101
|
Abstract
Initially known as multiple system organ failure, the term multiple organ dysfunction syndrome (MODS) was first described in the 1960s in adults with bleeding, respiratory failure, and sepsis. It is defined as "the development of potentially reversible physiologic derangement involving two or more organ systems not involved in the disorder that resulted in ICU admission, and arising in the wake of a potentially life threatening physiologic insult."(3) There are many risk factors predisposing to MODS; however, the most common risk factors are shock due to any cause, sepsis, and tissue hypoperfusion. A dysregulated immune response, or immuneparalysis, in which the homeostasis between pro-inflammatory and anti-inflammatory reaction is lost is thought to be key in the development of MODS. The clinical course and evolution of MODS is dependent on a combination of acquired and genetic factors. There are several nonspecific therapies for the prevention and resolution of MODS, mostly care is supportive. Mortality from MODS in septic pediatric patients varies between 11% and 54%.
Collapse
Affiliation(s)
- Michelle Ramírez
- Department of Pediatrics, Division of Pediatric Critical Care, NYU School of Medicine, Bellevue Hospital, New York, NY
| |
Collapse
|
102
|
Baek D, Park Y. Association between erythrocyte n-3 polyunsaturated fatty acids and biomarkers of inflammation and oxidative stress in patients with and without depression. Prostaglandins Leukot Essent Fatty Acids 2013; 89:291-6. [PMID: 24113544 DOI: 10.1016/j.plefa.2013.09.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 08/30/2013] [Accepted: 09/14/2013] [Indexed: 02/06/2023]
Abstract
Associations between n-3 polyunsaturated fatty acids (PUFAs), inflammation, oxidative stress and the risk of depression have been suggested. We hypothesize that erythrocyte n-3 PUFAs are inversely associated with biomarkers for inflammation and oxidative stress in Koreans with and without depression. Study participants comprised 80 cases diagnosed with depression based on the Center for Epidemiological Studies Depression Scale Korea version (CES-D-K) scores ≥25 and psychiatrist confirmation and 80 age- and sex-matched healthy controls without histories of depression. Depressed patients had lower levels of n-3 PUFAs and higher circulating levels of inducible nitric oxide synthase (iNOS), superoxide dismutase, interferon-γ, and nitrotyrosine compared to the controls. CES-D-K scores and levels of iNOS and tumor necrosis factor (TNF)-α were negatively associated with Omega-3 Index (erythrocyte levels of eicosapentaenoic acid and docosahexaenoic acid) after adjusting for confounding factors. Concentrations of iNOS, TNF-α, thiobarbituric acid reactive substances, and nitrotyrosine were negatively correlated with erythrocyte levels of n-3 PUFAs, but positively with erythrocyte levels of n-6 PUFAs. Erythrocyte levels of n-3 PUFAs were inversely associated with circulating markers of inflammation and oxidative stress in Koreans with and without depression in this case control study. Future randomized controlled trials are needed to determine whether dietary or supplemental n-3 PUFAs can reduce inflammation and oxidative stress, and reduce depressive symptoms in humans.
Collapse
Affiliation(s)
- Dawon Baek
- Department of Food and Nutrition, Hanyang University, Wangsimni-ro 222, Seongdong-gu, Seoul 133-791, South Korea
| | | |
Collapse
|
103
|
Molecular basis of cardioprotective effect of antioxidant vitamins in myocardial infarction. BIOMED RESEARCH INTERNATIONAL 2013; 2013:437613. [PMID: 23936799 PMCID: PMC3726017 DOI: 10.1155/2013/437613] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 06/18/2013] [Indexed: 02/07/2023]
Abstract
Acute myocardial infarction (AMI) is the leading cause of mortality worldwide. Major advances in the treatment of acute coronary syndromes and myocardial infarction, using cardiologic interventions, such as thrombolysis or percutaneous coronary angioplasty (PCA) have improved the clinical outcome of patients. Nevertheless, as a consequence of these procedures, the ischemic zone is reperfused, giving rise to a lethal reperfusion event accompanied by increased production of reactive oxygen species (oxidative stress). These reactive species attack biomolecules such as lipids, DNA, and proteins enhancing the previously established tissue damage, as well as triggering cell death pathways. Studies on animal models of AMI suggest that lethal reperfusion accounts for up to 50% of the final size of a myocardial infarct, a part of the damage likely to be prevented. Although a number of strategies have been aimed at to ameliorate lethal reperfusion injury, up to date the beneficial effects in clinical settings have been disappointing. The use of antioxidant vitamins could be a suitable strategy with this purpose. In this review, we propose a systematic approach to the molecular basis of the cardioprotective effect of antioxidant vitamins in myocardial ischemia-reperfusion injury that could offer a novel therapeutic opportunity against this oxidative tissue damage.
Collapse
|
104
|
Kikuchi K, Tancharoen S, Takeshige N, Yoshitomi M, Morioka M, Murai Y, Tanaka E. The efficacy of edaravone (radicut), a free radical scavenger, for cardiovascular disease. Int J Mol Sci 2013; 14:13909-30. [PMID: 23880849 PMCID: PMC3742225 DOI: 10.3390/ijms140713909] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 06/19/2013] [Accepted: 06/21/2013] [Indexed: 02/07/2023] Open
Abstract
Edaravone was originally developed as a potent free radical scavenger, and has been widely used to treat acute ischemic stroke in Japan since 2001. Free radicals play an important role in the pathogenesis of a variety of diseases, such as cardiovascular diseases and stroke. Therefore, free radicals may be targets for therapeutic intervention in these diseases. Edaravone shows protective effects on ischemic insults and inflammation in the heart, vessel, and brain in experimental studies. As well as scavenging free radicals, edaravone has anti-apoptotic, anti-necrotic, and anti-cytokine effects in cardiovascular diseases and stroke. Edaravone has preventive effects on myocardial injury following ischemia and reperfusion in patients with acute myocardial infarction. Edaravone may represent a new therapeutic intervention for endothelial dysfunction in the setting of atherosclerosis, heart failure, diabetes, or hypertension, because these diseases result from oxidative stress and/or cytokine-induced apoptosis. This review evaluates the potential of edaravone for treatment of cardiovascular disease, and covers clinical and experimental studies conducted between 1984 and 2013. We propose that edaravone, which scavenges free radicals, may offer a novel option for treatment of cardiovascular diseases. However, additional clinical studies are necessary to verify the efficacy of edaravone.
Collapse
Affiliation(s)
- Kiyoshi Kikuchi
- Department of Pharmacology, Faculty of Dentistry, Mahidol University, 6 Yothe Road, Rajthevee, Bangkok 10400, Thailand; E-Mails: (K.K.); (S.T.)
- Division of Brain Science, Department of Physiology, Kurume University School of Medicine, 67 Asahi-machi, Kurume 830-0011, Japan; E-Mail:
- Department of Neurosurgery, Kurume University School of Medicine, 67 Asahi-machi, Kurume 830-0011, Japan; E-Mails: (N.T.); (M.Y.); (M.M.)
| | - Salunya Tancharoen
- Department of Pharmacology, Faculty of Dentistry, Mahidol University, 6 Yothe Road, Rajthevee, Bangkok 10400, Thailand; E-Mails: (K.K.); (S.T.)
| | - Nobuyuki Takeshige
- Department of Neurosurgery, Kurume University School of Medicine, 67 Asahi-machi, Kurume 830-0011, Japan; E-Mails: (N.T.); (M.Y.); (M.M.)
| | - Munetake Yoshitomi
- Department of Neurosurgery, Kurume University School of Medicine, 67 Asahi-machi, Kurume 830-0011, Japan; E-Mails: (N.T.); (M.Y.); (M.M.)
| | - Motohiro Morioka
- Department of Neurosurgery, Kurume University School of Medicine, 67 Asahi-machi, Kurume 830-0011, Japan; E-Mails: (N.T.); (M.Y.); (M.M.)
| | - Yoshinaka Murai
- Division of Brain Science, Department of Physiology, Kurume University School of Medicine, 67 Asahi-machi, Kurume 830-0011, Japan; E-Mail:
| | - Eiichiro Tanaka
- Division of Brain Science, Department of Physiology, Kurume University School of Medicine, 67 Asahi-machi, Kurume 830-0011, Japan; E-Mail:
- Author to whom correspondence should be addressed. E-Mail: ; Tel.: +81-942-31-7542; Fax: +81-942-31-7695
| |
Collapse
|
105
|
Nageswara Rao G. S, Gurumurthy P, E. S, Cherian K. The clinical and biochemical parameters in relation to the serum neopterin levels in Indian children and adolescents. J Clin Diagn Res 2013; 7:618-21. [PMID: 23730631 PMCID: PMC3644429 DOI: 10.7860/jcdr/2013/5128.2866] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Accepted: 02/24/2013] [Indexed: 11/24/2022]
Abstract
INTRODUCTION An adverse pattern of blood lipids and cardiovascular abnormalities starts in obese children during childhood and neopterin serves as a marker for cardiovascular disease. Unfortunately, the data for children and adolescents, particularly, in the Indian population, are scarce. The present study aimed at evaluating the levels of serum neopterin in obese and overweight children and adolescents of the Indian population. METHODS The study groups included 296 school going children and adolescents. (96 obese and 97 overweight subjects were compared with 103 normal controls who were aged between 10-17 years). The anthropometric variables, the lipid profile, the fasting serum glucose which was analyzed by using an autoanalyzer and the serum neopterin levels were assayed by HPLC (Shimazdu) by using the method of Palfrey et al., 1993. The serum insulin levels were measured by using ELISA kits. RESULTS The serum neopterin levels (nmol/l) were elevated significantly in the obese (7.4±1.4) and overweight (6.4±0.8) (p<0.001) children and adolescents than in the controls (4.9±0.9). The serum neopterin levels showed a positive correlation with the BMI (r=0.79), WHR (r=0.5), systolic (r=0.44) and diastolic blood pressures (r= 0.25), insulin (r=0.57), HOMAIR (r=0.55), total cholesterol (r=0.35), triglycerides (r=0.20) and LDL-C (r=0.27) and they showed a negative correlation with HDL-C (r=-0.15) and fasting glucose (r= -0.3). CONCLUSION This study revealed a good relationship between serum neopterin and the anthropometric and biochemical parameters. We, therefore, aim to conduct regular camps at schools to counsel and advise the identified overweight and obese children to go for physical exercise and a balanced diet. The implementation of preventive measures from early childhood will have far reaching benefits, as even the prevalence of other obesity related disorders could decline.
Collapse
Affiliation(s)
- Srinivasa Nageswara Rao G.
- Assistant Professor, Department of Biochemistry, Tagore Medical College & Hospital, Rathinamangalam, Melakkottaiyur Post, Chennai-600 127. India
| | - Prema Gurumurthy
- Director – Research, Training & Applications, International Centre for Cardio-Thoracic and Vascular Diseases, Chennai, India
| | - Sruti E.
- Tutor, Department of Biochemistry, Tagore Medical College & Hospital, Rathinamangalam, Melakkottaiyur Post, Chennai-600 127, India
| | - K.M. Cherian
- Chairman and CEO, International Centre for Cardio-Thoracic and Vascular Diseases, Chennai, India
| |
Collapse
|
106
|
Popolo A, Autore G, Pinto A, Marzocco S. Oxidative stress in patients with cardiovascular disease and chronic renal failure. Free Radic Res 2013; 47:346-56. [PMID: 23438723 DOI: 10.3109/10715762.2013.779373] [Citation(s) in RCA: 123] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Oxidative response regulates many physiological response in human health, but if not properly regulated it could also lead to a number of deleterious effects. The importance of oxidative stress injury depends on the molecular target, the severity of the stress, and the mechanism by which the oxidative stress is imposed: it has been implicated in several diseases including cancer, neurodegenerative diseases, malaria, rheumatoid arthritis and cardiovascular and kidney disease. Most of the common diseases, such as hypertension, atherosclerosis, heart failure, and renal dysfunction, are associated with vascular functional and structural alterations including endothelial dysfunction, altered contractility, and vascular remodeling. Common to these processes is increased bioavailability of reactive oxygen species (ROS), decreased nitric oxide (NO) levels, and reduced antioxidant capacity. Oxidative processes are up-regulated also in patients with chronic renal failure (CRF) and seem to be a cause of elevated risk of morbidity and mortality in these patients. In this review, we highlight the role of oxidative stress in cardiovascular and renal disease.
Collapse
Affiliation(s)
- A Popolo
- Department of Pharmacy, School of Pharmacy, University of Salerno, Fisciano (SA), Italy
| | | | | | | |
Collapse
|
107
|
Varga G, Erces D, Tuboly E, Kaszaki J, Ghyczy M, Boros M. [Characterization of the antiinflammatory properties of methane inhalation during ischaemia-reperfusion]. Magy Seb 2013; 65:205-11. [PMID: 22940389 DOI: 10.1556/maseb.65.2012.4.6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Gastrointestinal methane generation has been demonstrated in various conditions, but it is not known whether it has any impact on the mammalian physiology or pathophysiology. Our aim was to characterize the effects of exogenous methane on the process of inflammatory events induced by reoxygenation in a canine model of ischemia-reperfusion. MATERIALS AND METHODS Sodium pentobarbital-anesthetized inbred beagle dogs (n = 18) were randomly assigned to sham-operated or ischemia-reperfusion (I/R) groups. I/R was induced by occluding the superior mesenteric artery for 1 h, and the subsequent reperfusion was monitored for 3 h. For 5 min before reperfusion, the animals were mechanically ventilated with normoxic artificial air with or without 2.5% methane. The macrohemodynamics and small intestinal pCO2 gap changes were recorded and tissue superoxide and nitrotyrosine levels and myeloperoxidase activity changes were determined in intestinal biopsy samples. Structural mucosal damage was measured via light microscopy and HE staining. RESULTS Methane inhalation positively influenced the macrohemodynamic changes, significantly reduced the intestinal pCO2 gap changes and the magnitude of the tissue damage after reperfusion. Further, the intestinal myeloperoxidase activity, the superoxide and nitrotyrosine levels were reduced. CONCLUSIONS These data demonstrate the anti-inflammatory profile of methane. The study provides evidence that exogenous methane modulates leukocyte activation and affects key events of I/R-induced oxidative and nitrosative stress.
Collapse
Affiliation(s)
- Gabriella Varga
- Szegedi Tudományegyetem, Általános Orvostudományi Kar Sebészeti Műtéttani Intézet 6720 Szeged Pécsi u. 6
| | | | | | | | | | | |
Collapse
|
108
|
Abstract
Oxidative stress accompanies a wide spectrum of clinically important cardiac disorders, including ischemia/reperfusion, diabetes mellitus, and hypertensive heart disease. Although reactive oxygen species (ROS) can activate signaling pathways that contribute to ischemic preconditioning and cardioprotection, high levels of ROS induce structural modifications of the sarcomere that impact on pump function and the pathogenesis of heart failure. However, the precise nature of the redox-dependent change in contractility is determined by the source/identity of the oxidant species, the level of oxidative stress, and the chemistry/position of oxidant-induced posttranslational modifications on individual proteins within the sarcomere. This review focuses on various ROS-induced posttranslational modifications of myofilament proteins (including direct oxidative modifications of myofilament proteins, myofilament protein phosphorylation by ROS-activated signaling enzymes, and myofilament protein cleavage by ROS-activated proteases) that have been implicated in the control of cardiac contractility.
Collapse
Affiliation(s)
- Susan F Steinberg
- Department of Pharmacology, College of Physicians and Surgeons, Columbia University, 630 W. 168 St, New York, NY 10032, USA.
| |
Collapse
|
109
|
Viera L, Radmilovich M, Vargas MR, Dennys CN, Wilson L, Barnes S, Franco MC, Beckman JS, Estévez AG. Temporal patterns of tyrosine nitration in embryo heart development. Free Radic Biol Med 2013; 55:101-8. [PMID: 23195686 PMCID: PMC3765090 DOI: 10.1016/j.freeradbiomed.2012.10.535] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Revised: 09/02/2012] [Accepted: 10/10/2012] [Indexed: 12/20/2022]
Abstract
Tyrosine nitration is a biomarker for the production of peroxynitrite and other reactive nitrogen species. Nitrotyrosine immunoreactivity is present in many pathological conditions including several cardiac diseases. Because the events observed during heart failure may recapitulate some aspects of development, we tested whether nitrotyrosine is present during normal development of the rat embryo heart and its potential relationship in cardiac remodeling through apoptosis. Nitric oxide production is highly dynamic during development, but whether peroxynitrite and nitrotyrosine are formed during normal embryonic development has received little attention. Rat embryo hearts exhibited strong nitrotyrosine immunoreactivity in endocardial and myocardial cells of the atria and ventricles from E12 to E18. After E18, nitrotyrosine staining faded and disappeared entirely by birth. Tyrosine nitration in the myocardial tissue coincided with elevated protein expression of nitric oxide synthases (eNOS and iNOS). The immunoreactivity for these NOS isoforms remained elevated even after nitrotyrosine had disappeared. Tyrosine nitration did not correlate with cell death or proliferation of cardiac cells. Analysis of tryptic peptides by MALDI-TOF showed that nitration occurs in actin, myosin, and the mitochondrial ATP synthase α chain. These results suggest that reactive nitrogen species are not restricted to pathological conditions but may play a role during normal embryonic development.
Collapse
Affiliation(s)
- Liliana Viera
- Laboratory of Motor Neuron Biology, Burke Medical Research Institute, White Plains, NY 10605
| | - Milka Radmilovich
- Departamento de Histología y Embriología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | | | - Cassandra N. Dennys
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida
| | - Landon Wilson
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Stephen Barnes
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Maria Clara Franco
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida
| | - Joseph S. Beckman
- Linus Pauling Institute, Environmental Health Sciences Center, Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97330
| | - Alvaro G. Estévez
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida
| |
Collapse
|
110
|
Inflammatory activation following interruption of long-term cardiac resynchronization therapy. Heart Vessels 2012; 28:583-8. [DOI: 10.1007/s00380-012-0285-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Accepted: 08/24/2012] [Indexed: 10/27/2022]
|
111
|
Kohr MJ, Roof SR, Zweier JL, Ziolo MT. Modulation of myocardial contraction by peroxynitrite. Front Physiol 2012; 3:468. [PMID: 23248603 PMCID: PMC3520483 DOI: 10.3389/fphys.2012.00468] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Accepted: 11/26/2012] [Indexed: 12/18/2022] Open
Abstract
Peroxynitrite is a potent oxidant that is quickly emerging as a crucial modulator of myocardial function. This review will focus on the regulation of myocardial contraction by peroxynitrite during health and disease, with a specific emphasis on cardiomyocyte Ca2+ handling, proposed signaling pathways, and protein end-targets.
Collapse
Affiliation(s)
- Mark J Kohr
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute, The Ohio State University Columbus, OH, USA ; Division of Cardiovascular Pathology, Department of Pathology, Johns Hopkins University Baltimore, MD, USA
| | | | | | | |
Collapse
|
112
|
Bobbert P, Jenke A, Bobbert T, Kühl U, Rauch U, Lassner D, Scheibenbogen C, Poller W, Schultheiss HP, Skurk C. High leptin and resistin expression in chronic heart failure: adverse outcome in patients with dilated and inflammatory cardiomyopathy. Eur J Heart Fail 2012; 14:1265-75. [PMID: 22764185 DOI: 10.1093/eurjhf/hfs111] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
AIM The expression of leptin and resistin is known to be positively correlated with the incidence of chronic heart failure (CHF). Both adipokines have been implicated in immunomodulation and cardiac remodelling. Therefore, we performed for the first time a clinical study to elucidate the effects of leptin and resistin on progression of CHF in patients with non-ischaemic dilated (DCM) and inflammatory (DCMi) cardiomyopathy. METHODS AND RESULTS For the clinical study 120 patients were divided into a control (n = 16), DCM (n = 52), and DCMi (n = 52) group to determine the effect of leptin and resistin on CHF progression. Nuclear factor-κB (NF-κB) activation, reactive oxygen species generation, and tumour necrosis factor-α (TNF-α) and interleukin-6 (IL-6) expression following adipokine exposition were determined in vitro in cardiomyocytes. Leptin and resistin systemic plasma levels and not cardiac expression were significantly elevated in patients with DCM (leptin, 13.12 ± 17.2 ng/mL, P < 0.05; resistin, 6.87 ± 2.25 ng/mL, P < 0.05) and DCMi (leptin, 13.63 ± 16 ng/mL, P < 0.05; resistin, 7.27 ± 2.2 ng/mL, P < 0.05) compared with the control group (leptin, 7.34 ± 5.7 ng/mL; resistin, 4.4 ± 1.18 ng/mL). A multivariate linear regression model revealed low leptin and resistin plasma levels as contributors for favourable cardiac functional parameters at 6-month follow-up independent of inflammatory conditions. Cell culture experiments in vitro showed leptin and resistin to be potent regulators of TNF-α and IL-6 expression in cardiomyocytes, leading to significantly increased redox stress in cardiac cells. CONCLUSIONS High leptin and resistin expression in patients with DCM and DCMi is associated with CHF progression, i.e. severe cardiac dysfunction, independent of immune responses.
Collapse
Affiliation(s)
- Peter Bobbert
- Department of Cardiology and Pneumology, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
113
|
Quercetin reduces inflammatory responses in LPS-stimulated cardiomyoblasts. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2012; 2012:837104. [PMID: 22685622 PMCID: PMC3364695 DOI: 10.1155/2012/837104] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Accepted: 03/22/2012] [Indexed: 01/22/2023]
Abstract
Flavonoids possess several biological and pharmacological activities. Quercetin (Q), a naturally occurring flavonoid, has been shown to downregulate inflammatory responses and provide cardioprotection. However, the mechanisms behind the anti-inflammatory properties of Q in cardiac cells are poorly understood. In inflammation, nitric oxide (NO) acts as a proinflammatory mediator and is synthesized by inducible nitric oxide synthase (iNOS) in response to pro-inflammatory agents such as lipopolysaccharide (LPS), a causative agent in myocardial depression during sepsis. In the present study, we evaluated the protective effect of Q on rat cardiac dysfunction during sepsis induced by LPS. Pretreatment of H9c2 cardiomyoblasts with Q inhibited LPS-induced iNOS expression and NO production and counteracted oxidative stress caused by the unregulated NO production that leads to the generation of peroxynitrite and other reactive nitrogen species. In addition, Q pretreatment significantly counteracted apoptosis cell death as measured by immunoblotting of the cleaved caspase 3 and caspase 3 activity. Q also inhibited the LPS-induced phosphorylation of the stress-activated protein kinases (JNK/SAPK) and p38 MAP kinase that are involved in the inhibition of cell growth as well as the induction of apoptosis. In conclusion, these results suggest that Q might serve as a valuable protective agent in cardiovascular inflammatory diseases.
Collapse
|
114
|
Abstract
OBJECTIVE Gastrointestinal methane generation has been demonstrated in various stress conditions, but it is not known whether nonasphyxiating amounts have any impact on the mammalian pathophysiology. We set out to characterize the effects of exogenous methane administration on the process of inflammatory events arising after reoxygenation in a large animal model of ischemia-reperfusion. DESIGN A randomized, controlled in vivo animal study. SETTING A university research laboratory. SUBJECTS Inbred beagle dogs (12.7 6 2 kg). INTERVENTIONS Sodium pentobarbital-anesthetized animals were randomly assigned to sham-operated or ischemia-reperfusion groups, where superior mesenteric artery occlusion was maintained for 1 hr and the subsequent reperfusion was monitored for 3 hrs. For 5 mins before reperfusion, the animals were mechanically ventilated with normoxic artificial air with or without 2.5% methane. Biological responses to methane-oxygen respirations were defined in pilot rat studies and assay systems were used with xanthine oxidase and activated canine granulocytes to test the in vitro bioactivity potential of different gas concentrations. MEASUREMENTS AND MAIN RESULTS The macrohemodynamics and small intestinal pCO(2) gap changes were recorded and peripheral blood samples were taken for plasma nitrite/nitrate and myeloperoxidase analyses. Tissue superoxide and nitrotyrosine levels and myeloperoxidase activity changes were determined in intestinal biopsy samples; structural mucosal damage was measured by hematoxylin and eosin staining. Methane inhalation did not influence the macrohemodynamics but significantly reduced the magnitude of the tissue damage and the intestinal pCO(2) gap changes after reperfusion. Furthermore, the plasma and mucosal myeloperoxidase activity and the intestinal superoxide and nitrotyrosine levels were reduced, whereas the plasma nitrite/nitrate concentrations were increased. Additionally, methane effectively and specifically inhibited leukocyte activation in vitro. CONCLUSIONS These data demonstrate the anti-inflammatory profile of methane. The study provides evidence that exogenous methane modulates leukocyte activation and affects key events of ischemia-reperfusion-induced oxidative and nitrosative stress and is therefore of potential therapeutic interest in inflammatory pathologies.
Collapse
|
115
|
Abstract
Cardiovascular disease (CVD) remains the leading cause of death in the United States. There is evidence that shows a direct relationship between an elevated uric acid level and an increased risk of cardiovascular (CV) events, which has set the foundation for the investigation of uric acid-lowering drugs for the treatment of CVD. Although traditionally the cornerstone therapy for gout, allopurinol's ability to be a competitive inhibitor of the key enzyme, xanthine oxidase, needed for uric acid formation, has prompted recent clinical research evaluating allopurinol as a CV drug. Epidemiologic and biochemical studies on uric acid formation have shown that it is not only uric acid itself that leads to worsening prognosis and increased CV events, but also the free radicals and superoxides formed during xanthine oxidase activity. The combination of uric acid formation and formed free radicals could ultimately lead to coronary endothelial dysfunction and worsening of myocardial oxidative stress. Along with preventing uric acid formation, allopurinol also has the ability to behave as a free radical scavenger of the superoxide anions and free radicals released during uric acid formation.Clinical studies have shown that allopurinol improves endothelial dysfunction and subsequently improves the exercise capacity in patients diagnosed with angina pectoris. Allopurinol has also been shown to decrease oxidative stress and ameliorate the morbidity and mortality of congestive heart failure patients by possibly improving mechanoenergetic uncoupling, with the enhancement of myocardial contractility and the left ventricular ejection fraction. This review presents the pharmacologic action of allopurinol on the CV system and describes the effectiveness of allopurinol as a potential drug to treat 2 CVD morbidities: ischemic heart disease and congestive heart failure.
Collapse
|
116
|
Tousoulis D, Papageorgiou N, Briasoulis A, Androulakis E, Charakida M, Tsiamis E, Stefanadis C. Conflicting effects of nitric oxide and oxidative stress in chronic heart failure: potential therapeutic strategies. Heart Fail Rev 2012; 17:65-79. [PMID: 21293971 DOI: 10.1007/s10741-011-9228-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Chronic heart failure (CHF) is characterized by decreased nitric oxide (NO) bioavailability. In addition, the beneficial NO turns to be deleterious when it reacts with superoxide anion, leading to peroxynitrite formation. Numerous experimental and clinical studies have reported increased production of reactive oxygen species (superoxide, hydrogen peroxide, hydroxyl radical) both in animals and patients with CHF. Moreover, there are indicative data suggesting mechanisms associated with endothelial dysfunction in states of CHF, mainly attributed to decreased NO bioavailability and enhanced inactivation of the latter. Thus, such molecules appear to be potential targets in patients with CHF. These patients are strong candidates to receive a variety of therapeutic agents, some of which have known antioxidant effects. Classic treatment with statins or angiotensin converting enzyme inhibitors has been found to be beneficial in restoring NO and improving myocardial function and structure. Other agents such as sildenafil and b-blockers along with novel agents such as NO synthase transcription enhancers have been proved to be also beneficial, but their use for such a purpose is still controversial. Approaches using more-effective antioxidants or targeting myocardial oxidant-producing enzymes and oxidative or nitrosative stress might be promising strategies in the future.
Collapse
|
117
|
Chronic hypoxia increases peroxynitrite, MMP9 expression, and collagen accumulation in fetal guinea pig hearts. Pediatr Res 2012; 71:25-31. [PMID: 22289847 DOI: 10.1038/pr.2011.10] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
INTRODUCTION Chronic hypoxia increases the expression of inducible nitric oxide synthase (iNOS) mRNA and protein levels in fetal guinea pig heart ventricles. Excessive generation of nitric oxide (NO) can induce nitrosative stress leading to the formation of peroxynitrite, which can upregulate the expression of matrix metalloproteinases (MMPs). This study tested the hypothesis that maternal hypoxia increases fetal cardiac MMP9 and collagen through peroxynitrite generation in fetal hearts. RESULTS In heart ventricles, levels of malondialdehyde, 3-nitrotyrosine (3-NT), MMP9, and collagen were increased in hypoxic (HPX) vs. normoxic (NMX) fetal guinea pigs. DISCUSSION Thus, maternal hypoxia induces oxidative-nitrosative stress and alters protein expression of the extracellular matrix (ECM) through upregulation of the iNOS pathway in fetal heart ventricles. This identifies iNOS-derived NO as an important stimulus for initiating the adverse effects of peroxynitrite in HPX fetal hearts. METHODS Pregnant guinea pigs were exposed to normoxia (room air) or hypoxia (10.5% O(2), 14 d) before term (term ≈ 65 d) and administered water, L-N6-(1-iminoethyl)-lysine (LNIL), an iNOS inhibitor, or N-acetylcysteine (NAC), an antioxidant.
Collapse
|
118
|
Lee WY, Koh EJ, Lee SM. A combination of ischemic preconditioning and allopurinol protects against ischemic injury through a nitric oxide-dependent mechanism. Nitric Oxide 2011; 26:1-8. [PMID: 22119149 DOI: 10.1016/j.niox.2011.11.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Revised: 10/05/2011] [Accepted: 11/06/2011] [Indexed: 01/25/2023]
Abstract
This study examined the cytoprotective mechanisms of a combination of ischemic preconditioning (IPC) and allopurinol against liver injury caused by ischemia/reperfusion (I/R). Allopurinol (50mg/kg) was intraperitoneally administered 18 and 1h before sustained ischemia. A rat liver was preconditioned by 10 min of ischemia, followed by 10 min of reperfusion, and then subjected to 90 min of ischemia, followed by 5h of reperfusion. Rats were pretreated with adenosine deaminase (ADA), 3,7-dimethyl-1-[2-propargyl]-xanthine (DMPX), and N-nitro-l-arginine methyl ester (l-NAME) before IPC. Hepatic nitrite and nitrate and eNOS protein expression levels were increased by the combination of IPC and allopurinol. This increase was attenuated by ADA, DMPX, and l-NAME. I/R induced an increase in alanine aminotransferase activity, whereas it decreased the hepatic glutathione level. A combination of IPC and allopurinol attenuated these changes, which were abolished by ADA, DMPX, and l-NAME. The increase in the liver wet weight-to-dry weight ratio after I/R was attenuated by the combination of IPC and allopurinol. In contrast, hepatic bile flow was decreased after I/R, which was attenuated by the combination of IPC and allopurinol. These changes were restored by l-NAME. I/R induced a decrease in the level of mitochondrial dehydrogenase, whereas it increased mitochondrial swelling. A combination of IPC and allopurinol attenuated these changes, which were restored by ADA, DMPX, and l-NAME. Our findings suggest that a combination of IPC and allopurinol reduces post-ischemic hepatic injury by enhancing NO generation.
Collapse
Affiliation(s)
- Woo-Yong Lee
- School of Pharmacy, Sungkyunkwan University, Republic of Korea
| | | | | |
Collapse
|
119
|
Michalakeas CA, Parissis JT, Douzenis A, Nikolaou M, Varounis C, Andreadou I, Antonellos N, Markantonis-Kiroudis S, Paraskevaidis I, Ikonomidis I, Lykouras E, Kremastinos D. Effects of Sertraline on Circulating Markers of Oxidative Stress in Depressed Patients With Chronic Heart Failure: A Pilot Study. J Card Fail 2011; 17:748-54. [DOI: 10.1016/j.cardfail.2011.05.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Revised: 05/05/2011] [Accepted: 05/05/2011] [Indexed: 12/13/2022]
|
120
|
Burgoyne JR, Rudyk O, Mayr M, Eaton P. Nitrosative protein oxidation is modulated during early endotoxemia. Nitric Oxide 2011; 25:118-24. [PMID: 21130178 PMCID: PMC3600856 DOI: 10.1016/j.niox.2010.11.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Revised: 11/21/2010] [Accepted: 11/23/2010] [Indexed: 02/07/2023]
Abstract
Formation of nitric oxide and its derivative reactive nitrogen species during endotoxemia has been implicated in the pathogenesis of the associated cardiovascular dysfunction. This stress can promote nitrosative post-translational modifications of proteins that may alter their activity and contribute to dysregulation. We utilized the ascorbate-dependent biotin-switch method to assay protein S-nitrosylation and immunoblotted for tyrosine nitration to monitor changes in nitrosative protein oxidation during endotoxemia. Hearts from lipopolysaccharide (LPS)-treated rats showed no apparent variation in global protein S-nitrosylation, but this may be due to the poor sensitivity of the biotin-switch method. To sensitize our monitoring of protein S-nitrosylation we exposed isolated hearts to the efficient trans-nitrosylating agent nitrosocysteine (which generated a robust biotin-switch signal) and then identified a number of target proteins using mass spectrometry. We were then able to probe for these target proteins in affinity-capture preparations of S-nitrosylated proteins prepared from vehicle- or LPS-treated animals. Unexpectedly this showed a time-dependent loss in S-nitrosylation during sepsis, which we hypothesized, may be due to concomitant superoxide formation that may lower nitric oxide but simultaneously generate the tyrosine-nitrating agent peroxynitrite. Indeed, this was confirmed by immunoblotting for global tyrosine nitration, which increased time-dependently and temporally correlated with a decrease in mean arterial pressure. We assessed if tyrosine nitration was causative in lowering blood pressure using the putative peroxynitrite scavenger FeTPPS. However, FeTPPS was ineffective in reducing global protein nitration and actually exacerbated LPS-induced hypotension.
Collapse
Affiliation(s)
- Joseph R Burgoyne
- King’s College London, Department of Cardiology, Cardiovascular Division, The Rayne Institute, St Thomas’ Hospital, London, SE1 7EH, UK
| | - Olena Rudyk
- King’s College London, Department of Cardiology, Cardiovascular Division, The Rayne Institute, St Thomas’ Hospital, London, SE1 7EH, UK
| | - Manuel Mayr
- King’s College London, Cardiovascular Division, The James Black Centre, King’s College London School of Medicine, King’s College London, 125 Coldharbour Lane, London SE59NU, UK
| | - Philip Eaton
- King’s College London, Department of Cardiology, Cardiovascular Division, The Rayne Institute, St Thomas’ Hospital, London, SE1 7EH, UK
| |
Collapse
|
121
|
Abstract
The ultimate goals of hemodynamic therapy in shock are to restore effective tissue perfusion and to normalize cellular metabolism. In sepsis, both global and regional perfusion must be considered. In addition, mediators of sepsis can perturb cellular metabolism, leading to inadequate use of oxygen and other nutrients despite adequate perfusion; one would not expect organ dysfunction mediated by such abnormalities to be corrected by hemodynamic therapy. Despite the complex pathophysiology of sepsis, an underlying approach to its hemodynamic support can be formulated that is particularly pertinent with respect to vasoactive agents. Both arterial pressure and tissue perfusion must be taken into account when choosing therapeutic interventions and the efficacy of hemodynamic therapy should be assessed by monitoring a combination of clinical and hemodynamic parameters. It is relatively easy to raise blood pressure, but somewhat harder to raise cardiac output in septic patients. How to optimize regional blood and microcirculatory blood flow remains uncertain. Specific end points for therapy are debatable and are likely to evolve. Nonetheless, the idea that clinicians should define specific goals and end points, titrate therapies to those end points, and evaluate the results of their interventions on an ongoing basis remains a fundamental principle. The practice parameters were intended to emphasize the importance of such an approach so as to provide a foundation for the rational choice of vasoactive agents in the context of evolving monitoring techniques and therapeutic approaches.
Collapse
Affiliation(s)
- Steven M Hollenberg
- Divisions of Cardiovascular Disease and Critical Care Medicine, Coronary Care Unit, Cooper University Hospital, Camden, NJ 08103, USA.
| |
Collapse
|
122
|
Masri F. Role of nitric oxide and its metabolites as potential markers in lung cancer. Ann Thorac Med 2011; 5:123-7. [PMID: 20835304 PMCID: PMC2930648 DOI: 10.4103/1817-1737.65036] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Revised: 02/03/2010] [Accepted: 04/24/2010] [Indexed: 01/16/2023] Open
Abstract
Nitric oxide (NO) and reactive oxygen species (ROS) play important physiologic roles as mediators of signaling processes. However, high concentrations of NO and ROS result in damage to cellular and extracellular components. Excessive production of endogenous and/or exogenous ROS and NO is implicated in the pathogenesis of lung cancer. NO and its metabolites interact with ROS to generate potent nitrating agents leading to protein nitration, which is one of the several chemical modifications that occur during oxidative/nitrosative stress. Although there is considerable evidence in support of a role for NO in protein modifications and carcinogenesis, recent data suggest that NO has antagonistic cellular effects, leading to either promotion or inhibition of tumor growth. However, the role of NO in tumor biology is still poorly understood. This review demonstrates the role of NO and its metabolites as potential markers in lung cancer.
Collapse
Affiliation(s)
- Fares Masri
- Department of Biochemistry and Microbiology, University of Kalamoon, Deratiah, Syria.
| |
Collapse
|
123
|
Niu J, Wang K, Graham S, Azfer A, Kolattukudy PE. MCP-1-induced protein attenuates endotoxin-induced myocardial dysfunction by suppressing cardiac NF-кB activation via inhibition of IкB kinase activation. J Mol Cell Cardiol 2011; 51:177-86. [PMID: 21616078 DOI: 10.1016/j.yjmcc.2011.04.018] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Revised: 04/14/2011] [Accepted: 04/17/2011] [Indexed: 12/16/2022]
Abstract
Myocardial contractile dysfunction is a major consequence of septic shock, which is mainly mediated by nuclear factor-kappa B (NF-кB)-dependent production of inflammatory mediators in the heart. A novel zinc-finger protein, MCP-1-induced protein (MCPIP), is thought to have NF-кB inhibitory activity in certain cell cultures, but its pathophysiological consequence in vivo remains undefined. This study aims to clarify whether the anti-inflammatory potency of MCPIP contribute to amelioration of septic myocardial inflammation and dysfunction in vivo. Transgenic mice (TG) with cardiac-specific expression of MCPIP and their littermate wild-type (WT) controls were challenged with Escherichia coli LPS (10mg/kg ip) and myocardial function was assessed 18 h later using echocardiography. LPS administration markedly deteriorated myocardial contractile function evidenced by reduction of the percentage of left ventricular fractional shortening, which was significantly attenuated by myocardial expression of MCPIP. MCPIP TG mice exhibited a markedly reduced myocardial inflammatory cytokines, less of iNOS expression and peroxynitrite formation, decreased caspase-3/7 activities and apoptotic cell death compared with LPS-treated WT mice. Activation of cardiac NF-кB observed in LPS-challenged WT mice was suppressed by the presence of MCPIP, as evidenced by decreased phosphorylation of IкB kinase (IKKα/β), reduced degradation of the cytosolic IкBα, and decreased nuclear translocation of NF-кB p65 subunit and its target DNA-binding activity. These results suggest that MCPIP has therapeutic values to protect heart from inflammatory pathologies, possibly through inhibition of IкB kinase complex, leading to blockade of NF-кB activation, and subsequently, attenuation of the proinflammatory state and nitrosative stress in the myocardium.
Collapse
Affiliation(s)
- Jianli Niu
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816, USA.
| | | | | | | | | |
Collapse
|
124
|
Vadhana MSD, Carloni M, Nasuti C, Fedeli D, Gabbianelli R. Early life permethrin insecticide treatment leads to heart damage in adult rats. Exp Gerontol 2011; 46:731-8. [PMID: 21616133 DOI: 10.1016/j.exger.2011.05.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Revised: 05/02/2011] [Accepted: 05/10/2011] [Indexed: 12/01/2022]
Abstract
Early life environmental exposure to xenobiotics could represent a critical period for the onset of permanent alterations in the structure and function of different organs. Cardiovascular diseases can be related to various factors including environmental toxicants. The aim of the present study was to evaluate the effect of early life permethrin treatment (1/50 LD(50), from 6th to 21st day of life) on heart of adult rats. Increased DNA damage, decreased heart cell membrane fluidity, increased cholesterol content, protein and lipid oxidation were measured in heart cells from adult rats treated with permethrin during the neonatal period with respect to control rats. Moreover, the same group showed higher levels of cholesterol, IL-1β, IL-2, IFN-γ, rat-Rantes and IL-10 cytokines and decreased albumin content in plasma. Lower cholesterol levels and perturbation in the phospholipid lateral diffusion together with decreased GSH levels and increased GPx activity were measured in heart mitochondria of the treated group. Our findings support the evidence that the neonatal period has a critical role in the development of heart disease in adulthood. We hypothesize that the alterations observed in adult rats could depend on epigenetic changes that occurred during this period which influence gene expression throughout the rat's life, leading to alterations of certain parameters related to cardiac function.
Collapse
|
125
|
Polewicz D, Cadete VJJ, Doroszko A, Hunter BE, Sawicka J, Szczesna-Cordary D, Light PE, Sawicki G. Ischemia induced peroxynitrite dependent modifications of cardiomyocyte MLC1 increases its degradation by MMP-2 leading to contractile dysfunction. J Cell Mol Med 2011; 15:1136-47. [PMID: 20518849 PMCID: PMC2953580 DOI: 10.1111/j.1582-4934.2010.01094.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2009] [Accepted: 04/09/2010] [Indexed: 11/28/2022] Open
Abstract
Damage to cardiac contractile proteins during ischemia followed by reperfusion is mediated by reactive oxygen species such as peroxynitrite (ONOO(-)), resulting in impairment of cardiac systolic function. However, the pathophysiology of systolic dysfunction during ischemia only, before reperfusion, remains unclear. We suggest that increased ONOO(-) generation during ischemia leads to nitration/nitrosylation of myosin light chain 1 (MLC1) and its increased degradation by matrix metalloproteinase-2 (MMP-2), which leads to impairment of cardiomyocyte contractility. We also postulate that inhibition of ONOO(-) action by use of a ONOO(-) scavenger results in improved recovery from ischemic injury. Isolated rat cardiomyocytes were subjected to 15 and 60 min. of simulated ischemia. Intact MLC1 levels, measured by 2D gel electrophoresis and immunoblot, were shown to decrease with increasing duration of ischemia, which correlated with increasing levels of nitrotyrosine and nitrite/nitrate. In vitro degradation of human recombinant MLC1 by MMP-2 increased after ONOO(-) exposure of MLC1 in a concentration-dependent manner. Mass spectrometry analysis of ischemic rat cardiomyocyte MLC1 showed nitration of tyrosines 78 and 190, as well as of corresponding tyrosines 73 and 185 within recombinant human cardiac MLC1 treated with ONOO(-). Recombinant human cardiac MLC1 was additionally nitrosylated at cysteine 67 and 76 corresponding to cysteine 81 of rat MLC1. Here we show that increased ONOO(-) production during ischemia induces MLC1 nitration/nitrosylation leading to its increased degradation by MMP-2. Inhibition of MLC1 nitration/nitrosylation during ischemia by the ONOO(-) scavenger FeTPPS (5,10,15,20-tetrakis-[4-sulfonatophenyl]-porphyrinato-iron[III]), or inhibition of MMP-2 activity with phenanthroline, provides an effective protection of cardiomyocyte contractility.
Collapse
Affiliation(s)
- Dorota Polewicz
- Department of Pharmacology, University of Saskatchewan, SaskatoonSaskatchewan, Canada
| | - Virgilio J J Cadete
- Department of Pharmacology, University of Saskatchewan, SaskatoonSaskatchewan, Canada
| | - Adrian Doroszko
- Department of Pharmacology, University of Saskatchewan, SaskatoonSaskatchewan, Canada
| | - Beth E Hunter
- Department of Pharmacology, University of Alberta, EdmontonAlberta, Canada
| | - Jolanta Sawicka
- Department of Pharmacology, University of Saskatchewan, SaskatoonSaskatchewan, Canada
| | - Danuta Szczesna-Cordary
- Department of Molecular and Cellular Pharmacology, University of Miami, Miller School of MedicineMiami, FL, USA
| | - Peter E Light
- Department of Pharmacology, University of Alberta, EdmontonAlberta, Canada
| | - Grzegorz Sawicki
- Department of Pharmacology, University of Saskatchewan, SaskatoonSaskatchewan, Canada
- Department of Clinical Chemistry, Medical University of WroclawWroclaw, Poland
| |
Collapse
|
126
|
Ali MA, Fan X, Schulz R. Cardiac Sarcomeric Proteins: Novel Intracellular Targets of Matrix Metalloproteinase-2 in Heart Disease. Trends Cardiovasc Med 2011; 21:112-8. [DOI: 10.1016/j.tcm.2012.03.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
127
|
Kleinbongard P, Schulz R, Heusch G. TNFα in myocardial ischemia/reperfusion, remodeling and heart failure. Heart Fail Rev 2011; 16:49-69. [PMID: 20571888 DOI: 10.1007/s10741-010-9180-8] [Citation(s) in RCA: 181] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
TNFα is crucially involved in the pathogenesis and progression of myocardial ischemia/reperfusion injury and heart failure. The formation and release of TNFα and its downstream signal transduction cascade following activation of its two receptor subtypes are characterized. Myocardial TNFα and TNF receptor activation have an ambivalent role in myocardial ischemia/reperfusion injury and protection from it. Excessive TNFα expression and subsequent cardiomyocyte TNF receptor type 1 stimulation induce contractile dysfunction, hypertrophy, fibrosis and cell death, while a lower TNFα concentration and subsequent cardiomyocyte TNF receptor type 2 stimulation are protective. Apart from its concentration and receptor subtype, the myocardial action of TNFα depends on the duration of its exposure and its localization. While detrimental during sustained ischemia, TNFα contributes to ischemic preconditioning protection, no matter whether it is the first, second or third window of protection, and both TNF receptors are involved in the protective signal transduction cascade. Finally, the available clinical attempts to antagonize TNFα in cardiovascular disease, notably heart failure, are critically discussed.
Collapse
Affiliation(s)
- Petra Kleinbongard
- Institut für Pathophysiologie, Universitätsklinikum Essen, Hufelandstrasse 55, 45122, Essen, Germany
| | | | | |
Collapse
|
128
|
Hausenloy DJ, Lecour S, Yellon DM. Reperfusion injury salvage kinase and survivor activating factor enhancement prosurvival signaling pathways in ischemic postconditioning: two sides of the same coin. Antioxid Redox Signal 2011; 14:893-907. [PMID: 20615076 DOI: 10.1089/ars.2010.3360] [Citation(s) in RCA: 147] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The discovery of ischemic postconditioning (IPost) has rejuvenated the field of cardioprotection. As an interventional strategy to be applied at the onset of myocardial reperfusion, the transition of IPost from a bench-side curiosity to potential clinical therapy has been impressively rapid. Its existence also confirms the existence of lethal myocardial reperfusion injury in man, suggesting that 40%-50% of the final reperfused myocardial infarct may actually be due to myocardial reperfusion injury. Intensive analysis of the signal transduction pathways underlying IPost has identified similarities with the signaling pathways underlying its preischemic counterpart, ischemic preconditioning. In this article, the reperfusion injury salvage kinase pathway and the more recently described survivor activating factor enhancement pathway, two apparently distinct signaling pathways that actually interact to convey the IPost stimulus from the cell surface to the mitochondria, where many of the prosurvival and death signals appear to converge. The elucidation of the reperfusion signaling pathways underlying IPost may result in the identification of novel pharmacological targets for cardioprotection.
Collapse
Affiliation(s)
- Derek J Hausenloy
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London, United Kingdom.
| | | | | |
Collapse
|
129
|
Wang YY, Li HM, Wang HD, Peng XM, Wang YP, Lu DX, Qi RB, Hu CF, Jiang JW. Pretreatment with berberine and yohimbine protects against LPS-induced myocardial dysfunction via inhibition of cardiac I-[kappa]B[alpha] phosphorylation and apoptosis in mice. Shock 2011; 35:322-8. [PMID: 20926983 DOI: 10.1097/shk.0b013e3181facf73] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Myocardial dysfunction is a common complication in sepsis and significantly contributes to the mortality of patients with septic shock. Our previous study demonstrated that pretreatment with berberine (Ber) protected against the lethality induced by LPS, which was enhanced by yohimbine, an [alpha]2-adrenergic receptor antagonist, and Ber combined with yohimbine also improved survival in mice subjected to cecal ligation and puncture. However, no studies have examined whether Ber and yohimbine reduce LPS-induced myocardial dysfunction. Here, we report that pretreatment with Ber, Ber combined with yohimbine, or yohimbine significantly reduced LPS-induced cardiac dysfunction in mice. LPS-provoked cardiac apoptosis, I-[kappa]B[alpha] phosphorylation, IL-1[beta], TNF-[alpha], and NO production were attenuated by pretreatment with Ber and/or yohimbine, whereas cardiac Toll-like receptor 4 mRNA expression, malondialdehyde content, and superoxide dismutase activity were not affected. These data demonstrate for the first time that pretreatment with Ber and/or yohimbine prevents LPS-induced myocardial dysfunction in mice through inhibiting myocardial apoptosis, cardiac I-[kappa]B[alpha] phosphorylation, and TNF-[alpha], IL-1[beta], and NO production, suggesting that activation of [alpha]2-adrenergic receptor in vivo may be responsible at least in part for LPS-induced cardiac dysfunction, and Ber in combination with yohimbine may be a potential agent for preventing cardiac dysfunction during sepsis.
Collapse
Affiliation(s)
- Yi-yang Wang
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine, School of Medicine, Jinan University, Guangzhou 510632, Guangdong, China
| | | | | | | | | | | | | | | | | |
Collapse
|
130
|
Nazer B, Ray KK, Sloan S, Scirica B, Morrow DA, Cannon CP, Braunwald E. Prognostic utility of neopterin and risk of heart failure hospitalization after an acute coronary syndrome. Eur Heart J 2011; 32:1390-7. [DOI: 10.1093/eurheartj/ehr032] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
131
|
Hsieh SF, Hu GC, Chuang YC, Chen CY, Hu YN. The Effects and Safety of Exercise Training in Subjects With Chronic Heart Failure—Do Elder Subjects Gain Similar Benefits? INT J GERONTOL 2010. [DOI: 10.1016/j.ijge.2010.11.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
132
|
|
133
|
Di Paola R, Mazzon E, Paterniti I, Impellizzeri D, Bramanti P, Cuzzocrea S. Olprinone, a PDE3 inhibitor, modulates the inflammation associated with myocardial ischemia-reperfusion injury in rats. Eur J Pharmacol 2010; 650:612-20. [PMID: 21035441 DOI: 10.1016/j.ejphar.2010.10.043] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Revised: 09/28/2010] [Accepted: 10/12/2010] [Indexed: 11/30/2022]
Abstract
Coronary ischemia and subsequent reperfusion result in deleterious effects, one of the principal ones being vascular and myocardial inflammation. Olprinone hydrochloride, a specific phosphodiesterase III inhibitor, has anti-inflammatory effects in addition to its inotropic and vasodilator effects. The purpose of this study was to examine the beneficial effects of olprinone on myocardial ischemia-reperfusion injury. Myocardial ischemia-reperfusion injury was caused by clamping the LAD (left anterior descending) coronary artery for 25 min followed by a release of the clamp allowing reperfusion for 1 h. Olprinone i.p. (0.2 mg/kg, i.p.) was administrated 15 min after ischemia. The olprinone administration significantly reduced the: (1) histological evidence of myocardial injury, (2) pro-inflammatory cytokines: tumor necrosis factor-α (TNF-α) and Interleukin-1β (IL-1β), (3) adhesion molecules: Inter-Cellular Adhesion Molecule 1 (ICAM-1) and P-Selectin, (4) nitrotyrosine formation, (5) nuclear factor kappa-B (NF-κB) expression, (6) Poly (ADP-ribose) (PAR) formation, and (7) apoptosis (Bax, Bcl-2, Fas-L and terminal deoxynucleotidyl transferase-mediated UTP end labeling (TUNEL). Based on these findings this study provides the evidence that treatment with olprinone ameliorated the inflammatory process associated with myocardial ischemia-reperfusion in rats and suggests that this drug may have potential in the treatment of various ischemia and reperfusion diseases.
Collapse
|
134
|
Khaper N, Bryan S, Dhingra S, Singal R, Bajaj A, Pathak CM, Singal PK. Targeting the vicious inflammation-oxidative stress cycle for the management of heart failure. Antioxid Redox Signal 2010; 13:1033-49. [PMID: 20380580 DOI: 10.1089/ars.2009.2930] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Oxidative stress and inflammation are each implicated independently in the development and progression of heart failure. Their interaction, however, is also evident throughout the process from initial injury to cardiac remodeling and failure. In the failing heart, the linkage between excessive reactive oxygen species (ROS) and the cytokine elaboration is manifested in shared elements and cross-promotion within downstream signaling pathways. In spite of this, the failure of anticytokine immunotherapy and antioxidant therapy, which had previously shown promise, suggests that a more complete perspective of ROS-cytokine interaction is required. The present review focuses on two of the major cytokines that are demonstrably connected to oxidative stress--the pro-inflammatory tumor necrosis factor-alpha (TNF-alpha) and the anti-inflammatory interleukin-10 (IL-10)--and their interactions in cardiac remodeling and failure. It is proposed that an optimal balance between TNF-alpha and IL-10 may be of crucial importance in mitigating both inflammation and oxidative stress processes leading to heart failure.
Collapse
Affiliation(s)
- Neelam Khaper
- Medical Sciences Division, Northern Ontario School of Medicine, Lakehead University, Thunder Bay, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
135
|
Bencsik P, Kupai K, Giricz Z, Görbe A, Pipis J, Murlasits Z, Kocsis GF, Varga-Orvos Z, Puskás LG, Csonka C, Csont T, Ferdinandy P. Role of iNOS and peroxynitrite–matrix metalloproteinase-2 signaling in myocardial late preconditioning in rats. Am J Physiol Heart Circ Physiol 2010; 299:H512-8. [DOI: 10.1152/ajpheart.00052.2010] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We have previously shown that the inhibition of myocardial nitric oxide (NO) and peroxynitrite-matrix metalloproteinase (MMP) signaling by early preconditioning (PC) is involved in its cardioprotective effect. Therefore, in the present study, we investigated the role of NO and peroxynitrite-MMP signaling in the development of late PC. PC was performed by five consecutive cycles of 4-min coronary occlusion and 4-min reperfusion in anesthetized rats in vivo. Twenty-four hours later, hearts were subjected to a 30-min coronary occlusion followed by 180-min reperfusion to measure infarct size. In separate experiments, heart tissue was sampled to measure biochemical parameters before and 3, 6, 12, or 24 h after the PC protocol, respectively. Late PC decreased infarct size, increased cardiac inducible NO synthase (iNOS) activity and gene expression, and decreased SOD activity at 24 h significantly compared with sham-operated controls. Late PC increased cardiac superoxide levels significantly at 24 h; however, it did not change cardiac NO levels. Cardiac peroxynitrite levels were significantly decreased. Downstream cellular targets of peroxynitrite, MMP-2 and MMP-9 activities were decreased in the late PC group at 24 h compared with the sham-operated group. To verify if PC-induced inhibition of MMPs had a causative role in the reduction of infarct size, in separate experiments, we measured infarct size after the pharmacological inhibition of MMPs by ilomastat and found a significant reduction of infarct size compared with the vehicle-treated group. In conclusion, this is the first demonstration that the inhibition of cardiac peroxynitrite-MMP signaling contributes to cardioprotection by late PC and that pharmacological inhibition of MMPs is able to reduce infarct size in vivo. Furthermore, increased expression of iNOS may play a role in the development of late PC; however, increased iNOS activity does not lead to increased NO production in late PC.
Collapse
Affiliation(s)
- Péter Bencsik
- Cardiovascular Research Group, Department of Biochemistry, University of Szeged
- Pharmahungary Group, Szeged, Hungary
| | - Krisztina Kupai
- Cardiovascular Research Group, Department of Biochemistry, University of Szeged
| | - Zoltán Giricz
- Cardiovascular Research Group, Department of Biochemistry, University of Szeged
| | - Anikó Görbe
- Cardiovascular Research Group, Department of Biochemistry, University of Szeged
- Pharmahungary Group, Szeged, Hungary
| | - Judit Pipis
- Cardiovascular Research Group, Department of Biochemistry, University of Szeged
- Pharmahungary Group, Szeged, Hungary
| | - Zsolt Murlasits
- Cardiovascular Research Group, Department of Biochemistry, University of Szeged
- Pharmahungary Group, Szeged, Hungary
| | - Gabriella F. Kocsis
- Cardiovascular Research Group, Department of Biochemistry, University of Szeged
| | - Zoltán Varga-Orvos
- Laboratory of Functional Genomics Biological Research Center, Hungarian Academy of Sciences; and
| | - László G. Puskás
- Laboratory of Functional Genomics Biological Research Center, Hungarian Academy of Sciences; and
| | - Csaba Csonka
- Cardiovascular Research Group, Department of Biochemistry, University of Szeged
- Pharmahungary Group, Szeged, Hungary
| | - Tamás Csont
- Cardiovascular Research Group, Department of Biochemistry, University of Szeged
- Pharmahungary Group, Szeged, Hungary
| | - Péter Ferdinandy
- Cardiovascular Research Group, Department of Biochemistry, University of Szeged
- Pharmahungary Group, Szeged, Hungary
| |
Collapse
|
136
|
PPARs, Cardiovascular Metabolism, and Function: Near- or Far-from-Equilibrium Pathways. PPAR Res 2010; 2010. [PMID: 20706650 PMCID: PMC2913846 DOI: 10.1155/2010/783273] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2010] [Accepted: 06/16/2010] [Indexed: 01/08/2023] Open
Abstract
Peroxisome proliferator-activated receptors (PPAR α, β/δ and γ) play a key role in metabolic regulatory processes and gene regulation of cellular metabolism, particularly in the cardiovascular system. Moreover, PPARs have various extra metabolic roles, in circadian rhythms, inflammation and oxidative stress. In this review, we focus mainly on the effects of PPARs on some thermodynamic processes, which can behave either near equilibrium, or far-from-equilibrium. New functions of PPARs are reported in the arrhythmogenic right ventricular cardiomyopathy, a human genetic heart disease. It is now possible to link the genetic desmosomal abnormalitiy to the presence of fat in the right ventricle, partly due to an overexpression of PPARγ. Moreover, PPARs are directly or indirectly involved in cellular oscillatory processes such as the Wnt-b-catenin pathway, circadian rhythms of arterial blood pressure and cardiac frequency and glycolysis metabolic pathway. Dysfunction of clock genes and PPARγ may lead to hyperphagia, obesity, metabolic syndrome, myocardial infarction and sudden cardiac death, In pathological conditions, regulatory processes of the cardiovascular system may bifurcate towards new states, such as those encountered in hypertension, type 2 diabetes, and heart failure. Numerous of these oscillatory mechanisms, organized in time and space, behave far from equilibrium and are “dissipative structures”.
Collapse
|
137
|
Mukhopadhyay P, Rajesh M, Bátkai S, Patel V, Kashiwaya Y, Liaudet L, Evgenov OV, Mackie K, Haskó G, Pacher P. CB1 cannabinoid receptors promote oxidative stress and cell death in murine models of doxorubicin-induced cardiomyopathy and in human cardiomyocytes. Cardiovasc Res 2010; 85:773-784. [PMID: 19942623 PMCID: PMC2819835 DOI: 10.1093/cvr/cvp369] [Citation(s) in RCA: 156] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2009] [Revised: 10/23/2009] [Accepted: 11/09/2009] [Indexed: 02/06/2023] Open
Abstract
AIMS Here we investigated the mechanisms by which cardiovascular CB1 cannabinoid receptors may modulate the cardiac dysfunction, oxidative stress, and interrelated cell death pathways associated with acute/chronic cardiomyopathy induced by the widely used anti-tumour compound doxorubicin (DOX). METHODS AND RESULTS Both load-dependent and -independent indices of left-ventricular function were measured by the Millar pressure-volume conductance system. Mitogen-activated protein kinase (MAPK) activation, cell-death markers, and oxidative/nitrosative stress were measured by molecular biology/biochemical methods and flow cytometry. DOX induced left-ventricular dysfunction, oxidative/nitrosative stress coupled with impaired antioxidant defense, activation of MAPK (p38 and JNK), and cell death and/or fibrosis in hearts of wide-type mice (CB1(+/+)), and these effects were markedly attenuated in CB1 knockouts (CB1(-/-)). In human primary cardiomyocytes expressing CB1 receptors (demonstrated by RT-PCR, western immunoblot, and flow cytometry) DOX, likewise the CB1 receptor agonist HU210 and the endocannabinoid anandamide (AEA), induced MAPK activation and cell death. The DOX-induced MAPK activation and cell death were significantly enhanced when DOX was co-administered with CB1 agonists AEA or HU210. Remarkably, cell death and MAPK activation induced by AEA, HU210, and DOX +/- AEA/HU210 were largely attenuated by either CB1 antagonists (rimonabant and AM281) or by inhibitors of p38 and JNK MAPKs. Furthermore, AEA or HU210 in primary human cardiomyocytes triggered increased reactive oxygen species generation. CONCLUSION CB1 activation in cardiomyocytes may amplify the reactive oxygen/nitrogen species-MAPK activation-cell death pathway in pathological conditions when the endocannabinoid synthetic or metabolic pathways are dysregulated by excessive inflammation and/or oxidative/nitrosative stress, which may contribute to the pathophysiology of various cardiovascular diseases.
Collapse
MESH Headings
- Amidohydrolases/metabolism
- Animals
- Antibiotics, Antineoplastic/toxicity
- Apoptosis/physiology
- Cannabinoid Receptor Modulators/metabolism
- Cardiomyopathies/chemically induced
- Cardiomyopathies/metabolism
- Cardiomyopathies/pathology
- Caspase 3/metabolism
- Caspase 7/metabolism
- Cells, Cultured
- Cytochromes c/metabolism
- Disease Models, Animal
- Doxorubicin/toxicity
- Endomyocardial Fibrosis/chemically induced
- Endomyocardial Fibrosis/metabolism
- Endomyocardial Fibrosis/pathology
- Humans
- MAP Kinase Signaling System/physiology
- Male
- Mice
- Mice, Knockout
- Myocytes, Cardiac/cytology
- Myocytes, Cardiac/metabolism
- Oxidative Stress/physiology
- Poly(ADP-ribose) Polymerases/metabolism
- Reactive Nitrogen Species/metabolism
- Reactive Oxygen Species/metabolism
- Receptor, Cannabinoid, CB1/genetics
- Receptor, Cannabinoid, CB1/metabolism
- Ventricular Function, Left/physiology
Collapse
Affiliation(s)
- Partha Mukhopadhyay
- Section on Oxidative Stress and Tissue Injury, Laboratory of Physiological Studies, NIH/NIAAA, 5625 Fishers Lane, MSC-9413, Bethesda 20892-9413 MD, USA
| | - Mohanraj Rajesh
- Section on Oxidative Stress and Tissue Injury, Laboratory of Physiological Studies, NIH/NIAAA, 5625 Fishers Lane, MSC-9413, Bethesda 20892-9413 MD, USA
| | - Sándor Bátkai
- Section on Oxidative Stress and Tissue Injury, Laboratory of Physiological Studies, NIH/NIAAA, 5625 Fishers Lane, MSC-9413, Bethesda 20892-9413 MD, USA
| | - Vivek Patel
- Section on Oxidative Stress and Tissue Injury, Laboratory of Physiological Studies, NIH/NIAAA, 5625 Fishers Lane, MSC-9413, Bethesda 20892-9413 MD, USA
| | | | - Lucas Liaudet
- Department of Intensive Care Medicine, University Hospital, Lausanne, Switzerland
| | - Oleg V. Evgenov
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ken Mackie
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - György Haskó
- Department of Surgery, UMDNJ-New Jersey Medical School, Newark, USA
| | - Pál Pacher
- Section on Oxidative Stress and Tissue Injury, Laboratory of Physiological Studies, NIH/NIAAA, 5625 Fishers Lane, MSC-9413, Bethesda 20892-9413 MD, USA
| |
Collapse
|
138
|
ETS-GS, a new antioxidant, ameliorates renal ischemia-reperfusion injury in a rodent model. J Surg Res 2010; 171:226-33. [PMID: 20451924 DOI: 10.1016/j.jss.2010.01.039] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Revised: 01/12/2010] [Accepted: 01/25/2010] [Indexed: 02/07/2023]
Abstract
BACKGROUND Ischemia-reperfusion (I/R) contributes to acute kidney injury (AKI). On the other hand, anti-oxidative drugs help to prevent renal injury caused by I/R. The current study examined whether a new antioxidant, ETS-GS, inhibits reactive oxygen species (ROS) generation and thereby prevents renal I/R injury in rodent models. METHODS Rats with experimentally-induced renal I/R injury were treated concurrently with an intravenous injection of either ETS-GS or saline. Anesthesia was induced with sevoflurane. RESULTS Histologic examination revealed marked reduction of interstitial congestion, edema, inflammation, and hemorrhage in kidney tissue harvested 24 h after ETS-GS treatment. Renal I/R-induced secretion of nitric oxide (NO) in serum was inhibited by ETS-GS treatment. Furthermore, malondialdehyde (MDA) levels in the kidney were significantly lower in ETS-GS-treated rats with renal I/R. Moreover, when murine macrophage-like RAW264.7 cells were stimulated with antimycin A in the presence or absence of simultaneous ETS-GS treatment, ETS-GS decreased ROS levels. CONCLUSIONS Thus, ETS-GS lowered ROS levels in cultured cells, reduced serum NO levels, decreased renal MDA levels, and protected rats against I/R-induced kidney injury. Given these in vitro and in vivo findings, ETS-GS is a strong candidate for future exploration of therapeutic potential in various human I/R diseases.
Collapse
|
139
|
Tamariz L, Hare JM. Inflammatory cytokines in heart failure: roles in aetiology and utility as biomarkers. Eur Heart J 2010; 31:768-70. [DOI: 10.1093/eurheartj/ehq014] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
140
|
Abstract
When fluid administration fails to restore an adequate arterial pressure and organ perfusion in patients with septic shock, therapy with vasoactive agents should be initiated. The ultimate goals of such therapy in shock are to restore effective tissue perfusion and to normalize cellular metabolism. The efficacy of hemodynamic therapy in sepsis should be assessed by monitoring a combination of clinical and hemodynamic parameters. Although specific end points for therapy are debatable, and therapies will inevitably evolve as new information becomes available, the idea that clinicians should define specific goals and end points, titrate therapies to those end points, and evaluate the results of their interventions on an ongoing basis remains a fundamental principle.
Collapse
Affiliation(s)
- Steven M Hollenberg
- Divisions of Cardiovascular Disease and Critical Care Medicine, Cooper University Hospital, Camden, NJ 08103, USA.
| |
Collapse
|
141
|
Abstract
Septic shock, the most severe complication of sepsis, accounts for approximately 10% of all admissions to intensive care. Our understanding of its complex pathophysiology remains incomplete but clearly involves stimulation of the immune system with subsequent inflammation and microvascular dysfunction. Cardiovascular dysfunction is pronounced and characterized by elements of hypovolaemic, cytotoxic, and distributive shock. In addition, significant myocardial depression is commonly observed. This septic cardiomyopathy is characterized by biventricular impairment of intrinsic myocardial contractility, with a subsequent reduction in left ventricular (LV) ejection fraction and LV stroke work index. This review details the myocardial dysfunction observed in adult septic shock, and discusses the underlying pathophysiology. The utility of using the regulatory protein troponin for the detection of myocardial dysfunction is also considered. Finally, options for the management of sepsis-induced LV hypokinesia are discussed, including the use of levosimendan.
Collapse
Affiliation(s)
- J D Hunter
- Macclesfield District General Hospital, Victoria Road, Macclesfield SK10 3BL, UK.
| | | |
Collapse
|
142
|
Rabkin SW. Nitric oxide and peroxynitrite induce gene expression of interleukin receptors increasing IL-21, IL-7, IL-1 and oncostatin M in cardiomyocytes. Life Sci 2010; 86:45-51. [DOI: 10.1016/j.lfs.2009.11.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2009] [Revised: 11/03/2009] [Accepted: 11/04/2009] [Indexed: 11/25/2022]
|
143
|
Ardanaz N, Yang XP, Cifuentes ME, Haurani MJ, Jackson KW, Liao TD, Carretero OA, Pagano PJ. Lack of glutathione peroxidase 1 accelerates cardiac-specific hypertrophy and dysfunction in angiotensin II hypertension. Hypertension 2009; 55:116-23. [PMID: 19917877 DOI: 10.1161/hypertensionaha.109.135715] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Glutathione peroxidase 1 (Gpx1) plays an important role in cellular defense by converting hydrogen peroxide and organic hydroperoxides to nonreactive products, and Gpx1(-/-) mice, which are characterized by reduced tissue glutathione peroxidase activity, are known to exhibit enhanced oxidative stress. Peroxides participate in tissue injury, as well as the hypertrophy of cultured cells, yet the role of Gpx1 to prevent end organ damage in cardiovascular tissue is not clear. We postulated that Gpx1 deletion would potentiate both aortic and cardiac hypertrophy, as well as mean arterial blood pressure, in response to angiotensin II (AngII). Our results show that short-term AngII markedly increased left ventricular mass, myocyte cross-sectional area, and interventricular septum thickness and decreased shortening fraction in Gpx1(-/-) mice as compared with wild-type animals. On the other hand, AngII resulted in a similar increase in mean arterial blood pressure in wild-type and Gpx1(-/-) mice. Collagen deposition increased in response to AngII, but no differences were found between strains. Vascular hypertrophy increased to the same extent in Gpx1(-/-) and wild-type mice. Collectively, our results indicate that Gpx1 deficiency accelerates cardiac hypertrophy and dysfunction but has no effect on vascular hypertrophy and mean arterial blood pressure and suggest a major role for Gpx1 in cardiac dysfunction in AngII-dependent hypertension.
Collapse
Affiliation(s)
- Noelia Ardanaz
- Department of Pharmacology and Chemical Biology and Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | | | | | | | | | | | | | | |
Collapse
|
144
|
Kupai K, Csonka C, Fekete V, Odendaal L, van Rooyen J, Marais DW, Csont T, Ferdinandy P. Cholesterol diet-induced hyperlipidemia impairs the cardioprotective effect of postconditioning: role of peroxynitrite. Am J Physiol Heart Circ Physiol 2009; 297:H1729-35. [DOI: 10.1152/ajpheart.00484.2009] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The aim of the present study was to investigate if hyperlipidemia interferes with the infarct size-limiting effect of postconditioning and to study the involvement of peroxynitrite in this phenomenon. Rats were fed a 2% cholesterol-enriched or normal diet for 12 wk. Infarct size by triphenyltetrazolium chloride staining was measured in hearts isolated from both groups and subjected to 30 min coronary occlusion followed by 120 min reperfusion with or without the postconditioning protocol induced by six cycles of 10 s coronary occlusion and 10 s reperfusion at the onset of the reperfusion. Postconditioning significantly decreased infarct size in the normolipidemic but not in the hyperlipidemic group. Postconditioning increased cardiac 3-nitrotyrosine concentration (a marker for peroxynitrite formation) in the normal but not in the cholesterol-fed group when measured at the 5th min of reperfusion. Next, we tested if the postconditioning-induced acute increase in peroxynitrite is involved in the cardioprotection in normolipidemic animals in separate experiments. Postconditioning failed to decrease infarct size in the presence of the peroxynitrite decomposition catalyst 5,10,15,20-tetrakis-[4-sulfonatophenyl]-porphyrinato-iron [III] (20 mg/l) in normolipidemic animals. We conclude that an early increase in peroxynitrite after postconditioning plays a role in cardioprotection. Furthermore, hyperlipidemia blocks the cardioprotective effect of postconditioning at least in part via deterioration of the postconditioning-induced early increase in peroxynitrite formation.
Collapse
Affiliation(s)
- Krisztina Kupai
- Cardiovascular Research Group, Department of Biochemistry, University of Szeged, and
- Pharmahungary Group, Szeged, Hungary
| | - Csaba Csonka
- Cardiovascular Research Group, Department of Biochemistry, University of Szeged, and
- Pharmahungary Group, Szeged, Hungary
| | - Veronika Fekete
- Cardiovascular Research Group, Department of Biochemistry, University of Szeged, and
- Pharmahungary Group, Szeged, Hungary
| | - Louise Odendaal
- Experimental Anti-Oxidant Research Group, Faculty of Health and Wellness Sciences, Cape Peninsula University of Technology, Cape Town
| | - Jacques van Rooyen
- Experimental Anti-Oxidant Research Group, Faculty of Health and Wellness Sciences, Cape Peninsula University of Technology, Cape Town
| | - De Wet Marais
- Nutritional Intervention Research Unit, Medical Research Council, Cape Town, South Africa
| | - Tamás Csont
- Cardiovascular Research Group, Department of Biochemistry, University of Szeged, and
- Pharmahungary Group, Szeged, Hungary
| | - Péter Ferdinandy
- Cardiovascular Research Group, Department of Biochemistry, University of Szeged, and
- Pharmahungary Group, Szeged, Hungary
| |
Collapse
|
145
|
McCarty MF, Barroso-Aranda J, Contreras F. High-dose folate and dietary purines promote scavenging of peroxynitrite-derived radicals – Clinical potential in inflammatory disorders. Med Hypotheses 2009; 73:824-34. [DOI: 10.1016/j.mehy.2008.09.058] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2008] [Revised: 09/12/2008] [Accepted: 09/18/2008] [Indexed: 01/02/2023]
|
146
|
Esposito E, Cuzzocrea S. Role of nitroso radicals as drug targets in circulatory shock. Br J Pharmacol 2009; 157:494-508. [PMID: 19630831 DOI: 10.1111/j.1476-5381.2009.00255.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
A vast amount of circumstantial evidence implicates oxygen-derived free radicals (especially, superoxide and hydroxyl radical) and high-energy oxidants [such as peroxynitrite (OONO(-))] as mediators of shock and ischaemia/reperfusion injury. Reactive oxygen species can initiate a wide range of toxic oxidative reactions. These include initiation of lipid peroxidation, direct inhibition of mitochondrial respiratory chain enzymes, inactivation of glyceraldehyde-3 phosphate dehydrogenase, inhibition of membrane sodium/potassium adenosine 5'-triphosphate-ase activity, inactivation of membrane sodium channels and other oxidative modifications of proteins. All these toxicities are likely to play a role in the pathophysiology of shock and ischaemia and reperfusion. Moreover, various studies have clearly shown that treatment with either OONO(-) decomposition catalysts, which selectively inhibit OONO(-), or with superoxide dismutase (SOD) mimetics, which selectively mimic the catalytic activity of the human SOD enzymes, have been shown to prevent in vivo the delayed vascular decompensation and the cellular energetic failure associated with shock and ischaemia/reperfusion injury.
Collapse
|
147
|
Nicolescu AC, Holt A, Kandasamy AD, Pacher P, Schulz R. Inhibition of matrix metalloproteinase-2 by PARP inhibitors. Biochem Biophys Res Commun 2009; 387:646-50. [PMID: 19619515 PMCID: PMC2756481 DOI: 10.1016/j.bbrc.2009.07.080] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2009] [Accepted: 07/09/2009] [Indexed: 01/01/2023]
Abstract
Matrix metalloproteinase-2 (MMP-2), a ubiquitously expressed zinc-dependent endopeptidase, and poly(ADP-ribosyl) polymerase (PARP), a nuclear enzyme regulating DNA repair, are activated by nitroxidative stress associated with various pathologies. As MMP-2 plays a detrimental role in heart injuries resulting from enhanced nitroxidative stress, where PARP and MMP inhibitors are beneficial, we hypothesized that PARP inhibitors may affect MMP-2 activity. Using substrate degradation assays to determine MMP-2 activity we found that four PARP inhibitors (3-AB, PJ-34, 5-AIQ, and EB-47) inhibited 64kDa MMP-2 in a concentration-dependent manner. The IC(50) values of PJ-34 and 5-AIQ were in the high micromolar range and comparable to those of known MMP-2 inhibitors doxycycline, minocycline or o-phenanthroline, whereas those for 3-AB and EB-47 were in the millimolar range. Co-incubation of PARP inhibitors with doxycycline showed an additive inhibition of MMP-2 that was significant for 3-AB alone. These data demonstrate that the protective effects of some PARP inhibitors may include inhibition of MMP-2 activity.
Collapse
Affiliation(s)
- Adrian C. Nicolescu
- Departments of Pharmacology and Pediatrics, Cardiovascular Research Centre, University of Alberta, Edmonton, Alta., Canada T6G 2S2
| | - Andrew Holt
- Departments of Pharmacology and Pediatrics, Cardiovascular Research Centre, University of Alberta, Edmonton, Alta., Canada T6G 2S2
| | - Arulmozhi D. Kandasamy
- Departments of Pharmacology and Pediatrics, Cardiovascular Research Centre, University of Alberta, Edmonton, Alta., Canada T6G 2S2
| | - Pal Pacher
- National Institutes of Health, NIAAA, Laboratory of Physiologic Studies, Bethesda, MD, USA
| | - Richard Schulz
- Departments of Pharmacology and Pediatrics, Cardiovascular Research Centre, University of Alberta, Edmonton, Alta., Canada T6G 2S2
| |
Collapse
|
148
|
Genovese T, Mazzon E, Esposito E, Di Paola R, Murthy K, Neville L, Bramanti P, Cuzzocrea S. Effects of a metalloporphyrinic peroxynitrite decomposition catalyst, ww-85, in a mouse model of spinal cord injury. Free Radic Res 2009; 43:631-45. [PMID: 19418318 DOI: 10.1080/10715760902954126] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The aim of the present study was to assess the effect of a metalloporphyrinic peroxynitrite decomposition catalyst, ww-85, in the pathophysiology of spinal cord injury (SCI) in mice. Spinal cord trauma was induced by the application of vascular clips to the dura via a four-level T5-T8 laminectomy. SCI in mice resulted in severe trauma characterized by oedema, neutrophil infiltration, production of inflammatory mediators, tissue damage and apoptosis. ww-85 treatment (30-300 microg/kg, i.p. 1 h after the SCI) significantly reduced in a dose-dependent manner: (1) the degree of spinal cord inflammation and tissue injury, (2) neutrophil infiltration (myeloperoxidase activity), (3) nitrotyrosine formation and PARP activation, (4) pro-inflammatory cytokines expression, (5) NF-kappaB activation and (6) apoptosis. Moreover, ww-85 significantly ameliorated the recovery of limb function (evaluated by motor recovery score) in a dose-dependent manner. The results demonstrate that ww-85 treatment reduces the development of inflammation and tissue injury associated with spinal cord trauma.
Collapse
|
149
|
|
150
|
Kim YM, Ha YM, Jin YC, Shi LY, Lee YS, Kim HJ, Seo HG, Choi JS, Kim YS, Kang SS, Lee JH, Chang KC. Palmatine from Coptidis rhizoma reduces ischemia–reperfusion-mediated acute myocardial injury in the rat. Food Chem Toxicol 2009; 47:2097-102. [DOI: 10.1016/j.fct.2009.05.031] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2009] [Revised: 04/27/2009] [Accepted: 05/27/2009] [Indexed: 11/25/2022]
|