101
|
Hirai DM, Copp SW, Ferreira LF, Musch TI, Poole DC. Nitric oxide bioavailability modulates the dynamics of microvascular oxygen exchange during recovery from contractions. Acta Physiol (Oxf) 2010; 200:159-69. [PMID: 20384595 DOI: 10.1111/j.1748-1716.2010.02137.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
AIM lowered microvascular PO(2) (PO(2) mv) during the exercise off-transient likely impairs muscle metabolic recovery and limits the capacity to perform repetitive tasks. The current investigation explored the impact of altered nitric oxide (NO) bioavailability on PO(2) mv during recovery from contractions in healthy skeletal muscle. We hypothesized that increased NO bioavailability (sodium nitroprusside: SNP) would enhance PO(2) mv and speed its recovery kinetics while decreased NO bioavailability (l-nitro arginine methyl ester: l-NAME) would reduce PO(2) mv and slow its recovery kinetics. METHODS PO(2) mv was measured by phosphorescence quenching during transitions (rest-1 Hz twitch-contractions for 3 min-recovery) in the spinotrapezius muscle of Sprague-Dawley rats under SNP (300 microm), Krebs-Henseleit (CONTROL) and l-NAME (1.5 mm) superfusion conditions. RESULTS relative to recovery in CONTROL, SNP resulted in greater overall microvascular oxygenation as assessed by the area under the PO(2) mv curve (PO(2 AREA) ; CONTROL 3471 ± 292 mmHg s; SNP: 4307 ± 282 mmHg s; P < 0.05) and faster off-kinetics as evidenced by the mean response time (MRToff; CONTROL 60.2 ± 6.9 s; SNP: 34.8 ± 5.7 s; P < 0.05), whereas l-NAME produced lower PO(2 AREA) (2339 ± 444 mmHg s; P < 0.05) and slower MRToff (86.6 ± 14.5s; P < 0.05). CONCLUSION no bioavailability plays a key role in determining the matching of O(2) delivery-to-O(2) uptake and thus the upstream O(2) pressure driving capillary-myocyte O(2) flux (i.e. PO(2) mv) following cessation of contractions in healthy skeletal muscle. Additionally, these data support a mechanistic link between reduced NO bioavailability and prolonged muscle metabolic recovery commonly observed in ageing and diseased populations.
Collapse
Affiliation(s)
- D M Hirai
- Department of Anatomy and Physiology, Kansas State University, Manhattan, KS 66506-5802, USA
| | | | | | | | | |
Collapse
|
102
|
Copp SW, Hageman KS, Behnke BJ, Poole DC, Musch TI. Effects of type II diabetes on exercising skeletal muscle blood flow in the rat. J Appl Physiol (1985) 2010; 109:1347-53. [PMID: 20798267 DOI: 10.1152/japplphysiol.00668.2010] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The purpose of the present investigation was to examine the muscle hyperemic response to steady-state submaximal running exercise in the Goto-Kakizaki (GK) Type II diabetic rat. Specifically, the hypothesis was tested that Type II diabetes would redistribute exercising blood flow toward less oxidative muscles and muscle portions of the hindlimb. GK diabetic (n = 10) and Wistar control (n = 8, blood glucose concentration, 13.7 ± 1.6 and 5.7 ± 0.2 mM, respectively, P < 0.05) rats were run at 20 m/min on a 10% grade. Blood flows to 28 hindlimb muscles and muscle portions as well as the abdominal organs and kidneys were measured in the steady state of exercise using radiolabeled 15-μm microspheres. Blood flow to the total hindlimb musculature did not differ between GK diabetic and control rats (161 ± 16 and 129 ± 15 ml·min(-1)·100 g(-1), respectively, P = 0.18). Moreover, there was no difference in blood flow between GK diabetic and control rats in 20 of the individual muscles or muscle parts examined. However, in the other eight muscles examined that typically are comprised of a majority of fast-twitch glycolytic (IIb/IIdx) fibers, blood flow was significantly greater (i.e., ↑31-119%, P < 0.05) in the GK diabetic rats. Despite previously documented impairments of several vasodilatory pathways in Type II diabetes these data provide the first demonstration that a reduction of exercising muscle blood flow during submaximal exercise is not an obligatory consequence of this condition in the GK diabetic rat.
Collapse
Affiliation(s)
- Steven W Copp
- Department of Kinesiology, Kansas State University, Manhattan, KS 66506-5802, USA
| | | | | | | | | |
Collapse
|
103
|
Siqueira ACB, Borghi-Silva A, Bravo DM, Ferreira EM, Chiappa GR, Neder JA. Effects of hyperoxia on the dynamics of skeletal muscle oxygenation at the onset of heavy-intensity exercise in patients with COPD. Respir Physiol Neurobiol 2010; 172:8-14. [DOI: 10.1016/j.resp.2010.04.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2009] [Revised: 04/16/2010] [Accepted: 04/19/2010] [Indexed: 11/16/2022]
|
104
|
Sprague RS, Goldman D, Bowles EA, Achilleus D, Stephenson AH, Ellis CG, Ellsworth ML. Divergent effects of low-O(2) tension and iloprost on ATP release from erythrocytes of humans with type 2 diabetes: implications for O(2) supply to skeletal muscle. Am J Physiol Heart Circ Physiol 2010; 299:H566-73. [PMID: 20511412 DOI: 10.1152/ajpheart.00430.2010] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Erythrocytes release both O(2) and a vasodilator, ATP, when exposed to reduced O(2) tension. We investigated the hypothesis that ATP release is impaired in erythrocytes of humans with type 2 diabetes (DM2) and that this defect compromises the ability of these cells to stimulate dilation of resistance vessels. We also determined whether a general vasodilator, the prostacyclin analog iloprost (ILO), stimulates ATP release from healthy human (HH) and DM2 erythrocytes. Finally, we used a computational model to compare the effect on tissue O(2) levels of increases in blood flow directed to areas of increased O(2) demand (erythrocyte ATP release) with nondirected increases in flow (ILO). HH erythrocytes, but not DM2 cells, released increased amounts of ATP when exposed to reduced O(2) tension (Po(2) < 30 mmHg). In addition, isolated hamster skeletal muscle arterioles dilated in response to similar decreases in extraluminal O(2) when perfused with HH erythrocytes, but not when perfused with DM2 erythrocytes. In contrast, both HH and DM2 erythrocytes released ATP in response to ILO. In the case of DM2 erythrocytes, amounts of ATP released correlated inversely with glycemic control. Modeling revealed that a functional regulatory system that directs blood flow to areas of need (low O(2)-induced ATP release) provides appropriate levels of tissue oxygenation and that this level of the matching of O(2) delivery with demand in skeletal muscle cannot be achieved with a general vasodilator. These results suggest that the inability of erythrocytes to release ATP in response to exposure to low-O(2) tension could contribute to the peripheral vascular disease of DM2.
Collapse
Affiliation(s)
- Randy S Sprague
- Dept. of Pharmacological and Physiological Science, Saint Louis Univ. School of Medicine, 1402 S. Grand Blvd., St. Louis, MO 63104, USA.
| | | | | | | | | | | | | |
Collapse
|
105
|
Hernández A, Goodwin ML, Lai N, Cabrera ME, McDonald JR, Gladden LB. Contraction-by-contraction V̇o2 and computer-controlled pump perfusion as novel techniques to study skeletal muscle metabolism in situ. J Appl Physiol (1985) 2010; 108:705-12. [DOI: 10.1152/japplphysiol.00963.2009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The purpose of this research was to develop new techniques to 1) rapidly sample venous O2 saturation to determine contraction-by-contraction oxygen uptake (V̇o2), and 2) precisely control the rate and pattern of blood flow adjustment from one chosen steady state to another. An indwelling inline oximeter probe connected to an Oximetrix 3 meter was used to sample venous oxygen concentration ([O2]) (via fractional saturation of Hb with O2). Data from the Oximetrix 3 were filtered, deconvolved, and processed by a moving average second by second. Computer software and a program written in-house were used to control blood flow with a peristaltic pump. The isolated canine gastrocnemius muscle complex (GS) in situ was utilized to test these techniques. A step change in metabolic rate was elicited by stimulating GS muscles via their sciatic nerves (supramaximal voltage, 8 V; 50 Hz, 0.2-ms pulse width; train duration 200 ms) at a rate of either 1 contraction/2 s, or 2 contractions/3 s. With arterial [O2] maintained constant, blood flow and calculated venous [O2] were averaged over each contraction cycle and used in the Fick equation to calculate contraction-by-contraction V̇o2. About 5–8 times more data points were obtained with this method compared with traditional manual sampling. Software-controlled pump perfusion enabled the ability to mimic spontaneous blood flow on-kinetics (τ: 14.3 s) as well as dramatically speed (τ: 2.0 s) and slow (τ: 63.3 s) on-kinetics. These new techniques significantly improve on existing methods for mechanistically altering blood flow kinetics as well as accurately measuring muscle oxygen consumption kinetics during transitions between metabolic rates.
Collapse
Affiliation(s)
| | | | - Nicola Lai
- Department of Biomedical Engineering and Center for Modeling Integrated Metabolic Systems, Case Western Reserve University, Cleveland, Ohio
| | - Marco E. Cabrera
- Department of Biomedical Engineering and Center for Modeling Integrated Metabolic Systems, Case Western Reserve University, Cleveland, Ohio
| | | | | |
Collapse
|
106
|
Fleury V, Al-Kilani A, Boryskina OP, Cornelissen AJM, Nguyen TH, Unbekandt M, Leroy L, Baffet G, le Noble F, Sire O, Lahaye E, Burgaud V. Introducing the scanning air puff tonometer for biological studies. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2010; 81:021920. [PMID: 20365608 DOI: 10.1103/physreve.81.021920] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2009] [Revised: 11/10/2009] [Indexed: 05/29/2023]
Abstract
It is getting increasingly evident that physical properties such as elastoviscoplastic properties of living materials are quite important for the process of tissue development, including regulation of genetic pathways. Measuring such properties in vivo is a complicated and challenging task. In this paper, we present an instrument, a scanning air puff tonometer, which is able to map point by point the viscoelastic properties of flat or gently curved soft materials. This instrument is an improved version of the air puff tonometer used by optometrists, with important modifications. The instrument allows one to obtain a direct insight into gradients of material properties in vivo. The instrument capabilities are demonstrated on substances with known elastoviscoplastic properties and several biological objects. On the basis of the results obtained, the role of the gradients of elastoviscoplastic properties is outlined for the process of angiogenesis, limb development, bacterial colonies expansion, etc. which is important for bridging the gaps in the theory of the tissue development and highlighting new possibilities for tissue engineering, based on a clarification of the role of physical features in developing biological material.
Collapse
Affiliation(s)
- Vincent Fleury
- Laboratoire Matière et Systèmes Complexes, UMR 7057, Université Paris-Diderot, CNRS, Bâtiment Condorcet, 10 Rue Alice Domon et Léonie Duquet, 75013 Paris, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
107
|
Huebschmann AG, Reis EN, Emsermann C, Dickinson LM, Reusch JEB, Bauer TA, Regensteiner JG. Women with type 2 diabetes perceive harder effort during exercise than nondiabetic women. Appl Physiol Nutr Metab 2010; 34:851-7. [PMID: 19935846 DOI: 10.1139/h09-074] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Regular exercise is a cornerstone of diabetes treatment; however, people with type 2 diabetes (T2D) are commonly sedentary. It is possible that a harder rate of perceived exertion (RPE) during exercise for those with T2D as compared with nondiabetics may be a barrier to physical activity. This study examined RPE (Borg scale, ordinal range 6-20) during submaximal exercise at identical absolute work rates to test the hypothesis that women with T2D demonstrate harder RPE during exercise than nondiabetic controls. In a prespecified analysis of existing data from equivalently sedentary women, RPE during submaximal exercise was compared among women with uncomplicated T2D (n = 13, mean body mass index (BMI) 34.2, mean hemoglobin A1c 9%), overweight controls (OC, n = 13, mean BMI 30.7), and normal-weight controls (NWC, n = 13, mean BMI 23.1). Subjects performed three 7 min, constant-load exercise tests at 20 W and 30 W. Mixed-effects general linear modeling was used to test for differences in mean RPE estimates among groups with and without adjustment for relative work intensity, age, habitual physical activity, or BMI. Subjects with T2D perceived harder effort during bicycling exercise than controls, as measured by RPE at 20 W and 30 W (p < 0.05 for T2D vs. OC and for T2D vs. NWC). Adjusting for relative work intensity eliminated significant group RPE differences at 30 W, but group RPE differences at 20 W remained significant. Harder perceived effort during exercise may be a barrier to physical activity for those with T2D.
Collapse
Affiliation(s)
- Amy G Huebschmann
- Division of General Internal Medicine, University of Colorado Denver School of Medicine, Aurora, CO 80045, USA.
| | | | | | | | | | | | | |
Collapse
|
108
|
Erythrocyte flow in choriocapillaris of normal and diabetic rats. Microvasc Res 2009; 77:247-55. [PMID: 19269298 DOI: 10.1016/j.mvr.2009.02.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2008] [Revised: 02/13/2009] [Accepted: 02/25/2009] [Indexed: 11/23/2022]
Abstract
The choriocapillaris is a unique capillary bed that provides nutrients to the retinal photoreceptors. It changes anatomically in diabetes, but the impact of these changes on blood flow is unknown. In this study hemodynamic parameters in individual choriocapillaris vessels were compared in normal and diabetic rats. Three groups were studied: normal buffer-injected control rats, streptozotocin (STZ)-injected mildly hyperglycemic (STZ-MH) rats, and STZ-injected diabetic (STZ-D) rats. 7-8 weeks after STZ injection, the rats were anesthetized, and epifluorescent, intravital microscopy was used to record the flow of fluorescent red blood cells (RBC) in the choriocapillaris. Diameter, RBC flux, and RBC velocity were measured in 153 capillary pathways in five control rats, 98 pathways in four STZ-MH rats, and 153 pathways in seven STZ-D rats. There was no difference in capillary diameter among the groups. RBC flux and velocity were lower in the STZ-injected rats compared to the controls (p<or=0.023), which is similar to changes found in other capillary beds. RBC velocity and flux were significantly correlated in all three groups, but the correlations in the STZ-injected rats were much stronger than in the controls. This indicates a more heterogeneous distribution of RBCs at upstream arteriolar branch points in hyperglycemic rats, which could lead to a decrease in choriocapillaris hematocrit. These changes in the hyperglycemic choriocapillaris could contribute to impaired oxygen delivery to the photoreceptors in diabetic retina.
Collapse
|
109
|
Copp SW, Ferreira LF, Herspring KF, Musch TI, Poole DC. The effects of aging on capillary hemodynamics in contracting rat spinotrapezius muscle. Microvasc Res 2009; 77:113-9. [DOI: 10.1016/j.mvr.2008.11.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2008] [Revised: 11/12/2008] [Accepted: 11/13/2008] [Indexed: 10/21/2022]
|
110
|
Davies RC, Eston RG, Poole DC, Rowlands AV, DiMenna F, Wilkerson DP, Twist C, Jones AM. Effect of eccentric exercise-induced muscle damage on the dynamics of muscle oxygenation and pulmonary oxygen uptake. J Appl Physiol (1985) 2008; 105:1413-21. [DOI: 10.1152/japplphysiol.90743.2008] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Unaccustomed eccentric exercise has a profound impact on muscle structure and function. However, it is not known whether associated microvascular dysfunction disrupts the matching of O2delivery (Q̇o2) to O2utilization (V̇o2). Near-infrared spectroscopy (NIRS) was used to test the hypothesis that eccentric exercise-induced muscle damage would elevate the muscle Q̇o2:V̇o2ratio during severe-intensity exercise while preserving the speed of the V̇o2kinetics at exercise onset. Nine physically active men completed “step” tests to severe-intensity exercise from an unloaded baseline on a cycle ergometer before (Pre) and 48 h after (Post) eccentric exercise (100 squats with a load corresponding to 70% of body mass). NIRS and breath-by-breath pulmonary V̇o2were measured continuously during the exercise tests and subsequently modeled using standard nonlinear regression techniques. There were no changes in phase II pulmonary V̇o2kinetics following the onset of exercise (time constant: Pre, 25 ± 4 s; Post, 24 ± 2 s; amplitude: Pre, 2.36 ± 0.23 l/min; Post, 2.37 ± 0.23 l/min; all P > 0.05). However, the primary (Pre, 14 ± 3 s; Post, 19 ± 3 s) and overall (Pre, 16 ± 4 s; Post, 21 ± 4 s) mean response time of the [HHb] response was significantly slower following eccentric exercise ( P < 0.05). The slower [HHb] kinetics observed following eccentric exercise is consistent with an increased Q̇o2:V̇o2ratio during transitions to severe-intensity exercise. We propose that unchanged primary phase V̇o2kinetics are associated with an elevated Q̇o2:V̇o2ratio that preserves blood-myocyte O2flux.
Collapse
|
111
|
Poole DC, Brown MD, Hudlicka O. Counterpoint: There is not capillary recruitment in active skeletal muscle during exercise. J Appl Physiol (1985) 2008; 104:891-3; discussion 893-4. [PMID: 18326874 DOI: 10.1152/japplphysiol.00779.2007a] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- David C Poole
- Department of Kinesiology, Kansas State University, KS, USA.
| | | | | |
Collapse
|
112
|
Rebuttal from Drs. Clark, Rattigan, Barrett, and Vincent. J Appl Physiol (1985) 2008. [DOI: 10.1152/japplphysiol.00779.2007b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
113
|
Bauer TA, Reusch JEB, Levi M, Regensteiner JG. Skeletal muscle deoxygenation after the onset of moderate exercise suggests slowed microvascular blood flow kinetics in type 2 diabetes. Diabetes Care 2007; 30:2880-5. [PMID: 17675540 DOI: 10.2337/dc07-0843] [Citation(s) in RCA: 156] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE People with type 2 diabetes have impaired exercise responses even in the absence of cardiovascular complications. One key factor associated with the exercise intolerance is abnormally slowed oxygen uptake (VO2) kinetics during submaximal exercise. The mechanisms of this delayed adaptation during exercise are unclear but probably relate to impairments in skeletal muscle blood flow. This study was conducted to compare skeletal muscle deoxygenation (deoxygenated hemoglobin/myoglobin [HHb]) responses and estimated microvascular blood flow (Qm) kinetics in type 2 diabetic and healthy subjects after the onset of moderate exercise. RESEARCH DESIGN AND METHODS Pulmonary VO2 kinetics and [HHb] (using near-infrared spectroscopy) were measured in 11 type 2 diabetic and 11 healthy subjects during exercise transitions from unloaded to moderate cycling exercise. Qm responses were calculated using VO2 kinetics and [HHb] responses via rearrangement of the Fick principle. RESULTS VO2 kinetics were slowed in type 2 diabetic compared with control subjects (43.8 +/- 9.6 vs. 34.2 +/- 8.2 s, P < 0.05), and the initial [HHb] response after the onset of exercise exceeded the steady-state level of oxygen extraction in type 2 diabetic compared with control subjects. The mean response time of the estimated Qm increase was prolonged in type 2 diabetic compared with healthy subjects (47.7 +/- 14.3 vs. 35.8 +/- 10.7 s, P < 0.05). CONCLUSIONS Type 2 diabetic skeletal muscle demonstrates a transient imbalance of muscle O2 delivery relative to O2 uptake after onset of exercise, suggesting a slowed Qm increase in type 2 diabetic muscle. Impaired vasodilatation due to vascular dysfunction in type 2 diabetes during exercise may contribute to this observation. Further study of the mechanisms leading to impaired muscle oxygen delivery may help explain the abnormal exercise responses in type 2 diabetes.
Collapse
Affiliation(s)
- Timothy A Bauer
- Division of Cardiology, University of Colorado at Denver and Health Sciences Center, Denver, Colorado, USA
| | | | | | | |
Collapse
|
114
|
Padilla DJ, McDonough P, Behnke BJ, Kano Y, Hageman KS, Musch TI, Poole DC. Effects of Type II diabetes on muscle microvascular oxygen pressures. Respir Physiol Neurobiol 2006; 156:187-95. [PMID: 17015044 DOI: 10.1016/j.resp.2006.08.008] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2006] [Revised: 08/15/2006] [Accepted: 08/21/2006] [Indexed: 11/17/2022]
Abstract
We tested the hypothesis that muscle microvascular O2 pressure (PmvO2; reflecting the O2 delivery (QO2) to O2 uptake (VO2) ratio) would be lowered in the spinotrapezius muscle of Goto-Kakizaki (GK) Type II diabetic rats (n=7) at rest and during twitch contractions when compared to control (CON; n=5) rats. At rest, PmvO2 was lower in GK versus CON rats (CON: 29+/-2; GK: 18+/-2Torr; P<0.05). At the onset of contractions, GK rats evidenced a faster change in PmvO2 than CON (i.e., time constant (tau); CON: 16+/-4; GK: 6+/-2s; P<0.05). In contrast to the monoexponential fall in PmvO2 to the steady-state level seen in CON, GK rats exhibited a biphasic PmvO2 response that included a blunted (or non-existent) PmvO2 decrease followed by recovery to a steady-state PmvO2 that was at, or slightly above, resting values. Compared with CON, this decreased PmvO2 across the transition to a higher metabolic rate in Type II diabetes would be expected to impair blood-muscle O2 exchange and contractile function.
Collapse
Affiliation(s)
- Danielle J Padilla
- Department of Anatomy and Physiology, 228 Coles Hall, Kansas State University, Manhattan, KS 66506, United States
| | | | | | | | | | | | | |
Collapse
|