Bei Wu
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
| | - Mark A Wadolkowski
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, CA, USA
| | - David A Harris
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
| | - Glenn L Millhauser
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, CA, USA
| |
Collapse
|
117
|
Igel-Egalon A, Laferrière F, Tixador P, Moudjou M, Herzog L, Reine F, Torres JM, Laude H, Rezaei H, Béringue V. Crossing Species Barriers Relies on Structurally Distinct Prion Assemblies and Their Complementation. Mol Neurobiol 2020; 57:2572-2587. [PMID: 32239450 DOI: 10.1007/s12035-020-01897-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 03/02/2020] [Indexed: 02/01/2023]
Abstract
Prion replication results from the autocatalytic templated assisted conversion of the host-encoded prion protein PrPC into misfolded, polydisperse PrPSc conformers. Structurally distinct PrPSc conformers can give rise to multiple prion strains. Within and between prion strains, the biological activity (replicative efficacy and specific infectivity) of PrPSc assemblies is size dependent and thus reflects an intrinsic structural heterogeneity. The contribution of such PrPSc heterogeneity across species prion adaptation, which is believed to be based on fit adjustment between PrPSc template(s) and host PrPC, has not been explored. To define the structural-to-fitness PrPSc landscape, we measured the relative capacity of size-fractionated PrPSc assemblies from different prion strains to cross mounting species barriers in transgenic mice expressing foreign PrPC. In the absence of a transmission barrier, the relative efficacy of the isolated PrPSc assemblies to induce the disease is like the efficacy observed in the homotypic context. However, in the presence of a transmission barrier, size fractionation overtly delays and even abrogates prion pathogenesis in both the brain and spleen tissues, independently of the infectivity load of the isolated assemblies. Altering by serial dilution PrPSc assembly content of non-fractionated inocula aberrantly reduces their specific infectivity, solely in the presence of a transmission barrier. This suggests that synergy between structurally distinct PrPSc assemblies in the inoculum is requested for crossing the species barrier. Our data support a mechanism whereby overcoming prion species barrier requires complementation between structurally distinct PrPSc assemblies. This work provides key insight into the "quasispecies" concept applied to prions, which would not necessarily rely on prion substrains as constituent but on structural PrPSc heterogeneity within prion population.
Collapse
Affiliation(s)
| | - Florent Laferrière
- Université Paris-Saclay, INRAE, UVSQ, VIM, 78350, Jouy-en-Josas, France.,Institute of Neurodegenerative Diseases, CNRS UMR5293, University of Bordeaux, Bordeaux, France
| | - Philippe Tixador
- Université Paris-Saclay, INRAE, UVSQ, VIM, 78350, Jouy-en-Josas, France
| | - Mohammed Moudjou
- Université Paris-Saclay, INRAE, UVSQ, VIM, 78350, Jouy-en-Josas, France
| | - Laetitia Herzog
- Université Paris-Saclay, INRAE, UVSQ, VIM, 78350, Jouy-en-Josas, France
| | - Fabienne Reine
- Université Paris-Saclay, INRAE, UVSQ, VIM, 78350, Jouy-en-Josas, France
| | - Juan Maria Torres
- Centro de Investigación en Sanidad Animal (CISA-INIA), Valdeolmos, Madrid, Spain
| | - Hubert Laude
- Université Paris-Saclay, INRAE, UVSQ, VIM, 78350, Jouy-en-Josas, France
| | - Human Rezaei
- Université Paris-Saclay, INRAE, UVSQ, VIM, 78350, Jouy-en-Josas, France.
| | - Vincent Béringue
- Université Paris-Saclay, INRAE, UVSQ, VIM, 78350, Jouy-en-Josas, France.
| |
Collapse
|
118
|
Giaccone G, Moda F. PMCA Applications for Prion Detection in Peripheral Tissues of Patients with Variant Creutzfeldt-Jakob Disease. Biomolecules 2020; 10:biom10030405. [PMID: 32151109 PMCID: PMC7175161 DOI: 10.3390/biom10030405] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/02/2020] [Accepted: 03/05/2020] [Indexed: 12/19/2022] Open
Abstract
Prion diseases are neurodegenerative and invariably fatal conditions that affect humans and animals. In particular, Creutzfeldt-Jakob disease (CJD) and bovine spongiform encephalopathy (BSE) are paradigmatic forms of human and animal prion diseases, respectively. Human exposure to BSE through contaminated food caused the appearance of the new variant form of CJD (vCJD). These diseases are caused by an abnormal prion protein named PrPSc (or prion), which accumulates in the brain and leads to the onset of the disease. Their definite diagnosis can be formulated only at post-mortem after biochemical and neuropathological identification of PrPSc. Thanks to the advent of an innovative technique named protein misfolding cyclic amplification (PMCA), traces of PrPSc, undetectable with the standard diagnostic techniques, were found in peripheral tissues of patients with vCJD, even at preclinical stages. The technology is currently being used in specialized laboratories and can be exploited for helping physicians in formulating an early and definite diagnosis of vCJD using peripheral tissues. However, this assay is currently unable to detect prions associated with the sporadic CJD (sCJD) forms, which are more frequent than vCJD. This review will focus on the most recent advances and applications of PMCA in the field of vCJD and other human prion disease diagnosis.
Collapse
|
119
|
Gavín R, Lidón L, Ferrer I, del Río JA. The Quest for Cellular Prion Protein Functions in the Aged and Neurodegenerating Brain. Cells 2020; 9:cells9030591. [PMID: 32131451 PMCID: PMC7140396 DOI: 10.3390/cells9030591] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 02/21/2020] [Accepted: 02/27/2020] [Indexed: 12/19/2022] Open
Abstract
Cellular (also termed ‘natural’) prion protein has been extensively studied for many years for its pathogenic role in prionopathies after misfolding. However, neuroprotective properties of the protein have been demonstrated under various scenarios. In this line, the involvement of the cellular prion protein in neurodegenerative diseases other than prionopathies continues to be widely debated by the scientific community. In fact, studies on knock-out mice show a vast range of physiological functions for the protein that can be supported by its ability as a cell surface scaffold protein. In this review, we first summarize the most commonly described roles of cellular prion protein in neuroprotection, including antioxidant and antiapoptotic activities and modulation of glutamate receptors. Second, in light of recently described interaction between cellular prion protein and some amyloid misfolded proteins, we will also discuss the molecular mechanisms potentially involved in protection against neurodegeneration in pathologies such as Alzheimer’s, Parkinson’s, and Huntington’s diseases.
Collapse
Affiliation(s)
- Rosalina Gavín
- Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Science Park of Barcelona, 08028 Barcelona, Spain; (L.L.); (J.A.d.R.)
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain
- Center for Networked Biomedical Research on Neurodegenerative Diseases (Ciberned), 28031 Barcelona, Spain;
- Institute of Neuroscience, University of Barcelona, 08028 Barcelona, Spain
- Correspondence: ; Tel.: +34-93-4031185
| | - Laia Lidón
- Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Science Park of Barcelona, 08028 Barcelona, Spain; (L.L.); (J.A.d.R.)
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain
- Center for Networked Biomedical Research on Neurodegenerative Diseases (Ciberned), 28031 Barcelona, Spain;
- Institute of Neuroscience, University of Barcelona, 08028 Barcelona, Spain
| | - Isidre Ferrer
- Center for Networked Biomedical Research on Neurodegenerative Diseases (Ciberned), 28031 Barcelona, Spain;
- Institute of Neuroscience, University of Barcelona, 08028 Barcelona, Spain
- Department of Pathology and Experimental Therapeutics, University of Barcelona, 08907 Barcelona, Spain
- Senior Consultant, Bellvitge University Hospital, Hospitalet de Llobregat, 08907 Barcelona, Spain
- Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, 08908 Barcelona, Spain
| | - José Antonio del Río
- Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Science Park of Barcelona, 08028 Barcelona, Spain; (L.L.); (J.A.d.R.)
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain
- Center for Networked Biomedical Research on Neurodegenerative Diseases (Ciberned), 28031 Barcelona, Spain;
- Institute of Neuroscience, University of Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
120
|
Mok TH, Mead S. Preclinical biomarkers of prion infection and neurodegeneration. Curr Opin Neurobiol 2020; 61:82-88. [PMID: 32109717 DOI: 10.1016/j.conb.2020.01.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 01/09/2020] [Accepted: 01/21/2020] [Indexed: 12/01/2022]
Abstract
Therapeutic strategies and study designs for neurodegenerative diseases have started to explore the potential of preventive treatment in healthy people, emphasising characterisation of biomarkers capable of indicating proximity to clinical onset. This need is even more pressing for individuals at risk of prion disease given its rarity which virtually precludes the probability of recruiting enough numbers for well powered preventive trials based on clinical endpoints. Experimental mouse inoculation studies have revealed a rapid exponential rise in infectious titres followed by a relative plateau of considerable duration before clinical onset. This clinically silent incubation period represents a potential window of opportunity for the adaptation of ultrasensitive prion seeding assays to define the onset of prion infection, and for neurodegenerative biomarker discovery through similarly sensitive digital immunoassay platforms.
Collapse
Affiliation(s)
- Tze How Mok
- National Prion Clinic, Box 98, National Hospital for Neurology & Neurosurgery, Queen Square, London WC1N 3BG, United Kingdom; MRC Prion Unit at UCL, Institute of Prion Diseases, Courtauld Building, 33 Cleveland Street, London W1W 7FF, United Kingdom
| | - Simon Mead
- National Prion Clinic, Box 98, National Hospital for Neurology & Neurosurgery, Queen Square, London WC1N 3BG, United Kingdom; MRC Prion Unit at UCL, Institute of Prion Diseases, Courtauld Building, 33 Cleveland Street, London W1W 7FF, United Kingdom.
| |
Collapse
|
121
|
Agarwal A, Das D, Banerjee T, Mukhopadhyay S. Energy migration captures membrane-induced oligomerization of the prion protein. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1868:140324. [DOI: 10.1016/j.bbapap.2019.140324] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 10/23/2019] [Accepted: 10/26/2019] [Indexed: 12/22/2022]
|
122
|
Bélondrade M, Jas-Duval C, Nicot S, Bruyère-Ostells L, Mayran C, Herzog L, Reine F, Torres JM, Fournier-Wirth C, Béringue V, Lehmann S, Bougard D. Correlation between Bioassay and Protein Misfolding Cyclic Amplification for Variant Creutzfeldt-Jakob Disease Decontamination Studies. mSphere 2020; 5:e00649-19. [PMID: 31996421 PMCID: PMC6992370 DOI: 10.1128/msphere.00649-19] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 01/05/2020] [Indexed: 12/20/2022] Open
Abstract
To date, approximately 500 iatrogenic Creutzfeldt-Jakob disease cases have been reported worldwide, most of them resulting from cadaveric dura mater graft and from the administration of prion-contaminated human growth hormone. The unusual resistance of prions to decontamination processes, their large tissue distribution, and the uncertainty about the prevalence of variant Creutzfeldt-Jakob disease (vCJD) in the general population lead to specific recommendations regarding identification of tissue at risk and reprocessing of reusable medical devices, including the use of dedicated treatment for prion inactivation. We previously described an in vitro assay, called Surf-PMCA, which allowed us to classify prion decontamination treatments according to their efficacy on vCJD prions by monitoring residual seeding activity (RSA). Here, we used a transgenic mouse line permissive to vCJD prions to study the correlation between the RSA measured in vitro and the in vivo infectivity. Implantation in mouse brains of prion-contaminated steel wires subjected to different decontamination procedures allows us to demonstrate a good concordance between RSA measured by Surf-PMCA (in vitro) and residual infectivity (in vivo). These experiments emphasize the strength of the Surf-PMCA method as a rapid and sensitive assay for the evaluation of prion decontamination procedures and also confirm the lack of efficacy of several marketed reagents on vCJD prion decontamination.IMPORTANCE Creutzfeldt-Jakob diseases are neurodegenerative disorders for which transmission linked to medical procedures have been reported in hundreds of patients. As prion diseases, they are characterized by an unusual resistance to conventional decontamination processes. Moreover, their large tissue distribution and the ability of prions to attach to many surfaces raised the risk of transmission in health care facilities. It is therefore of major importance that decontamination procedures applied to medical devices before their reprocessing are thoroughly validated for prion inactivation. We previously described an in vitro assay, which allowed us to classify accurately prion decontamination treatments according to their efficacy on variant Creutzfeldt-Jakob disease. The significance of this study is in demonstrating the concordance between previous in vitro results and infectivity studies in transgenic mice. Furthermore, commercial reagents currently used in hospitals were tested by both protocols, and we observed that most of them were ineffective on human prions.
Collapse
Affiliation(s)
- Maxime Bélondrade
- Pathogenesis and Control of Chronic Infections, Etablissement Français du Sang, INSERM, Université de Montpellier, Montpellier, France
| | - Christelle Jas-Duval
- Pathogenesis and Control of Chronic Infections, Etablissement Français du Sang, INSERM, Université de Montpellier, Montpellier, France
- VIM INRA, Université Paris-Saclay, Jouy-en-Josas, France
| | - Simon Nicot
- Pathogenesis and Control of Chronic Infections, Etablissement Français du Sang, INSERM, Université de Montpellier, Montpellier, France
| | - Lilian Bruyère-Ostells
- Pathogenesis and Control of Chronic Infections, Etablissement Français du Sang, INSERM, Université de Montpellier, Montpellier, France
| | - Charly Mayran
- Pathogenesis and Control of Chronic Infections, Etablissement Français du Sang, INSERM, Université de Montpellier, Montpellier, France
| | | | - Fabienne Reine
- VIM INRA, Université Paris-Saclay, Jouy-en-Josas, France
| | - Juan Maria Torres
- Centro de Investigación en Sanidad Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (CISA-INIA), Madrid, Spain
| | - Chantal Fournier-Wirth
- Pathogenesis and Control of Chronic Infections, Etablissement Français du Sang, INSERM, Université de Montpellier, Montpellier, France
| | | | - Sylvain Lehmann
- CHRU de Montpellier and Université de Montpellier, IRMB, INSERM U1183, Laboratoire de Biochimie Protéomique Clinique, Montpellier, France
| | - Daisy Bougard
- Pathogenesis and Control of Chronic Infections, Etablissement Français du Sang, INSERM, Université de Montpellier, Montpellier, France
| |
Collapse
|
123
|
Thapa S, Abdelaziz DH, Abdulrahman BA, Schatzl HM. Sephin1 Reduces Prion Infection in Prion-Infected Cells and Animal Model. Mol Neurobiol 2020; 57:2206-2219. [PMID: 31981074 DOI: 10.1007/s12035-020-01880-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 01/15/2020] [Indexed: 02/05/2023]
Abstract
Prion diseases are fatal infectious neurodegenerative disorders in human and animals caused by misfolding of the cellular prion protein (PrPC) into the infectious isoform PrPSc. These diseases have the potential to transmit within or between species, and no cure is available to date. Targeting the unfolded protein response (UPR) as an anti-prion therapeutic approach has been widely reported for prion diseases. Here, we describe the anti-prion effect of the chemical compound Sephin1 which has been shown to protect in mouse models of protein misfolding diseases including amyotrophic lateral sclerosis (ALS) and multiple sclerosis (MS) by selectively inhibiting the stress-induced regulatory subunit of protein phosphatase 1, thus prolonging eIF2α phosphorylation. We show here that Sephin1 dose and time dependently reduced PrPSc in different neuronal cell lines which were persistently infected with various prion strains. In addition, prion seeding activity was reduced in Sephin1-treated cells. Importantly, we found that Sephin1 significantly overcame the endoplasmic reticulum (ER) stress induced in treated cells, as measured by lower expression of stress-induced aberrant prion protein. In a mouse model of prion infection, intraperitoneal treatment with Sephin1 significantly prolonged survival of prion-infected mice. When combining Sephin1 with the neuroprotective drug metformin, the survival of prion-infected mice was also prolonged. These results suggest that Sephin1 could be a potential anti-prion drug selectively targeting one component of the UPR pathway.
Collapse
Affiliation(s)
- Simrika Thapa
- Calgary Prion Research Unit, University of Calgary, Calgary, Alberta, Canada.,Department of Comparative Biology & Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, TRW 2D10, 3280 Hospital Drive NW, Calgary, Alberta, T2N 4Z6, Canada.,Hotchkiss Brain Institute (HBI), University of Calgary, Calgary, Alberta, Canada
| | - Dalia H Abdelaziz
- Calgary Prion Research Unit, University of Calgary, Calgary, Alberta, Canada.,Department of Comparative Biology & Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, TRW 2D10, 3280 Hospital Drive NW, Calgary, Alberta, T2N 4Z6, Canada.,Hotchkiss Brain Institute (HBI), University of Calgary, Calgary, Alberta, Canada.,Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Basant A Abdulrahman
- Calgary Prion Research Unit, University of Calgary, Calgary, Alberta, Canada.,Department of Comparative Biology & Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, TRW 2D10, 3280 Hospital Drive NW, Calgary, Alberta, T2N 4Z6, Canada.,Hotchkiss Brain Institute (HBI), University of Calgary, Calgary, Alberta, Canada.,Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Hermann M Schatzl
- Calgary Prion Research Unit, University of Calgary, Calgary, Alberta, Canada. .,Department of Comparative Biology & Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, TRW 2D10, 3280 Hospital Drive NW, Calgary, Alberta, T2N 4Z6, Canada. .,Hotchkiss Brain Institute (HBI), University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
124
|
Hwang S, Greenlee JJ, Nicholson EM. Role of donor genotype in RT-QuIC seeding activity of chronic wasting disease prions using human and bank vole substrates. PLoS One 2020; 15:e0227487. [PMID: 31910440 PMCID: PMC6946595 DOI: 10.1371/journal.pone.0227487] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 12/19/2019] [Indexed: 01/11/2023] Open
Abstract
Chronic wasting disease is a transmissible spongiform encephalopathy of cervids. This fatal neurodegenerative disease is caused by misfolding of the cellular prion protein (PrPC) to pathogenic conformers (PrPSc), and the pathogenic forms accumulate in the brain and other tissues. Real-time Quaking Induced Conversion (RT-QuIC) can be used for the detection of prions and for prion strain discrimination in a variety of biological tissues from humans and animals. In this study, we evaluated how either PrPSc from cervids of different genotypes or PrPSc from different sources of CWD influence the fibril formation of recombinant bank vole (BV) or human prion proteins using RT-QuIC. We found that reaction mixtures seeded with PrPSc from different genotypes of white-tailed deer or reindeer brains have similar conversion efficiency with both substrates. Also, we observed similar results when assays were seeded with different sources of CWD. Thus, we conclude that the genotypes of all sources of CWD used in this study do not influence the level of conversion of PrPC to PrPSc.
Collapse
Affiliation(s)
- Soyoun Hwang
- United States Department of Agriculture, Agricultural Research Service, National Animal Disease Center, Virus and Prion Research Unit, Ames, Iowa, United States of America
| | - Justin J. Greenlee
- United States Department of Agriculture, Agricultural Research Service, National Animal Disease Center, Virus and Prion Research Unit, Ames, Iowa, United States of America
| | - Eric M. Nicholson
- United States Department of Agriculture, Agricultural Research Service, National Animal Disease Center, Virus and Prion Research Unit, Ames, Iowa, United States of America
- * E-mail:
| |
Collapse
|
125
|
Rudge P, Jaunmuktane Z, Hyare H, Ellis M, Koltzenburg M, Collinge J, Brandner S, Mead S. Early neurophysiological biomarkers and spinal cord pathology in inherited prion disease. Brain 2020; 142:760-770. [PMID: 30698738 PMCID: PMC6391599 DOI: 10.1093/brain/awy358] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 11/07/2018] [Accepted: 11/26/2018] [Indexed: 11/29/2022] Open
Abstract
A common presentation of inherited prion disease is Gerstmann-Sträussler-Scheinker syndrome, typically presenting with gait ataxia and painful dysaesthesiae in the legs evolving over 2–5 years. The most frequent molecular genetic diagnosis is a P102L mutation of the prion protein gene (PRNP). There is no explanation for why this clinical syndrome is so distinct from Creutzfeldt-Jakob disease, and biomarkers of the early stages of disease have not been developed. Here we aimed, first, at determining if quantitative neurophysiological assessments could predict clinical diagnosis or disability and monitor progression and, second, to determine the neuropathological basis of the initial clinical and neurophysiological findings. We investigated subjects known to carry the P102L mutation in the longitudinal observational UK National Prion Monitoring Cohort study, with serial assessments of clinical features, peripheral nerve conduction, H and F components, threshold tracking and histamine flare and itch response and neuropathological examination in some of those who died. Twenty-three subjects were studied over a period of up to 12 years, including 65 neurophysiological assessments at the same department. Six were symptomatic throughout and six became symptomatic during the study. Neurophysiological abnormalities were restricted to the lower limbs. In symptomatic patients around the time of, or shortly after, symptom onset the H-reflex was lost. Lower limb thermal thresholds were at floor/ceiling in some at presentation, in others thresholds progressively deteriorated. Itch sensation to histamine injection was lost in most symptomatic patients. In six patients with initial assessments in the asymptomatic stage of the disease, a progressive deterioration in the ability to detect warm temperatures in the feet was observed prior to clinical diagnosis and the onset of disability. All of these six patients developed objective abnormalities of either warm or cold sensation prior to the onset of significant symptoms or clinical diagnosis. Autopsy examination in five patients (including two not followed clinically) showed prion protein in the substantia gelatinosa, spinothalamic tracts, posterior columns and nuclei and in the neuropil surrounding anterior horn cells. In conclusion, sensory symptoms and loss of reflexes in Gerstmann-Sträussler-Scheinker syndrome can be explained by neuropathological changes in the spinal cord. We conclude that the sensory symptoms and loss of lower limb reflexes in Gerstmann-Sträussler-Scheinker syndrome is due to pathology in the caudal spinal cord. Neuro-physiological measures become abnormal around the time of symptom onset, prior to diagnosis, and may be of value for improved early diagnosis and for recruitment and monitoring of progression in clinical trials.
Collapse
Affiliation(s)
- Peter Rudge
- National Prion Clinic, National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust (UCLH), London, UK.,MRC Prion Unit at UCL, Institute of Prion Diseases, 33 Cleveland St. London, UK
| | - Zane Jaunmuktane
- Division of Neuropathology, National Hospital for Neurology and Neurosurgery, University College London NHS Foundation Trust, Queen Square, London, UK
| | - Harpreet Hyare
- University College London NHS Foundation Trust, Queen Square, London, UK
| | - Matthew Ellis
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
| | - Martin Koltzenburg
- University College London NHS Foundation Trust, Queen Square, London, UK
| | - John Collinge
- National Prion Clinic, National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust (UCLH), London, UK.,MRC Prion Unit at UCL, Institute of Prion Diseases, 33 Cleveland St. London, UK
| | - Sebastian Brandner
- Division of Neuropathology, National Hospital for Neurology and Neurosurgery, University College London NHS Foundation Trust, Queen Square, London, UK.,Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
| | - Simon Mead
- National Prion Clinic, National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust (UCLH), London, UK.,MRC Prion Unit at UCL, Institute of Prion Diseases, 33 Cleveland St. London, UK
| |
Collapse
|
126
|
Human prion protein-mediated calcineurin activation induces neuron cell death via AMPK and autophagy pathway. Int J Biochem Cell Biol 2019; 119:105680. [PMID: 31866508 DOI: 10.1016/j.biocel.2019.105680] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 11/28/2019] [Accepted: 12/16/2019] [Indexed: 12/21/2022]
Abstract
It is usually accepted that prion proteins induce apoptosis in nerve cells. However, the mechanisms of PrPSc-neurotoxicity are not completely clear. Calcineurin is a Ca2+/calmodulin-dependent phosphatase. It activates autophagy, and may represent a link between deregulation of Ca2+ homeostasis and neuronal cell death. In this study, the effect of calcineurin activation mediated by human prion protein induced neuronal cell death via AMPK dephosphorylation and autophagy, was investigated. Synthetic peptides of PrP (PrP 106-126) increased calcineurin activity, without changing the levels of this protein phosphatase. Furthermore, these peptides reduced the levels of AMPK phosphorylation at threonine residue 172 and in autophagy activation. Calcineurin inhibitor, FK506, prevented this effect. The data showed that PrP-treated neurons had lower levels of AMPK than control neurons. This decrease in AMPK levels was matched via activation of autophagy. FK506 prevented the changes in AMPK and autophagy levels induced by PrP peptides. Taken together, the data demonstrated that prion peptides triggered an apoptotic cascade via calcineurin activation, which mediated AMPK dephosphorylation and autophagy activation. Therefore, these data suggest that therapeutic strategies targeting calcineurin inhibition might facilitate the management of neurodegenerative disorders including prion disease.
Collapse
|
127
|
Hwang S, Dassanayake RP, Nicholson EM. PAD-Beads enrichment enhances detection of PrP Sc using real-time quaking-induced conversion. BMC Res Notes 2019; 12:806. [PMID: 31836019 PMCID: PMC6911270 DOI: 10.1186/s13104-019-4842-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 12/04/2019] [Indexed: 11/10/2022] Open
Abstract
Objective Scrapie is a transmissible spongiform encephalopathy (TSE) that naturally occurs in sheep and goats. This fatal neurodegenerative disease results from misfolding of the normal cellular prion protein (PrPC) to a pathogenic prion protein form (PrPSc). This pathogenic form, PrPSc, accumulates in the brain and lymphoid tissues. The presence of PrPSc can be detected by an in vitro conversion assay known as real-time quaking induced conversion (RT-QuIC). RT-QuIC has been used to detect PrPSc in a variety of biological tissues from brains to fluids. While this technique is both rapid and sensitive, enhancing the detection of prions would be valuable in the diagnostic laboratories. Results In this study, we assessed whether PrPSc detection sensitivity of RT-QuIC can be increased by enriching PrPSc in scrapie tissue homogenates using commercially available aggregated protein binding ligands coated magnetic beads (PAD-Beads). Coupling of RT-QuIC to PAD-Beads based cleanup allowed detection of PrPSc rapidly and without dilution of scrapie sheep brain homogenates prior to RT-QuIC. The PAD-Beads sample pretreatment step prior to RT-QuIC is a useful enhancement in the diagnosis of TSEs.
Collapse
Affiliation(s)
- Soyoun Hwang
- Virus and Prion Research Unit, National Animal Disease Center, United States Department of Agriculture, Agricultural Research Service, Ames, IA, 50010, USA
| | - Rohana P Dassanayake
- Ruminant Disease and Immunology Research Unit, United States Department of Agriculture, Agricultural Research Service, Ames, IA, 50010, USA
| | - Eric M Nicholson
- Virus and Prion Research Unit, National Animal Disease Center, United States Department of Agriculture, Agricultural Research Service, Ames, IA, 50010, USA.
| |
Collapse
|
128
|
Zhang M, Zhang H, Yao H, Guo C, Lin D. Biophysical characterization of oligomerization and fibrillization of the G131V pathogenic mutant of human prion protein. Acta Biochim Biophys Sin (Shanghai) 2019; 51:1223-1232. [PMID: 31735962 DOI: 10.1093/abbs/gmz124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Indexed: 11/14/2022] Open
Abstract
The pathogenesis of fatal neurodegenerative prion diseases is closely associated with the conversion of α-helix-rich cellular prion protein into β-sheet-rich scrapie form. Pathogenic point mutations of prion proteins usually promote the conformational conversion and trigger inherited prion diseases. The G131V mutation of human prion protein (HuPrP) was identified to be involved in Gerstmann-Sträussler-Scheinker syndrome. Few studies have been carried out to address the pathogenesis of the G131V mutant. Here, we addressed the effects of the G131V mutation on oligomerization and fibrillization of the full-length HuPrP(23-231) and truncated HuPrP(91-231) proteins. The G131V mutation promotes the oligomerization but alleviates the fibrillization of HuPrP, implying that the oligomerization might play a crucial role in the pathogenic mechanisms of the G131V mutant. Moreover, the flexible N-terminal fragment in either the wild-type or the G131V mutant HuPrP increases the oligomerization tendencies but decreases the fibrillization tendencies. Furthermore, this mutation significantly alters the tertiary structure of human PrPC and might distinctly change the conformational conversion tendency. Interestingly, both guanidine hydrochloride denaturation and thermal denaturation experiments showed that the G131V mutation does not significantly change the thermodynamic stabilities of the HuPrP proteins. This work may be of benefit to a mechanistic understanding of the conformational conversion of prion proteins and also provide clues for the prevention and treatment of prion diseases.
Collapse
Affiliation(s)
- Meilan Zhang
- MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Haoran Zhang
- MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Hongwei Yao
- MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Chenyun Guo
- MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Donghai Lin
- MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
129
|
Hackl S, Becker CFW. Prion protein-Semisynthetic prion protein (PrP) variants with posttranslational modifications. J Pept Sci 2019; 25:e3216. [PMID: 31713950 PMCID: PMC6899880 DOI: 10.1002/psc.3216] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 08/23/2019] [Accepted: 08/23/2019] [Indexed: 12/16/2022]
Abstract
Deciphering the pathophysiologic events in prion diseases is challenging, and the role of posttranslational modifications (PTMs) such as glypidation and glycosylation remains elusive due to the lack of homogeneous protein preparations. So far, experimental studies have been limited in directly analyzing the earliest events of the conformational change of cellular prion protein (PrPC ) into scrapie prion protein (PrPSc ) that further propagates PrPC misfolding and aggregation at the cellular membrane, the initial site of prion infection, and PrP misfolding, by a lack of suitably modified PrP variants. PTMs of PrP, especially attachment of the glycosylphosphatidylinositol (GPI) anchor, have been shown to be crucially involved in the PrPSc formation. To this end, semisynthesis offers a unique possibility to understand PrP behavior invitro and invivo as it provides access to defined site-selectively modified PrP variants. This approach relies on the production and chemoselective linkage of peptide segments, amenable to chemical modifications, with recombinantly produced protein segments. In this article, advances in understanding PrP conversion using semisynthesis as a tool to obtain homogeneous posttranslationally modified PrP will be discussed.
Collapse
Affiliation(s)
- Stefanie Hackl
- University of Vienna, Faculty of Chemistry, Institute of Biological Chemistry, Vienna, Austria
| | - Christian F W Becker
- University of Vienna, Faculty of Chemistry, Institute of Biological Chemistry, Vienna, Austria
| |
Collapse
|
130
|
Mazurskyy A, Howitt J. Initiation and Transmission of α-Synuclein Pathology in Parkinson's Disease. Neurochem Res 2019; 44:10.1007/s11064-019-02896-0. [PMID: 31713092 DOI: 10.1007/s11064-019-02896-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 10/11/2019] [Accepted: 10/18/2019] [Indexed: 02/06/2023]
Abstract
The pathogenesis of Parkinson's disease (PD) involves the accumulation of aggregated forms of α-synuclein in the body. The location for the initiation of misfolded forms of α-synuclein is now a contentious issue, what was once thought to be a disease of the central nervous system (CNS) now appears to involve multiple organs in the body. In particular, the two regions in the body where the nervous system is exposed to the environment, the olfactory bulb and the enteric nervous system, are now thought to play an important role in the initial phase of the disease. Epidemiological studies point to the gastrointestinal tract, including the appendix, as a potential site for the misfolding and transmission of α-synuclein, with the vagus nerve providing a conduit between the gut and brain. A growing body of animal studies also support this pathway, implicating the transmission of pathological α-synuclein from outside the CNS in the development of PD.
Collapse
Affiliation(s)
- Alex Mazurskyy
- School of Health Sciences, Swinburne University, Melbourne, Australia
| | - Jason Howitt
- School of Health Sciences, Swinburne University, Melbourne, Australia.
| |
Collapse
|
131
|
Doumic M, Fellner K, Mezache M, Rezaei H. A bi-monomeric, nonlinear Becker-Döring-type system to capture oscillatory aggregation kinetics in prion dynamics. J Theor Biol 2019; 480:241-261. [PMID: 31419441 DOI: 10.1016/j.jtbi.2019.08.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 08/01/2019] [Accepted: 08/07/2019] [Indexed: 02/05/2023]
Abstract
In this article, in order to understand the appearance of oscillations observed in protein aggregation experiments, we propose, motivate and analyse mathematically the differential system describing the kinetics of the following reactions: [Formula: see text] with n finite or infinite. This system may be viewed as a variant of the seminal Becker-Döring system, and is capable of displaying sustained though damped oscillations.
Collapse
Affiliation(s)
- Marie Doumic
- Sorbonne Universités, Inria, Université Paris-Diderot, CNRS, Laboratoire Jacques-Louis Lions, Paris F-75005, France; Wolfgang Pauli Institute, C/O University of Vienna, Austria.
| | - Klemens Fellner
- Institute of Mathematics and Scientific Computing, University of Graz, Graz 8010, Austria.
| | - Mathieu Mezache
- Sorbonne Universités, Inria, Université Paris-Diderot, CNRS, Laboratoire Jacques-Louis Lions, Paris F-75005, France.
| | - Human Rezaei
- INRA, UR892, Virologie Immunologie Moléculaires, Jouy-en-Josas 78350, France.
| |
Collapse
|
132
|
Canas LS, Sudre CH, De Vita E, Nihat A, Mok TH, Slattery CF, Paterson RW, Foulkes AJM, Hyare H, Cardoso MJ, Thornton J, Schott JM, Barkhof F, Collinge J, Ourselin S, Mead S, Modat M. Prion disease diagnosis using subject-specific imaging biomarkers within a multi-kernel Gaussian process. Neuroimage Clin 2019; 24:102051. [PMID: 31734530 PMCID: PMC6978211 DOI: 10.1016/j.nicl.2019.102051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 09/25/2019] [Accepted: 10/21/2019] [Indexed: 02/01/2023]
Abstract
Prion diseases are a group of rare neurodegenerative conditions characterised by a high rate of progression and highly heterogeneous phenotypes. Whilst the most common form of prion disease occurs sporadically (sporadic Creutzfeldt-Jakob disease, sCJD), other forms are caused by prion protein gene mutations, or exposure to prions in the diet or by medical procedures, such us surgeries. To date, there are no accurate quantitative imaging biomarkers that can be used to predict the future clinical diagnosis of a healthy subject, or to quantify the progression of symptoms over time. Besides, CJD is commonly mistaken for other forms of dementia. Due to the heterogeneity of phenotypes and the lack of a consistent geometrical pattern of disease progression, the approaches used to study other types of neurodegenerative diseases are not satisfactory to capture the progression of human form of prion disease. In this paper, using a tailored framework, we aim to classify and stratify patients with prion disease, according to the severity of their illness. The framework is initialised with the extraction of subject-specific imaging biomarkers. The extracted biomakers are then combined with genetic and demographic information within a Gaussian Process classifier, used to calculate the probability of a subject to be diagnosed with prion disease in the next year. We evaluate the effectiveness of the proposed method in a cohort of patients with inherited and sporadic forms of prion disease. The model has shown to be effective in the prediction of both inherited CJD (92% of accuracy) and sporadic CJD (95% of accuracy). However the model has shown to be less effective when used to stratify the different stages of the disease, in which the average accuracy is 85%, whilst the recall is 59%. Finally, our framework was extended as a differential diagnosis tool to identify both forms of CJD among another neurodegenerative disease. In summary we have developed a novel method for prion disease diagnosis and prediction of clinical onset using multiple sources of features, which may have use in other disorders with heterogeneous imaging features.
Collapse
Affiliation(s)
- Liane S Canas
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom; School of Biomedical Engineering & Imaging Sciences, King's College London, King's Health Partners, St Thomas' Hospital, London, SE1 7EH, United Kingdom.
| | - Carole H Sudre
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom; School of Biomedical Engineering & Imaging Sciences, King's College London, King's Health Partners, St Thomas' Hospital, London, SE1 7EH, United Kingdom; Dementia Research Centre, UCL Institute of Neurology, 8-11 Queen Square, London, WC1N 3BG, UK
| | - Enrico De Vita
- Institute of Neurology, University College London, United Kingdom; School of Biomedical Engineering & Imaging Sciences, King's College London, King's Health Partners, St Thomas' Hospital, London, SE1 7EH, United Kingdom
| | - Akin Nihat
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, London, United Kingdom; NHS National Prion Clinic, University College London Hospitals NHS Foundation Trust, London, United Kingdom
| | - Tze How Mok
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, London, United Kingdom; NHS National Prion Clinic, University College London Hospitals NHS Foundation Trust, London, United Kingdom
| | - Catherine F Slattery
- Dementia Research Centre, UCL Institute of Neurology, 8-11 Queen Square, London, WC1N 3BG, UK
| | - Ross W Paterson
- Dementia Research Centre, UCL Institute of Neurology, 8-11 Queen Square, London, WC1N 3BG, UK
| | - Alexander J M Foulkes
- Dementia Research Centre, UCL Institute of Neurology, 8-11 Queen Square, London, WC1N 3BG, UK
| | - Harpreet Hyare
- NHS National Prion Clinic, University College London Hospitals NHS Foundation Trust, London, United Kingdom
| | - M Jorge Cardoso
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom; School of Biomedical Engineering & Imaging Sciences, King's College London, King's Health Partners, St Thomas' Hospital, London, SE1 7EH, United Kingdom
| | - John Thornton
- Institute of Neurology, University College London, United Kingdom
| | - Jonathan M Schott
- Dementia Research Centre, UCL Institute of Neurology, 8-11 Queen Square, London, WC1N 3BG, UK
| | - Frederik Barkhof
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom; Amsterdam UMC, Vrije Universiteit, Amsterdam, the Netherlands
| | - John Collinge
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, London, United Kingdom; NHS National Prion Clinic, University College London Hospitals NHS Foundation Trust, London, United Kingdom
| | - Sébastien Ourselin
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom; School of Biomedical Engineering & Imaging Sciences, King's College London, King's Health Partners, St Thomas' Hospital, London, SE1 7EH, United Kingdom
| | - Simon Mead
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, London, United Kingdom; NHS National Prion Clinic, University College London Hospitals NHS Foundation Trust, London, United Kingdom
| | - Marc Modat
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom; School of Biomedical Engineering & Imaging Sciences, King's College London, King's Health Partners, St Thomas' Hospital, London, SE1 7EH, United Kingdom
| |
Collapse
|
133
|
Baral PK, Yin J, Aguzzi A, James MNG. Transition of the prion protein from a structured cellular form (PrP C ) to the infectious scrapie agent (PrP Sc ). Protein Sci 2019; 28:2055-2063. [PMID: 31583788 DOI: 10.1002/pro.3735] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/11/2019] [Accepted: 09/12/2019] [Indexed: 11/07/2022]
Abstract
Prion diseases in mammals are caused by a conformational transition of the cellular prion protein from its native conformation (PrPC ) to a pathological isoform called "prion protein scrapie" (PrPSc ). A molecular level of understanding of this conformational transition will be helpful in unveiling the disease etiology. Experimental structural biological techniques (NMR and X-ray crystallography) have been used to unravel the atomic level structural information for the prion and its binding partners. More than one hundred three-dimensional structures of the mammalian prions have been deposited in the protein databank. Structural studies on the prion protein and its structural transitions will deepen our understanding of the molecular basis of prion pathogenesis and will provide valuable guidance for future structure-based drug discovery endeavors.
Collapse
Affiliation(s)
- Pravas K Baral
- Department of Biochemistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Jiang Yin
- Department of Biochemistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Adriano Aguzzi
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Michael N G James
- Department of Biochemistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
134
|
Katrak SM, Pauranik A, Desai SB, Mead S, Beck J, Brandner S, Collinge J. Familial Creutzfeldt-Jakob Disease in an Indian Kindred. Ann Indian Acad Neurol 2019; 22:458-461. [PMID: 31736569 PMCID: PMC6839320 DOI: 10.4103/aian.aian_214_19] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 04/28/2019] [Accepted: 05/02/2019] [Indexed: 11/04/2022] Open
Abstract
It is now known that the inherited prion disease is caused by over 60 different mutations in the Prion protein (PRNP) gene. Four missense mutations at codons 102, 178, 200 and 210, account for over 95% of these cases. In this study we describe, a large Indian family with familial Creutzfeldt Jakob Disease (fCJD). One affected member presented with a presenile dementia, a protracted clinical course and characateristic MRI features. Genetic analysis revealed a D178N mutation in the 2 affected individuals and 7 unaffected members. The neuropathological examination of the brain of one of the affected member was conspicuous by spongiform degeneration, neuronal loss and gliosis. This is a detailed report of a genetically and neuropathologically proven fCJD from India.
Collapse
Affiliation(s)
- Sarosh M. Katrak
- Department of Neurology, Jaslok Hospital and Research Centre, Mumbai, India
| | - Apoorva Pauranik
- Pauranik Academy of Medical Education, Indore, Madhya Pradesh, India
| | - Shrinivas B. Desai
- Department of Radiology, Jaslok Hospital and Research Centre, Mumbai, India
| | - Simon Mead
- MRC Prion Unit at UCL, Institute of Prion Diseases, London, UK
| | - Jon Beck
- MRC Prion Unit at UCL, Institute of Prion Diseases, London, UK
| | - Sebastian Brandner
- Division of Neuropathology, National Hospital for Neurology and Neurosurgery, Queens Square, London, UK
| | - John Collinge
- MRC Prion Unit at UCL, Institute of Prion Diseases, London, UK
| |
Collapse
|
135
|
D'Argenio V, Sarnataro D. Microbiome Influence in the Pathogenesis of Prion and Alzheimer's Diseases. Int J Mol Sci 2019; 20:E4704. [PMID: 31547531 PMCID: PMC6801937 DOI: 10.3390/ijms20194704] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 09/20/2019] [Accepted: 09/21/2019] [Indexed: 12/14/2022] Open
Abstract
Misfolded and abnormal β-sheets forms of wild-type proteins, such as cellular prion protein (PrPC) and amyloid beta (Aβ), are believed to be the vectors of neurodegenerative diseases, prion and Alzheimer's disease (AD), respectively. Increasing evidence highlights the "prion-like" seeding of protein aggregates as a mechanism for pathological spread in AD, tauopathy, as well as in other neurodegenerative diseases, such as Parkinson's. Mutations in both PrPC and Aβ precursor protein (APP), have been associated with the pathogenesis of these fatal disorders with clear evidence for their pathogenic significance. In addition, a critical role for the gut microbiota is emerging; indeed, as a consequence of gut-brain axis alterations, the gut microbiota has been involved in the regulation of Aβ production in AD and, through the microglial inflammation, in the amyloid fibril formation, in prion diseases. Here, we aim to review the role of microbiome ("the other human genome") alterations in AD and prion disease pathogenesis.
Collapse
Affiliation(s)
- Valeria D'Argenio
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, via Pansini 5, 80131 Naples, Italy.
- CEINGE-Biotecnologie Avanzate, via G. Salvatore 486, 80145 Naples, Italy.
- Task Force on Microbiome Studies, University of Naples Federico II, 80131 Naples, Italy.
| | - Daniela Sarnataro
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, via Pansini 5, 80131 Naples, Italy.
- CEINGE-Biotecnologie Avanzate, via G. Salvatore 486, 80145 Naples, Italy.
| |
Collapse
|
136
|
Abstract
Mammalian prion diseases are a group of neurodegenerative conditions caused by infection of the central nervous system with proteinaceous agents called prions, including sporadic, variant, and iatrogenic Creutzfeldt-Jakob disease; kuru; inherited prion disease; sheep scrapie; bovine spongiform encephalopathy; and chronic wasting disease. Prions are composed of misfolded and multimeric forms of the normal cellular prion protein (PrP). Prion diseases require host expression of the prion protein gene (PRNP) and a range of other cellular functions to support their propagation and toxicity. Inherited forms of prion disease are caused by mutation of PRNP, whereas acquired and sporadically occurring mammalian prion diseases are controlled by powerful genetic risk and modifying factors. Whereas some PrP amino acid variants cause the disease, others confer protection, dramatically altered incubation times, or changes in the clinical phenotype. Multiple mechanisms, including interference with homotypic protein interactions and the selection of the permissible prion strains in a host, play a role. Several non-PRNP factors have now been uncovered that provide insights into pathways of disease susceptibility or neurotoxicity.
Collapse
Affiliation(s)
- Simon Mead
- Medical Research Council Prion Unit at UCL, Institute of Prion Diseases, University College London, London W1W 7FF, United Kingdom;
| | - Sarah Lloyd
- Medical Research Council Prion Unit at UCL, Institute of Prion Diseases, University College London, London W1W 7FF, United Kingdom;
| | - John Collinge
- Medical Research Council Prion Unit at UCL, Institute of Prion Diseases, University College London, London W1W 7FF, United Kingdom;
| |
Collapse
|
137
|
Abstract
Prion diseases are caused by the conversion of physiological PrPC into the pathogenic misfolded protein PrPSc, conferring new properties to PrPSc that vary upon prion strains. In this work, we analyze the thermostability of three prion strains (BSE, RML and 22L) that were heated at 98 °C for 2 hours. PrPSc resistance to proteinase K (PrPres), residual infectivity by mouse bioassay and in vitro templating activity by protein misfolding cyclic amplification (PMCA) were studied. Heated strains showed a huge loss of PrPres and a radically different infectivity loss: RML was the most thermolabile strain (6 to 7 log10 infectivity loss), followed by 22L (5 log10) while BSE was the most thermostable strain with low or null infectivity reduction showing a clear dissociation between PrPres and infectivity. These results indicate that thermostability is a strain-specific feature, measurable by PMCA and mouse bioassay, and a great tool to distinguish prion strains.
Collapse
|
138
|
Ford L, Rudge P, Robinson K, Collinge J, Gorham M, Mead S. The most problematic symptoms of prion disease - an analysis of carer experiences. Int Psychogeriatr 2019; 31:1181-1190. [PMID: 30353798 PMCID: PMC6372072 DOI: 10.1017/s1041610218001588] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
OBJECTIVES Prion diseases are rare dementias that most commonly occur sporadically, but can be inherited or acquired, and for which there is no cure. We sought to understand which prion disease symptoms are most problematic for carers, to inform the development of outcome measures. DESIGN Self-completed questionnaire with follow-up of a subset of participants by structured interview. SETTING A nested study in the UK National Prion Monitoring Cohort, a longitudinal observational study. PARTICIPANTS AND MEASUREMENTS 71 carers, of people with different prion diseases with a wide range of disease severity, identified 236 of their four most problematic symptoms by questionnaire which were grouped into ten domains. Structured interviews were then done to qualitatively explore these experiences. Eleven family carers of people with prion disease were selected, including those representative of a range of demographics and disease subtypes and those who cared for people with prion disease, living or recently deceased. Interviews were transcribed and formally studied. RESULTS The six most problematic symptom domains were: mobility and coordination; mood and behavior; personal care and continence; eating and swallowing; communication; and cognition and memory. The prevalence of these symptoms varied significantly by disease stage and type. A formal analysis of structured interviews to explore these domains is reported. CONCLUSIONS We make suggestions about how healthcare professionals can focus their support for people with prion disease. Clinical trials that aim to generate evidence regarding therapies that might confer meaningful benefits to carers should consider including outcome measures that monitor the symptomatic domains we have identified as problematic.
Collapse
Affiliation(s)
- Liz Ford
- NHS National Prion Clinic, National Hospital for Neurology and Neurosurgery, University College London (UCL) Hospitals NHS Foundation Trust, London WC1N 3BG
| | - Peter Rudge
- NHS National Prion Clinic, National Hospital for Neurology and Neurosurgery, University College London (UCL) Hospitals NHS Foundation Trust, London WC1N 3BG
- MRC Prion Unit at UCL, Institute of Prion Diseases, UCL, London W1W 7FF
| | - Kathy Robinson
- The Open University, Walton Hall, Milton Keynes, MK7 6BJ (UK)
| | - John Collinge
- NHS National Prion Clinic, National Hospital for Neurology and Neurosurgery, University College London (UCL) Hospitals NHS Foundation Trust, London WC1N 3BG
- MRC Prion Unit at UCL, Institute of Prion Diseases, UCL, London W1W 7FF
| | - Michele Gorham
- NHS National Prion Clinic, National Hospital for Neurology and Neurosurgery, University College London (UCL) Hospitals NHS Foundation Trust, London WC1N 3BG
| | - Simon Mead
- NHS National Prion Clinic, National Hospital for Neurology and Neurosurgery, University College London (UCL) Hospitals NHS Foundation Trust, London WC1N 3BG
- MRC Prion Unit at UCL, Institute of Prion Diseases, UCL, London W1W 7FF
| |
Collapse
|
139
|
Walia R, Ho CC, Lee C, Gilch S, Schatzl HM. Gene-edited murine cell lines for propagation of chronic wasting disease prions. Sci Rep 2019; 9:11151. [PMID: 31371793 PMCID: PMC6673760 DOI: 10.1038/s41598-019-47629-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 07/18/2019] [Indexed: 01/28/2023] Open
Abstract
Prions cause fatal infectious neurodegenerative diseases in humans and animals. Cell culture models are essential for studying the molecular biology of prion propagation. Defining such culture models is mostly a random process, includes extensive subcloning, and for many prion diseases few or no models exist. One example is chronic wasting disease (CWD), a highly contagious prion disease of cervids. To extend the range of cell models propagating CWD prions, we gene-edited mouse cell lines known to efficiently propagate murine prions. Endogenous prion protein (PrP) was ablated in CAD5 and MEF cells, using CRISPR-Cas9 editing. PrP knock-out cells were reconstituted with mouse, bank vole and cervid PrP genes by lentiviral transduction. Reconstituted cells expressing mouse PrP provided proof-of-concept for re-established prion infection. Bank voles are considered universal receptors for prions from a variety of species. Bank vole PrP reconstituted cells propagated mouse prions and cervid prions, even without subcloning for highly susceptible cells. Cells reconstituted with cervid PrP and infected with CWD prions tested positive in prion conversion assay, whereas non-reconstituted cells were negative. This novel cell culture platform which is easily adjustable and allows testing of polymorphic alleles will provide important new insights into the biology of CWD prions.
Collapse
Affiliation(s)
- Rupali Walia
- Department of Comparative Biology & Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, T2N 4Z6, Canada.,Calgary Prion Research Unit, University of Calgary, Calgary, Alberta, T2N 4Z6, Canada
| | - Cheng Ching Ho
- Department of Comparative Biology & Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, T2N 4Z6, Canada.,Calgary Prion Research Unit, University of Calgary, Calgary, Alberta, T2N 4Z6, Canada
| | - Chi Lee
- Department of Comparative Biology & Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, T2N 4Z6, Canada.,Calgary Prion Research Unit, University of Calgary, Calgary, Alberta, T2N 4Z6, Canada
| | - Sabine Gilch
- Department of Comparative Biology & Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, T2N 4Z6, Canada.,Calgary Prion Research Unit, University of Calgary, Calgary, Alberta, T2N 4Z6, Canada
| | - Hermann M Schatzl
- Department of Comparative Biology & Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, T2N 4Z6, Canada. .,Calgary Prion Research Unit, University of Calgary, Calgary, Alberta, T2N 4Z6, Canada.
| |
Collapse
|
140
|
Terry C, Wadsworth JDF. Recent Advances in Understanding Mammalian Prion Structure: A Mini Review. Front Mol Neurosci 2019; 12:169. [PMID: 31338021 PMCID: PMC6629788 DOI: 10.3389/fnmol.2019.00169] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 06/17/2019] [Indexed: 12/15/2022] Open
Abstract
Prions are lethal pathogens, which cause fatal neurodegenerative diseases in mammals. They are unique infectious agents and are composed of self-propagating multi-chain assemblies of misfolded host-encoded prion protein (PrP). Understanding prion structure is fundamental to understanding prion disease pathogenesis however to date, the high-resolution structure of authentic ex vivo infectious prions remains unknown. Advances in determining prion structure have been severely impeded by the difficulty in recovering relatively homogeneous prion particles from infected brain and definitively associating infectivity with the PrP assembly state. Recently, however, images of highly infectious ex vivo PrP rods that produce prion-strain specific disease phenotypes in mice have been obtained using cryo-electron microscopy and atomic force microscopy. These images have provided the most detailed description of ex vivo mammalian prions reported to date and have established that prions isolated from multiple strains have a common hierarchical structure. Misfolded PrP is assembled into 20 nm wide rods containing two fibers, each with double helical repeating substructure, separated by a characteristic central gap 8–10 nm in width. Irregularly structured material with adhesive properties distinct to that of the fibers is present within the central gap of the rod. Prions are clearly distinguishable from non-infectious recombinant PrP fibrils generated in vitro and from all other propagating protein structures so far described in other neurodegenerative diseases. The basic architecture of mammalian prions appears to be exceptional and fundamental to their lethal pathogenicity.
Collapse
Affiliation(s)
- Cassandra Terry
- Molecular Systems for Health Research Group, School of Human Sciences, London Metropolitan University, London, United Kingdom
| | - Jonathan D F Wadsworth
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, University College London, London, United Kingdom
| |
Collapse
|
141
|
Scheffler K, Bjørås KØ, Bjørås M. Diverse functions of DNA glycosylases processing oxidative base lesions in brain. DNA Repair (Amst) 2019; 81:102665. [PMID: 31327582 DOI: 10.1016/j.dnarep.2019.102665] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Endogenous and exogenous oxidative agents continuously damage genomic DNA, with the brain being particularly vulnerable. Thus, preserving genomic integrity is key for brain health and neuronal function. Accumulation of DNA damage is one of the causative factors of ageing and increases the risk of a wide range of neurological disorders. Base excision repair is the major pathway for removal of oxidized bases in the genome and initiated by DNA glycosylases. Emerging evidence suggest that DNA glycosylases have non-canonical functions important for genome regulation. Understanding canonical and non-canonical functions of DNA glycosylases processing oxidative base lesions modulating brain function will be crucial for the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Katja Scheffler
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Norway; Clinic of Laboratory Medicine, St. Olavs Hospital, N-7491 Trondheim, Norway
| | - Karine Øian Bjørås
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Norway
| | - Magnar Bjørås
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Norway; Clinic of Laboratory Medicine, St. Olavs Hospital, N-7491 Trondheim, Norway; Department of Microbiology, Oslo University Hospital and University of Oslo, N-0424 Oslo, Norway.
| |
Collapse
|
142
|
Moda F, Bolognesi ML, Legname G. Novel screening approaches for human prion diseases drug discovery. Expert Opin Drug Discov 2019; 14:983-993. [PMID: 31271065 DOI: 10.1080/17460441.2019.1637851] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Introduction: Human prion diseases are rare fatal neurodegenerative diseases caused by the misfolding and aggregation of the prion protein in the form of infectious prions. So far, these diseases are incurable. One of the major difficulties in identifying suitable drugs is the availability of robust preclinical screening methods. All molecules identified have been screened using cell-based assays and in vivo murine models. The existence of a continuum of prion strains has hampered the identification of efficacious molecules modulating the progression of different forms of the disease. Areas covered: The advent of new in vitro screening methodologies is allowing for novel strategies to develop new compounds that could interfere with a broad range of diseases. In particular, two innovative techniques named Real Time Quaking Induced Conversion (RT-QuIC) and Protein Misfolding Cyclic Amplification (PMCA) have opened new venues for testing compounds in a rapid a reproducible way. These are discussed within. Expert opinion: For human prion diseases, one major hurdle has been a well-defined screening methodology. In other animal species, cell-based assays have been employed that could replicate animal prions indefinitely. Such a tool for human prion diseases is still missing. Therefore, the advent of RT-QuIC and PMCA has proven instrumental to overcome this limitation.
Collapse
Affiliation(s)
- Fabio Moda
- Division of Neurology 5 - Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta , Milano , Italy
| | - Maria Laura Bolognesi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna , Bologna , Italy
| | - Giuseppe Legname
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA) , Trieste , Italy
| |
Collapse
|
143
|
Miller WL, Walter WD. Spatial heterogeneity of prion gene polymorphisms in an area recently infected by chronic wasting disease. Prion 2019; 13:65-76. [PMID: 30777498 PMCID: PMC7000142 DOI: 10.1080/19336896.2019.1583042] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Genetic variability in the prion protein (Prnp) gene influences host susceptibility to many pathogenic prion diseases. Understanding the distribution of susceptible Prnp variants and determining factors influencing spatial genetic patterns are important components of many chronic wasting disease mitigation strategies. Here, we describe Prnp variability in white-tailed deer (Odocoileus virginianus) from the Mid-Atlantic region of the United States of America, an area with a recent history of infection and low disease incidence. This population is characterized by lower rates of polymorphism and significantly higher frequencies of the more susceptible 96GG genotype compared to previously surveyed populations. The prevalence of the most susceptible genotypes at disease-associated loci did vary among subregions, indicating that populations have innate differences in genotype-dictated susceptibility.
Collapse
Affiliation(s)
- William L Miller
- a Pennsylvania Cooperative Fish and Wildlife Research Unit, Department of Ecosystem Science and Management, Intercollege Graduate Degree Program in Ecology , The Pennsylvania State University , University Park , PA , USA
| | - W David Walter
- b U.S. Geological Survey, Pennsylvania Cooperative Fish and Wildlife Research Unit , The Pennsylvania State University , University Park , PA , USA
| |
Collapse
|
144
|
Zhou S, Shi D, Liu X, Yao X, Da LT, Liu H. pH-Induced Misfolding Mechanism of Prion Protein: Insights from Microsecond-Accelerated Molecular Dynamics Simulations. ACS Chem Neurosci 2019; 10:2718-2729. [PMID: 31070897 DOI: 10.1021/acschemneuro.8b00582] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The conformational transition of prion protein (PrP) from a native form PrPC to a pathological isoform PrPSc is the main cause of a number of prion diseases in human and animals. Thus, understanding the molecular basis of conformational transition of PrP will be valuable for unveiling the etiology of PrP-related diseases. Here, to explore the potential misfolding mechanism of PrP under the acidic condition, which is known to promote PrP misfolding and trigger its aggregation, the conventional and accelerated molecular dynamics (MD) simulations combined with the Markov state model (MSM) analysis were performed. The conventional MD simulations reveal that, at an acidic pH, the globular domain of PrP is partially unfolded, particularly for the α2 C-terminus. Structural analysis of the key macrostates obtained by MSM indicates that the α2 C-terminus and the β2-α2 loop may serve as important sites for the pH-induced PrP misfolding. Meanwhile, the α1 may also participate in the pH-induced structural conversion by moving away from the α2-α3 subdomain. Notably, dynamical network analysis of the key metastable states indicates that the protonated H187 weakens the interactions between the α2 C-terminus, α1-β2 loop, and α2-α3 loop, leading these domains, especially the α2 C-terminus, to become unstable and to begin to misfold. Therefore, the α2 C-terminus plays a key role in the PrP misfolding process and serves as a potential site for drug targeting. Overall, our findings can deepen the understanding of the pathogenesis related to PrP and provide useful guidance for the future drug discovery.
Collapse
Affiliation(s)
- Shuangyan Zhou
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
- Chongqing Key Laboratory on Big Data for Bio Intelligence, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Danfeng Shi
- State Key Laboratory of Applied Organic Chemistry and Department of Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Xuewei Liu
- State Key Laboratory of Applied Organic Chemistry and Department of Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Xiaojun Yao
- State Key Laboratory of Applied Organic Chemistry and Department of Chemistry, Lanzhou University, Lanzhou 730000, China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau, China
| | - Lin-Tai Da
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai JiaoTong University, Shanghai 200240, China
| | - Huanxiang Liu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
145
|
Heterogeneity and Architecture of Pathological Prion Protein Assemblies: Time to Revisit the Molecular Basis of the Prion Replication Process? Viruses 2019; 11:v11050429. [PMID: 31083283 PMCID: PMC6563208 DOI: 10.3390/v11050429] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 05/07/2019] [Accepted: 05/08/2019] [Indexed: 01/24/2023] Open
Abstract
Prions are proteinaceous infectious agents responsible for a range of neurodegenerative diseases in animals and humans. Prion particles are assemblies formed from a misfolded, β-sheet rich, aggregation-prone isoform (PrPSc) of the host-encoded cellular prion protein (PrPC). Prions replicate by recruiting and converting PrPC into PrPSc, by an autocatalytic process. PrPSc is a pleiomorphic protein as different conformations can dictate different disease phenotypes in the same host species. This is the basis of the strain phenomenon in prion diseases. Recent experimental evidence suggests further structural heterogeneity in PrPSc assemblies within specific prion populations and strains. Still, this diversity is rather seen as a size continuum of assemblies with the same core structure, while analysis of the available experimental data points to the existence of structurally distinct arrangements. The atomic structure of PrPSc has not been elucidated so far, making the prion replication process difficult to understand. All currently available models suggest that PrPSc assemblies exhibit a PrPSc subunit as core constituent, which was recently identified. This review summarizes our current knowledge on prion assembly heterogeneity down to the subunit level and will discuss its importance with regard to the current molecular principles of the prion replication process.
Collapse
|
146
|
Goluguri RR, Sen S, Udgaonkar J. Microsecond sub-domain motions and the folding and misfolding of the mouse prion protein. eLife 2019; 8:e44766. [PMID: 31025940 PMCID: PMC6516828 DOI: 10.7554/elife.44766] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 04/25/2019] [Indexed: 12/29/2022] Open
Abstract
Protein aggregation appears to originate from partially unfolded conformations that are sampled through stochastic fluctuations of the native protein. It has been a challenge to characterize these fluctuations, under native like conditions. Here, the conformational dynamics of the full-length (23-231) mouse prion protein were studied under native conditions, using photoinduced electron transfer coupled to fluorescence correlation spectroscopy (PET-FCS). The slowest fluctuations could be associated with the folding of the unfolded state to an intermediate state, by the use of microsecond mixing experiments. The two faster fluctuations observed by PET-FCS, could be attributed to fluctuations within the native state ensemble. The addition of salt, which is known to initiate the aggregation of the protein, resulted in an enhancement in the time scale of fluctuations in the core of the protein. The results indicate the importance of native state dynamics in initiating the aggregation of proteins.
Collapse
Affiliation(s)
- Rama Reddy Goluguri
- National Centre for Biological SciencesTata Institute of Fundamental ResearchBengaluruIndia
| | - Sreemantee Sen
- National Centre for Biological SciencesTata Institute of Fundamental ResearchBengaluruIndia
| | - Jayant Udgaonkar
- National Centre for Biological SciencesTata Institute of Fundamental ResearchBengaluruIndia
- Indian Institute of Science Education and ResearchPuneIndia
| |
Collapse
|
147
|
Masutani K, Yamamori Y, Kim K, Matubayasi N. Free-energy analysis of the hydration and cosolvent effects on the β-sheet aggregation through all-atom molecular dynamics simulation. J Chem Phys 2019; 150:145101. [DOI: 10.1063/1.5088395] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Keiichi Masutani
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Yu Yamamori
- Artificial Intelligence Research Center and Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Koto, Tokyo 135-0064, Japan
| | - Kang Kim
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Nobuyuki Matubayasi
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
- Elements Strategy Initiative for Catalysts and Batteries, Kyoto University, Katsura, Kyoto 615-8520, Japan
| |
Collapse
|
148
|
Kumar H, Udgaonkar JB. Mechanistic approaches to understand the prion-like propagation of aggregates of the human tau protein. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2019; 1867:922-932. [PMID: 30986567 DOI: 10.1016/j.bbapap.2019.04.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 04/08/2019] [Accepted: 04/09/2019] [Indexed: 12/13/2022]
Abstract
The dynamic nature of the tau protein under physiological conditions is likely to be critical for it to perform its diverse functions inside a cell. Under some conditions, this intrinsically disordered protein assembles into pathogenic aggregates that are self-perpetuating, toxic and infectious in nature. The role of liquid-liquid phase separation in the initiation of the aggregation reaction remains to be delineated. Depending on the nature of the aggregate, its structure, and its localization, neurodegenerative disorders with diverse clinical features are manifested. The prion-like mechanism by which these aggregates propagate and spread across the brain is not well understood. Various factors (PTMs, mutations) have been strongly associated with the pathological aggregates of tau. However, little is known about how these factors modulate the pathological properties linked to aggregation. This review describes the current progress towards understanding the mechanism of propagation of tau aggregates.
Collapse
Affiliation(s)
- Harish Kumar
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru 560065, India
| | - Jayant B Udgaonkar
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru 560065, India; Indian Institute of Science Education and Research, Pune 411008, India.
| |
Collapse
|
149
|
Ma Y, Shi Q, Xiao K, Wang J, Chen C, Gao LP, Gao C, Dong XP. Stimulations of the Culture Medium of Activated Microglia and TNF-Alpha on a Scrapie-Infected Cell Line Decrease the Cell Viability and Induce Marked Necroptosis That Also Occurs in the Brains from the Patients of Human Prion Diseases. ACS Chem Neurosci 2019; 10:1273-1283. [PMID: 30399321 DOI: 10.1021/acschemneuro.8b00354] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Activation of microglia and increased expression of TNF-α are frequently observed in the brains of human and animal prion diseases. As an important cytokine, TNF-α participates in not only pro-inflammatory responses but also in cellular communication, cell differentiation, and cell death. However, the role of TNF-α in the pathogenesis of prion disease remains ambiguous. In this study, the activities of a scrapie-infected cell line SMB-S15 and its normal partner SMB-PS exposed to the supernatant of a LPS-activated microglia cell line BV2 were evaluated. After it was exposed to the LPS-stimulated supernatant of BV2 cells, the cell viability of SMB-S15 cells was markedly decreased, whereas that of the SMB-PS cells remained unchanged. The level of TNF-α was significantly increased in the LPS-stimulated supernatant of BV2 cells. Further, we found that the recombinant TNF-α alone induced the decreased cell viability of SMB-S15 and the neutralizing antibody for TNF-α completely antagonized the decreased cell viability caused by the LPS-stimulated supernatant of BV2 cells. Stimulation with TNF-α induced the remarkable increases of apoptosis-associated proteins in SMB-PS cells, such as cleaved caspase-3 and RIP1, whereas an obvious increase of necroptosis-associated protein in SMB-S15 cells, such as p-MLKL. Meanwhile, the upregulation of caspase-8 activity in SMB-PS cells was more significant than that of SMB-S15 cells. The decreased cell viability of SMB-S15 and the increased expression of p-MLKL induced by TNF-α were completely rescued by Necrostatin-1. Moreover, we verified that removal of PrPSc propagation in SMB-S15 cells by resveratrol partially rescues the cell tolerance to the stimulation of TNF-α. These data indicate that the prion-infected cell line SMB-S15 is more vulnerable to the stimulations of activated microglia and TNF-α, which is likely due to the outcome of necroptosis rather than apoptosis. Furthermore, significant upregulation of p-MLKL, MLKL, and RIP3 was detected in the post-mortem cortical brains of the patients of various types of human prion diseases, including sporadic Creutzfeldt-Jakob disease (sCJD), G114 V-genetic CJD (gCJD), and fatal familial insomnia (FFI).
Collapse
Affiliation(s)
- Yue Ma
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Chang-Bai Rd 155, Beijing 102206, China
| | - Qi Shi
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Chang-Bai Rd 155, Beijing 102206, China
| | - Kang Xiao
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Chang-Bai Rd 155, Beijing 102206, China
| | - Jing Wang
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Chang-Bai Rd 155, Beijing 102206, China
| | - Cao Chen
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Chang-Bai Rd 155, Beijing 102206, China
| | - Li-Ping Gao
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Chang-Bai Rd 155, Beijing 102206, China
| | - Chen Gao
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Chang-Bai Rd 155, Beijing 102206, China
| | - Xiao-Ping Dong
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Chang-Bai Rd 155, Beijing 102206, China
- Center of Global Public Health, Chinese Center for Disease Control and Prevention, Chang-Bai Rd 155, Beijing 102206, China
| |
Collapse
|
150
|
Vorberg I, Chiesa R. Experimental models to study prion disease pathogenesis and identify potential therapeutic compounds. Curr Opin Pharmacol 2019; 44:28-38. [PMID: 30878006 DOI: 10.1016/j.coph.2019.02.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 02/13/2019] [Accepted: 02/13/2019] [Indexed: 01/02/2023]
Abstract
Prion diseases are devastating neurodegenerative disorders for which no drugs are available. The successful development of therapeutics depends on drug screening platforms and preclinical models that recapitulate key molecular and pathological features of the disease. Innovative experimental tools have been developed over the last few years that might facilitate drug discovery, including cell-free prion replication assays and prion-infected flies. However, there is still room for improvement. Animal models of genetic prion disease are few, and only partially recapitulate the complexity of the human disorder. Moreover, we still lack a human cell culture model suitable for high-content anti-prion drug screening. This review provides an overview of the models currently used in prion research, and discusses their promise and limitations for drug discovery.
Collapse
Affiliation(s)
- Ina Vorberg
- German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany; Rheinische Friedrich-Wilhelms-Universität Bonn, 53127 Bonn, Germany.
| | - Roberto Chiesa
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy.
| |
Collapse
|