101
|
HAGE (DDX43) is a biomarker for poor prognosis and a predictor of chemotherapy response in breast cancer. Br J Cancer 2014; 110:2450-61. [PMID: 24755885 PMCID: PMC4021517 DOI: 10.1038/bjc.2014.168] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 02/28/2014] [Accepted: 03/05/2014] [Indexed: 01/10/2023] Open
Abstract
Background: HAGE protein is a known immunogenic cancer-specific antigen. Methods: The biological, prognostic and predictive values of HAGE expression was studied using immunohistochemistry in three cohorts of patients with BC (n=2147): early primary (EP-BC; n=1676); primary oestrogen receptor-negative (PER-BC; n=275) treated with adjuvant anthracycline-combination therapies (Adjuvant-ACT); and primary locally advanced disease (PLA-BC) who received neo-adjuvant anthracycline-combination therapies (Neo-adjuvant-ACT; n=196). The relationship between HAGE expression and the tumour-infiltrating lymphocytes (TILs) in matched prechemotherapy and postchemotherapy samples were investigated. Results: Eight percent of patients with EP-BC exhibited high HAGE expression (HAGE+) and was associated with aggressive clinico-pathological features (Ps<0.01). Furthermore, HAGE+expression was associated with poor prognosis in both univariate and multivariate analysis (Ps<0.001). Patients with HAGE+did not benefit from hormonal therapy in high-risk ER-positive disease. HAGE+and TILs were found to be independent predictors for pathological complete response to neoadjuvant-ACT; P<0.001. A statistically significant loss of HAGE expression following neoadjuvant-ACT was found (P=0.000001), and progression-free survival was worse in those patients who had HAGE+residual disease (P=0.0003). Conclusions: This is the first report to show HAGE to be a potential prognostic marker and a predictor of response to ACT in patients with BC.
Collapse
|
102
|
Iyer RS, Nicol SM, Quinlan PR, Thompson AM, Meek DW, Fuller-Pace FV. The RNA helicase/transcriptional co-regulator, p68 (DDX5), stimulates expression of oncogenic protein kinase, Polo-like kinase-1 (PLK1), and is associated with elevated PLK1 levels in human breast cancers. Cell Cycle 2014; 13:1413-23. [PMID: 24626184 PMCID: PMC4050139 DOI: 10.4161/cc.28415] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 03/03/2014] [Accepted: 03/03/2014] [Indexed: 12/12/2022] Open
Abstract
p68 (DDX5) acts both as an ATP-dependent RNA helicase and as a transcriptional co-activator of several cancer-associated transcription factors, including the p53 tumor suppressor. p68 is aberrantly expressed in a high proportion of cancers, but the oncogenic drive for, or the consequences of, these expression changes remain unclear. Here we show that elevated p68 expression in a cohort of human breast cancers is associated significantly with elevated levels of the oncogenic protein kinase, Polo-like kinase-1 (PLK1). Patients expressing detectable levels of both p68 and PLK1 have a poor prognosis, but only if they also have mutation in the TP53 gene (encoding p53), suggesting that p68 can regulate PLK1 levels in a manner that is suppressed by p53. In support of this hypothesis, we show that p68 stimulates expression from the PLK1 promoter, and that silencing of endogenous p68 expression downregulates endogenous PLK1 gene expression. In the absence of functional p53, p68 stimulates the expression of PLK1 both at basal levels and in response to the clinically relevant drug, etoposide. In keeping with a role as a transcriptional activator/co-activator, chromatin immuno-precipitation analysis shows that p68 is associated with the PLK1 promoter, irrespective of the p53 status. However, its recruitment is stimulated by etoposide in cells lacking p53, suggesting that p53 can oppose association of p68 with the PLK1 promoter. These data provide a model in which p68 and p53 interplay regulates PLK1 expression, and which describes the behavior of these molecules, and the outcome of their interaction, in human breast cancer.
Collapse
Affiliation(s)
| | | | - Philip R Quinlan
- Division of Cancer Research; University of Dundee; Ninewells Hospital & Medical School; Dundee, UK
| | | | | | | |
Collapse
|
103
|
Prep1 and Meis1 competition for Pbx1 binding regulates protein stability and tumorigenesis. Proc Natl Acad Sci U S A 2014; 111:E896-905. [PMID: 24578510 DOI: 10.1073/pnas.1321200111] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Pbx-regulating protein-1 (Prep1) is a tumor suppressor, whereas myeloid ecotropic viral integration site-1 (Meis1) is an oncogene. We show that, to perform these activities in mouse embryonic fibroblasts, both proteins competitively heterodimerize with pre-B-cell leukemia homeobox-1 (Pbx1). Meis1 alone transforms Prep1-deficient fibroblasts, whereas Prep1 overexpression inhibits Meis1 tumorigenicity. Pbx1 can, therefore, alternatively act as an oncogene or tumor suppressor. Prep1 posttranslationally controls the level of Meis1, decreasing its stability by sequestering Pbx1. The different levels of Meis1 and the presence of Prep1 are followed at the transcriptional level by the induction of specific transcriptional signatures. The decrease of Meis1 prevents Meis1 interaction with Ddx3x and Ddx5, which are essential for Meis1 tumorigenesis, and modifies the growth-promoting DNA binding landscape of Meis1 to the growth-controlling landscape of Prep1. Hence, the key feature of Prep1 tumor-inhibiting activity is the control of Meis1 stability.
Collapse
|
104
|
Geißler V, Altmeyer S, Stein B, Uhlmann-Schiffler H, Stahl H. The RNA helicase Ddx5/p68 binds to hUpf3 and enhances NMD of Ddx17/p72 and Smg5 mRNA. Nucleic Acids Res 2013; 41:7875-88. [PMID: 23788676 PMCID: PMC3763533 DOI: 10.1093/nar/gkt538] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Non-sense-mediated mRNA decay (NMD) is a mechanism of translation-dependent mRNA surveillance in eukaryotes: it degrades mRNAs with premature termination codons (PTCs) and contributes to cellular homeostasis by downregulating a number of physiologically important mRNAs. In the NMD pathway, Upf proteins, a set of conserved factors of which Upf1 is the central regulator, recruit decay enzymes to promote RNA cleavage. In mammals, the degradation of PTC-containing mRNAs is triggered by the exon–junction complex (EJC) through binding of its constituents Upf2 and Upf3 to Upf1. The complex formed eventually induces translational repression and recruitment of decay enzymes. Mechanisms by which physiological mRNAs are targeted by the NMD machinery in the absence of an EJC have been described but still are discussed controversially. Here, we report that the DEAD box proteins Ddx5/p68 and its paralog Ddx17/p72 also bind the Upf complex by physical interaction with Upf3, thereby interfering with the binding of EJC. By activating the NMD machinery, Ddx5 is shown to regulate the expression of its own, Ddx17 and Smg5 mRNAs. For NMD triggering, the adenosine triphosphate-binding activity of Ddx5 and the 3′-untranslated region of substrate mRNAs are essential.
Collapse
Affiliation(s)
- Verena Geißler
- Department of Medical Biochemistry and Molecular Biology, University of Saarland, Medical Center, Building 45, 66421 Homburg, Germany
| | | | | | | | | |
Collapse
|
105
|
Lorgeoux RP, Pan Q, Le Duff Y, Liang C. DDX17 promotes the production of infectious HIV-1 particles through modulating viral RNA packaging and translation frameshift. Virology 2013; 443:384-92. [PMID: 23769241 DOI: 10.1016/j.virol.2013.05.026] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 03/24/2013] [Accepted: 05/18/2013] [Indexed: 01/13/2023]
Abstract
RNA helicases are a large family of proteins that rearrange RNA structures and remodel ribonucleic protein complexes using energy derived from hydrolysis of nucleotide triphosphates. They have been shown to participate in every step of RNA metabolism. In the past decade, an increasing number of helicases were shown to promote or inhibit the replication of different viruses, including human immunodeficiency virus type 1. Among these helicases, the DEAD-box RNA helicase DDX17 was recently reported to modulate HIV-1 RNA stability and export. In this study, we further show that the helicase activity of DDX17 is required for the production of infectious HIV-1 particles. Over expression of the DDX17 mutant DQAD in HEK293 cells reduces the amount of packaged viral genomic RNA and diminishes HIV-1 Gag-Pol frameshift. Altogether, these data demonstrate that DDX17 promotes the production of HIV-1 infectious particles by modulating HIV-1 RNA metabolism.
Collapse
|
106
|
Wang DZ, Zhang YJ, Zhang SF, Lin L, Hong HS. Quantitative proteomic analysis of cell cycle of the dinoflagellate Prorocentrum donghaiense (Dinophyceae). PLoS One 2013; 8:e63659. [PMID: 23691081 PMCID: PMC3655175 DOI: 10.1371/journal.pone.0063659] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 04/05/2013] [Indexed: 12/29/2022] Open
Abstract
Dinoflagellates are the major causative agents of harmful algal blooms in the coastal zone, which has resulted in adverse effects on the marine ecosystem and public health, and has become a global concern. Knowledge of cell cycle regulation in proliferating cells is essential for understanding bloom dynamics, and so this study compared the protein profiles of Prorocentrum donghaiense at different cell cycle phases and identified differentially expressed proteins using 2-D fluorescence difference gel electrophoresis combined with MALDI-TOF-TOF mass spectrometry. The results showed that the synchronized cells of P. donghaiense completed a cell cycle within 24 hours and cell division was phased with the diurnal cycle. Comparison of the protein profiles at four cell cycle phases (G1, S, early and late G2/M) showed that 53 protein spots altered significantly in abundance. Among them, 41 were identified to be involved in a variety of biological processes, e.g. cell cycle and division, RNA metabolism, protein and amino acid metabolism, energy and carbon metabolism, oxidation-reduction processes, and ABC transport. The periodic expression of these proteins was critical to maintain the proper order and function of the cell cycle. This study, to our knowledge, for the first time revealed the major biological processes occurring at different cell cycle phases which provided new insights into the mechanisms regulating the cell cycle and growth of dinoflagellates.
Collapse
Affiliation(s)
- Da-Zhi Wang
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen, China.
| | | | | | | | | |
Collapse
|
107
|
Robert F, Pelletier J. Perturbations of RNA helicases in cancer. WILEY INTERDISCIPLINARY REVIEWS-RNA 2013; 4:333-49. [PMID: 23658027 DOI: 10.1002/wrna.1163] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Helicases are implicated in most stages of the gene expression pathway, ranging from DNA replication, RNA transcription, splicing, RNA transport, ribosome biogenesis, mRNA translation, RNA storage and decay. These enzymes utilize energy derived from nucleotide triphosphate hydrolysis to remodel ribonucleoprotein complexes, RNA, or DNA and in this manner affect the information content or output of RNA. Several RNA helicases have been implicated in the oncogenic process--either through altered expression levels, mutations, or due to their role in pathways required for tumor initiation, progression, maintenance, or chemosensitivity. The purpose of this review is to highlight those RNA helicases for which there is significant evidence implicating them in cancer biology.
Collapse
Affiliation(s)
- Francis Robert
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | | |
Collapse
|
108
|
Fuller-Pace FV. The DEAD box proteins DDX5 (p68) and DDX17 (p72): multi-tasking transcriptional regulators. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2013; 1829:756-63. [PMID: 23523990 DOI: 10.1016/j.bbagrm.2013.03.004] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 03/09/2013] [Indexed: 02/04/2023]
Abstract
Members of the DEAD box family of RNA helicases, which are characterised by the presence of twelve conserved motifs (including the signature D-E-A-D motif) within a structurally conserved 'helicase' core, are involved in all aspects of RNA metabolism. Apart from unwinding RNA duplexes, which established these proteins as RNA helicases, DEAD box proteins have been shown to also catalyse RNA annealing and to displace proteins from RNA. DEAD box proteins generally act as components of large multi-protein complexes and it is thought that interactions, via their divergent N- and C-terminal extensions, with other factors in the complexes may be responsible for the many different functions attributed to these proteins. In addition to their established crucial roles in the manipulation of RNA structure, it is becoming increasingly clear that several members of the DEAD box family act as regulators of transcription. In this review I shall focus on DDX5 (p68) and the highly related DDX17 (p72), two proteins for which there is a large body of evidence demonstrating that they function in transcriptional regulation. This article is part of a Special Issue entitled: The Biology of RNA helicases - Modulation for life.
Collapse
|
109
|
Sun M, Zhou T, Jonasch E, Jope RS. DDX3 regulates DNA damage-induced apoptosis and p53 stabilization. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:1489-97. [PMID: 23470959 DOI: 10.1016/j.bbamcr.2013.02.026] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Revised: 02/04/2013] [Accepted: 02/21/2013] [Indexed: 12/19/2022]
Abstract
The DEAD box protein family member DDX3 was previously identified as an inhibitor of death receptor-mediated extrinsic apoptotic signaling. However, there had been no studies of the role of DDX3 in regulating the other major type of apoptosis, intrinsic apoptotic signaling, which was examined here. Intrinsic apoptosis was induced in MCF-7 cells by treatment with staurosporine, a general kinase inhibitor, thapsigargin, which induces endoplasmic reticulum (ER) stress, and camptothecin, which causes DNA damage. Each of these treatments caused time-dependent activation of caspase-7, the predominant executioner caspase in these cells. Depletion of DDX3 using shRNA did not alter apoptotic responses to staurosporine or thapsigargin. However, caspase-7 activation induced by camptothecin was regulated by DDX3 in a manner dependent on the functional status of p53. Depletion of DDX3 abrogated camptothecin-induced caspase-7 activation in MCF-7 cells expressing functional wild-type p53, but oppositely potentiated camptothecin-mediated caspase activation in cells expressing mutant or non-functional p53, which was accompanied by increased activation of the extrinsic apoptotic signaling initiator caspase-8. In MCF-7 cells, depletion of DDX3 reduced by more than 50% camptothecin-induced p53 accumulation, and this effect was blocked by inhibition of the proteasome with MG132, indicating that DDX3 regulates p53 not at expression level but rather its stabilization after DNA damage. Co-immunoprecipitation experiments demonstrated that DDX3 associates with p53, and overexpression of DDX3 was sufficient to double the accumulation of p53 in the nucleus after DNA damage. Thus, DDX3 associates with p53, increases p53 accumulation, and positively regulates camptothecin-induced apoptotic signaling in cells expressing functional wild-type p53, whereas in cells expressing mutant or non-functional p53 DDX3 inhibits activation of the extrinsic apoptotic pathway to reduce caspase activation. These results demonstrate that DDX3 not only regulates extrinsic apoptotic signaling, as previously reported, but also selectively regulates intrinsic apoptotic signaling following DNA damage.
Collapse
Affiliation(s)
- Mianen Sun
- Department of Genitourinary Medical Oncology, University of Texas M.D. Anderson Cancer Center, Houston, TX, USA.
| | | | | | | |
Collapse
|
110
|
Clark EL, Hadjimichael C, Temperley R, Barnard A, Fuller-Pace FV, Robson CN. p68/DdX5 supports β-catenin & RNAP II during androgen receptor mediated transcription in prostate cancer. PLoS One 2013; 8:e54150. [PMID: 23349811 PMCID: PMC3547877 DOI: 10.1371/journal.pone.0054150] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Accepted: 12/07/2012] [Indexed: 11/18/2022] Open
Abstract
The DEAD box RNA helicase p68 (Ddx5) is an important androgen receptor (AR) transcriptional co-activator in prostate cancer (PCa) and is over-expressed in late stage disease. β-Catenin is a multifunctional protein with important structural and signalling functions which is up-regulated in PCa and similar to p68, interacts with the AR to co-activate expression of AR target genes. Importantly, p68 forms complexes with nuclear β-Catenin and promotes gene transcription in colon cancer indicating a functional interplay between these two proteins in cancer progression. In this study, we explore the relationship of p68 and β-Catenin in PCa to assess their potential co-operation in AR-dependent gene expression, which may be of importance in the development of castrate resistant prostate cancer (CRPCa). We use immunoprecipitation to demonstrate a novel interaction between p68 and β-Catenin in the nucleus of PCa cells, which is androgen dependent in LNCaP cells but androgen independent in a hormone refractory derivative of the same cell line (representative of the CRPCa disease type). Enhanced AR activity is seen in androgen-dependent luciferase reporter assays upon transient co-transfection of p68 and β-Catenin as an additive effect, and p68-depleted Chromatin-Immunoprecipitation (ChIP) showed a decrease in the recruitment of the AR and β-Catenin to androgen responsive promoter regions. In addition, we found p68 immunoprecipitated with the processive and non-processive form of RNA polymerase II (RNAP II) and show p68 recruited to elongating regions of the AR mediated PSA gene, suggesting a role for p68 in facilitating RNAP II transcription of AR mediated genes. These results suggest p68 is important in facilitating β-Catenin and AR transcriptional activity in PCa cells.
Collapse
Affiliation(s)
- Emma L. Clark
- Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, United Kingdom
| | | | - Richard Temperley
- Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Amy Barnard
- Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Frances V. Fuller-Pace
- Division of Cancer Research, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom
| | - Craig N. Robson
- Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, United Kingdom
- * E-mail:
| |
Collapse
|
111
|
Abstract
Members of the DEAD box family of RNA helicases are known to be involved in most cellular processes that require manipulation of RNA structure and, in many cases, exhibit other functions in addition to their established ATP-dependent RNA helicase activities. They thus play critical roles in cellular metabolism and in many cases have been implicated in cellular proliferation and/or neoplastic transformation. These proteins generally act as components of multi-protein complexes; therefore their precise role is likely to be influenced by their interacting partners and to be highly context-dependent. This may also provide an explanation for the sometimes conflicting reports suggesting that DEAD box proteins have both pro- and anti-proliferative roles in cancer.
Collapse
Affiliation(s)
- Frances V Fuller-Pace
- Division of Cancer Research, University of Dundee, Ninewells Hospital and Medical School, Dundee, Scotland.
| |
Collapse
|
112
|
Zonta E, Bittencourt D, Samaan S, Germann S, Dutertre M, Auboeuf D. The RNA helicase DDX5/p68 is a key factor promoting c-fos expression at different levels from transcription to mRNA export. Nucleic Acids Res 2012; 41:554-64. [PMID: 23143267 PMCID: PMC3592390 DOI: 10.1093/nar/gks1046] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
It is widely accepted that pre-mRNA maturation, including splicing, is tightly coupled to both transcription and mRNA export, but factors linking the three processes are less understood. By analysing the estrogen-regulated expression of the c-fos mRNA that is processed during transcription, we show that the ddx5 RNA helicase, is required throughout the major nuclear steps of the expression of the c-fos gene, from transcription to mRNA export. Indeed, ddx5, whose recruitment on the c-fos gene was increased upon estrogen treatment, was required for the full transcriptional activation of the c-fos gene. In addition, ddx5 was required for c-fos co-transcriptional RNA splicing. When splicing occurred post-transcriptionally in the absence of ddx5, the c-fos mRNA was poorly exported into the cytosol because of inefficient recruitment of the TAP mRNA export receptor. Finally, ddx5 was present in the c-fos messenger ribonucleoprotein together with mRNA export factors, which further supports that ddx5 is a key operator in the c-fos ‘mRNA factory’.
Collapse
Affiliation(s)
- Eleonora Zonta
- Université de Lyon, Inserm U1052, CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Centre Léon Bérard, 28 Rue Laennec, F-69008 Lyon, France and Department of Biochemistry and Molecular Biology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Danielle Bittencourt
- Université de Lyon, Inserm U1052, CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Centre Léon Bérard, 28 Rue Laennec, F-69008 Lyon, France and Department of Biochemistry and Molecular Biology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Samaan Samaan
- Université de Lyon, Inserm U1052, CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Centre Léon Bérard, 28 Rue Laennec, F-69008 Lyon, France and Department of Biochemistry and Molecular Biology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Sophie Germann
- Université de Lyon, Inserm U1052, CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Centre Léon Bérard, 28 Rue Laennec, F-69008 Lyon, France and Department of Biochemistry and Molecular Biology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Martin Dutertre
- Université de Lyon, Inserm U1052, CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Centre Léon Bérard, 28 Rue Laennec, F-69008 Lyon, France and Department of Biochemistry and Molecular Biology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Didier Auboeuf
- Université de Lyon, Inserm U1052, CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Centre Léon Bérard, 28 Rue Laennec, F-69008 Lyon, France and Department of Biochemistry and Molecular Biology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
- *To whom correspondence should be addressed. Tel: +33 4 26 55 67 46; Fax: +33 4 78 78 27 20;
| |
Collapse
|
113
|
Germann S, Gratadou L, Zonta E, Dardenne E, Gaudineau B, Fougère M, Samaan S, Dutertre M, Jauliac S, Auboeuf D. Dual role of the ddx5/ddx17 RNA helicases in the control of the pro-migratory NFAT5 transcription factor. Oncogene 2012; 31:4536-4549. [PMID: 22266867 DOI: 10.1038/onc.2011.618] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Revised: 11/01/2011] [Accepted: 11/28/2011] [Indexed: 02/07/2023]
Abstract
Ddx5 and ddx17 are two highly related RNA helicases involved in both transcription and splicing. These proteins coactivate transcription factors involved in cancer such as the estrogen receptor alpha, p53 and beta-catenin. Ddx5 and ddx17 are part of the splicing machinery and can modulate alternative splicing, the main mechanism increasing the proteome diversity. Alternative splicing also has a role in gene expression level regulation when it is coupled to the nonsense-mediated mRNA decay (NMD) pathway. In this work, we report that ddx5 and ddx17 have a dual role in the control of the pro-migratory NFAT5 transcription factor. First, ddx5 and ddx17 act as transcriptional coactivators of NFAT5 and are required for activating NFAT5 target genes involved in tumor cell migration. Second, at the splicing level, ddx5 and ddx17 increase the inclusion of NFAT5 exon 5. As exon 5 contains a pre-mature translation termination codon, its inclusion leads to the regulation of NFAT5 mRNAs by the NMD pathway and to a decrease in NFAT5 protein level. Therefore, we demonstrated for the first time that a transcriptional coregulator can simultaneously regulate the transcriptional activity and alternative splicing of a transcription factor. This dual regulation, where ddx5 and ddx17 enhance the transcriptional activity of NFAT5 although reducing its protein expression level, suggests a critical role for ddx5 and ddx17 in tumor cell migration through the fine regulation of NFAT5 pathway.
Collapse
|
114
|
Shin S, Oh S, An S, Janknecht R. ETS variant 1 regulates matrix metalloproteinase-7 transcription in LNCaP prostate cancer cells. Oncol Rep 2012; 29:306-14. [PMID: 23076342 DOI: 10.3892/or.2012.2079] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2012] [Accepted: 08/30/2012] [Indexed: 01/10/2023] Open
Abstract
Prostate cancer is characterized by the recurrent translocation of ETS transcription factors, including ETS variant 1 (ETV1) [also known as ETS-related 81 (ER81)]. Transgenic ETV1 mice develop prostatic intraepithelial neoplasia, yet the mechanisms by which ETV1 exerts its deleterious function remain largely unexplored. In this study, we demonstrated that ETV1 is capable of binding to the matrix metalloproteinase-7 (MMP-7) gene promoter both in vitro and in vivo. ETV1 stimulated the activity of the MMP-7 promoter, which was suppressed upon mutation of two ETV1 binding sites located within 200 base pairs upstream of the MMP-7 transcription start site. ETV1 overexpression in human LNCaP prostate cancer cells induced endogenous MMP-7 gene transcription, whereas ETV1 downregulation had the opposite effect. While MMP-7 overexpression did not influence LNCaP cell proliferation, it increased cell migration, which may be important during later stages of tumorigenesis. Finally, MMP-7 mRNA was significantly overexpressed in human prostate tumors compared to normal tissue. Together, these results showed that MMP-7 is a bona fide ETV1 target gene, implicating that MMP-7 upregulation is partially responsible for the oncogenic effects of ETV1 in the prostate.
Collapse
Affiliation(s)
- Sook Shin
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | | | | | | |
Collapse
|
115
|
Kim TD, Shin S, Berry WL, Oh S, Janknecht R. The JMJD2A demethylase regulates apoptosis and proliferation in colon cancer cells. J Cell Biochem 2012; 113:1368-76. [PMID: 22134899 DOI: 10.1002/jcb.24009] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
JMJD2A is a transcriptional cofactor and enzyme that catalyzes demethylation of histone H3 lysines 9 and 36 and is overexpressed in human tumors, but its role in oncogenesis remains unclear. Here, we show that JMJD2A interacts with the tumor suppressor p53 both in vitro and in HCT116 colon cancer cells. Chromatin immunoprecipitation assays demonstrated that JMJD2A was recruited together with p53 to the promoter of the p21 cell cycle inhibitor upon stimulation with the DNA damaging agent, adriamycin. Downregulation of JMJD2A resulted in increased expression of p21 and of the pro-apoptotic Puma protein, whereas levels of the anti-apoptotic Bcl-2 protein were decreased. Furthermore, JMJD2A knock-down led to reduced HCT116, DLD-1 and HT-29 colon cancer cell proliferation, while overexpression of JMJD2A enhanced HCT116 proliferation in low serum media. Finally, JMJD2A depletion induced apoptosis in HCT116 cells and this effect was less pronounced in the absence of p53. Collectively, these data indicate that JMJD2A is a novel promoter of colon cancer cell proliferation and survival, which mediates its effects in p53-dependent and -independent ways. JMJD2A may therefore be a valid target to sensitize tumor cells to chemotherapy-induced cell death and growth suppression.
Collapse
Affiliation(s)
- Tae-Dong Kim
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
| | | | | | | | | |
Collapse
|
116
|
Dardenne E, Pierredon S, Driouch K, Gratadou L, Lacroix-Triki M, Espinoza MP, Zonta E, Germann S, Mortada H, Villemin JP, Dutertre M, Lidereau R, Vagner S, Auboeuf D. Splicing switch of an epigenetic regulator by RNA helicases promotes tumor-cell invasiveness. Nat Struct Mol Biol 2012; 19:1139-46. [PMID: 23022728 DOI: 10.1038/nsmb.2390] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Accepted: 08/24/2012] [Indexed: 12/11/2022]
Abstract
Both epigenetic and splicing regulation contribute to tumor progression, but the potential links between these two levels of gene-expression regulation in pathogenesis are not well understood. Here, we report that the mouse and human RNA helicases Ddx17 and Ddx5 contribute to tumor-cell invasiveness by regulating alternative splicing of several DNA- and chromatin-binding factors, including the macroH2A1 histone. We show that macroH2A1 splicing isoforms differentially regulate the transcription of a set of genes involved in redox metabolism. In particular, the SOD3 gene that encodes the extracellular superoxide dismutase and plays a part in cell migration is regulated in an opposite manner by macroH2A1 splicing isoforms. These findings reveal a new regulatory pathway in which splicing factors control the expression of histone variant isoforms that in turn drive a transcription program to switch tumor cells to an invasive phenotype.
Collapse
Affiliation(s)
- Etienne Dardenne
- Institut National de la Santé et de la Recherche Médicale, U1052, Centre de Recherche en Cancérologie de Lyon, Lyon, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
117
|
Berry WL, Shin S, Lightfoot SA, Janknecht R. Oncogenic features of the JMJD2A histone demethylase in breast cancer. Int J Oncol 2012; 41:1701-6. [PMID: 22948256 DOI: 10.3892/ijo.2012.1618] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2012] [Accepted: 07/06/2012] [Indexed: 11/05/2022] Open
Abstract
Estrogen receptor α (ERα) plays a pivotal role in the genesis of the majority of breast tumors. Consequently, endocrine therapy is now routinely utilized in the clinic for the treatment of ERα-positive breast cancer patients. However, how ERα activity becomes dysregulated in breast cancer cells remains to be elucidated. The aim of this study was to show that the histone demethylase JMJD2A, also known as KDM4A, is capable of forming a complex with ERα in vivo. Moreover, wild-type JMJD2A, but not a catalytically impaired mutant, was able to strongly coactivate ERα-mediated transcription. Consistently, the downregulation of JMJD2A in human T47D breast cancer cells led to a decreased expression of cyclin D1, a prominent ERα target gene and cell cycle regulator. The downregulation of JMJD2A induced a reduction in the growth of T47D cells. In addition, we found that JMJD2A is overexpressed in human breast tumors both at the mRNA and protein level. Taken together, these data indicate that the overexpression of JMJD2A may contribute to breast tumor formation by stimulating ERα activity and that JMJD2A may be a breast-relevant oncoprotein. As such, small molecule drugs targeting the catalytic center of JMJD2A might be useful in breast cancer adjuvant therapy.
Collapse
Affiliation(s)
- William L Berry
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | | | | | | |
Collapse
|
118
|
Takaoka Y, Shimizu Y, Hasegawa H, Ouchi Y, Qiao S, Nagahara M, Ichihara M, Lee JD, Adachi K, Hamaguchi M, Iwamoto T. Forced expression of miR-143 represses ERK5/c-Myc and p68/p72 signaling in concert with miR-145 in gut tumors of Apc(Min) mice. PLoS One 2012; 7:e42137. [PMID: 22876303 PMCID: PMC3410903 DOI: 10.1371/journal.pone.0042137] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Accepted: 07/02/2012] [Indexed: 12/28/2022] Open
Abstract
Recently, miR-143 and miR-145 have been shown to belong to a subset of microRNAs whose expression is controlled by a complex of a tumor suppressor p53 and DEAD-box RNA helicase subunits p68/p72. While accumulating studies have acknowledged that both miRNAs function as tumor suppressors and are similarly regulated, evidence of their coordinated action against tumorigenesis has been poorly presented. Herein, we establish transgenic mice that express miR-143 under the control of the CAG regulatory unit. When crossbred with Apc(Min/+) mice, the development of tumors in the small intestines is significantly attenuated. In the transgenic small intestine tumors, the endogenous miR-145 is also enhanced and the expression of c-Myc and p68/p72, both of which have been reported to be pivotal for gut tumor development, is suppressed, corresponding to the downregulation of ERK5. We demonstrate that the combination of miR-143 and miR-145 inhibits the expression of c-Myc in human colon cancer cells, whereas miR-145 retards that of p72. Moreover, we show the possibilities that miR-145 modulates p72 expression through its 3' untranslated region and that c-Myc downregulation is involved in both p68 suppression and miR-145 induction. These findings suggest that forced expression of miR-143, probably interacting with endogenous miR-145, inhibits ERK5/c-Myc and p68/p72/β-catenin signaling and hampers small intestine tumor development in Apc(Min/+) mice. This unique cascade, in turn, may prevent overproduction of a subset of tumor suppressive miRNAs by repressing their own modulators, p68/p72.
Collapse
Affiliation(s)
- Yuji Takaoka
- Department of Biomedical Sciences, College of Life and Health Sciences, Chubu University, Kasugai, Aichi, Japan
| | - Yuko Shimizu
- Department of Biomedical Sciences, College of Life and Health Sciences, Chubu University, Kasugai, Aichi, Japan
| | - Hitoki Hasegawa
- The Center for Education in Laboratory Animal Research, Chubu University, Kasugai, Aichi, Japan
- Division of Cancer Biology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Yasuo Ouchi
- The Center for Education in Laboratory Animal Research, Chubu University, Kasugai, Aichi, Japan
| | - Shanlou Qiao
- Department of Biomedical Sciences, College of Life and Health Sciences, Chubu University, Kasugai, Aichi, Japan
| | - Miki Nagahara
- The Center for Education in Laboratory Animal Research, Chubu University, Kasugai, Aichi, Japan
| | - Masatoshi Ichihara
- Department of Biomedical Sciences, College of Life and Health Sciences, Chubu University, Kasugai, Aichi, Japan
| | - Jiing-Dwan Lee
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California, United States of America
| | - Koichi Adachi
- Radioisotope Research Center Medical Division, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Michinari Hamaguchi
- Division of Cancer Biology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Takashi Iwamoto
- Department of Biomedical Sciences, College of Life and Health Sciences, Chubu University, Kasugai, Aichi, Japan
- The Center for Education in Laboratory Animal Research, Chubu University, Kasugai, Aichi, Japan
| |
Collapse
|
119
|
Wang R, Jiao Z, Li R, Yue H, Chen L. p68 RNA helicase promotes glioma cell proliferation in vitro and in vivo via direct regulation of NF-κB transcription factor p50. Neuro Oncol 2012; 14:1116-24. [PMID: 22810421 DOI: 10.1093/neuonc/nos131] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The DEAD-box RNA helicase p68 plays a very important role in early organ development and maturation. However, the role of p68 in glioma is unclear. In this study, we showed that p68 protein levels were significantly elevated in high-grade gliomas compared to low-grade gliomas and normal adjacent brain tissues. Importantly, the expression of p68 was significantly associated with poorer overall survival and enhanced resistance to treatment with radiotherapy plus temozolomide for glioma patients. Ectopic expression of p68 enhanced glioma cell proliferation both in vitro and in vivo. In contrast, knockdown of endogenous p68 prevented glioma cell proliferation. Using a tandem affinity purification assay, we found a new p68-binding protein, nuclear factor (NF)-κB p50. We found that p68 bound with the N-terminal of NF-κB p50, and the mutant of p68 lacking the p50-interaction domain failed to stimulate glioma cell proliferation and tumor growth. Moreover, p68 induced NF-κB p50 accumulation in the nucleus through release of NF-κB p50 from IκBα and increased NF-κB p50 target luciferase transcription activity. Knockdown of NF-κB p50 rescued the phenotypes induced by p68 both in vitro and in vivo. We concluded that p68 induces glioma tumor growth through binding with NF-κB p50, regulating NF-κB p50 nucleus accumulation and transcription activity.
Collapse
Affiliation(s)
- Rui Wang
- Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | | | | | | | | |
Collapse
|
120
|
Mazurek A, Luo W, Krasnitz A, Hicks J, Powers RS, Stillman B. DDX5 regulates DNA replication and is required for cell proliferation in a subset of breast cancer cells. Cancer Discov 2012; 2:812-25. [PMID: 22750847 DOI: 10.1158/2159-8290.cd-12-0116] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
UNLABELLED Understanding factors required for DNA replication will enrich our knowledge of this important process and potentially identify vulnerabilities that can be exploited in cancer therapy. We applied an assay that measures the stability of maintenance of an episomal plasmid in human tissue culture cells to screen for new DNA replication factors. We identify an important role for DDX5 in G(1)-S-phase progression where it directly regulates DNA replication factor expression by promoting the recruitment of RNA polymerase II to E2F-regulated gene promoters. We find that the DDX5 locus is frequently amplified in breast cancer and that breast cancer-derived cells with amplification of DDX5 are much more sensitive to its depletion than breast cancer cells and a breast epithelial cell line that lacks DDX5 amplification. Our results show a novel role for DDX5 in cancer cell proliferation and suggest DDX5 as a therapeutic target in breast cancer treatment. SIGNIFICANCE DDX5 is required for cell proliferation by controlling the transcription of genes expressing DNA replication proteins in cancer cells in which the DDX5 locus is amplified, and this has uncovered a dependence on DDX5 for cell proliferation. Given the high frequency of DDX5 amplification in breast cancer, our results highlight DDX5 as a promising candidate for targeted therapy of breast tumors with DDX5 amplification, and indeed we show that DDX5 inhibition sensitizes a subset of breast cancer cells to trastuzumab.
Collapse
Affiliation(s)
- Anthony Mazurek
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | | | | | | | | | | |
Collapse
|
121
|
DiTacchio L, Bowles J, Shin S, Lim DS, Koopman P, Janknecht R. Transcription factors ER71/ETV2 and SOX9 participate in a positive feedback loop in fetal and adult mouse testis. J Biol Chem 2012; 287:23657-66. [PMID: 22613723 DOI: 10.1074/jbc.m111.320101] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
ER71, also known as ETV2, is an ETS transcription factor that is expressed during embryogenesis and in adult testes. We show that Er71 transcription can be up-regulated by SRY, the key determinant of male differentiation. Accordingly, SRY bound to and activated the Er71 promoter, and mutation of a putative SRY binding site abolished this promoter activation. In turn, ER71 was able to bind to the promoter of Sox9, the primary target of SRY and a critical transcription factor for maintenance of the Sertoli cell phenotype. Mutation of the ER71 binding site in the Sox9 promoter suppressed ER71-dependent up-regulation of Sox9 transcription, and a dominant-negative ER71 molecule severely reduced Sox9 transcription in a Sertoli cell line. Conversely, SOX9 bound the Er71 promoter in vivo and Sox9 down-regulation reduced Er71 transcript levels. Together, these data suggest a mechanism by which SRY induces Sox9 and Er71 transcription early in testis differentiation, whereas ER71 and SOX9 participate in an autoregulatory loop to sustain each other's expression after Sry expression has subsided in mice. Thereby, ER71 and SOX9 may affect late testis development as well as the function of the adult male gonad.
Collapse
|
122
|
Wang SJ, Zhang C, You Y, Shi CM. Overexpression of RNA helicase p68 protein in cutaneous squamous cell carcinoma. Clin Exp Dermatol 2012; 37:882-8. [DOI: 10.1111/j.1365-2230.2012.04365.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
123
|
Regulation of tumor suppressor p53 and HCT116 cell physiology by histone demethylase JMJD2D/KDM4D. PLoS One 2012; 7:e34618. [PMID: 22514644 PMCID: PMC3326058 DOI: 10.1371/journal.pone.0034618] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Accepted: 03/02/2012] [Indexed: 12/12/2022] Open
Abstract
JMJD2D, also known as KDM4D, is a histone demethylase that removes methyl moieties from lysine 9 on histone 3 and from lysine 26 on histone 1.4. Here, we demonstrate that JMJD2D forms a complex with the p53 tumor suppressor in vivo and interacts with the DNA binding domain of p53 in vitro. A luciferase reporter plasmid driven by the promoter of p21, a cell cycle inhibitor and prominent target gene of p53, was synergistically activated by p53 and JMJD2D, which was dependent on JMJD2D catalytic activity. Likewise, overexpression of JMJD2D induced p21 expression in U2OS osteosarcoma cells in the absence and presence of adriamycin, an agent that induces DNA damage. Furthermore, downregulation of JMJD2D inhibited cell proliferation in wild-type and even more so in p53−/− HCT116 colon cancer cells, suggesting that JMJD2D is a pro-proliferative molecule. JMJD2D depletion also induced more strongly apoptosis in p53−/− compared to wild-type HCT116 cells. Collectively, our results demonstrate that JMJD2D can stimulate cell proliferation and survival, suggesting that its inhibition may be helpful in the fight against cancer. Furthermore, our data imply that activation of p53 may represent a mechanism by which the pro-oncogenic functions of JMJD2D become dampened.
Collapse
|
124
|
Hepatic carcinoma-associated fibroblasts promote an adaptative response in colorectal cancer cells that inhibit proliferation and apoptosis: nonresistant cells die by nonapoptotic cell death. Neoplasia 2012; 13:931-46. [PMID: 22028619 DOI: 10.1593/neo.11706] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Revised: 08/16/2011] [Accepted: 08/23/2011] [Indexed: 12/17/2022] Open
Abstract
Carcinoma-associated fibroblasts (CAFs) are important contributors of microenvironment in determining the tumor's fate. This study aimed to compare the influence of liver microenvironment and primary tumor microenvironment on the behavior of colorectal carcinoma. Conditioned medium (CM) from normal colonic fibroblasts (NCFs), CAFs from primary tumor (CAF-PT) or liver metastasis (CAF-LM) were obtained. We performed functional assays to test the influence of each CM on colorectal cell lines. Microarray and gene set enrichment analysis (GSEA) were performed in DLD1 cells cultured in matched CM. In DLD1 cells, CAF-LM CM compared with CAF-PT CM and NCF led to a more aggressive phenotype, induced the features of an epithelial-to-mesenchymal transition more efficiently, and stimulated migration and invasion to a greater extent. Sustained stimulation with CAF-LM CM evoked a transient G(2)/M cell cycle arrest accompanied by a reduction of apoptosis, inhibition of proliferation, and decreased viability of SW1116, SW620, SW480, DLD1, HT-29, and Caco-2 cells and provoked nonapoptotic cell death in those cells carrying KRAS mutations. Cells resistant to CAF-LM CM completely changed their morphology in an extracellular signal-regulated protein kinase-dependent process and depicted an increased stemness capacity alongside the Wnt pathway stimulation. The transcriptomic profile of DLD1 cells treated with CAF-LM CM was associated with Wnt and mitogen-activated protein kinase pathways activation in GSEA. Therefore, the liver microenvironment induces more efficiently the aggressiveness of colorectal cancer cells than other matched microenvironments do but secondarily evokes cell death. Resistant cells displayed higher stemness capacity.
Collapse
|
125
|
Oh S, Janknecht R. Histone demethylase JMJD5 is essential for embryonic development. Biochem Biophys Res Commun 2012; 420:61-5. [DOI: 10.1016/j.bbrc.2012.02.115] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Accepted: 02/21/2012] [Indexed: 01/08/2023]
|
126
|
Loo LWM, Cheng I, Tiirikainen M, Lum-Jones A, Seifried A, Dunklee LM, Church JM, Gryfe R, Weisenberger DJ, Haile RW, Gallinger S, Duggan DJ, Thibodeau SN, Casey G, Le Marchand L. cis-Expression QTL analysis of established colorectal cancer risk variants in colon tumors and adjacent normal tissue. PLoS One 2012; 7:e30477. [PMID: 22363440 PMCID: PMC3281844 DOI: 10.1371/journal.pone.0030477] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Accepted: 12/16/2011] [Indexed: 12/13/2022] Open
Abstract
Genome-wide association studies (GWAS) have identified 19 risk variants associated with colorectal cancer. As most of these risk variants reside outside the coding regions of genes, we conducted cis-expression quantitative trait loci (cis-eQTL) analyses to investigate possible regulatory functions on the expression of neighboring genes. Forty microsatellite stable and CpG island methylator phenotype-negative colorectal tumors and paired adjacent normal colon tissues were used for genome-wide SNP and gene expression profiling. We found that three risk variants (rs10795668, rs4444235 and rs9929218, using near perfect proxies rs706771, rs11623717 and rs2059252, respectively) were significantly associated (FDR q-value ≤0.05) with expression levels of nearby genes (<2 Mb up- or down-stream). We observed an association between the low colorectal cancer risk allele (A) for rs10795668 at 10p14 and increased expression of ATP5C1 (q = 0.024) and between the colorectal cancer high risk allele (C) for rs4444235 at 14q22.2 and increased expression of DLGAP5 (q = 0.041), both in tumor samples. The colorectal cancer low risk allele (A) for rs9929218 at 16q22.1 was associated with a significant decrease in expression of both NOL3 (q = 0.017) and DDX28 (q = 0.046) in the adjacent normal colon tissue samples. Of the four genes, DLGAP5 and NOL3 have been previously reported to play a role in colon carcinogenesis and ATP5C1 and DDX28 are mitochondrial proteins involved in cellular metabolism and division, respectively. The combination of GWAS findings, prior functional studies, and the cis-eQTL analyses described here suggest putative functional activities for three of the colorectal cancer GWAS identified risk loci as regulating the expression of neighboring genes.
Collapse
Affiliation(s)
- Lenora W M Loo
- Epidemiology Program, University of Hawaii Cancer Center, Honolulu, Hawaii, United States of America.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
127
|
Wang D, Huang J, Hu Z. RNA helicase DDX5 regulates microRNA expression and contributes to cytoskeletal reorganization in basal breast cancer cells. Mol Cell Proteomics 2011; 11:M111.011932. [PMID: 22086602 DOI: 10.1074/mcp.m111.011932] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
RNA helicase DDX5 (also p68) is involved in all aspects of RNA metabolism and serves as a transcriptional coregulator, but its functional role in breast cancer remains elusive. Here, we report an integrative biology study of DDX5 in breast cancer, encompassing quantitative proteomics, global MicroRNA profiling, and detailed biochemical characterization of cell lines and human tissues. We showed that protein expression of DDX5 increased progressively from the luminal to basal breast cancer cell lines, and correlated positively with that of CD44 in the basal subtypes. Through immunohistochemistry analyses of tissue microarrays containing over 200 invasive human ductal carcinomas, we observed that DDX5 was up-regulated in the majority of malignant tissues, and its expression correlated strongly with those of Ki67 and EGFR in the triple-negative tumors. We demonstrated that DDX5 regulated a subset of MicroRNAs including miR-21 and miR-182 in basal breast cancer cells. Knockdown of DDX5 resulted in reorganization of actin cytoskeleton and reduction of cellular proliferation. The effects were accompanied by up-regulation of tumor suppressor PDCD4 (a known miR-21 target); as well as up-regulation of cofilin and profilin, two key proteins involved in actin polymerization and cytoskeleton maintenance, as a consequence of miR-182 down-regulation. Treatment with miR-182 inhibitors resulted in morphologic phenotypes resembling those induced by DDX5 knockdown. Using bioinformatics tools for pathway and network analyses, we confirmed that the network for regulation of actin cytoskeleton was predominantly enriched for the predicted downstream targets of miR-182. Our results reveal a new functional role of DDX5 in breast cancer via the DDX5→miR-182→actin cytoskeleton pathway, and suggest the potential clinical utility of DDX5 and its downstream MicroRNAs in the theranostics of breast cancer.
Collapse
Affiliation(s)
- Daojing Wang
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.
| | | | | |
Collapse
|
128
|
Fuller-Pace FV, Moore HC. RNA helicases p68 and p72: multifunctional proteins with important implications for cancer development. Future Oncol 2011; 7:239-51. [PMID: 21345143 DOI: 10.2217/fon.11.1] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The DEAD box RNA helicases p68 (DDX5) and p72 (DDX17) play important roles in multiple cellular processes that are commonly dysregulated in cancers, including transcription, pre-mRNA processing/alternative splicing and miRNA processing. Although p68 and p72 appear to have some overlapping functions, they clearly also have distinct, nonredundant functions. Furthermore, their ability to interact with a variety of different factors and act as multifunctional proteins has the potential to impact on several different processes, and alterations in expression or function of p68 and/or p72 could have profound implications for cancer development. However, their roles are likely to be context-dependent and both proteins have been reported to have pro-proliferation or even oncogenic functions as well as antiproliferative or tumor cosuppressor roles. Therefore, eludicating the precise role of these proteins in cancer is likely to be complex and to depend on the cellular environment and interacting factors. In this article, we review the many functions that have been attributed to p68 and p72 and discuss their potential roles in cancer development.
Collapse
Affiliation(s)
- Frances V Fuller-Pace
- Centre for Oncology & Molecular Medicine, University of Dundee, Ninewells Hospital & Medical School, Dundee, UK.
| | | |
Collapse
|
129
|
Tanaka T, Ishii T, Mizuno D, Mori T, Yamaji R, Nakamura Y, Kumazawa S, Nakayama T, Akagawa M. (-)-Epigallocatechin-3-gallate suppresses growth of AZ521 human gastric cancer cells by targeting the DEAD-box RNA helicase p68. Free Radic Biol Med 2011; 50:1324-35. [PMID: 21277973 DOI: 10.1016/j.freeradbiomed.2011.01.024] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Revised: 12/13/2010] [Accepted: 01/17/2011] [Indexed: 02/05/2023]
Abstract
(-)-Epigallocatechin-3-gallate (EGCG), the most abundant and biologically active polyphenol in green tea, induces apoptosis and suppresses proliferation of cancer cells by modulating multiple signal transduction pathways. However, the fundamental mechanisms responsible for these cancer-preventive effects have not been clearly elucidated. Recently, we found that EGCG can covalently bind to cysteine residues in proteins through autoxidation and subsequently modulate protein function. In this study, we demonstrate the direct binding of EGCG to cellular proteins in AZ521 human gastric cancer cells by redox-cycle staining. We comprehensively explored the binding targets of EGCG from EGCG-treated AZ521 cells by proteomics techniques combined with the boronate-affinity pull-down method. The DEAD-box RNA helicase p68, which is overexpressed in a variety of tumor cells and plays an important role in cancer development and progression, was identified as a novel EGCG-binding target. Exposure of AZ521 cells to EGCG lowered the p68 level dose dependently. The present findings show that EGCG inhibits AZ521 cell proliferation by preventing β-catenin oncogenic signaling through proteasomal degradation of p68 and provide a new perspective on the molecular mechanism of EGCG action.
Collapse
Affiliation(s)
- Tomoko Tanaka
- Department of Biological Chemistry, Division of Applied Life Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Naka-ku, Sakai 599-8531, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
130
|
Moore HC, Johnston M, Nicol SM, Bourdon JC, Thompson AM, Hutvagner G, Fuller-Pace FV. An evolutionarily conserved, alternatively spliced, intron in the p68/DDX5 DEAD-box RNA helicase gene encodes a novel miRNA. RNA (NEW YORK, N.Y.) 2011; 17:555-562. [PMID: 21346006 PMCID: PMC3062168 DOI: 10.1261/rna.2591611] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Accepted: 01/28/2011] [Indexed: 05/27/2023]
Abstract
The DEAD-box RNA helicase p68 (DDX5) plays important roles in several cellular processes, including transcription, pre-mRNA processing, and microRNA (miRNA) processing. p68 expression is growth and developmentally regulated, and alterations in p68 expression and/or function have been implicated in tumor development. The p68 gene encodes an evolutionarily conserved, alternatively spliced, intron the function of which has to date remained unclear. Although the intron-containing p68 RNA does not appear to yield an alternative p68 protein, it is differentially expressed in cell lines and tissues, indicating regulation of expression. Here we show that the p68 conserved intron encodes a novel putative miRNA, suggesting a previously unknown possible regulatory function for the p68 intron. We show that this miRNA (referred to as p68 miRNA) is processed from the intron via the canonical miRNA-processing pathway and that it associates with the Argonaute protein Ago2. Finally we show that the p68 miRNA suppresses an mRNA bearing complementary target sequences, suggesting that it is functional. These findings suggest a novel mechanism by which alterations in p68 expression may impact on the cell.
Collapse
|
131
|
RNA helicase p68 (DDX5) regulates tau exon 10 splicing by modulating a stem-loop structure at the 5' splice site. Mol Cell Biol 2011; 31:1812-21. [PMID: 21343338 DOI: 10.1128/mcb.01149-10] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Regulation of tau exon 10 splicing plays an important role in tauopathy. One of the cis elements regulating tau alternative splicing is a stem-loop structure at the 5' splice site of tau exon 10. The RNA helicase(s) modulating this stem-loop structure was unknown. We searched for splicing regulators interacting with this stem-loop region using an RNA affinity pulldown-coupled mass spectrometry approach and identified DDX5/RNA helicase p68 as an activator of tau exon 10 splicing. The activity of p68 in stimulating tau exon 10 inclusion is dependent on RBM4, an intronic splicing activator. RNase H cleavage and U1 protection assays suggest that p68 promotes conformational change of the stem-loop structure, thereby increasing the access of U1snRNP to the 5' splice site of tau exon 10. This study reports the first RNA helicase interacting with a stem-loop structure at the splice site and regulating alternative splicing in a helicase-dependent manner. Our work uncovers a previously unknown function of p68 in regulating tau exon 10 splicing. Furthermore, our experiments reveal functional interaction between two splicing activators for tau exon 10, p68 binding at the stem-loop region and RBM4 interacting with the intronic splicing enhancer region.
Collapse
|
132
|
Kondaskar A, Kondaskar S, Kumar R, Fishbein JC, Muvarak N, Lapidus RG, Sadowska M, Edelman MJ, Bol GM, Vesuna F, Raman V, Hosmane RS. Novel, Broad Spectrum Anti-Cancer Agents Containing the Tricyclic 5:7:5-Fused Diimidazodiazepine Ring System. ACS Med Chem Lett 2010; 2:252-256. [PMID: 21572541 DOI: 10.1021/ml100281b] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Synthesis of a series of novel, broad-spectrum anti-cancer agents containing the tricyclic 5:7:5-fused diimidazo[4,5-d:4',5'-f][1,3]diazepine ring system is reported. Compounds 1, 2, 8, 11, and 12 in the series show promising in vitro antitumor activity with low micromolar IC(50)'s against prostate, lung, breast, and ovarian cancer cell lines. Some notions about structure-activity relationships and a possible mechanism of biological activity are presented. Also presented are preliminary in vivo toxicity studies of 1 using SCID mice.
Collapse
Affiliation(s)
- Atul Kondaskar
- Laboratory for Drug Design & Synthesis, Department of Chemistry & Biochemistry, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland 21250, United States
| | - Shilpi Kondaskar
- Laboratory for Drug Design & Synthesis, Department of Chemistry & Biochemistry, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland 21250, United States
| | - Raj Kumar
- Laboratory for Drug Design & Synthesis, Department of Chemistry & Biochemistry, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland 21250, United States
| | - James C. Fishbein
- Laboratory for Drug Design & Synthesis, Department of Chemistry & Biochemistry, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland 21250, United States
| | - Nidal Muvarak
- Translational Core Laboratory, University of Maryland Marlene & Stewart Greenbaum Cancer Center, 22 South Greene Street, Baltimore, Maryland 21201, United States
| | - Rena G. Lapidus
- Translational Core Laboratory, University of Maryland Marlene & Stewart Greenbaum Cancer Center, 22 South Greene Street, Baltimore, Maryland 21201, United States
| | - Mariola Sadowska
- Translational Core Laboratory, University of Maryland Marlene & Stewart Greenbaum Cancer Center, 22 South Greene Street, Baltimore, Maryland 21201, United States
| | - Martin J. Edelman
- Translational Core Laboratory, University of Maryland Marlene & Stewart Greenbaum Cancer Center, 22 South Greene Street, Baltimore, Maryland 21201, United States
| | - Guus M. Bol
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Farhad Vesuna
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Venu Raman
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Ramachandra S. Hosmane
- Laboratory for Drug Design & Synthesis, Department of Chemistry & Biochemistry, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland 21250, United States
| |
Collapse
|
133
|
Ranji A, Boris-Lawrie K. RNA helicases: emerging roles in viral replication and the host innate response. RNA Biol 2010; 7:775-87. [PMID: 21173576 DOI: 10.4161/rna.7.6.14249] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
RNA helicases serve multiple roles at the virus-host interface. In some situations, RNA helicases are essential host factors to promote viral replication; however, in other cases they serve as a cellular sensor to trigger the antiviral state in response to viral infection. All family members share the conserved ATP-dependent catalytic core linked to different substrate recognition and protein-protein interaction domains. These flanking domains can be shuffled between different helicases to achieve functional diversity. This review summarizes recent studies, which have revealed two types of activity by RNA helicases. First, RNA helicases are catalysts of progressive RNA-protein rearrangements that begin at gene transcription and culminate in mRNA translation. Second, RNA helicases can act as a scaffold for alternative protein-protein interactions that can defeat the antiviral state. The mounting fundamental understanding of RNA helicases is being used to develop selective and efficacious drugs against human and animal pathogens. The analysis of RNA helicases in virus model systems continues to provide insights into virology, cell biology and immunology, and has provided fresh perspective to continue unraveling the complexity of virus-host interactions.
Collapse
Affiliation(s)
- Arnaz Ranji
- Department of Veterinary Biosciences, Ohio State University, Columbus, OH, USA
| | | |
Collapse
|
134
|
Barbas AS, Mi J, Clary BM, White RR. Aptamer applications for targeted cancer therapy. Future Oncol 2010; 6:1117-26. [PMID: 20624124 DOI: 10.2217/fon.10.67] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Aptamers are single-stranded DNA or RNA oligonucleotides that assume specific 3D structures and bind to target molecules with high affinity. The unique specificity of aptamers has made them attractive agents for targeted cancer therapy. Aptamers have been developed against a variety of cancer targets, including extracellular ligands and cell surface proteins. In addition, aptamers have been incorporated into novel constructs involving siRNAs, chemotherapeutic agents, cell toxins and nanoparticles, in which they function as delivery agents for therapeutic cargo. In this article, we review recent developments in the use of aptamers for targeted cancer therapy, particularly focusing on novel applications of aptamers targeting the cell surface.
Collapse
Affiliation(s)
- Andrew S Barbas
- Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | |
Collapse
|
135
|
Kim J, Shin S, Subramaniam M, Bruinsma E, Kim TD, Hawse JR, Spelsberg TC, Janknecht R. Histone demethylase JARID1B/KDM5B is a corepressor of TIEG1/KLF10. Biochem Biophys Res Commun 2010; 401:412-6. [PMID: 20863814 DOI: 10.1016/j.bbrc.2010.09.068] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Accepted: 09/15/2010] [Indexed: 10/19/2022]
Abstract
JARID1B/KDM5B (jumonji AT-rich interactive domain 1B/lysine-specific demethylase 5B) is an enzyme that efficiently removes methyl residues from trimethylated lysine 4 on histone H3, a pivotal mark for active chromatin. TIEG1/KLF10 (transforming growth factor-β inducible early gene-1/Krüppel-like transcription factor 10) is a zinc-finger transcription factor that is involved in bone metabolism and exerts antiproliferative activity. Here, we found that TIEG1 interacts with JARID1B. In particular, the repression domains of TIEG1 bind to the C-terminus of JARID1B. Moreover, overexpression of JARID1B augments TIEG1 to repress transcription of Smad7, an inhibitor of the TGF-β (transforming growth factor-β) signaling pathway. Conversely, JARID1B knock-down leads to increased Smad7 mRNA levels. Thus, TIEG1 and JARID1B may cooperate to suppress tumorigenesis by enhancing TGF-β signaling. Notably, both TIEG1 and JARID1B are downregulated in melanomas, suggesting that they indeed cooperate physiologically. In conclusion, JARID1B is the first TIEG1 corepressor identified, explaining how TIEG1 represses transcription through inducing histone H3 lysine 4 demethylation, which may be important for TIEG1 function in both normal and cancer cells.
Collapse
Affiliation(s)
- Joanna Kim
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | | | | | | | | | | |
Collapse
|
136
|
Mooney SM, Goel A, D'Assoro AB, Salisbury JL, Janknecht R. Pleiotropic effects of p300-mediated acetylation on p68 and p72 RNA helicase. J Biol Chem 2010; 285:30443-52. [PMID: 20663877 DOI: 10.1074/jbc.m110.143792] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Here, we demonstrate that p68 (DDX5) and p72 (DDX17), two homologous RNA helicases and transcriptional cofactors, are substrates for the acetyltransferase p300 in vitro and in vivo. Mutation of acetylation sites affected the binding of p68/p72 to histone deacetylases, but not to p300 or estrogen receptor. Acetylation additionally increased the stability of p68 and p72 RNA helicase and stimulated their ability to coactivate the estrogen receptor, thereby potentially contributing to its aberrant activation in breast tumors. Also, acetylation of p72, but not of p68 RNA helicase, enhanced p53-dependent activation of the MDM2 promoter, pointing at another mechanism of how p72 acetylation may facilitate carcinogenesis by boosting the negative p53-MDM2 feedback loop. Furthermore, blocking p72 acetylation caused cell cycle arrest and apoptosis, revealing an essential role for p72 acetylation. In conclusion, our report has identified for the first time that acetylation modulates RNA helicases and provides multiple mechanisms how acetylation of p68 and p72 may affect normal and tumor cells.
Collapse
Affiliation(s)
- Steven M Mooney
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | | | | | | | |
Collapse
|
137
|
Induced G1 cell-cycle arrest controls replication-dependent histone mRNA 3′ end processing through p21, NPAT and CDK9. Oncogene 2010; 29:2853-63. [DOI: 10.1038/onc.2010.42] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
138
|
Mooney SM, Grande JP, Salisbury JL, Janknecht R. Sumoylation of p68 and p72 RNA helicases affects protein stability and transactivation potential. Biochemistry 2010; 49:1-10. [PMID: 19995069 DOI: 10.1021/bi901263m] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The p68 (DDX5) and p72 (DDX17) proteins are members of the DEAD-box (DDX) family of RNA helicases. We show that both p68 and p72 are overexpressed in breast tumors. Bioinformatical analysis revealed that the SUMO pathway is upregulated in breast tumors and that both p68 and p72 contain one consensus sumoylation site, implicating that sumoylation of p68 and p72 increases during breast tumorigenesis and potentially contributes to their overexpression. We determined that p68 and p72 are indeed sumoylated at a single, homologous site. Importantly, sumoylation significantly increased the stability of p68 and p72. In contrast to p72 and consistent with an approximately 3-fold lesser half-life, p68 was found to be polyubiquitylated, and mutation of the sumoylation site increased polyubiquitylation, suggesting that sumoylation increases p68 half-life by reducing proteasomal degradation. Moreover, whereas p68 robustly coactivated transcription from an estrogen response element, its sumoylation mutant showed a drastically reduced coactivation potential. In contrast, the p68 sumoylation status did not affect the ability to enhance p53-mediated MDM2 transcription. On the contrary, preventing sumoylation of p72 caused an increase in its ability to transactivate both estrogen receptor and p53. Furthermore, sumoylation promoted the interaction of p68 and p72 with histone deacetylase 1 but had no effect on binding to histone deacetylases 2 and 3, the coactivator p300, or estrogen receptor and also did not affect homo/heterodimerization of p68/p72. In conclusion, sumoylation exerts pleiotropic effects on p68/p72, which may have important implications in breast cancer by modulating estrogen receptor and p53 activity.
Collapse
Affiliation(s)
- Steven M Mooney
- Department of Biochemistry, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | | | | | |
Collapse
|
139
|
In vivo selection of tumor-targeting RNA motifs. Nat Chem Biol 2009; 6:22-4. [PMID: 19946274 PMCID: PMC2795795 DOI: 10.1038/nchembio.277] [Citation(s) in RCA: 198] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2008] [Accepted: 10/08/2009] [Indexed: 02/02/2023]
Abstract
In an effort to target the in vivo context of tumor-specific moieties, a large library of nuclease-resistant RNA oligonucleotides was screened in tumor-bearing mice to identify candidate molecules with the ability to localize to hepatic colon cancer metastases. One of the selected molecules is an RNA aptamer that binds to protein p68, an RNA helicase that has been shown to be upregulated in colorectal cancer.
Collapse
|
140
|
Shin S, Kim TD, Jin F, van Deursen JM, Dehm SM, Tindall DJ, Grande JP, Munz JM, Vasmatzis G, Janknecht R. Induction of prostatic intraepithelial neoplasia and modulation of androgen receptor by ETS variant 1/ETS-related protein 81. Cancer Res 2009; 69:8102-10. [PMID: 19789348 DOI: 10.1158/0008-5472.can-09-0941] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
ETS variant 1 (ETV1), also known as ETS-related protein 81, is overexpressed in prostate tumors, but whether and how this transcription factor affects tumorigenesis has remained elusive. Here, we show that ETV1 is primarily overexpressed in the most aggressive human prostate tumors. Transgenic ETV1 mice developed prostatic intraepithelial neoplasia as well as hyperplasia/neoplasia in seminal vesicles. Moreover, ETV1 cooperated with the androgen receptor (AR) to bind to the prostate-specific antigen enhancer and stimulate gene transcription. Consistent with its ability to physically interact with AR, ETV1 rendered an ETV1 binding site-driven reporter androgen inducible, and, on the other hand, ETV1 super-induced transcription from an AR binding site on androgen stimulation. In conclusion, our study substantiates that ETV1 overexpression is an underlying cause in the development of prostate and possibly also seminal vesicle cancer. Its interaction with and activation of AR provides a molecular mechanism on how ETV1 exerts its deleterious function. Thus, inhibiting ETV1 or blocking its interaction with AR may represent novel strategies in prostate cancer therapy.
Collapse
Affiliation(s)
- Sook Shin
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
141
|
Synthesis and activity of N-oxalylglycine and its derivatives as Jumonji C-domain-containing histone lysine demethylase inhibitors. Bioorg Med Chem Lett 2009; 19:2852-5. [DOI: 10.1016/j.bmcl.2009.03.098] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2009] [Revised: 03/17/2009] [Accepted: 03/21/2009] [Indexed: 11/22/2022]
|
142
|
Clark EL, Coulson A, Dalgliesh C, Rajan P, Nicol SM, Fleming S, Heer R, Gaughan L, Leung HY, Elliott DJ, Fuller-Pace FV, Robson CN. The RNA helicase p68 is a novel androgen receptor coactivator involved in splicing and is overexpressed in prostate cancer. Cancer Res 2008; 68:7938-46. [PMID: 18829551 PMCID: PMC2561211 DOI: 10.1158/0008-5472.can-08-0932] [Citation(s) in RCA: 154] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The androgen receptor (AR) is a member of the nuclear steroid hormone receptor family and is thought to play an important role in the development of both androgen-dependent and androgen-independent prostatic malignancy. Elucidating roles by which cofactors regulate AR transcriptional activity may provide therapeutic advancement for prostate cancer (PCa). The DEAD box RNA helicase p68 (Ddx5) was identified as a novel AR-interacting protein by yeast two-hybrid screening, and we sought to examine the involvement of p68 in AR signaling and PCa. The p68-AR interaction was verified by colocalization of overexpressed protein by immunofluorescence and confirmed in vivo by coimmunoprecipitation in the PCa LNCaP cell line. Chromatin immunoprecipitation in the same cell line showed AR and p68 recruitment to the promoter region of the androgen-responsive prostate-specific antigen (PSA) gene. Luciferase reporter, minigene splicing assays, and RNA interference (RNAi) were used to examine a functional role of p68 in AR-regulated gene expression, whereby p68 targeted RNAi reduced AR-regulated PSA expression, and p68 enhanced AR-regulated repression of CD44 splicing (P = 0.008). Tyrosine phosphorylation of p68 was found to enhance coactivation of ligand-dependent transcription of AR-regulated luciferase reporters independent of ATP-binding. Finally, we observe increased frequency and expression of p68 in PCa compared with benign tissue using a comprehensive prostate tissue microarray (P = 0.003; P = 0.008). These findings implicate p68 as a novel AR transcriptional coactivator that is significantly overexpressed in PCa with a possible role in progression to hormone-refractory disease.
Collapse
Affiliation(s)
- Emma L Clark
- Northern Institute for Cancer Research and Institute of Human Genetics, Newcastle University, Newcastle-upon-Tyne, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
143
|
Shin S, Bosc DG, Ingle JN, Spelsberg TC, Janknecht R. Rcl is a novel ETV1/ER81 target gene upregulated in breast tumors. J Cell Biochem 2008; 105:866-74. [DOI: 10.1002/jcb.21884] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
144
|
The DEAD box RNA helicases p68 (Ddx5) and p72 (Ddx17): novel transcriptional co-regulators. Biochem Soc Trans 2008; 36:609-12. [PMID: 18631126 DOI: 10.1042/bst0360609] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
DEAD box [a motif named after its amino acid sequence (Asp-Glu-Ala-Asp)] RNA helicases are known to play key roles in all cellular processes that require modulation of RNA structure. However, in recent years, several of these proteins have been found to function in transcriptional regulation. In the present paper, we shall review the literature demonstrating the action of p68 and, where data are available, p72 as transcriptional co-regulators for a range of transcription factors, namely ERalpha (oestrogen receptor alpha), the tumour suppressor p53, the myogenic regulator MyoD and Runx2, a transcription factor essential for osteoblast development. We shall also discuss evidence indicating that, in some cases at least, p68 and p72 have distinct, non-redundant, roles.
Collapse
|
145
|
Kim TD, Shin S, Janknecht R. Repression of Smad3 activity by histone demethylase SMCX/JARID1C. Biochem Biophys Res Commun 2008; 366:563-7. [DOI: 10.1016/j.bbrc.2007.12.013] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2007] [Accepted: 12/01/2007] [Indexed: 11/26/2022]
|