101
|
Cesar S, Campuzano O, Cruzalegui J, Fiol V, Moll I, Martínez-Barrios E, Zschaeck I, Natera-de Benito D, Ortez C, Carrera L, Expósito J, Berrueco R, Bautista-Rodriguez C, Dabaj I, Gómez García-de-la-Banda M, Quijano-Roy S, Brugada J, Nascimento A, Sarquella-Brugada G. Characterization of cardiac involvement in children with LMNA-related muscular dystrophy. Front Cell Dev Biol 2023; 11:1142937. [PMID: 36968203 PMCID: PMC10036759 DOI: 10.3389/fcell.2023.1142937] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 02/27/2023] [Indexed: 03/12/2023] Open
Abstract
Introduction: LMNA-related muscular dystrophy is a rare entity that produce "laminopathies" such as Emery-Dreifuss muscular dystrophy (EDMD), limb-girdle muscular dystrophy type 1B (LGMD1B), and LMNA-related congenital muscular dystrophy (L-CMD). Heart failure, malignant arrhythmias, and sudden death may occur. No consensus exists on cardiovascular management in pediatric laminopathies. The aim was to perform an exhaustive cardiologic follow-up in pediatric patients diagnosed with LMNA-related muscular dystrophy. Methods: Baseline cardiac work-up consisted of clinical assessment, transthoracic Doppler echocardiography, 12-lead electrocardiogram, electrophysiological study, and implantation of a long-term implantable cardiac loop recorder (ILR). Results: We enrolled twenty-eight pediatric patients diagnosed with EDMD (13 patients), L-CMD (11 patients), LGMD1B (2 patients), and LMNA-related mild weakness (2 patients). Follow-up showed dilated cardiomyopathy (DCM) in six patients and malignant arrhythmias in five (four concomitant with DCM) detected by the ILR that required implantable cardioverter defibrillator (ICD) implantation. Malignant arrhythmias were detected in 20% of our cohort and early-onset EDMD showed worse cardiac prognosis. Discussion: Patients diagnosed with early-onset EDMD are at higher risk of DCM, while potentially life-threatening arrhythmias without DCM appear earlier in L-CMD patients. Early onset neurologic symptoms could be related with worse cardiac prognosis. Specific clinical guidelines for children are needed to prevent sudden death.
Collapse
Affiliation(s)
- Sergi Cesar
- Pediatric Arrhythmias, Inherited Cardiac Diseases and Sudden Death Unit, Hospital Sant Joan de Déu, Universitat de Barcelona, Barcelona, Spain
- Arrítmies Pediàtriques, Cardiologia Genètica i Mort sobtada, Malalties Cardiovasculars en el Desenvolupament, Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
- European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart (ERN GUARD-Heart), Amsterdam, Netherlands
| | - Oscar Campuzano
- Medical Science Department, School of Medicine, Universitat de Girona, Girona, Spain
- Cardiovascular Genetics Center, University of Girona-IDIBGI, Girona, Spain
- Centro de Investigación Biomédica en Red, Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Jose Cruzalegui
- Pediatric Arrhythmias, Inherited Cardiac Diseases and Sudden Death Unit, Hospital Sant Joan de Déu, Universitat de Barcelona, Barcelona, Spain
- Arrítmies Pediàtriques, Cardiologia Genètica i Mort sobtada, Malalties Cardiovasculars en el Desenvolupament, Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
- European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart (ERN GUARD-Heart), Amsterdam, Netherlands
| | - Victori Fiol
- Pediatric Arrhythmias, Inherited Cardiac Diseases and Sudden Death Unit, Hospital Sant Joan de Déu, Universitat de Barcelona, Barcelona, Spain
- Arrítmies Pediàtriques, Cardiologia Genètica i Mort sobtada, Malalties Cardiovasculars en el Desenvolupament, Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
- European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart (ERN GUARD-Heart), Amsterdam, Netherlands
| | - Isaac Moll
- Pediatric Arrhythmias, Inherited Cardiac Diseases and Sudden Death Unit, Hospital Sant Joan de Déu, Universitat de Barcelona, Barcelona, Spain
- Arrítmies Pediàtriques, Cardiologia Genètica i Mort sobtada, Malalties Cardiovasculars en el Desenvolupament, Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
- European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart (ERN GUARD-Heart), Amsterdam, Netherlands
| | - Estefania Martínez-Barrios
- Pediatric Arrhythmias, Inherited Cardiac Diseases and Sudden Death Unit, Hospital Sant Joan de Déu, Universitat de Barcelona, Barcelona, Spain
- Arrítmies Pediàtriques, Cardiologia Genètica i Mort sobtada, Malalties Cardiovasculars en el Desenvolupament, Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
- European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart (ERN GUARD-Heart), Amsterdam, Netherlands
| | - Irene Zschaeck
- Pediatric Arrhythmias, Inherited Cardiac Diseases and Sudden Death Unit, Hospital Sant Joan de Déu, Universitat de Barcelona, Barcelona, Spain
- Arrítmies Pediàtriques, Cardiologia Genètica i Mort sobtada, Malalties Cardiovasculars en el Desenvolupament, Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
- European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart (ERN GUARD-Heart), Amsterdam, Netherlands
- Neuromuscular Unit, Department of Neurology, Hospital Sant Joan de Déu, Barcelona, Spain
- Investigación Aplicada en Enfermedades Neuromusculares, Neurociències, Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Spain
| | - Daniel Natera-de Benito
- Neuromuscular Unit, Department of Neurology, Hospital Sant Joan de Déu, Barcelona, Spain
- Investigación Aplicada en Enfermedades Neuromusculares, Neurociències, Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Spain
| | - Carlos Ortez
- Neuromuscular Unit, Department of Neurology, Hospital Sant Joan de Déu, Barcelona, Spain
- Investigación Aplicada en Enfermedades Neuromusculares, Neurociències, Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Spain
| | - Laura Carrera
- Neuromuscular Unit, Department of Neurology, Hospital Sant Joan de Déu, Barcelona, Spain
- Investigación Aplicada en Enfermedades Neuromusculares, Neurociències, Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Spain
| | - Jessica Expósito
- Neuromuscular Unit, Department of Neurology, Hospital Sant Joan de Déu, Barcelona, Spain
- Investigación Aplicada en Enfermedades Neuromusculares, Neurociències, Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Spain
| | - Rubén Berrueco
- Servicio de Hematología Pediátrica, Hospital Sant Joan de Déu Barcelona, Institut de Recerca Pediàtrica, Hospital Sant Joan de Déu de Barcelona (IRP-HSJD), Universitat de Barcelona, Barcelona, Spain
| | - Carles Bautista-Rodriguez
- Paediatric Cardiology Services, Royal Brompton Hospital, Guy’s and St Thomas NHS Foundation Trust, London, United Kingdom
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Ivana Dabaj
- Neuromuscular Unit, Pediatric Neurology and ICU Department, Raymond Poincaré Hospital (UVSQ), AP-HP Université Paris-Saclay, Garches, France
| | - Marta Gómez García-de-la-Banda
- Neuromuscular Unit, Pediatric Neurology and ICU Department, Raymond Poincaré Hospital (UVSQ), AP-HP Université Paris-Saclay, Garches, France
| | - Susana Quijano-Roy
- Neuromuscular Unit, Pediatric Neurology and ICU Department, Raymond Poincaré Hospital (UVSQ), AP-HP Université Paris-Saclay, Garches, France
| | - Josep Brugada
- Pediatric Arrhythmias, Inherited Cardiac Diseases and Sudden Death Unit, Hospital Sant Joan de Déu, Universitat de Barcelona, Barcelona, Spain
- Arrítmies Pediàtriques, Cardiologia Genètica i Mort sobtada, Malalties Cardiovasculars en el Desenvolupament, Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
- European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart (ERN GUARD-Heart), Amsterdam, Netherlands
- Centro de Investigación Biomédica en Red, Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Arrhythmia Section, Cardiology Service, Hospital Clínic, Barcelona, Spain
| | - Andrés Nascimento
- Neuromuscular Unit, Department of Neurology, Hospital Sant Joan de Déu, Barcelona, Spain
- Investigación Aplicada en Enfermedades Neuromusculares, Neurociències, Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Spain
- Instituto Nacional de Investigación Biomédica de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, España
| | - Georgia Sarquella-Brugada
- Pediatric Arrhythmias, Inherited Cardiac Diseases and Sudden Death Unit, Hospital Sant Joan de Déu, Universitat de Barcelona, Barcelona, Spain
- Arrítmies Pediàtriques, Cardiologia Genètica i Mort sobtada, Malalties Cardiovasculars en el Desenvolupament, Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
- European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart (ERN GUARD-Heart), Amsterdam, Netherlands
| |
Collapse
|
102
|
Villasis-Keever MA, Zurita-Cruz JN, Zepeda-Martinez C, Alegria-Torres G, Serret-Montoya J, Estrada-Loza MDJ, Hernández-Hernández BC, Alonso-Flores S, Zavala-Serret M. Adipokines as predictive factor of cardiac function in pediatric patients with chronic kidney disease. Front Endocrinol (Lausanne) 2023; 14:1120445. [PMID: 36967775 PMCID: PMC10034059 DOI: 10.3389/fendo.2023.1120445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 02/24/2023] [Indexed: 03/11/2023] Open
Abstract
Background Adipokines are associated with cardiovascular disease; in chronic kidney disease (CKD) patients adipokines could be useful prognostic factors. Objectives To explore whether leptin and adiponectin in kidney replacement therapy (KRT) children could have a role on their cardiac function, in the long-term. Design Prospective cohort study was performed with pediatric KRT patients, aged 8 to 17 years who were undergoing hemodialysis or peritoneal dialysis. At enrollment, lipid profile, adipokines (leptin, leptin receptor, free leptin, and adiponectin), anthropometric measurements and cardiological evaluation were determined. At two-year follow-up, a new cardiological evaluation was performed. Statistical analysis: Quantitative data are presented as median and interquartile range (IQR). Mann-Whitney U test and Chi-squared were used for the between-group comparison. Multivariate analyzes were performed to determine the association of adipokines levels with ventricular ejection fraction (LEVF). Results We included 56 patients, with a median age of 12.5 years. In the first cardiological evaluation, median LVEF was 70.0% (IQR 61%, 76%), 20 patients (35.7%) had some cardiovascular condition, and 10 (17.8%) altered LVEF. At 24-month follow-up, the median LVEF was 70.5% (IQR 65.1%, 77%), while the delta-LVEF values was 3% (IQR -6.5%, 7%). Delta-LVEF were correlated with baseline adipokines serum levels, and the only positive correlation found was with free leptin (r=0.303, p=0.025). In multivariate analysis, levels of free leptin (Coef. 0.12, p<0.036) and leptin (coef. 1.72, p=0.049), as well as baseline LVEF (Coef. -0.65, p<0.001) were associated with delta-LVEF. Conclusions Free leptin, leptin and LVEF at the beginning of follow-up were associated with the LVEF decrease at the 24-month follow-up in KRT children.
Collapse
Affiliation(s)
- Miguel Angel Villasis-Keever
- Research Unit in Analysis and Synthesis of the Evidence, National Medical Center XXI Century, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Jessie Nallely Zurita-Cruz
- Hospital Infantil de Mexico Federico Gómez, Facultad de Medicina Universidad Nacional Autónoma de Mexico, Mexico City, Mexico
| | - Claudia Zepeda-Martinez
- Department of Pediatric Nephology, Children’s Hospital, National Medical Center XXI Century, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Gabriela Alegria-Torres
- Department of Pediatric Nephology, Children’s Hospital, National Medical Center XXI Century, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Juana Serret-Montoya
- Adolescent Medicine Service, Hospital Infantil de Mexico Federico Gómez, Ministry of Health, Secretaria de Salud (SSA), Mexico City, Mexico
| | - Maria de Jesus Estrada-Loza
- Department of Pediatric Cardiology, Children’s Hospital, National Medical Center XXI Century, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Beatriz Carolina Hernández-Hernández
- Department of Pediatric Nephology, Children’s Hospital, National Medical Center XXI Century, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Sara Alonso-Flores
- Department of Pediatric Nephology, Children’s Hospital, National Medical Center XXI Century, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Monica Zavala-Serret
- Adolescent Medicine Service, Hospital Infantil de Mexico Federico Gómez, Ministry of Health, Secretaria de Salud (SSA), Mexico City, Mexico
| |
Collapse
|
103
|
Szulik MW, Reyes-Múgica M, Marker DF, Gomez AM, Zinn MD, Walsh LK, Ochoa JP, Franklin S, Ghaloul-Gonzalez L. Identification of Two Homozygous Variants in MYBPC3 and SMYD1 Genes Associated with Severe Infantile Cardiomyopathy. Genes (Basel) 2023; 14:659. [PMID: 36980931 PMCID: PMC10048717 DOI: 10.3390/genes14030659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/15/2023] [Accepted: 02/28/2023] [Indexed: 03/08/2023] Open
Abstract
Mutations in cardiac genes are one of the primary causes of infantile cardiomyopathy. In this study, we report the genetic findings of two siblings carrying variations in the MYBPC3 and SMYD1 genes. The first patient is a female proband exhibiting hypertrophic cardiomyopathy (HCM) and biventricular heart failure carrying a truncating homozygous MYBPC3 variant c.1224-52G>A (IVS13-52G>A) and a novel homozygous variant (c.302A>G; p.Asn101Ser) in the SMYD1 gene. The second patient, the proband's sibling, is a male infant diagnosed with hypertrophic cardiomyopathy and carries the same homozygous MYBPC3 variant. While this specific MYBPC3 variant (c.1224-52G>A, IVS13-52G>A) has been previously reported to be associated with adult-onset hypertrophic cardiomyopathy, this is the first report linking it to infantile cardiomyopathy. In addition, this work describes, for the first time, a novel SMYD1 variant (c.302A>G; p.Asn101Ser) that has never been reported. We performed a histopathological evaluation of tissues collected from both probands and show that these variants lead to myofibrillar disarray, reduced and irregular mitochondrial cristae and cardiac fibrosis. Together, these results provide critical insight into the molecular functionality of these genes in human cardiac physiology.
Collapse
Affiliation(s)
- Marta W. Szulik
- Nora Eccles Harrison Cardiovascular Research & Training Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Miguel Reyes-Múgica
- Division of Pediatric Pathology, Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Daniel F. Marker
- Division of Neuropathology, Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Ana M. Gomez
- Division of Pediatric Pathology, Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Matthew D. Zinn
- Division of Cardiology, Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Leslie K. Walsh
- Division of Genetic and Genomic Medicine, Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Juan Pablo Ochoa
- Biomedical Research Institute of A Coruña, 15006 A Coruña, Spain
- Cardiovascular Genetics, Health In Code, 15008 A Coruña, Spain
| | - Sarah Franklin
- Nora Eccles Harrison Cardiovascular Research & Training Institute, University of Utah, Salt Lake City, UT 84112, USA
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Lina Ghaloul-Gonzalez
- Division of Genetic and Genomic Medicine, Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA 15224, USA
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA 15224, USA
| |
Collapse
|
104
|
Côté-Corriveau G, Luu TM, Bilodeau-Bertrand M, Auger N. Association of Maternal and Neonatal Birth Outcomes With Subsequent Pediatric Transplants. Transplantation 2023; 107:720-728. [PMID: 36251381 DOI: 10.1097/tp.0000000000004318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND We identified maternal and neonatal birth characteristics that were associated with organ or tissue transplants during childhood. METHODS We designed a retrospective cohort study of the population of children born between 2006 and 2019 in Quebec, Canada. The exposure included birth complications such as congenital anomaly, neonatal blood transfusion, and oligohydramnios. The main outcome measure was organ or tissue transplantation before 14 y of age. We categorized transplants according to type (major organs versus superficial tissues). To determine the association of birth characteristics with risk of pediatric transplant, we estimated hazard ratios (HRs) and 95% confidence intervals (CIs) using Cox proportional hazards models adjusted for potential confounders. RESULTS The cohort comprised 1 038 375 children with 7 712 678 person-years of follow-up, including 436 children who had transplants before 14 y of age. Birth complications were predominantly associated with major organ transplants. Congenital anomaly was associated with heart or lung (HR, 10.41; 95% CI, 5.33-20.33) and kidney transplants (HR, 13.69; 95% CI, 7.48-25.06), compared with no anomaly. Neonatal blood transfusion was associated with all major organ transplants, compared with no transfusion. Maternal complications were not as strongly associated with the risk of childhood transplant, although oligohydramnios was associated with 16.84 times (95% CI, 8.09-35.02) the risk of kidney transplant, compared with no oligohydramnios. CONCLUSIONS Adverse birth outcomes such as congenital anomaly, neonatal blood transfusion, and maternal oligohydramnios are associated with a greater risk of transplantation before 14 y of age. Maternal and neonatal birth outcomes may be useful predictors of transplantation.
Collapse
Affiliation(s)
- Gabriel Côté-Corriveau
- Department of Epidemiology, Biostatistics, and Occupational Health, McGill University, Montreal, QC, Canada
- Bureau d'information et d'études en santé des populations, Institut national de santé publique du Québec, Montreal, QC, Canada
| | - Thuy Mai Luu
- Department of Pediatrics, Sainte-Justine Hospital Research Centre, University of Montreal, Montreal, QC, Canada
| | - Marianne Bilodeau-Bertrand
- Bureau d'information et d'études en santé des populations, Institut national de santé publique du Québec, Montreal, QC, Canada
| | - Nathalie Auger
- Department of Epidemiology, Biostatistics, and Occupational Health, McGill University, Montreal, QC, Canada
- Bureau d'information et d'études en santé des populations, Institut national de santé publique du Québec, Montreal, QC, Canada
- Health Innovation and Evaluation Hub, University of Montreal Hospital Research Centre, Montreal, QC, Canada
- Department of Social and Preventive Medicine, School of Public Health, University of Montreal, Montreal, QC, Canada
| |
Collapse
|
105
|
Koch RL, Soler-Alfonso C, Kiely BT, Asai A, Smith AL, Bali DS, Kang PB, Landstrom AP, Akman HO, Burrow TA, Orthmann-Murphy JL, Goldman DS, Pendyal S, El-Gharbawy AH, Austin SL, Case LE, Schiffmann R, Hirano M, Kishnani PS. Diagnosis and management of glycogen storage disease type IV, including adult polyglucosan body disease: A clinical practice resource. Mol Genet Metab 2023; 138:107525. [PMID: 36796138 DOI: 10.1016/j.ymgme.2023.107525] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/20/2023] [Accepted: 01/22/2023] [Indexed: 01/26/2023]
Abstract
Glycogen storage disease type IV (GSD IV) is an ultra-rare autosomal recessive disorder caused by pathogenic variants in GBE1 which results in reduced or deficient glycogen branching enzyme activity. Consequently, glycogen synthesis is impaired and leads to accumulation of poorly branched glycogen known as polyglucosan. GSD IV is characterized by a remarkable degree of phenotypic heterogeneity with presentations in utero, during infancy, early childhood, adolescence, or middle to late adulthood. The clinical continuum encompasses hepatic, cardiac, muscular, and neurologic manifestations that range in severity. The adult-onset form of GSD IV, referred to as adult polyglucosan body disease (APBD), is a neurodegenerative disease characterized by neurogenic bladder, spastic paraparesis, and peripheral neuropathy. There are currently no consensus guidelines for the diagnosis and management of these patients, resulting in high rates of misdiagnosis, delayed diagnosis, and lack of standardized clinical care. To address this, a group of experts from the United States developed a set of recommendations for the diagnosis and management of all clinical phenotypes of GSD IV, including APBD, to support clinicians and caregivers who provide long-term care for individuals with GSD IV. The educational resource includes practical steps to confirm a GSD IV diagnosis and best practices for medical management, including (a) imaging of the liver, heart, skeletal muscle, brain, and spine, (b) functional and neuromusculoskeletal assessments, (c) laboratory investigations, (d) liver and heart transplantation, and (e) long-term follow-up care. Remaining knowledge gaps are detailed to emphasize areas for improvement and future research.
Collapse
Affiliation(s)
- Rebecca L Koch
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA.
| | - Claudia Soler-Alfonso
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Bridget T Kiely
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Akihiro Asai
- Department of Pediatrics, University of Cincinnati Medical Center, Cincinnati, OH, USA; Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Ariana L Smith
- Division of Urology, Department of Surgery, University of Pennsylvania Health System, Philadelphia, PA, USA
| | - Deeksha S Bali
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Peter B Kang
- Paul and Sheila Wellstone Muscular Dystrophy Center, Department of Neurology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Andrew P Landstrom
- Division of Cardiology, Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA; Department of Cell Biology, Duke University School of Medicine, Durham, NC, USA
| | - H Orhan Akman
- Department of Neurology, Columbia University Irving Medical Center, New York City, NY, USA
| | - T Andrew Burrow
- Section of Genetics and Metabolism, Department of Pediatrics, University of Arkansas for Medical Sciences, Arkansas Children's Hospital, Little Rock, AR, USA
| | | | - Deberah S Goldman
- Adult Polyglucosan Body Disease Research Foundation, Brooklyn, NY, USA
| | - Surekha Pendyal
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Areeg H El-Gharbawy
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Stephanie L Austin
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Laura E Case
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA; Doctor of Physical Therapy Division, Department of Orthopedic Surgery, Duke University School of Medicine, Durham, NC, USA
| | | | - Michio Hirano
- Department of Neurology, Columbia University Irving Medical Center, New York City, NY, USA
| | - Priya S Kishnani
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
106
|
Monda E, Kaski JP, Limongelli G. Editorial: Cardiovascular genetics-focus on paediatric cardiomyopathy. Front Pediatr 2023; 11:1147527. [PMID: 36846159 PMCID: PMC9950774 DOI: 10.3389/fped.2023.1147527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 01/25/2023] [Indexed: 02/12/2023] Open
Affiliation(s)
- Emanuele Monda
- Inherited and Rare Cardiovascular Diseases, Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, Monaldi Hospital, Naples, Italy
| | - Juan Pablo Kaski
- Centre for Paediatric Inherited and Rare Cardiovascular Disease, Institute of Cardiovascular Science, University College London, London, United Kingdom
| | - Giuseppe Limongelli
- Inherited and Rare Cardiovascular Diseases, Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, Monaldi Hospital, Naples, Italy
- Centre for Paediatric Inherited and Rare Cardiovascular Disease, Institute of Cardiovascular Science, University College London, London, United Kingdom
| |
Collapse
|
107
|
Pagano M, Fumagalli C, Girolami F, Passantino S, Gozzini A, Brambilla A, Spinelli V, Morrone A, Procopio E, Pochiero F, Donati MA, Olivotto I, Favilli S. Clinical profile and outcome of cardiomyopathies in infants and children seen at a tertiary centre. Int J Cardiol 2023; 371:516-522. [PMID: 36130621 DOI: 10.1016/j.ijcard.2022.09.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/12/2022] [Accepted: 09/15/2022] [Indexed: 01/05/2023]
Abstract
INTRODUCTION Due to their rare prevalence and marked heterogeneity, pediatric cardiomyopathies (CMPs) are little known and scarcely reported. We report the etiology, clinical profile and outcome of a consecutive cohort of children diagnosed with CMP and followed at Meyer Children's Hospital over a decade. PATIENTS AND METHODS We retrospectively reviewed patients consecutively referred from May 2008 to May 2019 for pediatric onset CMP (<18 years). Heart disease caused by arrhythmic disorders, toxic agents, rheumatic conditions and maternal disease were excluded. RESULTS We enrolled 110 patients (65 males), diagnosed at a median age of 27 [4-134] months; 35% had an infant onset (<1 year of age). A positive family history was more often associated with childhood-onset (38.8%). Hypertrophic cardiomyopathy (HCM; 48 patients) was the most frequent phenotype, followed by dilated cardiomyopathy (DCM; 35 patients). While metabolic and idiopathic etiologies were preponderant in infants, metabolic and sarcomeric diseases were most frequent in the childhood-onset group. Major adverse cardiac events (MACE) occurred in 31.8% of patients, including hospitalization for acute heart failure in 25.5% of patients, most commonly due to DCM. Overall, the most severe outcomes were documented in patients with metabolic diseases. CONCLUSIONS In a consecutive cohort of pediatric patients with CMP, those with infantile onset and with a metabolic etiology had the worst prognosis. Overall, MACE occurred in 41% of the entire population, most commonly associated with DCM, inborn errors of metabolism and genetic syndromes. Systematic NGS genetic testing was critical for etiological diagnosis and management.
Collapse
Affiliation(s)
- M Pagano
- Cardiology Unit, Meyer Children's Hospital, Florence, Italy.
| | - C Fumagalli
- Cardiomyopathies Unit, Careggi University Hospital (AOUC), Florence, Italy
| | - F Girolami
- Cardiology Unit, Meyer Children's Hospital, Florence, Italy
| | - S Passantino
- Cardiology Unit, Meyer Children's Hospital, Florence, Italy
| | - A Gozzini
- Cardiology Unit, Meyer Children's Hospital, Florence, Italy
| | - A Brambilla
- Cardiology Unit, Meyer Children's Hospital, Florence, Italy
| | - V Spinelli
- Cardiology Unit, Meyer Children's Hospital, Florence, Italy
| | - A Morrone
- Molecular and Cell Biology Laboratory of Neurometabolic Diseases, Meyer Children's Hospital, Neuroscience Department, Florence, Italy; Department of NEUROFARBA, University of Florence, Florence, Italy
| | - E Procopio
- Metabolic and Muscular Unit, Meyer Children's Hospital, Neuroscience Department, Florence, Italy
| | - F Pochiero
- Metabolic and Muscular Unit, Meyer Children's Hospital, Neuroscience Department, Florence, Italy
| | - M A Donati
- Metabolic and Muscular Unit, Meyer Children's Hospital, Neuroscience Department, Florence, Italy
| | - I Olivotto
- Cardiology Unit, Meyer Children's Hospital, Florence, Italy; Cardiomyopathies Unit, Careggi University Hospital (AOUC), Florence, Italy; Department of Experimental and Clinical Medicine, University of Florence, Italy
| | - S Favilli
- Cardiology Unit, Meyer Children's Hospital, Florence, Italy
| |
Collapse
|
108
|
Yu W, Thomas MA, Mills L, Wright JR. Prenatal Diagnosis of Isolated Right Ventricular Non-Compaction Cardiomyopathy with an MYH7 Likely Pathogenic Variant. Fetal Pediatr Pathol 2023; 42:464-471. [PMID: 36630130 DOI: 10.1080/15513815.2022.2120785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Background: Noncompaction of ventricular myocardium is a cardiomyopathy that typically involves the left ventricle or both ventricles; it has often been associated with mutations in genes encoding sarcomere proteins. Little is known about isolated right ventricular noncompaction, as only a few cases have been reported. Case Report: A 30 year old G2P1 woman experienced a spontaneous fetal loss at 19 weeks and 4 days. An ultrasound examination at 19 weeks showed right ventricular and tricuspid valve abnormalities, ascites, and early hydrops. At autopsy, the right ventricular chamber was dilated with numerous prominent trabeculations and deep intrabecular recesses as well as a dysplastic tricuspid valve. Histologic examination confirmed isolated right ventricular noncompaction. Whole exome sequencing showed a likely pathogenic variant in the MYH7 gene. Conclusions: This appears to be the first report of isolated right ventricular noncompaction associated with a gene mutation as well as the first diagnosis in a fetus.
Collapse
Affiliation(s)
- Weiming Yu
- Departments of Pathology & Laboratory Medicine, Cumming School of Medicine, University of Calgary, Alberta, Canada.,Departments of Pediatrics, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - Mary Ann Thomas
- Departments of Medical Genetics, Cumming School of Medicine, University of Calgary, Alberta, Canada.,Departments of Pediatrics, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - Lindsay Mills
- Departments of Pediatric Cardiology, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - James R Wright
- Departments of Pathology & Laboratory Medicine, Cumming School of Medicine, University of Calgary, Alberta, Canada.,Departments of Pediatrics, Cumming School of Medicine, University of Calgary, Alberta, Canada
| |
Collapse
|
109
|
Báez Cabanillas MV, Colque R, Tibaldi MÁ, Kaplinsky E, Perrone S, Barbagelata A. Emerging concepts in heart failure management and treatment: focus on tachycardia-induced cardiomyopathy. Drugs Context 2023; 12:dic-2022-8-4. [PMID: 36660016 PMCID: PMC9828873 DOI: 10.7573/dic.2022-8-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 11/07/2022] [Indexed: 01/04/2023] Open
Abstract
Tachycardia-induced cardiomyopathy is an entity characterized by reversible dysfunction of the left ventricle, which can be induced by different types of arrhythmia such as atrial fibrillation, atrial flutter, incessant supraventricular tachycardia and ventricular arrhythmia (more frequent causes). Correct identification of the causative arrhythmia and normalization of the heart rate (e.g through medical treatment, electrical cardioversion, ablation) can lead to recovery of left ventricular function. Tachycardia-induced cardiomyopathy should be suspected in patients with tachycardia and left ventricular dysfunction (heart failure setting), especially when there is no history of previous heart disease. Its usual phenotype is that of non-ischaemic/non-valvular dilated cardiomyopathy and it can occur in both children (main cause: permanent junctional reciprocating tachycardia) and adults (main cause: atrial fibrillation). With proper treatment, most cases recover within a few months, though there is a risk of relapse, especially when the causal arrhythmia reappears or its control is lost. This is a narrative review that comprehensively addresses the pathophysiology, clinical manifestations, and therapeutic management of tachycardia-induced cardiomyopathy. This article is part of the Emerging concepts in heart failure management and treatment Special Issue: https://www.drugsincontext.com/special_issues/emerging-concepts-in-heart-failure-management-and-treatment.
Collapse
Affiliation(s)
- María Victoria Báez Cabanillas
- Catholic University of Argentina, Buenos Aires, Argentina,Cardiovascular Medicine Department, Sanatorio Allende, Córdoba, Argentina
| | - Roberto Colque
- Cardiovascular Medicine Department, Sanatorio Allende, Córdoba, Argentina
| | | | - Edgardo Kaplinsky
- Cardiology Unit, Medicine Department, Hospital Municipal de Badalona, Barcelona, Spain
| | - Sergio Perrone
- Catholic University of Argentina, Buenos Aires, Argentina,Fleni Institute, Buenos Aires, Argentina
| | - Alejandro Barbagelata
- Catholic University of Argentina, Buenos Aires, Argentina,Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
110
|
Liu L, Zhou K, Liu X, Hua Y, Wang H, Li Y. The interplay between cardiac dyads and mitochondria regulated the calcium handling in cardiomyocytes. Front Physiol 2022; 13:1013817. [PMID: 36531185 PMCID: PMC9755166 DOI: 10.3389/fphys.2022.1013817] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 11/24/2022] [Indexed: 11/15/2023] Open
Abstract
Calcium mishandling and mitochondrial dysfunction have been increasingly recognized as significant factors involved in the progression procedure of cardiomyopathy. Ca2+ mishandling could cause calcium-triggered arrhythmias, which could enhance force development and ATP consumption. Mitochondrial disorganization and dysfunction in cardiomyopathy could disturb the balance of energy catabolic and anabolic procedure. Close spatial localization and arrangement of structural among T-tubule, sarcoplasmic reticulum, mitochondria are important for Ca2+ handling. So that, we illustrate the regulating network between calcium handling and mitochondrial homeostasis, as well as its intracellular mechanisms in this review, which would be worthy to develop novel therapeutic strategy and restore the function of injured cardiomyocytes.
Collapse
Affiliation(s)
| | | | | | | | - Hua Wang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yifei Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
111
|
Kovacevic A, Garbade SF, Hörster F, Hoffmann GF, Gorenflo M, Mereles D, Kölker S, Staufner C. Detection of early cardiac disease manifestation in propionic acidemia - Results of a monocentric cross-sectional study. Mol Genet Metab 2022; 137:349-358. [PMID: 36395710 DOI: 10.1016/j.ymgme.2022.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/25/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND In propionic acidemia (PA) myocardial involvement is common and includes development of cardiomyopathy, life-threatening acute heart failure, and acquired long-QT syndrome. We sought to investigate which echocardiographic parameters of left ventricular systolic and diastolic function indicate early cardiac disease manifestation in PA. METHODS This is a prospective observational study (cross-sectional design) in a Tertiary Medical Care Center. Individuals with confirmed PA were enrolled and the following cardiac investigations were performed in all study individuals: echocardiographic measurements of systolic and diastolic left ventricular (LV) function (LV fractional shortening (LV-FS), LV ejection fraction by biplane modified Simpson's (LV-EF), mitral annular plane systolic excursion (MAPSE), LV global longitudinal strain (LV-GLS) by speckle tracking echocardiography (STE), pulsed Doppler analyses of mitral valve (MV) inflow velocities (MV E/A) and MV deceleration time (DT-E), tissue doppler imaging (TDI) of the mitral annulus (MV E/e'), and LV myocardial performance index (LV-MPI)). LV and left atrial (LA) diameters were assessed. 12‑lead electrocardiograms (ECG) were recorded and corrected QT intervals (QTc) calculated. Clinical phenotype and laboratory parameters at the time of cardiac investigation were assessed. Besides descriptive analyses we analyzed frequency, onset, and combinations of echocardiographic and ECG data as well as their correlations with clinical and biochemical findings. The effects of 'age at visit' and LV functional parameters on QTc were analyzed with multiple regression. RESULTS A total of 18 patients with confirmed PA were enrolled. Median age at PA onset was 6 days (range 1-357 days). Median age at visit for cardiac evaluation was 13.1 years (range 0.6-28.1 years). LV-GLS was abnormal in 72.2%, LV-EF in 61.1%, MAPSE in 50%, MV E/e' in 44.4%, LV-MPI in 33.3%, LV-FS in 33.3%, and MV E/A in 27.8%. In cases with normal or near normal LV-FS, LV-GLS was pathological in 5/10, LV-EF in 4/10, and MAPSE in 3/10. The probability of developing LV dysfunction - systolic and diastolic - increases with age. LV-MPI is a reliable parameter to indicate systolic LV-dysfunction in combination with a dilated LV, i. e. dilated cardiomyopathy (DCM) in PA. Multiple regression reveals a significant positive association between LV diameters and QTc. Abnormal LV-GLS significantly correlates with reduced muscle strength, muscle tone and/or abnormal gross motor function. CONCLUSIONS Our data suggests a high prevalence of cardiac disease manifestation in PA, considerably higher than in previous studies, where only LV-FS was used to assess LV function. Usage of advanced echocardiographic techniques, such as LV-GLS assessment, may allow for early detection of subtle LV dysfunction in PA, and may lead to timely cardiac treatment but also consideration of liver transplantation to prevent development of manifest cardiac complications.
Collapse
Affiliation(s)
- Alexander Kovacevic
- Department of Pediatric and Congenital Cardiology, Heidelberg University Hospital, Im Neuenheimer Feld 430, 69120 Heidelberg, Germany.
| | - Sven F Garbade
- Department of General Pediatrics, Division of Neuropediatrics and Metabolic Medicine, Heidelberg University Hospital, Im Neuenheimer Feld 430, 69120 Heidelberg, Germany.
| | - Friederike Hörster
- Department of General Pediatrics, Division of Neuropediatrics and Metabolic Medicine, Heidelberg University Hospital, Im Neuenheimer Feld 430, 69120 Heidelberg, Germany.
| | - Georg F Hoffmann
- Department of General Pediatrics, Division of Neuropediatrics and Metabolic Medicine, Heidelberg University Hospital, Im Neuenheimer Feld 430, 69120 Heidelberg, Germany.
| | - Matthias Gorenflo
- Department of Pediatric and Congenital Cardiology, Heidelberg University Hospital, Im Neuenheimer Feld 430, 69120 Heidelberg, Germany.
| | - Derliz Mereles
- Department of Cardiology, Angiology and Pulmology, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany.
| | - Stefan Kölker
- Department of General Pediatrics, Division of Neuropediatrics and Metabolic Medicine, Heidelberg University Hospital, Im Neuenheimer Feld 430, 69120 Heidelberg, Germany.
| | - Christian Staufner
- Department of General Pediatrics, Division of Neuropediatrics and Metabolic Medicine, Heidelberg University Hospital, Im Neuenheimer Feld 430, 69120 Heidelberg, Germany.
| |
Collapse
|
112
|
Powell AW, Urbina EM, Orr WB, Hansen JE, Baskar S. EKG Abnormalities in a Youth Athlete Following COVID-19: It's Not Always Myocarditis! Pediatr Cardiol 2022; 43:1922-1925. [PMID: 35622085 PMCID: PMC9136195 DOI: 10.1007/s00246-022-02935-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/13/2022] [Indexed: 11/24/2022]
Abstract
COVID-19 associated myocarditis following mild infections is rare while incidental findings may be more common. A young athlete fully recovered from a mild COVID-19 infection presented with inferolateral T-wave inversions and left ventricular hypertrophy on imaging. Exercise testing aided in correctly diagnosing the patient with masked systolic hypertension.
Collapse
Affiliation(s)
- Adam W Powell
- Department of Pediatrics, University of Cincinnati College of Medicine, 3333 Burnett Avenue, MLC 2003, Cincinnati, OH, 45229-3026, USA.
- The Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| | - Elaine M Urbina
- Department of Pediatrics, University of Cincinnati College of Medicine, 3333 Burnett Avenue, MLC 2003, Cincinnati, OH, 45229-3026, USA
- The Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - William B Orr
- Division of Pediatric Cardiology, Department of Pediatrics, Washington University School of Medicine, St. Louis, USA
| | - Jesse E Hansen
- Division of Pediatric Cardiology, Department of Pediatrics, C.S. Mott Children's Hospital, Ann Arbor, MI, USA
| | - Shankar Baskar
- Department of Pediatrics, University of Cincinnati College of Medicine, 3333 Burnett Avenue, MLC 2003, Cincinnati, OH, 45229-3026, USA
- The Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| |
Collapse
|
113
|
Bagnall RD, Singer ES, Wacker J, Nowak N, Ingles J, King I, Macciocca I, Crowe J, Ronan A, Weintraub RG, Semsarian C. Genetic Basis of Childhood Cardiomyopathy. CIRCULATION. GENOMIC AND PRECISION MEDICINE 2022; 15:e003686. [PMID: 36252119 DOI: 10.1161/circgen.121.003686] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND The causes of cardiomyopathy in children are less well described than in adults. We evaluated the clinical diagnoses and genetic causes of childhood cardiomyopathy and outcomes of cascade genetic testing in family members. METHODS We recruited children from a pediatric cardiology service or genetic heart diseases clinic. We performed Sanger, gene panel, exome or genome sequencing and classified variants for pathogenicity using American College of Molecular Genetics and Genomics guidelines. RESULTS Cardiomyopathy was diagnosed in 221 unrelated children aged ≤18 years. Children mostly had hypertrophic cardiomyopathy (n=98, 44%) or dilated cardiomyopathy (n=89, 40%). The highest genetic testing diagnostic yields were in restrictive cardiomyopathy (n=16, 80%) and hypertrophic cardiomyopathy (n=65, 66%), and lowest in dilated cardiomyopathy (n=26, 29%) and left ventricular noncompaction (n=3, 25%). Pathogenic variants were primarily found in genes encoding sarcomere proteins, with TNNT2 and TNNI3 variants associated with more severe clinical outcomes. Ten children (4.5%) had multiple pathogenic variants. Genetic test results prompted review of clinical diagnosis in 14 families with syndromic, mitochondrial or metabolic gene variants. Cascade genetic testing in 127 families confirmed 24 de novo variants, recessive inheritance in 8 families, and supported reclassification of 12 variants. CONCLUSIONS Genetic testing of children with cardiomyopathy supports a precise clinical diagnosis, which may inform prognosis.
Collapse
Affiliation(s)
- Richard D Bagnall
- Agnes Ginges Centre for Molecular Cardiology at Centenary Institute, University of Sydney, Sydney, NSW, Australia (R.D.B., E.S.S., N.N., J.I., J.C., C.S.).,Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia (R.D.B., E.S.S., J.I., J.C., C.S.)
| | - Emma S Singer
- Agnes Ginges Centre for Molecular Cardiology at Centenary Institute, University of Sydney, Sydney, NSW, Australia (R.D.B., E.S.S., N.N., J.I., J.C., C.S.).,Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia (R.D.B., E.S.S., J.I., J.C., C.S.)
| | - Julie Wacker
- Department of Cardiology, Royal Children's Hospital, Melbourne, VIC, Australia; (J.W., R.G.W.)
| | - Natalie Nowak
- Agnes Ginges Centre for Molecular Cardiology at Centenary Institute, University of Sydney, Sydney, NSW, Australia (R.D.B., E.S.S., N.N., J.I., J.C., C.S.).,Department of Cardiology, Royal Prince Alfred Hospital, Sydney, NSW, Australia (N.N., J.I., C.S.)
| | - Jodie Ingles
- Agnes Ginges Centre for Molecular Cardiology at Centenary Institute, University of Sydney, Sydney, NSW, Australia (R.D.B., E.S.S., N.N., J.I., J.C., C.S.).,Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia (R.D.B., E.S.S., J.I., J.C., C.S.).,Department of Cardiology, Royal Prince Alfred Hospital, Sydney, NSW, Australia (N.N., J.I., C.S.).,Centre for Population Genomics, Garvan Institute of Medical Research, and UNSW, Sydney, NSW, Australia (J.I.).,Murdoch Children's Research Institute, Melbourne, VIC, Australia (J.I., I.K., I.M., R.G.W.)
| | - Ingrid King
- Murdoch Children's Research Institute, Melbourne, VIC, Australia (J.I., I.K., I.M., R.G.W.)
| | - Ivan Macciocca
- Murdoch Children's Research Institute, Melbourne, VIC, Australia (J.I., I.K., I.M., R.G.W.).,University of Melbourne, Melbourne, VIC, Australia (I.M., R.G.W.).,Victorian Clinical Genetics Services, Melbourne, VIC, Australia (I.M.)
| | - Joshua Crowe
- Agnes Ginges Centre for Molecular Cardiology at Centenary Institute, University of Sydney, Sydney, NSW, Australia (R.D.B., E.S.S., N.N., J.I., J.C., C.S.).,Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia (R.D.B., E.S.S., J.I., J.C., C.S.)
| | - Anne Ronan
- Hunter Genetics Unit (A.R.).,University of Newcastle, Newcastle, NSW, Australia (A.R.)
| | - Robert G Weintraub
- Department of Cardiology, Royal Children's Hospital, Melbourne, VIC, Australia; (J.W., R.G.W.).,Murdoch Children's Research Institute, Melbourne, VIC, Australia (J.I., I.K., I.M., R.G.W.).,University of Melbourne, Melbourne, VIC, Australia (I.M., R.G.W.)
| | - Christopher Semsarian
- Agnes Ginges Centre for Molecular Cardiology at Centenary Institute, University of Sydney, Sydney, NSW, Australia (R.D.B., E.S.S., N.N., J.I., J.C., C.S.).,Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia (R.D.B., E.S.S., J.I., J.C., C.S.).,Department of Cardiology, Royal Prince Alfred Hospital, Sydney, NSW, Australia (N.N., J.I., C.S.)
| |
Collapse
|
114
|
Luczak-Wozniak K, Obsznajczyk K, Niszczota C, Werner B. Electrocardiographic Parameters Associated with Adverse Outcomes in Children with Cardiomyopathies. J Clin Med 2022; 11:jcm11236930. [PMID: 36498505 PMCID: PMC9738383 DOI: 10.3390/jcm11236930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/15/2022] [Accepted: 11/22/2022] [Indexed: 11/25/2022] Open
Abstract
Cardiomyopathies have a low prevalence in children and thus may lead to malignant ventricular arrhythmias or the progression of heart failure, resulting in death. In adults, the QRS-T angle derived from ECG has been associated with adverse outcomes in patients with hypertrophic and dilated cardiomyopathies. We aimed to assess the electrocardiographic parameters, including QRS-T angle, associated with adverse cardiac events in children with cardiomyopathies. Forty-two children with cardiomyopathies were included in this study: 19 with dilated cardiomyopathy, 17 with hypertrophic cardiomyopathy, and 6 with left ventricular non-compaction. Additionally, 19 control subjects were recruited. In terms of ECG parameters, the QRS-T angle was significantly greater among patients with adverse outcomes compared to patients without the end points of the study (133° vs. 65°, p < 0.001). On Kaplan−Meier survival curves, QRS-T angle > 120°, increased serum concentrations of NT-proBNP and troponin I levels as well as greater NYHA or Ross scale were associated with the greatest risk of unfavorable outcome. The QRS-T angle appears to be a valuable component of 12-lead ECG interpretation, and might be helpful in outlining patients with the greatest cardiovascular risk. Additionally, serum biomarkers such as NT-proBNP (p = 0.003) and troponin (p < 0.001) are useful in outlining patients with the worst survival.
Collapse
Affiliation(s)
- Katarzyna Luczak-Wozniak
- Department of Pediatric Cardiology and General Pediatrics, Doctoral School, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Klaudia Obsznajczyk
- Department of Pediatric Cardiology and General Pediatrics, Jozef Polikarp Brudzinski Public Pediatric Hospital, 02-091 Warsaw, Poland
| | - Cezary Niszczota
- Department of Pediatric Cardiology and General Pediatrics, Jozef Polikarp Brudzinski Public Pediatric Hospital, 02-091 Warsaw, Poland
| | - Bożena Werner
- Department of Pediatric Cardiology and General Pediatrics, Medical University of Warsaw, 02-091 Warsaw, Poland
- Correspondence: ; Tel.: +48-22-317-9588
| |
Collapse
|
115
|
Uzun DD, Lang K, Saur P, Weigand MA, Schmitt FCF. Pediatric cardiopulmonary resuscitation in infant and children with chronic diseases: A simple approach? Front Pediatr 2022; 10:1065585. [PMID: 36467490 PMCID: PMC9714453 DOI: 10.3389/fped.2022.1065585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 11/01/2022] [Indexed: 11/18/2022] Open
Abstract
Infants and children with complex chronic diseases have lifelong, life-threatening conditions and for many, early death is an unavoidable outcome of their disease process. But not all chronic diseases in children are fatal when treated well. Cardiopulmonary resuscitation is more common in children with chronic diseases than in healthy children. Resuscitation of infants and children presents significant challenges to physicians and healthcare providers. Primarily, these situations occur only rarely and are therefore not only medically demanding but also associated with emotional stress. In case of resuscitation in infants and children with chronic diseases these challenges become much more complex. The worldwide valid Pediatric Advanced Life Support Guidelines do not give clear recommendations how to deal with periarrest situations in chronically ill infants and children. For relevant life-limiting illnesses, a "do not resuscitate" order should be discussed early, taking into account medical, ethical, and emotional considerations. The decision to terminate resuscitative efforts in cardiopulmonary arrest in infants and children with chronic illnesses such as severe lung disease, heart disease, or even incurable cancer is complex and controversial among physicians and parents. Judging the "outcome" of resuscitation as a "good" outcome becomes complex because for some, life extension itself and for others, quality of life is a goal. Physicians often decide that a healthy child is more likely to have a reversible condition and thereby have a better outcome than a child with multiple comorbidities and chronic health care needs. Major challenges in resuscitation infants and children are that clinicians need to individualize resuscitation strategies in light of each chronic disease, anatomy and physiology. This review aims to highlight terms of resuscitation infants and children with complex chronic diseases, considering resuscitation-related factors, parent-related factors, patient-related factors, and physician-related factors.
Collapse
Affiliation(s)
- Davut D. Uzun
- Department of Anaesthesiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Kristin Lang
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg University Hospital, Heidelberg, Germany
| | - Patrick Saur
- Department of Pediatric Cardiology and Congenital Heart Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Markus A. Weigand
- Department of Anaesthesiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Felix C. F. Schmitt
- Department of Anaesthesiology, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
116
|
Enhanced survival prediction using explainable artificial intelligence in heart transplantation. Sci Rep 2022; 12:19525. [PMID: 36376402 PMCID: PMC9663731 DOI: 10.1038/s41598-022-23817-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 11/07/2022] [Indexed: 11/16/2022] Open
Abstract
The most limiting factor in heart transplantation is the lack of donor organs. With enhanced prediction of outcome, it may be possible to increase the life-years from the organs that become available. Applications of machine learning to tabular data, typical of clinical decision support, pose the practical question of interpretation, which has technical and potential ethical implications. In particular, there is an issue of principle about the predictability of complex data and whether this is inherent in the data or strongly dependent on the choice of machine learning model, leading to the so-called accuracy-interpretability trade-off. We model 1-year mortality in heart transplantation data with a self-explaining neural network, which is benchmarked against a deep learning model on the same development data, in an external validation study with two data sets: (1) UNOS transplants in 2017-2018 (n = 4750) for which the self-explaining and deep learning models are comparable in their AUROC 0.628 [0.602,0.654] cf. 0.635 [0.609,0.662] and (2) Scandinavian transplants during 1997-2018 (n = 2293), showing good calibration with AUROCs of 0.626 [0.588,0.665] and 0.634 [0.570, 0.698], respectively, with and without missing data (n = 982). This shows that for tabular data, predictive models can be transparent and capture important nonlinearities, retaining full predictive performance.
Collapse
|
117
|
Lv K, Wang Y, Lou P, Liu S, Zhou P, Yang L, Lu Y, Cheng J, Liu J. Extracellular vesicles as advanced therapeutics for the resolution of organ fibrosis: Current progress and future perspectives. Front Immunol 2022; 13:1042983. [PMCID: PMC9630482 DOI: 10.3389/fimmu.2022.1042983] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 09/30/2022] [Indexed: 11/13/2022] Open
Abstract
Organ fibrosis is a serious health challenge worldwide, and its global incidence and medical burden are increasing dramatically each year. Fibrosis can occur in nearly all major organs and ultimately lead to organ dysfunction. However, current clinical treatments cannot slow or reverse the progression of fibrosis to end-stage organ failure, and thus advanced anti-fibrotic therapeutics are urgently needed. As a type of naturally derived nanovesicle, native extracellular vesicles (EVs) from multiple cell types (e.g., stem cells, immune cells, and tissue cells) have been shown to alleviate organ fibrosis in many preclinical models through multiple effective mechanisms, such as anti-inflammation, pro-angiogenesis, inactivation of myofibroblasts, and fibrinolysis of ECM components. Moreover, the therapeutic potency of native EVs can be further enhanced by multiple engineering strategies, such as genetic modifications, preconditionings, therapeutic reagent-loadings, and combination with functional biomaterials. In this review, we briefly introduce the pathology and current clinical treatments of organ fibrosis, discuss EV biology and production strategies, and particularly focus on important studies using native or engineered EVs as interventions to attenuate tissue fibrosis. This review provides insights into the development and translation of EV-based nanotherapies into clinical applications in the future.
Collapse
Affiliation(s)
- Ke Lv
- National Health Commission (NHC) Key Laboratory of Transplant Engineering and Immunology, Regenerative Medicine Research Center, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Yizhuo Wang
- National Health Commission (NHC) Key Laboratory of Transplant Engineering and Immunology, Regenerative Medicine Research Center, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Peng Lou
- National Health Commission (NHC) Key Laboratory of Transplant Engineering and Immunology, Regenerative Medicine Research Center, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Shuyun Liu
- National Health Commission (NHC) Key Laboratory of Transplant Engineering and Immunology, Regenerative Medicine Research Center, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Pingya Zhou
- National Health Commission (NHC) Key Laboratory of Transplant Engineering and Immunology, Regenerative Medicine Research Center, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Li Yang
- Department of Gastroenterology and Hepatology, Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, West China Hospital, Sichuan University, Chengdu, China
| | - Yanrong Lu
- National Health Commission (NHC) Key Laboratory of Transplant Engineering and Immunology, Regenerative Medicine Research Center, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Jingqiu Cheng
- National Health Commission (NHC) Key Laboratory of Transplant Engineering and Immunology, Regenerative Medicine Research Center, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Jingping Liu
- National Health Commission (NHC) Key Laboratory of Transplant Engineering and Immunology, Regenerative Medicine Research Center, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Jingping Liu,
| |
Collapse
|
118
|
Bidzimou MTK, Landstrom AP. From diagnostic testing to precision medicine: the evolving role of genomics in cardiac channelopathies and cardiomyopathies in children. Curr Opin Genet Dev 2022; 76:101978. [PMID: 36058060 PMCID: PMC9733798 DOI: 10.1016/j.gde.2022.101978] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 07/04/2022] [Accepted: 08/01/2022] [Indexed: 12/13/2022]
Abstract
Pediatric sudden cardiac death (SCD) is the sudden unexpected death of a child or adolescent due to a presumed cardiac etiology. Heritable causes of pediatric SCD are predominantly cardiomyopathies and cardiac ion channelopathies. This review illustrates recent advances in determining the genetic cause of established and emerging channelopathies and cardiomyopathies, and how broader genomic sequencing is uncovering complex interactions between genetic architecture and disease manifestation. We discuss innovative models and experimental platforms for resolving the variant of uncertain significance as both the variants and genes associated with disease continue to evolve. Finally, we highlight the growing problem of incidentally identified variants in cardiovascular disease-causing genes and review innovative methods to determining whether these variants may ultimately result in penetrant disease. Overall, we seek to illustrate both the promise and inherent challenges in bridging the traditional role for genetics in diagnosing cardiomyopathies and channelopathies to one of true risk-predictive precision medicine.
Collapse
Affiliation(s)
- Minu-Tshyeto K Bidzimou
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, United States. https://twitter.com/@MBidzimou
| | - Andrew P Landstrom
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, United States; Department of Pediatrics, Division of Pediatric Cardiology, Duke University School of Medicine, Durham, NC, United States.
| |
Collapse
|
119
|
Das BB, Gajula V, Arya S, Taylor MB. Compound Heterozygous Missense Variants in RPL3L Genes Associated with Severe Forms of Dilated Cardiomyopathy: A Case Report and Literature Review. CHILDREN (BASEL, SWITZERLAND) 2022; 9:1495. [PMID: 36291431 PMCID: PMC9600237 DOI: 10.3390/children9101495] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/24/2022] [Accepted: 09/27/2022] [Indexed: 06/14/2023]
Abstract
Whole exome sequencing has identified an infant girl with fulminant dilated cardiomyopathy (DCM), leading to severe acute heart failure associated with ribosomal protein large 3-like (RPL3L) gene pathologic variants. Other genetic tests for mitochondrial disorders by sequence analysis and deletion testing of the mitochondrial genome were negative. Secondary causes for DCM due to metabolic and infectious etiologies were ruled out. She required a Berlin-Excor left ventricular assist device due to worsening of her heart failure as a bridge to orthotopic heart transplantation. At three months follow-up after heart transplantation, she has been doing well. We reviewed the literature on published RPL3L-related DCM cases and their outcomes. Bi-allelic variants in RPL3L have been reported in only seven patients from four unrelated families in the literature. RPL3L is a newer and likely pathogenic gene associated with a severe form of early-onset dilated cardiomyopathy with poor prognosis necessitating heart transplantation.
Collapse
Affiliation(s)
- Bibhuti B. Das
- Department of Pediatrics, Division of Cardiology, Children’s of Mississippi, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Viswanath Gajula
- Department of Pediatrics, Division of Critical Care, Children’s of Mississippi, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Sandeep Arya
- Department of Pediatrics, Division of Critical Care, Children’s of Mississippi, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Mary B. Taylor
- Department of Pediatrics, Division of Critical Care, Children’s of Mississippi, University of Mississippi Medical Center, Jackson, MS 39216, USA
| |
Collapse
|
120
|
Hornby B, Thompson WR, Almuqbil M, Manuel R, Abbruscato A, Carr J, Vernon HJ. Natural history comparison study to assess the efficacy of elamipretide in patients with Barth syndrome. Orphanet J Rare Dis 2022; 17:336. [PMID: 36056411 PMCID: PMC9438322 DOI: 10.1186/s13023-022-02469-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 08/13/2022] [Indexed: 11/23/2022] Open
Abstract
Background Natural history studies are increasingly recognized as having an important role in drug development for rare diseases. A phase 3, observational, retrospective, and non-interventional study was designed to establish a natural history control (NHC) cohort of patients with Barth syndrome (BTHS) to provide further analysis of the efficacy of elamipretide observed in an open-label extension (OLE) phase of the TAZPOWER trial, a clinical trial that tested the efficacy of 40 mg daily of elamipretide in patients with BTHS. Methods This was a retrospective, non-interventional study. A propensity score model was used to compare elamipretide-treated patients and NHCs. The analysis included 8 patients from the TAZPOWER OLE and 19 untreated NHCs (including 12 with serial echocardiographic assessments). Results For the 6-min walk test (6MWT, primary endpoint), the least squares (LS) mean difference between groups was 79.7 m (P = 0.0004) at week 64 and 91.0 m (P = 0.0005) at week 76 in favor of elamipretide. Significant improvements in muscle strength (secondary endpoint), as assessed by handheld dynamometry (HHD) were also observed with elamipretide, with LS mean differences of 40.8 Newtons at 64 weeks (P = 0.0002) and 56.7 Newtons at 76 weeks (P = 0.0005). Patients continuously treated with elamipretide also experienced statistically significant improvements in other secondary endpoints (i.e., 5 times sit-to-stand [5XSST], multi-domain responder index [MDRI]). The functional improvements were robust to sensitivity analyses. Left ventricular stroke volume increased from baseline in patients with elamipretide but decreased in NHCs.
Conclusions Overall, the study established a NHC for use in assessing the efficacy of therapeutic interventions in patients with BTHS and the results suggest that elamipretide may improve natural history of BTHS at least in part by attenuating the natural decline in heart function and provide meaningful improvements in heart function and functional capacity in patients with BTHS compared to NHCs. Highlights A matched Natural History Control (NHC) was used to evaluate elamipretide in BTHS Elamipretide may improve natural history of BTHS by attenuating natural decline in heart function Elamipretide was associated with meaningful clinical improvements in skeletal muscle and cardiovascular parameters that were not observed in NHCs The study established a NHC for use in assessing the efficacy of therapeutic interventions in BTHS
Collapse
Affiliation(s)
- Brittany Hornby
- Department of Physical Therapy, Kennedy Krieger, Baltimore, MD, USA
| | - William Reid Thompson
- Department of Pediatric Cardiology, Taussig Heart Center, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Mohammed Almuqbil
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences (KSAU-HS); King Abdullah Specialized Children's Hospital (KASCH), Riyadh, Saudi Arabia
| | - Ryan Manuel
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, 733 N Broadway, MRB 512, Baltimore, Maryland, 21205, USA
| | | | - Jim Carr
- Stealth BioTherapeutics, Inc, Needham, MA, USA
| | - Hilary J Vernon
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, 733 N Broadway, MRB 512, Baltimore, Maryland, 21205, USA.
| |
Collapse
|
121
|
Challapudi G, Boyle GJ, Rodriguez ER, Komarlu R. Fetal Left Ventricular Apical Aneurysm Progressing to Dilated Cardiomyopathy Due to Glycogen Storage Disease. Tex Heart Inst J 2022; 49:485313. [PMID: 36006617 DOI: 10.14503/thij-20-7364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Fetal dilated cardiomyopathy is a rare anomaly characterized by ventricular dilation and dysfunction. Its causes are diverse, and its outcomes are generally dismal. We describe a rare case of prenatally diagnosed left ventricular apical aneurysm that progressed rapidly to dilated cardiomyopathy. At age 2 months, the infant underwent heart transplantation. Pathologic examination of the explanted heart revealed that the cause of the dilated cardiomyopathy was glycogen storage disease. This case highlights the crucial roles of timely diagnosis, frequent close monitoring, and multidisciplinary care in achieving a successful postnatal outcome.
Collapse
Affiliation(s)
- Geetha Challapudi
- Department of Pediatric Cardiology, Children's Hospital of Mercy, Kansas City, Missouri.,Department of Pediatric Cardiology, Cleveland Clinic Children's Hospital, Cleveland, Ohio
| | - Gerard J Boyle
- Department of Pediatric Cardiology, Cleveland Clinic Children's Hospital, Cleveland, Ohio
| | - E Rene Rodriguez
- Department of Pathology, Cleveland Clinic Children's Hospital, Cleveland, Ohio
| | - Rukmini Komarlu
- Department of Pediatric Cardiology, Cleveland Clinic Children's Hospital, Cleveland, Ohio
| |
Collapse
|
122
|
Bakaya K, Paracha W, Schievano S, Bozkurt S. Assessment of cardiac dimensions in children diagnosed with hypertrophic cardiomyopathy. Echocardiography 2022; 39:1233-1239. [PMID: 35978451 DOI: 10.1111/echo.15437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 06/18/2022] [Accepted: 07/23/2022] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND Hypertrophic cardiomyopathy (HCM) is an inherited autosomal dominant heart disease, characterized by increased left ventricular wall thickness and abnormal loading conditions. Imaging modalities are the first choice for diagnosis and risk stratification. Although heart dimensions have been characterized widely in HCM adults from cardiac imaging, there is limited information about children affected by HCM. The aim of this study is to evaluate left ventricular function and left heart dimensions in a small population of children diagnosed with HCM. METHODS A total of 16 (seven male, nine female) pediatric patients with an average age of 14.0 ± 2.5 years diagnosed with HCM at Great Ormond Street Hospital for Children were included in this study. Cardiac magnetic resonance (CMR) images were used to measure left and right ventricular dimensions, and septal and left ventricular free wall thicknesses in Simpleware ScanIP. The gender groups were compared using student t-test or non-parametric Mann-Whitney U-test depending on the sample distribution. RESULTS Differences in heart rate, left ventricular end-diastolic volume and end-diastolic volume index, left ventricular stroke volume and stroke volume index, left ventricular end-systolic long axis length, left ventricular end-systolic long axis length index, left ventricular end-diastolic mid-cavity diameter, left ventricular end-diastolic free wall thickness, left ventricular end-diastolic free wall thickness index, right ventricular end-diastolic long axis length were statistically significant in males and females. CONCLUSION Left ventricular wall and intraventricular septal thickness increase affecting left ventricle cavity dimensions and there may be differences in anatomical and physiological parameters in males and females affected by HCM.
Collapse
Affiliation(s)
| | - Waleed Paracha
- UCL Medical School, University College London, London, UK
| | - Silvia Schievano
- Institute of Cardiovascular Science, University College London, London, UK
| | - Selim Bozkurt
- Institute of Cardiovascular Science, University College London, London, UK
- School of Engineering, Ulster University, Newtownabbey, UK
| |
Collapse
|
123
|
Compact pediatric cardiac magnetic resonance imaging protocols. Pediatr Radiol 2022:10.1007/s00247-022-05447-y. [PMID: 35821442 DOI: 10.1007/s00247-022-05447-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/25/2022] [Accepted: 06/30/2022] [Indexed: 10/17/2022]
Abstract
Cardiac MRI is in many respects an ideal modality for pediatric cardiovascular imaging, enabling a complete noninvasive assessment of anatomy, morphology, function and flow in one radiation-free and potentially non-contrast exam. Nonetheless, traditionally lengthy and complex imaging acquisition strategies have often limited its broader use beyond specialized centers. In this review, the author presents practical cardiac MRI imaging protocols to facilitate the performance of succinct yet successful exams that provide the most salient clinical data for the majority of congenital and acquired pediatric cardiac disease. In addition, the author reviews newer and evolving techniques that permit more rapid but similarly diagnostic MRI, including compressed sensing and artificial intelligence/machine learning reconstruction, four-dimensional flow acquisition and blood pool contrast agents. With the modern armamentarium of cardiac MRI methods, the goal of compact yet comprehensive exams in children can now be realized.
Collapse
|
124
|
Chan W, Yang S, Wang J, Tong S, Lin M, Lu P, Yao R, Wu L, Chen L, Guo Y, Shen J, Liu T, Li F, Chen H, Zhang H, Wang S, Fu L. Clinical characteristics and survival of children with hypertrophic cardiomyopathy in China: A multicentre retrospective cohort study. EClinicalMedicine 2022; 49:101466. [PMID: 35747179 PMCID: PMC9157015 DOI: 10.1016/j.eclinm.2022.101466] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/05/2022] [Accepted: 05/05/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Few data on paediatric hypertrophic cardiomyopathy (HCM) are available in developing countries. A multicentre, retrospective, cohort study was conducted to profile the clinical characteristics and survival of children with HCM in China. METHODS We collected longitudinal data on children with HCM aged 0-18 years at three participating institutions between January 1, 2010 and December 31, 2019. Patients were identified by searching for the diagnosis using ICD-10 codes from the electronic medical records database. HCM was diagnosed morphologically with echocardiography or cardiovascular magnetic resonance imaging. The exclusion criteria were secondary aetiologies of myocardial hypertrophy. The primary outcomes were all-cause death or heart transplantation. The Kaplan-Meier method was used to estimate the survival rate of different groups. FINDINGS A total of 564 children were recruited, with a median age at diagnosis of 1.0 year (interquartile range, IQR: 0.4-8.0 years), followed for a median of 2.6 years (1977 patient-years, IQR:0.5, 5.9 years). The underlying aetiology was sarcomeric (382, 67.7%), inborn errors of metabolism (IEMs) (108, 19.2%), and RASopathies (74, 13.1%). A total of 149 patients (26.4%) died and no patients underwent heart transplantation during follow-up. The survival probability was 71.1% (95% confidence interval [CI], 66.3%-75.3%) at 5 years. Patients with IEMs or those diagnosed during infancy had the poorest outcomes, with an estimated 5-year survival rate of 16.9% (95% CI, 7.7%-29.1%) and 56.0% (95% CI, 48.8%-62.5%), respectively. Heart failure was the leading cause of death in the cohort (90/149, 60.4%), while sudden cardiac death was the leading cause in patients with sarcomeric HCM (32/66, 48.5%). INTERPRETATION There is a high proportion of patients with IEM and a low proportion of patients with neuromuscular disease in children with HCM in China. Overall, mortality remains high in China, especially in patients with IEMs and those diagnosed during infancy. FUNDING National Natural Science Fund of China (81770380, 81974029), China Project of Shanghai Municipal Science and Technology Commission (20MC1920400, 21Y31900301).
Collapse
Affiliation(s)
- Wenxiu Chan
- Department of Cardiology, Shanghai Children's Medical Centre, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Shiwei Yang
- Department of Cardiology, Children's Hospital of Nanjing Medical University, Nanjing 210008, China
| | - Jian Wang
- Research Division of Birth Defects, Institute of Paediatric Translational Medicine, Shanghai Children's Medical Centre, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Shilu Tong
- Department of Clinical epidemiology and Biostatistics, Shanghai Children's Medical Centre, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Minyin Lin
- Department of Paediatric Cardiology, Guangdong Cardiovascular Institute, Guangdong Academy of Medical Sciences, Guangdong Provincial People's Hospital, Guangzhou 510080, China
| | - Pengtao Lu
- Department of Cardiology, Children's Hospital of Nanjing Medical University, Nanjing 210008, China
| | - Ruen Yao
- Research Division of Birth Defects, Institute of Paediatric Translational Medicine, Shanghai Children's Medical Centre, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Lanping Wu
- Department of Cardiology, Shanghai Children's Medical Centre, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Lijun Chen
- Department of Cardiology, Shanghai Children's Medical Centre, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Ying Guo
- Department of Cardiology, Shanghai Children's Medical Centre, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Jie Shen
- Department of Cardiology, Shanghai Children's Medical Centre, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Tingliang Liu
- Department of Cardiology, Shanghai Children's Medical Centre, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Fen Li
- Department of Cardiology, Shanghai Children's Medical Centre, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Huiwen Chen
- Shanghai Clinical Research Centre for Rare Paediatric Disease, Shanghai 200127, China
| | - Hao Zhang
- Shanghai Clinical Research Centre for Rare Paediatric Disease, Shanghai 200127, China
- Corresponding author at: Shanghai Clinical Research Centre for Rare Paediatric Disease, No. 1678 Dongfang Road, Shanghai 200127, China.
| | - Shushui Wang
- Department of Paediatric Cardiology, Guangdong Cardiovascular Institute, Guangdong Academy of Medical Sciences, Guangdong Provincial People's Hospital, Guangzhou 510080, China
- Corresponding author at: Department of Paediatric Cardiology, Guangdong Cardiovascular Institute, Guangdong Academy of Medical Sciences, Guangdong Provincial People's Hospital, Guangzhou 510080, China.
| | - Lijun Fu
- Department of Cardiology, Shanghai Children's Medical Centre, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
- Research Division of Cardiovascular Disease, Institute of Paediatric Translational Medicine, Shanghai Children's Medical Centre, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
- Corresponding author at: Department of Cardiology, Shanghai Children's Medical Centre, Shanghai Jiao Tong University School of Medicine, No. 1678 Dongfang Road, Shanghai 200127, China.
| |
Collapse
|
125
|
Paediatric dilated cardiomyopathy with and without endocardial fibroelastosis - a pathological analysis of 89 explants. Cardiol Young 2022; 32:1041-1047. [PMID: 34486505 DOI: 10.1017/s1047951121003590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Heart failure due to dilated cardiomyopathy is a major indication for paediatric cardiac transplantation. Endocardial fibroelastosis is a recognised pathological finding of unknown prognostic significance in paediatric dilated cardiomyopathy. To evaluate the nature of the association between left ventricular endocardial fibroelastosis and paediatric dilated cardiomyopathy, we reviewed surgical pathology reports of dilated cardiomyopathy explants (1986-2016) in order to characterise the pathological findings and to compare and contrast their frequency among four age groups: less than 1 year; 1-5 years; 6-10 years; and greater than 11 years. The 89 explants (47 males and 42 females) were all characterised by increased weight and left ventricular chamber dilatation without increased wall thickness. Ninety-five per cent of the specimens in the two youngest subsets had left ventricular endocardial fibroelastosis. Compared to the oldest age group, recipients aged 1-5 years had a 6-fold increase and those younger than 1 year a 19-fold increase in the odds of observing left ventricular endocardial fibroelastosis. Explants with and without endocardial fibroelastosis were otherwise phenotypically similar. In paediatric dilated cardiomyopathy endocardial fibroelastosis is a very common pathological finding, especially in infants and young children. We propose that the descriptive, clinico-pathological designation "Dilated Cardiomyopathy with Endocardial Fibroelastosis" should be adopted to facilitate future investigation into the potential prognostic/therapeutic significance of left ventricular endocardial fibroelastosis.
Collapse
|
126
|
Li D, Pi W, Sun Z, Liu X, Jiang J. Ferroptosis and its role in cardiomyopathy. Biomed Pharmacother 2022; 153:113279. [PMID: 35738177 DOI: 10.1016/j.biopha.2022.113279] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/03/2022] [Accepted: 06/08/2022] [Indexed: 12/09/2022] Open
Abstract
Heart disease is the leading cause of death worldwide. Cardiomyopathy is a disease characterized by the heart muscle damage, resulting heart in a structurally and functionally change, as well as heart failure and sudden cardiac death. The key pathogenic factor of cardiomyopathy is the loss of cardiomyocytes, but the related molecular mechanisms remain unclear. Ferroptosis is a newly discovered regulated form of cell death, characterized by iron accumulation and lipid peroxidation during cell death. Recent studies have shown that ferroptosis plays an important regulatory roles in the occurrence and development of many heart diseases such as myocardial ischemia/reperfusion injury, cardiomyopathy and heart failure. However, the systemic association of ferroptosis and cardiomyopathy remains largely unknown and needs to be elucidated. In this review, we provide an overview of the molecular mechanisms of ferroptosis and its role in individual cardiomyopathies, highlight that targeting ferroptosis maybe a potential therapeutic strategy for cardiomyopathy therapy in the future.
Collapse
Affiliation(s)
- Danlei Li
- Department of Cardiology, Taizhou Hospital of Wenzhou Medical University, Linhai 317000, Zhejiang Province, China
| | - Wenhu Pi
- Key Laboratory of Radiation Oncology of Taizhou, Radiation Oncology Institute of Enze Medical Health Academy, Department of Radiation Oncology, Affiliated Taizhou hospital of Wenzhou Medical University, Linhai 317000, Zhejiang Province, China
| | - Zhenzhu Sun
- Department of Cardiology, Taizhou Hospital of Wenzhou Medical University, Linhai 317000, Zhejiang Province, China
| | - Xiaoman Liu
- Department of Cardiology, Taizhou Hospital of Wenzhou Medical University, Linhai 317000, Zhejiang Province, China
| | - Jianjun Jiang
- Department of Cardiology, Taizhou Hospital of Wenzhou Medical University, Linhai 317000, Zhejiang Province, China.
| |
Collapse
|
127
|
Clinical Exome Sequencing Revealed a De Novo FLNC Mutation in a Child with Restrictive Cardiomyopathy. CARDIOGENETICS 2022. [DOI: 10.3390/cardiogenetics12020019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Restrictive cardiomyopathy (RCM) is a rare disease of the myocardium caused by mutations in several genes including TNNT2, DES, TNNI3, MYPN and FLNC. Individuals affected by RCM often develop heart failure at a young age, requiring early heart transplantation. A 7-year-old patient was referred for genetic testing following a diagnosis of restrictive cardiomyopathy. Clinical exome sequencing analysis identified a likely pathogenic mutation in the FLNC gene [(NM_001458.5 c.6527_6547dup p.(Arg2176_2182dup)]. Its clinical relevance was augmented by the fact that this variant was absent in the parents and was thus interpreted as de novo. Genetic testing is a powerful tool to clarify the diagnosis, guide intervention strategies and enable cascade testing in patients with pediatric-onset RCM.
Collapse
|
128
|
Sarohi V, Srivastava S, Basak T. A Comprehensive Outlook on Dilated Cardiomyopathy (DCM): State-Of-The-Art Developments with Special Emphasis on OMICS-Based Approaches. J Cardiovasc Dev Dis 2022; 9:jcdd9060174. [PMID: 35735803 PMCID: PMC9225617 DOI: 10.3390/jcdd9060174] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 05/12/2022] [Accepted: 05/19/2022] [Indexed: 02/04/2023] Open
Abstract
Dilated cardiomyopathy (DCM) remains an enigmatic cardiovascular disease (CVD) condition characterized by contractile dysfunction of the myocardium due to dilation of the ventricles. DCM is one of the major forms of CVD contributing to heart failure. Dilation of the left or both ventricles with systolic dysfunction, not explained by known causes, is a hallmark of DCM. Progression of DCM leads to heart failure. Genetic and various other factors greatly contribute to the development of DCM, but the etiology has still remained elusive in a large number of cases. A significant number of studies have been carried out to identify the genetic causes of DCM. These candidate-gene studies revealed that mutations in the genes of the fibrous, cytoskeletal, and sarcomeric proteins of cardiomyocytes result in the development of DCM. However, a significant proportion of DCM patients are idiopathic in nature. In this review, we holistically described the symptoms, causes (in adults and newborns), genetic basis, and mechanistic progression of DCM. Further, we also summarized the state-of-the-art diagnosis, available biomarkers, treatments, and ongoing clinical trials of potential drug regimens. DCM-mediated heart failure is on the rise worldwide including in India. The discovery of biomarkers with a better prognostic value is the need of the hour for better management of DCM-mediated heart failure patients. With the advent of next-generation omics-based technologies, it is now possible to probe systems-level alterations in DCM patients pertaining to the identification of novel proteomic and lipidomic biomarkers. Here, we also highlight the onset of a systems-level study in Indian DCM patients by applying state-of-the-art mass-spectrometry-based “clinical proteomics” and “clinical lipidomics”.
Collapse
Affiliation(s)
- Vivek Sarohi
- Indian Institute of Technology (IIT)-Mandi, School of Basic Sciences (SBS), Mandi 175075, HP, India; (V.S.); (S.S.)
- BioX Centre, Indian Institute of Technology (IIT)-Mandi, Mandi 175075, HP, India
| | - Shriya Srivastava
- Indian Institute of Technology (IIT)-Mandi, School of Basic Sciences (SBS), Mandi 175075, HP, India; (V.S.); (S.S.)
| | - Trayambak Basak
- Indian Institute of Technology (IIT)-Mandi, School of Basic Sciences (SBS), Mandi 175075, HP, India; (V.S.); (S.S.)
- BioX Centre, Indian Institute of Technology (IIT)-Mandi, Mandi 175075, HP, India
- Correspondence: ; Tel.: +91-1905-267826
| |
Collapse
|
129
|
Amdani S, Marino BS, Rossano J, Lopez R, Schold JD, Tang WHW. Burden of Pediatric Heart Failure in the United States. J Am Coll Cardiol 2022; 79:1917-1928. [PMID: 35550689 DOI: 10.1016/j.jacc.2022.03.336] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/18/2022] [Accepted: 03/07/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND There are currently limited accurate national estimates for pediatric heart failure (HF). OBJECTIVES This study aims to describe the current burden of primary and comorbid pediatric HF in the United States. METHODS International Classification of Diseases, Clinical Modification codes were used to identify HF cases and comorbidities from the Kids' Inpatient Database, National Inpatient Sample, National Emergency Department (ED) Sample, and National Vital Statistics System for 2012 and 2016. To describe HF events, all visits/events among pediatric and adult subjects were included in the analysis. HF events were classified into 1 of 3 groups: 1) no HF; 2) primary HF; or 3) comorbid HF. We compared patients with and without HF and calculated unique event rates with age and sex standardization. RESULTS Congenital heart disease, conduction disorders/arrhythmias, and cardiomyopathy were responsible for the majority of pediatric HF-related ED visits and hospitalizations. Compared to 2012, in 2016, there was an increase in comorbid HF ED visits (rate ratio: 1.93; P < 0.001) and primary HF hospitalizations (rate ratio: 1.14; P = 0.002). Pediatric HF burden was lower compared to adult HF; however, deaths in the ED and in-hospital were significantly more likely in children presenting with HF than adults. CONCLUSIONS The burden of pediatric HF continues to increase. Compared to adults with HF presenting to the ED and in-hospital, outcomes are inferior and per patient resource use is higher for children hospitalized with HF. National initiatives to understand risk factors for morbidity and mortality in pediatric HF and continued surveillance and mitigation of preventable risk factors may attenuate this uptrend.
Collapse
Affiliation(s)
- Shahnawaz Amdani
- Department of Pediatric Cardiology, Cleveland Clinic Children's, Cleveland, Ohio, USA.
| | - Bradley S Marino
- Department of Pediatric Cardiology, Cleveland Clinic Children's, Cleveland, Ohio, USA
| | - Joseph Rossano
- Cardiac Center, Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Rocio Lopez
- Center for Populations Health Research, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA; Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland, Ohio, USA
| | - Jesse D Schold
- Center for Populations Health Research, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA; Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland, Ohio, USA
| | - W H Wilson Tang
- Department of Cardiovascular Medicine, Heart, Vascular, and Thoracic Institute, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
130
|
Kurzlechner LM, Jones EG, Berkman AM, Tadros HJ, Rosenfeld JA, Yang Y, Tunuguntla H, Allen HD, Kim JJ, Landstrom AP. Signal-to-Noise Analysis Can Inform the Likelihood That Incidentally Identified Variants in Sarcomeric Genes Are Associated with Pediatric Cardiomyopathy. J Pers Med 2022; 12:733. [PMID: 35629155 PMCID: PMC9145017 DOI: 10.3390/jpm12050733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/06/2022] [Accepted: 04/20/2022] [Indexed: 02/01/2023] Open
Abstract
Background: Hypertrophic cardiomyopathy (HCM) is the most common heritable cardiomyopathy and can predispose individuals to sudden death. Most pediatric HCM patients host a known pathogenic variant in a sarcomeric gene. With the increase in exome sequencing (ES) in clinical settings, incidental variants in HCM-associated genes are being identified more frequently. Diagnostic interpretation of incidental variants is crucial to enhance clinical patient management. We sought to use amino acid-level signal-to-noise (S:N) analysis to establish pathogenic hotspots in sarcomeric HCM-associated genes as well as to refine the 2015 American College of Medical Genetics (ACMG) criteria to predict incidental variant pathogenicity. Methods and Results: Incidental variants in HCM genes (MYBPC3, MYH7, MYL2, MYL3, ACTC1, TPM1, TNNT2, TNNI3, and TNNC1) were obtained from a clinical ES referral database (Baylor Genetics) and compared to rare population variants (gnomAD) and variants from HCM literature cohort studies. A subset of the ES cohort was clinically evaluated at Texas Children’s Hospital. We compared the frequency of ES and HCM variants at specific amino acid locations in coding regions to rare variants (MAF < 0.0001) in gnomAD. S:N ratios were calculated at the gene- and amino acid-level to identify pathogenic hotspots. ES cohort variants were re-classified using ACMG criteria with S:N analysis as a correlate for PM1 criteria, which reduced the burden of variants of uncertain significance. In the clinical validation cohort, the majority of probands with cardiomyopathy or family history hosted likely pathogenic or pathogenic variants. Conclusions: Incidental variants in HCM-associated genes were common among clinical ES referrals, although the majority were not disease-associated. Leveraging amino acid-level S:N as a clinical tool may improve the diagnostic discriminatory ability of ACMG criteria by identifying pathogenic hotspots.
Collapse
Affiliation(s)
- Leonie M. Kurzlechner
- Division of Pediatric Cardiology, Department of Pediatrics, Duke University School of Medicine, Durham, NC 27710, USA; (L.M.K.); (A.M.B.)
| | - Edward G. Jones
- Section of Pediatric Cardiology, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA; (E.G.J.); (H.J.T.); (H.T.); (H.D.A.); (J.J.K.)
| | - Amy M. Berkman
- Division of Pediatric Cardiology, Department of Pediatrics, Duke University School of Medicine, Durham, NC 27710, USA; (L.M.K.); (A.M.B.)
| | - Hanna J. Tadros
- Section of Pediatric Cardiology, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA; (E.G.J.); (H.J.T.); (H.T.); (H.D.A.); (J.J.K.)
- Department of Pediatrics, University of Florida, Gainesville, FL 32611, USA
| | - Jill A. Rosenfeld
- Department of Molecular and Human Genetics, Baylor Genetics Laboratories, Baylor College of Medicine, Houston, TX 77030, USA; (J.A.R.); (Y.Y.)
| | - Yaping Yang
- Department of Molecular and Human Genetics, Baylor Genetics Laboratories, Baylor College of Medicine, Houston, TX 77030, USA; (J.A.R.); (Y.Y.)
| | - Hari Tunuguntla
- Section of Pediatric Cardiology, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA; (E.G.J.); (H.J.T.); (H.T.); (H.D.A.); (J.J.K.)
| | - Hugh D. Allen
- Section of Pediatric Cardiology, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA; (E.G.J.); (H.J.T.); (H.T.); (H.D.A.); (J.J.K.)
| | - Jeffrey J. Kim
- Section of Pediatric Cardiology, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA; (E.G.J.); (H.J.T.); (H.T.); (H.D.A.); (J.J.K.)
| | - Andrew P. Landstrom
- Division of Pediatric Cardiology, Department of Pediatrics, Duke University School of Medicine, Durham, NC 27710, USA; (L.M.K.); (A.M.B.)
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
131
|
Bolin EH, Spray BJ, Mourani PM, Porter C, Collins RT. Mortality among infants of diabetic mothers with hypertrophic cardiomyopathy. J Matern Fetal Neonatal Med 2022; 35:9893-9899. [PMID: 35440277 DOI: 10.1080/14767058.2022.2066993] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVE To assess the association between hypertrophic cardiomyopathy (HCM) and mortality among infants of diabetic mothers (IDMs). METHODS We performed a retrospective cohort study of hospitalized IDMs admitted at ≤14-days-old in the Pediatric Health Information System (years 2004 - 2019). Multivariable logistic regression was used to evaluate the association between HCM and mortality; covariates in the model were prematurity, sex, and congenital malformations of the cardiovascular, nervous, urinary and musculoskeletal systems. RESULTS Among 32,993 IDMs, there were 203 (0.6%) with HCM. Black and Hispanic children were disproportionately represented among children with HCM compared to those without HCM (23.2 vs. 14.9%, p = .001 for Black, and 30.0 vs. 22.1%, p = .007 for Hispanic). IDMs with HCM were also larger at birth (median birth weight 4120 g [interquartile range 3600-4703] vs. 3270 g [interquartile range 2535-3910]; p < .001). In-hospital mortality in patients with HCM was greater than in those without HCM (4.9 vs. 1.3%, p < 0.001), and odds of mortality were greater among those with HCM (adjusted odds ratio 2.10, 95% confidence interval: 1.04-4.25; p = .038). CONCLUSION We identify HCM as a contributor to in-hospital mortality. These data reinforce the need for more specific diagnostic criteria, better prevention of maternal diabetes, and effective therapies for HCM in IDMs.
Collapse
Affiliation(s)
- Elijah H Bolin
- Department of Pediatrics, Section of Cardiology, University of Arkansas for Medical Sciences and Arkansas Children's Research Institute, Little Rock, AR, USA
| | - Beverly J Spray
- Department of Biostatistics, Arkansas Children's Research Institute, Little Rock, AR, USA
| | - Peter M Mourani
- Department of Pediatrics, Section of Critical Care Medicine, University of Arkansas for Medical Sciences and Arkansas Children's Research Institute, Little Rock, AR, USA
| | - Craig Porter
- Department of Pediatrics, Section of Developmental Nutrition, University of Arkansas for Medical Sciences and Arkansas Children's Research Institute, Little Rock, AR, USA
| | - R Thomas Collins
- Department of Pediatrics, Section of Cardiology, Stanford University School of Medicine and Lucile Packard Children's Hospital, Palo Alto, CA, USA
| |
Collapse
|
132
|
Baessato F, Romeo C, Rabbat MG, Pontone G, Meierhofer C. A Comprehensive Assessment of Cardiomyopathies through Cardiovascular Magnetic Resonance: Focus on the Pediatric Population. Diagnostics (Basel) 2022; 12:diagnostics12051022. [PMID: 35626178 PMCID: PMC9139185 DOI: 10.3390/diagnostics12051022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/12/2022] [Accepted: 04/15/2022] [Indexed: 12/26/2022] Open
Abstract
Cardiomyopathies (CMPs) are a heterogeneous group of diseases that involve the myocardium and result in systolic or diastolic impairment of the cardiac muscle, potentially leading to heart failure, malignant arrhythmias, or sudden cardiac death. Occurrence in pediatric age is rare but has been associated with worse outcomes. Non-invasive cardiac imaging techniques, integrated with clinical, genetic, and electrocardiographic data, have shown a pivotal role in the clinical work-up of such diseases by defining structural alterations and assessing potential complications. Above all modalities, cardiovascular magnetic resonance (CMR) has emerged as a powerful tool complementary to echocardiography to confirm diagnosis, provide prognostic information and guide therapeutic strategies secondary to its high spatial and temporal resolution, lack of ionizing radiation, and good reproducibility. Moreover, CMR can provide in vivo tissue characterization of the myocardial tissue aiding the identification of structural pathologic changes such as replacement or diffuse fibrosis, which are predictors of worse outcomes. Large prospective randomized studies are needed for further validation of CMR in the context of childhood CMPs. This review aims to highlight the role of advanced imaging with CMR in CMPs with particular reference to the dilated, hypertrophic and non-compacted phenotypes, which are more commonly seen in children.
Collapse
Affiliation(s)
- Francesca Baessato
- Congenital Heart Disease and Pediatric Cardiology, German Heart Center Munich, Technical University of Munich, 80636 Munich, Germany;
- Department of Cardiology, Regional Hospital S. Maurizio, 39100 Bolzano, Italy;
- Correspondence:
| | - Cristina Romeo
- Department of Cardiology, Regional Hospital S. Maurizio, 39100 Bolzano, Italy;
| | - Mark G. Rabbat
- Division of Cardiology, Loyola University Medical Center, Chicago, IL 60153, USA;
| | - Gianluca Pontone
- Cardiovascular Imaging Department, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy;
| | - Christian Meierhofer
- Congenital Heart Disease and Pediatric Cardiology, German Heart Center Munich, Technical University of Munich, 80636 Munich, Germany;
| |
Collapse
|
133
|
Limongelli G, Adorisio R, Baggio C, Bauce B, Biagini E, Castelletti S, Favilli S, Imazio M, Lioncino M, Merlo M, Monda E, Olivotto I, Parisi V, Pelliccia F, Basso C, Sinagra G, Indolfi C, Autore C. Diagnosis and Management of Rare Cardiomyopathies in Adult and Paediatric Patients. A Position Paper of the Italian Society of Cardiology (SIC) and Italian Society of Paediatric Cardiology (SICP). Int J Cardiol 2022; 357:55-71. [PMID: 35364138 DOI: 10.1016/j.ijcard.2022.03.050] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/21/2022] [Accepted: 03/24/2022] [Indexed: 12/20/2022]
Abstract
Cardiomyopathies (CMPs) are myocardial diseases in which the heart muscle is structurally and functionally abnormal in the absence of coronary artery disease, hypertension, valvular disease and congenital heart disease sufficient to cause the observed myocardial abnormality. Thought for a long time to be rare diseases, it is now clear that most of the CMPs can be easily observed in clinical practice. However, there is a group of specific heart muscle diseases that are rare in nature whose clinical/echocardiographic phenotypes resemble those of the four classical morphological subgroups of hypertrophic, dilated, restrictive, arrhythmogenic CMPs. These rare CMPs, often but not solely diagnosed in infants and paediatric patients, should be more properly labelled as specific CMPs. Emerging consensus exists that these conditions require tailored investigation and management. Indeed, an appropriate understanding of these conditions is mandatory for early treatment and counselling. At present, however, the multisystemic and heterogeneous presentation of these entities is a challenge for clinicians, and time delay in diagnosis is a significant concern. The aim of this paper is to define practical recommendations for diagnosis and management of the rare CMPs in paediatric or adult age. A modified Delphi method was adopted to grade the recommendations proposed by each member of the writing committee.
Collapse
Affiliation(s)
- Giuseppe Limongelli
- Inherited and Rare Cardiovascular Disease Unit, University of Campania "Luigi Vanvitelli", AORN dei Colli, Monaldi Hospital, Naples, Italy; Member of ERN GUARD-HEART (European Reference Network for Rare and Complex Diseases of the Heart; http://guardheart.ern-net.eu).
| | - Rachele Adorisio
- Heart Failure, Transplant and Mechanical Cardiocirculatory Support Unit, Department of Pediatric Cardiology and Cardiac Surgery, Heart Lung Transplantation, Bambino Gesù Hospital and Research Institute, Rome, Italy
| | - Chiara Baggio
- Cardiothoracovascular and Medical Surgical and Health Science Department, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI), University of Trieste, 34149 Trieste, Italy
| | - Barbara Bauce
- Member of ERN GUARD-HEART (European Reference Network for Rare and Complex Diseases of the Heart; http://guardheart.ern-net.eu); Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padua, Padua, Italy
| | - Elena Biagini
- Member of ERN GUARD-HEART (European Reference Network for Rare and Complex Diseases of the Heart; http://guardheart.ern-net.eu); Cardiology Unit, St. Orsola Hospital, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Silvia Castelletti
- Cardiomyopathy Unit and Center for Cardiac Arrhythmias of Genetic Origin, Department of Cardiovascular, Neural and Metabolic Science, Istituto Auxologico Italiano IRCCS, Milan, Italy
| | - Silvia Favilli
- Department of Pediatric Cardiology, Meyer Children's Hospital, Viale Gaetano Pieraccini, 24, 50139 Florence, Italy
| | - Massimo Imazio
- Head of Cardiology, Cardiothoracic Department, University Hospital "Santa Maria della Misericordia", ASUFC, Piazzale Santa Maria della Misericordia 15, Udine 33100, Italy
| | - Michele Lioncino
- Inherited and Rare Cardiovascular Disease Unit, University of Campania "Luigi Vanvitelli", AORN dei Colli, Monaldi Hospital, Naples, Italy
| | - Marco Merlo
- Member of ERN GUARD-HEART (European Reference Network for Rare and Complex Diseases of the Heart; http://guardheart.ern-net.eu); Cardiothoracovascular and Medical Surgical and Health Science Department, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI), University of Trieste, 34149 Trieste, Italy
| | - Emanuele Monda
- Inherited and Rare Cardiovascular Disease Unit, University of Campania "Luigi Vanvitelli", AORN dei Colli, Monaldi Hospital, Naples, Italy
| | - Iacopo Olivotto
- Cardiomyopathy Unit, Azienda Ospedaliera Universitaria Careggi and the University of Florence, Florence, Italy
| | - Vanda Parisi
- Cardiology Unit, St. Orsola Hospital, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | | | - Cristina Basso
- Member of ERN GUARD-HEART (European Reference Network for Rare and Complex Diseases of the Heart; http://guardheart.ern-net.eu); Cardiovascular Pathology Unit, Department of Cardiac, Thoracic, Vascular Sciences and Public Health Azienda Ospedaliera, University of Padua Padova, Italy
| | - Gianfranco Sinagra
- Member of ERN GUARD-HEART (European Reference Network for Rare and Complex Diseases of the Heart; http://guardheart.ern-net.eu); Cardiothoracovascular and Medical Surgical and Health Science Department, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI), University of Trieste, 34149 Trieste, Italy
| | - Ciro Indolfi
- Department of Medical and Surgical Sciences, Magna Grecia University, Catanzaro, Italy
| | - Camillo Autore
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, Division of Cardiology, Sant'Andrea Hospital, Via di Grottarossa 1035-1039, 00189 Rome, Italy
| | | | | |
Collapse
|
134
|
Moisa SM, Miron IC, Tarca E, Trandafir L, Lupu VV, Lupu A, Rusu TE. Non-Cardiac Cause of Death in Selected Group Children with Cardiac Pathology: A Retrospective Single Institute Study. CHILDREN 2022; 9:children9030335. [PMID: 35327707 PMCID: PMC8946943 DOI: 10.3390/children9030335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/24/2022] [Accepted: 02/26/2022] [Indexed: 12/05/2022]
Abstract
Background: Pediatricians and pediatric surgeons often face children with cardiomegaly and dilatative or hypertrophic cardiomyopathies presenting with or without symptoms. Some of these patients have already been diagnosed and received medication, and some present with completely unrelated pathologies. Methods: We performed a 4-year retrospective study on the causes and mechanisms of death of children with cardiac pathology who died outside the cardiology clinic of our hospital by studying the hospital charts and necropsy reports. All children who were in this situation in our hospital were included. Results: Most children in our study group were infants (81.82%), most were boys (81.82%), and in most cases, the cause or mechanism of death was unrelated to their heart condition, whether it had already been diagnosed or not (one case probably died as a result of a malignant ventricular arrhythmia). Additionally, 27.27% of children died as a consequence of bronchopneumonia, the same percentage died as a consequence of an acquired non-pulmonary disease or after surgery, and 18.18% died as a consequence of congenital malformations. Conclusions: Cardiac disease needs to be thoroughly investigated using multiple tools for all children presenting with heart failure symptoms, those with heart murmurs, and children scheduled for surgery of any type. The intensive care specialist and surgeon need to be aware of any heart pathology before non-cardiac surgical interventions.
Collapse
Affiliation(s)
- Stefana Maria Moisa
- Pediatrics Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (S.M.M.); (I.C.M.); (E.T.); (L.T.)
| | - Ingrith Crenguta Miron
- Pediatrics Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (S.M.M.); (I.C.M.); (E.T.); (L.T.)
| | - Elena Tarca
- Pediatrics Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (S.M.M.); (I.C.M.); (E.T.); (L.T.)
| | - Laura Trandafir
- Pediatrics Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (S.M.M.); (I.C.M.); (E.T.); (L.T.)
| | - Vasile Valeriu Lupu
- Pediatrics Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (S.M.M.); (I.C.M.); (E.T.); (L.T.)
- Correspondence: (V.V.L.); (A.L.)
| | - Ancuta Lupu
- Pediatrics Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (S.M.M.); (I.C.M.); (E.T.); (L.T.)
- Correspondence: (V.V.L.); (A.L.)
| | | |
Collapse
|
135
|
Nguyen MB, Mital S, Mertens L, Jeewa A, Friedberg MK, Aguet J, Adler A, Lam CZ, Dragulescu A, Rakowski H, Villemain O. Pediatric Hypertrophic Cardiomyopathy: Exploring the Genotype-Phenotype Association. J Am Heart Assoc 2022; 11:e024220. [PMID: 35179047 PMCID: PMC9075072 DOI: 10.1161/jaha.121.024220] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 01/11/2022] [Indexed: 11/19/2022]
Abstract
Pediatric hypertrophic cardiomyopathy (HCM) is the most common form of cardiomyopathy in children and a leading cause of sudden cardiac death. Yet, the association between genotype variation, phenotype expression, and adverse events in pediatric HCM has not been fully elucidated. Although the literature on this topic is evolving in adult HCM, the evidence in children is lacking. Solidifying our understanding of this relationship could improve risk stratification as well as improve our comprehension of the underlying pathophysiological characteristics of pediatric HCM. In this state-of-the-art review, we examine the current literature on genetic variations in HCM and their association with outcomes in children, discuss the current approaches to identifying cardiovascular phenotypes in pediatric HCM, and explore possible avenues that could improve sudden cardiac death risk assessment.
Collapse
Affiliation(s)
- Minh B. Nguyen
- Division of CardiologyLabatt Family Heart CentreHospital for Sick ChildrenUniversity of TorontoOntarioCanada
| | - Seema Mital
- Division of CardiologyLabatt Family Heart CentreHospital for Sick ChildrenUniversity of TorontoOntarioCanada
| | - Luc Mertens
- Division of CardiologyLabatt Family Heart CentreHospital for Sick ChildrenUniversity of TorontoOntarioCanada
| | - Aamir Jeewa
- Division of CardiologyLabatt Family Heart CentreHospital for Sick ChildrenUniversity of TorontoOntarioCanada
| | - Mark K. Friedberg
- Division of CardiologyLabatt Family Heart CentreHospital for Sick ChildrenUniversity of TorontoOntarioCanada
| | - Julien Aguet
- Department of Diagnostic ImagingHospital for Sick ChildrenUniversity of TorontoOntarioCanada
| | - Arnon Adler
- Division of CardiologyPeter Munk Cardiac CentreToronto General HospitalUniversity of TorontoOntarioCanada
| | - Christopher Z. Lam
- Division of CardiologyLabatt Family Heart CentreHospital for Sick ChildrenUniversity of TorontoOntarioCanada
| | - Andreea Dragulescu
- Division of CardiologyLabatt Family Heart CentreHospital for Sick ChildrenUniversity of TorontoOntarioCanada
| | - Harry Rakowski
- Division of CardiologyPeter Munk Cardiac CentreToronto General HospitalUniversity of TorontoOntarioCanada
| | - Olivier Villemain
- Division of CardiologyLabatt Family Heart CentreHospital for Sick ChildrenUniversity of TorontoOntarioCanada
| |
Collapse
|
136
|
Computational Evaluation of Cardiac Function in Children Supported with Heartware VAD, HeartMate 2 and HeartMate 3 Left Ventricular Assist Devices. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12041937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Heart failure is one of the principal causes of morbidity and mortality in children. Treatment techniques may not work, and heart transplantation may be required as a result. The current state of donor-organ supply means that many patients cannot undergo transplantation. In these patients, ventricular assist devices (VADs) may be used to bridge the time until the transplantation. Continuous-flow VADs are increasingly being implanted to paediatric patients. The aim of this study was to evaluate cardiac function in children supported with Heartware HVAD, HeartMate2 and HeartMate3 devices using computational simulations. A lumped-parameter model simulating cardiac function in children around 12 years of age was used to simulate dilated cardiomyopathy and heart-pump support. The operating speeds in HVAD, HeartMate2 and HeartMate3 were selected as 2600 rpm, 8700 rpm and 5200 rpm constant speed, respectively, while the Lavare cycle and artificial-pulse modes were used to generate mean pump outputs at around 4.40 L/min and mean arterial pressures at around 82 mmHg in each device. Aortic pulse pressure was 11 mmHg, 14 mmHg and 6 mmHg under HVAD, HeartMate2 and HeartMate3 support, respectively. HVAD’s Lavare cycle and HeartMate3’s artificial pulse increased aortic pulse pressure to 15 mmHg and 20 mmHg. HeartMate3 with artificial-pulse mode may be more beneficial in reducing arterial-pulsatility-associated problems.
Collapse
|
137
|
Spielmann N, Miller G, Oprea TI, Hsu CW, Fobo G, Frishman G, Montrone C, Haseli Mashhadi H, Mason J, Munoz Fuentes V, Leuchtenberger S, Ruepp A, Wagner M, Westphal DS, Wolf C, Görlach A, Sanz-Moreno A, Cho YL, Teperino R, Brandmaier S, Sharma S, Galter IR, Östereicher MA, Zapf L, Mayer-Kuckuk P, Rozman J, Teboul L, Bunton-Stasyshyn RKA, Cater H, Stewart M, Christou S, Westerberg H, Willett AM, Wotton JM, Roper WB, Christiansen AE, Ward CS, Heaney JD, Reynolds CL, Prochazka J, Bower L, Clary D, Selloum M, Bou About G, Wendling O, Jacobs H, Leblanc S, Meziane H, Sorg T, Audain E, Gilly A, Rayner NW, Hitz MP, Zeggini E, Wolf E, Sedlacek R, Murray SA, Svenson KL, Braun RE, White JK, Kelsey L, Gao X, Shiroishi T, Xu Y, Seong JK, Mammano F, Tocchini-Valentini GP, Beaudet AL, Meehan TF, Parkinson H, Smedley D, Mallon AM, Wells SE, Grallert H, Wurst W, Marschall S, Fuchs H, Brown SDM, Flenniken AM, Nutter LMJ, McKerlie C, Herault Y, Lloyd KCK, Dickinson ME, Gailus-Durner V, Hrabe de Angelis M. Extensive identification of genes involved in congenital and structural heart disorders and cardiomyopathy. NATURE CARDIOVASCULAR RESEARCH 2022; 1:157-173. [PMID: 39195995 PMCID: PMC11358025 DOI: 10.1038/s44161-022-00018-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 01/03/2022] [Indexed: 08/29/2024]
Abstract
Clinical presentation of congenital heart disease is heterogeneous, making identification of the disease-causing genes and their genetic pathways and mechanisms of action challenging. By using in vivo electrocardiography, transthoracic echocardiography and microcomputed tomography imaging to screen 3,894 single-gene-null mouse lines for structural and functional cardiac abnormalities, here we identify 705 lines with cardiac arrhythmia, myocardial hypertrophy and/or ventricular dilation. Among these 705 genes, 486 have not been previously associated with cardiac dysfunction in humans, and some of them represent variants of unknown relevance (VUR). Mice with mutations in Casz1, Dnajc18, Pde4dip, Rnf38 or Tmem161b genes show developmental cardiac structural abnormalities, with their human orthologs being categorized as VUR. Using UK Biobank data, we validate the importance of the DNAJC18 gene for cardiac homeostasis by showing that its loss of function is associated with altered left ventricular systolic function. Our results identify hundreds of previously unappreciated genes with potential function in congenital heart disease and suggest causal function of five VUR in congenital heart disease.
Collapse
Affiliation(s)
- Nadine Spielmann
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Center Munich (GmbH), German Research Center for Environmental Health, Neuherberg, Germany
| | - Gregor Miller
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Center Munich (GmbH), German Research Center for Environmental Health, Neuherberg, Germany
| | - Tudor I Oprea
- Department of Internal Medicine, Division of Translational Informatics and Center of Biomedical Research Excellence in Autophagy, Inflammation, and Metabolism, UNM Health Sciences Center and UNM Comprehensive Cancer Center, Albuquerque, NM, USA
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Chih-Wei Hsu
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - Gisela Fobo
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Center Munich (GmbH), German Research Center for Environmental Health, Neuherberg, Germany
| | - Goar Frishman
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Center Munich (GmbH), German Research Center for Environmental Health, Neuherberg, Germany
| | - Corinna Montrone
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Center Munich (GmbH), German Research Center for Environmental Health, Neuherberg, Germany
| | - Hamed Haseli Mashhadi
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, UK
| | - Jeremy Mason
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, UK
| | - Violeta Munoz Fuentes
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, UK
| | - Stefanie Leuchtenberger
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Center Munich (GmbH), German Research Center for Environmental Health, Neuherberg, Germany
| | - Andreas Ruepp
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Center Munich (GmbH), German Research Center for Environmental Health, Neuherberg, Germany
| | - Matias Wagner
- Institut für Humangenetik, Technische Universität Munich, Munich, Germany
| | - Dominik S Westphal
- Institut für Humangenetik, Technische Universität Munich, Munich, Germany
- Klinik und Poliklinik Innere Medizin I, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Cordula Wolf
- Department of Congenital Heart Defects and Pediatric Cardiology, German Heart Center Munich, Technical University Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Agnes Görlach
- Experimental and Molecular Pediatric Cardiology, German Heart Center Munich, Technical University Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich, Munich, Germany
| | - Adrián Sanz-Moreno
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Center Munich (GmbH), German Research Center for Environmental Health, Neuherberg, Germany
| | - Yi-Li Cho
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Center Munich (GmbH), German Research Center for Environmental Health, Neuherberg, Germany
| | - Raffaele Teperino
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Center Munich (GmbH), German Research Center for Environmental Health, Neuherberg, Germany
| | - Stefan Brandmaier
- Research Unit of Molecular Epidemiology, Institute of Epidemiology II, Helmholtz Zentrum Munich, Munich, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Sapna Sharma
- Research Unit of Molecular Epidemiology, Institute of Epidemiology II, Helmholtz Zentrum Munich, Munich, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Isabella Rikarda Galter
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Center Munich (GmbH), German Research Center for Environmental Health, Neuherberg, Germany
| | - Manuela A Östereicher
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Center Munich (GmbH), German Research Center for Environmental Health, Neuherberg, Germany
| | - Lilly Zapf
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Center Munich (GmbH), German Research Center for Environmental Health, Neuherberg, Germany
| | - Philipp Mayer-Kuckuk
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Center Munich (GmbH), German Research Center for Environmental Health, Neuherberg, Germany
| | - Jan Rozman
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Lydia Teboul
- Mammalian Genetics Unit and Mary Lyon Centre, Medical Research Council Harwell Institute, Harwell, UK
| | | | - Heather Cater
- Mammalian Genetics Unit and Mary Lyon Centre, Medical Research Council Harwell Institute, Harwell, UK
| | - Michelle Stewart
- Mammalian Genetics Unit and Mary Lyon Centre, Medical Research Council Harwell Institute, Harwell, UK
| | - Skevoulla Christou
- Mammalian Genetics Unit and Mary Lyon Centre, Medical Research Council Harwell Institute, Harwell, UK
| | - Henrik Westerberg
- Mammalian Genetics Unit and Mary Lyon Centre, Medical Research Council Harwell Institute, Harwell, UK
| | | | | | | | - Audrey E Christiansen
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - Christopher S Ward
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - Jason D Heaney
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - Corey L Reynolds
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - Jan Prochazka
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Lynette Bower
- Mouse Biology Program, University of California, Davis, Davis, CA, USA
| | - David Clary
- Mouse Biology Program, University of California, Davis, Davis, CA, USA
| | - Mohammed Selloum
- Université de Strasbourg, CNRS, INSERM, IGBMC, Institut Clinique de la Souris, PHENOMIN-ICS, Illkirch, France
| | - Ghina Bou About
- Université de Strasbourg, CNRS, INSERM, IGBMC, Institut Clinique de la Souris, PHENOMIN-ICS, Illkirch, France
| | - Olivia Wendling
- Université de Strasbourg, CNRS, INSERM, IGBMC, Institut Clinique de la Souris, PHENOMIN-ICS, Illkirch, France
| | - Hugues Jacobs
- Université de Strasbourg, CNRS, INSERM, IGBMC, Institut Clinique de la Souris, PHENOMIN-ICS, Illkirch, France
| | - Sophie Leblanc
- Université de Strasbourg, CNRS, INSERM, IGBMC, Institut Clinique de la Souris, PHENOMIN-ICS, Illkirch, France
| | - Hamid Meziane
- Université de Strasbourg, CNRS, INSERM, IGBMC, Institut Clinique de la Souris, PHENOMIN-ICS, Illkirch, France
| | - Tania Sorg
- Université de Strasbourg, CNRS, INSERM, IGBMC, Institut Clinique de la Souris, PHENOMIN-ICS, Illkirch, France
| | - Enrique Audain
- Department of Congenital Heart Disease and Pediatric Cardiology, University Hospital of Schleswig-Holstein, Kiel, Germany
- German Center for Cardiovascular Research (DZHK), Kiel, Germany
| | - Arthur Gilly
- Institute of Translational Genomics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Nigel W Rayner
- Institute of Translational Genomics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Marc-Phillip Hitz
- Department of Congenital Heart Disease and Pediatric Cardiology, University Hospital of Schleswig-Holstein, Kiel, Germany
- German Center for Cardiovascular Research (DZHK), Kiel, Germany
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Eleftheria Zeggini
- Institute of Translational Genomics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- TUM School of Medicine, Technical University of Munich and Klinikum Rechts der Isar, Munich, Germany
| | - Eckhard Wolf
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Radislav Sedlacek
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | | | | | | | | | - Lois Kelsey
- The Centre for Phenogenomics, Toronto, Ontario, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
| | - Xiang Gao
- SKL of Pharmaceutical Biotechnology and Model Animal Research Center, Collaborative Innovation Center for Genetics and Development, Nanjing Biomedical Research Institute, Nanjing University, Nanjing, China
| | | | - Ying Xu
- Cambridge-Suda Genomic Research Center, Soochow University, Suzhou, China
| | - Je Kyung Seong
- Korea Mouse Phenotyping Consortium (KMPC) and BK21 Program for Veterinary Science, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | - Fabio Mammano
- CNR Institute of Biochemistry and Cell Biology, Monterotondo, Rome, Italy
| | | | - Arthur L Beaudet
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - Terrence F Meehan
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, UK
| | - Helen Parkinson
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, UK
| | - Damian Smedley
- William Harvey Research Institute, Charterhouse Square Barts and the London School of Medicine and Dentistry Queen Mary University of London, London, UK
| | - Ann-Marie Mallon
- Mammalian Genetics Unit and Mary Lyon Centre, Medical Research Council Harwell Institute, Harwell, UK
| | - Sara E Wells
- Mammalian Genetics Unit and Mary Lyon Centre, Medical Research Council Harwell Institute, Harwell, UK
| | - Harald Grallert
- Research Unit of Molecular Epidemiology, Institute of Epidemiology II, Helmholtz Zentrum Munich, Munich, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Wolfgang Wurst
- Institute of Developmental Genetics, Helmholtz Zentrum Munich, German Research Center for Environmental Health GmbH, Neuherberg, Germany
- Department of Developmental Genetics, TUM School of Life Sciences, Technische Universität Munich, Freising, Germany
- Deutsches Institut für Neurodegenerative Erkrankungen (DZNE) Site Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Adolf-Butenandt-Institut, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Susan Marschall
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Center Munich (GmbH), German Research Center for Environmental Health, Neuherberg, Germany
| | - Helmut Fuchs
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Center Munich (GmbH), German Research Center for Environmental Health, Neuherberg, Germany
| | - Steve D M Brown
- Mammalian Genetics Unit and Mary Lyon Centre, Medical Research Council Harwell Institute, Harwell, UK
| | - Ann M Flenniken
- The Centre for Phenogenomics, Toronto, Ontario, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
| | - Lauryl M J Nutter
- The Centre for Phenogenomics, Toronto, Ontario, Canada
- The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Colin McKerlie
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
- The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Yann Herault
- Université de Strasbourg, CNRS, INSERM, IGBMC, Institut Clinique de la Souris, PHENOMIN-ICS, Illkirch, France
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique Biologie Moléculaire et Cellulaire, IGBMC, Illkirch, France
| | - K C Kent Lloyd
- Mouse Biology Program, University of California, Davis, Davis, CA, USA
- Department of Surgery, School of Medicine, University of California, Davis, Davis, CA, USA
| | - Mary E Dickinson
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - Valerie Gailus-Durner
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Center Munich (GmbH), German Research Center for Environmental Health, Neuherberg, Germany
| | - Martin Hrabe de Angelis
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Center Munich (GmbH), German Research Center for Environmental Health, Neuherberg, Germany.
- German Center for Diabetes Research (DZD), Neuherberg, Germany.
- Department of Experimental Genetics, TUM School of Life Science, Technische Universität Munich, Freising, Germany.
| |
Collapse
|
138
|
Abstract
BACKGROUND Paediatric cardiomyopathy is a progressive, often lethal disorder and the most common cause of heart failure in children. Despite its severe outcomes, the genetic aetiology is still poorly characterised. High-throughput sequencing offers a great opportunity for a better understanding of the genetic causes of cardiomyopathy. AIM The current study aimed to elucidate the genetic background of cardiomyopathy in Egyptian children. METHODS This hospital-based study involved 68 patients; 58 idiopathic primary dilated cardiomyopathy and 10 left ventricular noncompaction cardiomyopathy. Cardiomyopathy-associated genes were investigated using targeted next-generation sequencing. RESULTS Consanguinity was positive in 53 and 70% of dilated cardiomyopathy and left ventricular noncompaction cardiomyopathy patients, respectively. Positive family history of cardiomyopathy was present in 28% of dilated cardiomyopathy and 10% of the left ventricular noncompaction cardiomyopathy patients. In 25 patients, 29 rare variants were detected; 2 likely pathogenic variants in TNNI3 and TTN and 27 variants of uncertain significance explaining 2.9% of patients. CONCLUSIONS The low genetic detection rate suggests that novel genes or variants might underlie paediatric cardiomyopathy in Egypt, especially with the high burden of consanguinity. Being the first national and regional report, our study could be a reference for future genetic testing in Egyptian cardiomyopathy children. Genome-wide tests (whole exome/genome sequencing) might be more suitable than the targeted sequencing to investigate the primary cardiomyopathy patients. Molecular characterisation of cardiomyopathies in different ethnicities will allow for global comparative studies that could result in understanding the pathophysiology and heterogeneity of cardiomyopathies.
Collapse
|
139
|
Lodato V, Parlapiano G, Calì F, Silvetti MS, Adorisio R, Armando M, El Hachem M, Romanzo A, Dionisi-Vici C, Digilio MC, Novelli A, Drago F, Raponi M, Baban A. Cardiomyopathies in Children and Systemic Disorders When Is It Useful to Look beyond the Heart? J Cardiovasc Dev Dis 2022; 9:47. [PMID: 35200700 PMCID: PMC8877723 DOI: 10.3390/jcdd9020047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 11/16/2022] Open
Abstract
Cardiomyopathy (CMP) is a rare disease in the pediatric population, with a high risk of morbidity and mortality. The genetic etiology of CMPs in children is extremely heterogenous. These two factors play a major role in the difficulties of establishing standard diagnostic and therapeutic protocols. Isolated CMP in children is a frequent finding, mainly caused by sarcomeric gene variants with a detection rate that can reach up to 50% of analyzed cohorts. Complex multisystemic forms of pediatric CMP are even more heterogenous. Few studies in literature take into consideration this topic as the main core since it represents a rarity (systemic CMP) within a rarity (pediatric population CMP). Identifying etiology in this cohort is essential for understanding prognosis, risk stratification, eligibility to heart transplantation and/or mechanical-assisted procedures, preventing multiorgan complications, and relatives' recurrence risk calculation. The previous points represent a cornerstone in patients' empowerment and personalized medical care approach. The aim of this work is to propose a new approach for an algorithm in the setting of the diagnostic framework of systemic pediatric CMP. On the other hand, during the literature review, we noticed a relatively common etiologic pattern in some forms of complex/multisystem CMP. In other words, certain syndromes such as Danon, Vici, Alström, Barth, and Myhre syndrome share a common pathway of directly or indirectly defective "autophagy" process, which appears to be a possible initiating/triggering factor for CMPs. This conjoint aspect could be important for possible prognostic/therapeutic implications in this category of patients. However, multicentric studies detailed functional and experimental models are needed prior to deriving conclusions.
Collapse
Affiliation(s)
- Valentina Lodato
- The European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart-ERN GUARD-Heart, Pediatric Cardiology and Arrhythmia/Syncope Units, Bambino Gesù Children Hospital and Research Institute, IRCCS, 00165 Rome, Italy; (V.L.); (G.P.); (F.C.); (M.S.S.); (F.D.)
| | - Giovanni Parlapiano
- The European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart-ERN GUARD-Heart, Pediatric Cardiology and Arrhythmia/Syncope Units, Bambino Gesù Children Hospital and Research Institute, IRCCS, 00165 Rome, Italy; (V.L.); (G.P.); (F.C.); (M.S.S.); (F.D.)
- Laboratory of Medical Genetics, Bambino Gesù Children Hospital and Research Institute, IRCCS, 00165 Rome, Italy;
| | - Federica Calì
- The European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart-ERN GUARD-Heart, Pediatric Cardiology and Arrhythmia/Syncope Units, Bambino Gesù Children Hospital and Research Institute, IRCCS, 00165 Rome, Italy; (V.L.); (G.P.); (F.C.); (M.S.S.); (F.D.)
| | - Massimo Stefano Silvetti
- The European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart-ERN GUARD-Heart, Pediatric Cardiology and Arrhythmia/Syncope Units, Bambino Gesù Children Hospital and Research Institute, IRCCS, 00165 Rome, Italy; (V.L.); (G.P.); (F.C.); (M.S.S.); (F.D.)
| | - Rachele Adorisio
- Heart Failure Clinic-Heart Failure, Heart Transplant, Mechanical Circulatory Support Unit, Department of Pediatric Cardiology and Cardiac Surgery, Heart and Lung Transplant, Bambino Gesù Children Hospital and Research Institute, IRCCS, 00165 Rome, Italy;
| | - Michela Armando
- Department of Neuroscience and Neurorehabilitation, Bambino Gesù Children Hospital and Research Institute, IRCCS, 00165 Rome, Italy;
| | - May El Hachem
- Dermatology and Genodermatosis Units, Genetics and Rare Disease Research Division, Bambino Gesù Children Hospital and Research Institute, IRCCS, 00165 Rome, Italy;
| | - Antonino Romanzo
- Ophtalmology Unit, Bambino Gesù Children Hospital and Research Institute, IRCCS, 00165 Rome, Italy;
| | - Carlo Dionisi-Vici
- Division of Metabolism, Bambino Gesù Children Hospital and Research Institute, IRCCS, 00165 Rome, Italy;
| | - Maria Cristina Digilio
- Genetics and Rare Diseases Research Division, Bambino Gesù Children Hospital and Research Institute, IRCCS, 00165 Rome, Italy;
| | - Antonio Novelli
- Laboratory of Medical Genetics, Bambino Gesù Children Hospital and Research Institute, IRCCS, 00165 Rome, Italy;
| | - Fabrizio Drago
- The European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart-ERN GUARD-Heart, Pediatric Cardiology and Arrhythmia/Syncope Units, Bambino Gesù Children Hospital and Research Institute, IRCCS, 00165 Rome, Italy; (V.L.); (G.P.); (F.C.); (M.S.S.); (F.D.)
| | - Massimiliano Raponi
- Medical Direction, Bambino Gesù Children Hospital, IRCCS, 00165 Rome, Italy;
| | - Anwar Baban
- The European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart-ERN GUARD-Heart, Pediatric Cardiology and Arrhythmia/Syncope Units, Bambino Gesù Children Hospital and Research Institute, IRCCS, 00165 Rome, Italy; (V.L.); (G.P.); (F.C.); (M.S.S.); (F.D.)
| |
Collapse
|
140
|
Brickler M, Raskin A, Ryan TD. Current State of Pediatric Cardio-Oncology: A Review. CHILDREN (BASEL, SWITZERLAND) 2022; 9:127. [PMID: 35204848 PMCID: PMC8870613 DOI: 10.3390/children9020127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/23/2021] [Accepted: 11/30/2021] [Indexed: 01/03/2023]
Abstract
The landscape of pediatric oncology has dramatically changed over the course of the past several decades with five-year survival rates surpassing 80%. Anthracycline therapy has been the cornerstone of many chemotherapy regimens for pediatric patients since its introduction in the 1960s, and recent improved survival has been in large part due to advancements in chemotherapy, refinement of supportive care treatments, and development of novel therapeutics such as small molecule inhibitors, chimeric antigen receptor T-cell therapy, and immune checkpoint inhibitors. Unfortunately, many cancer-targeted therapies can lead to acute and chronic cardiovascular pathologies. The range of cardiotoxicity can vary but includes symptomatic or asymptotic heart failure, arrhythmias, coronary artery disease, valvar disease, pericardial disease, hypertension, and peripheral vascular disease. There is lack of data guiding primary prevention and treatment strategies in the pediatric population, which leads to substantial practice variability. Several important future research directions have been identified, including as they relate to cardiac disease, prevention strategies, management of cardiovascular risk factors, risk prediction, early detection, and the role of genetic susceptibility in development of cardiotoxicity. Continued collaborative research will be key in advancing the field. The ideal model for pediatric cardio-oncology is a proactive partnership between pediatric cardiologists and oncologists in order to better understand, treat, and ideally prevent cardiac disease in pediatric oncology patients.
Collapse
Affiliation(s)
| | | | - Thomas D. Ryan
- Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA;
| |
Collapse
|
141
|
Primary Disease, Sex, and Racial Differences in Health-Related Quality of Life in Adolescents and Young Adults with Heart Failure. Pediatr Cardiol 2022; 43:1568-1577. [PMID: 35378609 PMCID: PMC8979480 DOI: 10.1007/s00246-022-02884-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 03/21/2022] [Indexed: 11/22/2022]
Abstract
Health-related quality of life (HRQOL) is an important clinical and research trial endpoint in adult heart failure and has been shown to predict mortality and hospitalizations in adult heart failure populations. HRQOL has not been adequately studied in the growing pediatric and young adult heart failure population. This study described HRQOL in adolescents and young adults (AYAs) with heart failure and examined primary disease, sex, race, and other correlates of HRQOL in this sample. Participants in this cross-sectional, single-center study included adolescent and young adults with heart failure and a parent/guardian. Patients and their parent/proxies completed the PedsQL, a well-established measure of HRQOL in pediatric chronic illness populations. HRQOL is impaired in AYAs with heart failure resulting from dilated, hypertrophic, or other cardiomyopathy, congenital heart disease, or post-transplant with rejection/complications. Patients identifying as white endorsed poorer total HRQOL than non-white patients (p = 0.002). Subscale analysis revealed significant correlations between female sex (p = 0.01) and white race (p = 0.01) with poorer self-reported physical functioning. Family income was unrelated to HRQOL. Functional status was strongly associated with total (p = 0.0003) and physical HRQOL (p < 0.0001). Sociodemographic and disease-specific risk and resilience factors specific to HRQOL in AYAs with heart failure include primary cardiac disease, race, sex, and functional status. Building upon extensive work in adult heart failure, utilization, and study of HRQOL as a clinical and research trial outcome is necessary in pediatric heart failure. Developing targeted interventions for those at greatest risk of impaired HRQOL is an important next step.
Collapse
|
142
|
Comprehensive Genetic Testing for Pediatric Hypertrophic Cardiomyopathy Reveals Clinical Management Opportunities and Syndromic Conditions. Pediatr Cardiol 2022; 43:616-623. [PMID: 34714385 PMCID: PMC8554517 DOI: 10.1007/s00246-021-02764-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 10/25/2021] [Indexed: 11/13/2022]
Abstract
Hypertrophic cardiomyopathy (HCM) has historically been diagnosed phenotypically. Through genetic testing, identification of a molecular diagnosis (MolDx) is increasingly common but the impact on pediatric patients is unknown. This was a retrospective study of next-generation sequencing data for 602 pediatric patients with a clinician-reported history of HCM. Diagnostic yield was stratified by gene and self-reported race/ethnicity. A MolDx of HCM was identified in 242 (40%) individuals. Sarcomeric genes were the highest yielding, but pathogenic and/or likely pathogenic (P/LP) variants in syndromic genes were found in 36% of individuals with a MolDx, often in patients without documented clinical suspicion for a genetic syndrome. Among all MolDx, 73% were in genes with established clinical management recommendations and 2.9% were in genes that conferred eligibility for clinical trial enrollment. Black patients were the least likely to receive a MolDx. In the current era, genetic testing can impact management of HCM, beyond diagnostics or prognostics, through disease-specific guidelines or clinical trial eligibility. Genetic testing frequently can help identify syndromes in patients for whom syndromes may not be suspected. These findings highlight the importance of pursuing broad genetic testing, independent of suspicion based on phenotype. Lower rates of MolDx in Black patients may contribute to health inequities. Further research is needed evaluating the genetics of HCM in underrepresented/underserved populations. Additionally, research related to the impact of genetic testing on clinical management of other diseases is warranted.
Collapse
|
143
|
Patient-Specific Modelling and Parameter Optimisation to Simulate Dilated Cardiomyopathy in Children. Cardiovasc Eng Technol 2022; 13:712-724. [PMID: 35194766 PMCID: PMC9616749 DOI: 10.1007/s13239-022-00611-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 02/02/2022] [Indexed: 01/27/2023]
Abstract
PURPOSE Lumped parameter modelling has been widely used to simulate cardiac function and physiological scenarios in cardiovascular research. Whereas several patient-specific lumped parameter models have been reported for adults, there is a limited number of studies aiming to simulate cardiac function in children. The aim of this study is to simulate patient-specific cardiovascular dynamics in children diagnosed with dilated cardiomyopathy, using a lumped parameter model. METHODS Patient data including age, gender, heart rate, left and right ventricular end-systolic and end-diastolic volumes, cardiac output, systolic and diastolic aortic pressures were collected from 3 patients at Great Ormond Street Hospital for Children, London, UK. Ventricular geometrical data were additionally retrieved from cardiovascular magnetic resonance images. 23 parameters in the lumped parameter model were optimised to simulate systolic and diastolic pressures, end-systolic and end-diastolic volumes, cardiac output and left and right ventricular diameters in the patients using a direct search optimisation method. RESULTS Difference between the haemodynamic parameters in the optimised cardiovascular system models and clinical data was less than 10%. CONCLUSION The simulation results show the potential of patient-specific lumped parameter modelling to simulate clinical cases. Modelling patient specific cardiac function and blood flow in the paediatric patients would allow us to evaluate a variety of physiological scenarios and treatment options.
Collapse
|
144
|
Monda E, Verrillo F, Altobelli I, Lioncino M, Caiazza M, Rubino M, Cirillo A, Fusco A, Esposito A, Di Fraia F, Pacileo R, Gragnano F, Passariello A, Calabrò P, Russo MG, Limongelli G. Natural history of left ventricular hypertrophy in infants of diabetic mothers. Int J Cardiol 2021; 350:77-82. [PMID: 34968628 DOI: 10.1016/j.ijcard.2021.12.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 11/17/2021] [Accepted: 12/23/2021] [Indexed: 11/05/2022]
Abstract
BACKGROUND This study sought to describe the characteristics and the natural course of left ventricular hypertrophy (LVH) in a well-characterized consecutive cohort of infants of diabetic mothers (IDMs). METHODS Sixty consecutive IDMs with LVH have been retrospectively identified and enrolled in the study. All IDMs were evaluated at baseline and every 6 months until LV wall thickness regression, defined as the decrease of wall thickness measurement into the normal reference range for cardiac parameters (z-score > -2 and < 2). A comprehensive assessment was performed in those patients with diagnostic markers suggestive of a different cause and/or without significant reduction of the LVH during follow-up. RESULTS At 1-year follow-up, all IDMs showed a significant reduction of maximal wall thickness MWT (6.00 mm [IQR 5.00-712] vs. 5.50 mm [IQR 5.00-6.00], p-value <0.001; MWT-z-score: 4.86 [IQR 3.93-7.61] vs. 1.72 [IQR 1.08-2.85], p-value <0.001) compared to baseline, and all patients showed LV wall thickness regression or residual mild or moderate LVH (57%, 28%, and 12%, respectively), except 2 patients with persistent severe LVH, that after a comprehensive clinical-genetic assessment were diagnosed as Noonan syndrome with multiple lentigines. At multivariate analysis, MWT was negatively associated with LV wall thickness regression at 1-year follow-up (MWT-mm: OR 0.48[0.29-0.79], p-value = 0.004; MWT-z-score: OR 0.71[0.56-0.90], p-value = 0.004). CONCLUSIONS LVH in IDMs represents a benign condition with complete regression during the first years of life. In those patients without LV wall thickness regression, combined with clinical markers suggesting a specific disease, a complete work-up is required for a definite diagnosis.
Collapse
Affiliation(s)
- Emanuele Monda
- Inherited and Rare Cardiovascular Diseases, Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Monaldi Hospital, Naples, Italy
| | - Federica Verrillo
- Inherited and Rare Cardiovascular Diseases, Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Monaldi Hospital, Naples, Italy
| | - Ippolita Altobelli
- Inherited and Rare Cardiovascular Diseases, Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Monaldi Hospital, Naples, Italy
| | - Michele Lioncino
- Inherited and Rare Cardiovascular Diseases, Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Monaldi Hospital, Naples, Italy
| | - Martina Caiazza
- Inherited and Rare Cardiovascular Diseases, Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Monaldi Hospital, Naples, Italy
| | - Marta Rubino
- Inherited and Rare Cardiovascular Diseases, Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Monaldi Hospital, Naples, Italy
| | - Annapaola Cirillo
- Inherited and Rare Cardiovascular Diseases, Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Monaldi Hospital, Naples, Italy
| | - Adelaide Fusco
- Inherited and Rare Cardiovascular Diseases, Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Monaldi Hospital, Naples, Italy
| | - Augusto Esposito
- Inherited and Rare Cardiovascular Diseases, Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Monaldi Hospital, Naples, Italy
| | - Francesco Di Fraia
- Inherited and Rare Cardiovascular Diseases, Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Monaldi Hospital, Naples, Italy
| | - Roberta Pacileo
- Inherited and Rare Cardiovascular Diseases, Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Monaldi Hospital, Naples, Italy
| | - Felice Gragnano
- Division of Cardiology, Department of Translational Medicine, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Annalisa Passariello
- Inherited and Rare Cardiovascular Diseases, Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Monaldi Hospital, Naples, Italy
| | - Paolo Calabrò
- Division of Cardiology, Department of Translational Medicine, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Maria Giovanna Russo
- Inherited and Rare Cardiovascular Diseases, Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Monaldi Hospital, Naples, Italy
| | - Giuseppe Limongelli
- Inherited and Rare Cardiovascular Diseases, Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Monaldi Hospital, Naples, Italy.
| |
Collapse
|
145
|
Pezzoli L, Pezzani L, Bonanomi E, Marrone C, Scatigno A, Cereda A, Bedeschi MF, Selicorni A, Gasperini S, Bini P, Maitz S, Maccioni C, Pedron C, Colombo L, Marchetti D, Bellini M, Lincesso AR, Perego L, Pingue M, Della Malva N, Mangili G, Ferrazzi P, Iascone M. Not Only Diagnostic Yield: Whole-Exome Sequencing in Infantile Cardiomyopathies Impacts on Clinical and Family Management. J Cardiovasc Dev Dis 2021; 9:jcdd9010002. [PMID: 35050212 PMCID: PMC8780486 DOI: 10.3390/jcdd9010002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/14/2021] [Accepted: 12/17/2021] [Indexed: 12/26/2022] Open
Abstract
Whole-exome sequencing (WES) is a powerful and comprehensive tool for the genetic diagnosis of rare diseases, but few reports describe its timely application and clinical impact on infantile cardiomyopathies (CM). We conducted a retrospective analysis of patients with infantile CMs who had trio (proband and parents)-WES to determine whether results contributed to clinical management in urgent and non-urgent settings. Twenty-nine out of 42 enrolled patients (69.0%) received a definitive molecular diagnosis. The mean time-to-diagnosis was 9.7 days in urgent settings, and 17 out of 24 patients (70.8%) obtained an etiological classification. In non-urgent settings, the mean time-to-diagnosis was 225 days, and 12 out of 18 patients (66.7%) had a molecular diagnosis. In 37 out of 42 patients (88.1%), the genetic findings contributed to clinical management, including heart transplantation, palliative care, or medical treatment, independent of the patient’s critical condition. All 29 patients and families with a definitive diagnosis received specific counseling about recurrence risk, and in seven (24.1%) cases, the result facilitated diagnosis in parents or siblings. In conclusion, genetic diagnosis significantly contributes to patients’ clinical and family management, and trio-WES should be performed promptly to be an essential part of care in infantile cardiomyopathy, maximizing its clinical utility.
Collapse
Affiliation(s)
- Laura Pezzoli
- Laboratorio di Genetica Medica, ASST Papa Giovanni XXIII, 24127 Bergamo, Italy; (L.P.); (L.P.); (D.M.); (M.B.); (A.R.L.); (L.P.); (M.P.); (N.D.M.)
| | - Lidia Pezzani
- Laboratorio di Genetica Medica, ASST Papa Giovanni XXIII, 24127 Bergamo, Italy; (L.P.); (L.P.); (D.M.); (M.B.); (A.R.L.); (L.P.); (M.P.); (N.D.M.)
- Pediatria ad Alta Intensità di Cura, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milano, Italy
| | - Ezio Bonanomi
- Terapia Intensiva Pediatrica, ASST Papa Giovanni XXIII, 24127 Bergamo, Italy;
| | - Chiara Marrone
- Cardiologia Pediatrica, Fondazione G. Monasterio, 54100 Massa, Italy;
| | - Agnese Scatigno
- Pediatria, ASST Papa Giovanni XXIII, 24127 Bergamo, Italy; (A.S.); (A.C.)
| | - Anna Cereda
- Pediatria, ASST Papa Giovanni XXIII, 24127 Bergamo, Italy; (A.S.); (A.C.)
| | - Maria Francesca Bedeschi
- Genetica Medica, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milano, Italy;
| | | | - Serena Gasperini
- Malattie Metaboliche Rare, Dipartimento di Pediatria, Fondazione MBBM, ASST, 20900 Monza, Italy;
| | - Paolo Bini
- Terapia Intensiva Neonatale, ASST Lariana, 22100 Como, Italy;
| | - Silvia Maitz
- Ambulatorio di Genetica Pediatrica, Clinica Pediatrica, Fondazione MBBM, Ospedale S. Gerardo, 20900 Monza, Italy;
| | - Carla Maccioni
- Terapia Intensiva Neonatale, Ospedale A. Manzoni, ASST, 23900 Lecco, Italy;
| | - Cristina Pedron
- Cardiologia, Ospedale di Bolzano, Azienda Sanitaria dell’Alto Adige, 39100 Bolzano, Italy;
| | - Lorenzo Colombo
- NICU Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milano, Italy;
| | - Daniela Marchetti
- Laboratorio di Genetica Medica, ASST Papa Giovanni XXIII, 24127 Bergamo, Italy; (L.P.); (L.P.); (D.M.); (M.B.); (A.R.L.); (L.P.); (M.P.); (N.D.M.)
| | - Matteo Bellini
- Laboratorio di Genetica Medica, ASST Papa Giovanni XXIII, 24127 Bergamo, Italy; (L.P.); (L.P.); (D.M.); (M.B.); (A.R.L.); (L.P.); (M.P.); (N.D.M.)
| | - Anna Rita Lincesso
- Laboratorio di Genetica Medica, ASST Papa Giovanni XXIII, 24127 Bergamo, Italy; (L.P.); (L.P.); (D.M.); (M.B.); (A.R.L.); (L.P.); (M.P.); (N.D.M.)
| | - Loredana Perego
- Laboratorio di Genetica Medica, ASST Papa Giovanni XXIII, 24127 Bergamo, Italy; (L.P.); (L.P.); (D.M.); (M.B.); (A.R.L.); (L.P.); (M.P.); (N.D.M.)
| | - Monica Pingue
- Laboratorio di Genetica Medica, ASST Papa Giovanni XXIII, 24127 Bergamo, Italy; (L.P.); (L.P.); (D.M.); (M.B.); (A.R.L.); (L.P.); (M.P.); (N.D.M.)
| | - Nunzia Della Malva
- Laboratorio di Genetica Medica, ASST Papa Giovanni XXIII, 24127 Bergamo, Italy; (L.P.); (L.P.); (D.M.); (M.B.); (A.R.L.); (L.P.); (M.P.); (N.D.M.)
| | - Giovanna Mangili
- Patologia Neonatale, ASST Papa Giovanni XXIII, 24127 Bergamo, Italy;
| | - Paolo Ferrazzi
- Centro Cardiomiopatia Ipertrofica, Policlinico di Monza, 20900 Monza, Italy;
| | - Maria Iascone
- Laboratorio di Genetica Medica, ASST Papa Giovanni XXIII, 24127 Bergamo, Italy; (L.P.); (L.P.); (D.M.); (M.B.); (A.R.L.); (L.P.); (M.P.); (N.D.M.)
- Correspondence: ; Tel.: +39-0352678112
| |
Collapse
|
146
|
Martinez HR, Beasley GS, Goldberg JF, Absi M, Ryan KA, Guerrier K, Joshi VM, Johnson JN, Morin CE, Hurley C, Morrison RR, Rai P, Hankins JS, Bishop MW, Triplett BM, Ehrhardt MJ, Pui CH, Inaba H, Towbin JA. Pediatric Cardio-Oncology Medicine: A New Approach in Cardiovascular Care. CHILDREN (BASEL, SWITZERLAND) 2021; 8:children8121200. [PMID: 34943396 PMCID: PMC8699848 DOI: 10.3390/children8121200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/08/2021] [Accepted: 12/10/2021] [Indexed: 12/11/2022]
Abstract
Survival for pediatric patients diagnosed with cancer has improved significantly. This achievement has been made possible due to new treatment modalities and the incorporation of a systematic multidisciplinary approach for supportive care. Understanding the distinctive cardiovascular characteristics of children undergoing cancer therapies has set the underpinnings to provide comprehensive care before, during, and after the management of cancer. Nonetheless, we acknowledge the challenge to understand the rapid expansion of oncology disciplines. The limited guidelines in pediatric cardio-oncology have motivated us to develop risk-stratification systems to institute surveillance and therapeutic support for this patient population. Here, we describe a collaborative approach to provide wide-ranging cardiovascular care to children and young adults with oncology diseases. Promoting collaboration in pediatric cardio-oncology medicine will ultimately provide excellent quality of care for future generations of patients.
Collapse
Affiliation(s)
- Hugo R. Martinez
- Division of Pediatric Cardiology, The Heart Institute at Le Bonheur Children’s Hospital, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (G.S.B.); (J.F.G.); (M.A.); (K.A.R.); (K.G.); (V.M.J.); (J.N.J.); (J.A.T.)
- Correspondence:
| | - Gary S. Beasley
- Division of Pediatric Cardiology, The Heart Institute at Le Bonheur Children’s Hospital, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (G.S.B.); (J.F.G.); (M.A.); (K.A.R.); (K.G.); (V.M.J.); (J.N.J.); (J.A.T.)
| | - Jason F. Goldberg
- Division of Pediatric Cardiology, The Heart Institute at Le Bonheur Children’s Hospital, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (G.S.B.); (J.F.G.); (M.A.); (K.A.R.); (K.G.); (V.M.J.); (J.N.J.); (J.A.T.)
| | - Mohammed Absi
- Division of Pediatric Cardiology, The Heart Institute at Le Bonheur Children’s Hospital, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (G.S.B.); (J.F.G.); (M.A.); (K.A.R.); (K.G.); (V.M.J.); (J.N.J.); (J.A.T.)
| | - Kaitlin A. Ryan
- Division of Pediatric Cardiology, The Heart Institute at Le Bonheur Children’s Hospital, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (G.S.B.); (J.F.G.); (M.A.); (K.A.R.); (K.G.); (V.M.J.); (J.N.J.); (J.A.T.)
| | - Karine Guerrier
- Division of Pediatric Cardiology, The Heart Institute at Le Bonheur Children’s Hospital, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (G.S.B.); (J.F.G.); (M.A.); (K.A.R.); (K.G.); (V.M.J.); (J.N.J.); (J.A.T.)
| | - Vijaya M. Joshi
- Division of Pediatric Cardiology, The Heart Institute at Le Bonheur Children’s Hospital, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (G.S.B.); (J.F.G.); (M.A.); (K.A.R.); (K.G.); (V.M.J.); (J.N.J.); (J.A.T.)
| | - Jason N. Johnson
- Division of Pediatric Cardiology, The Heart Institute at Le Bonheur Children’s Hospital, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (G.S.B.); (J.F.G.); (M.A.); (K.A.R.); (K.G.); (V.M.J.); (J.N.J.); (J.A.T.)
| | - Cara E. Morin
- Department of Diagnostic Imaging, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA;
| | - Caitlin Hurley
- Division of Critical Care Medicine, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (C.H.); (R.R.M.)
- Department of Bone Marrow Transplantation & Cellular Therapy, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA;
| | - Ronald Ray Morrison
- Division of Critical Care Medicine, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (C.H.); (R.R.M.)
| | - Parul Rai
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (P.R.); (J.S.H.)
| | - Jane S. Hankins
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (P.R.); (J.S.H.)
| | - Michael W. Bishop
- Division of Solid Tumor, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA;
| | - Brandon M. Triplett
- Department of Bone Marrow Transplantation & Cellular Therapy, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA;
| | - Matthew J. Ehrhardt
- Division of Cancer Survivorship, Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA;
- Department of Epidemiology and Cancer Control, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Ching-Hon Pui
- Division of Leukemia/Lymphoma, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (C.-H.P.); (H.I.)
| | - Hiroto Inaba
- Division of Leukemia/Lymphoma, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (C.-H.P.); (H.I.)
| | - Jeffrey A. Towbin
- Division of Pediatric Cardiology, The Heart Institute at Le Bonheur Children’s Hospital, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (G.S.B.); (J.F.G.); (M.A.); (K.A.R.); (K.G.); (V.M.J.); (J.N.J.); (J.A.T.)
| |
Collapse
|
147
|
Gurunathan S, Sebastian J, Baker J, Abdel-Hamid HZ, West SC, Feingold B, Peche V, Reyes-Múgica M, Madan-Khetarpal S, Field J. A homozygous CAP2 pathogenic variant in a neonate presenting with rapidly progressive cardiomyopathy and nemaline rods. Am J Med Genet A 2021; 188:970-977. [PMID: 34862840 DOI: 10.1002/ajmg.a.62590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 10/21/2021] [Accepted: 11/02/2021] [Indexed: 11/09/2022]
Abstract
Nemaline Myopathy (NM) is a disorder of skeletal muscles caused by mutations in sarcomere proteins and characterized by accumulation of microscopic rod or thread-like structures (nemaline bodies) in skeletal muscles. Patients diagnosed with both NM and infantile cardiomyopathy are very rare. A male infant presented, within the first few hours of life, with severe dilated cardiomyopathy, biventricular dysfunction and left ventricular noncompaction. A muscle biopsy on the 8th day of life from the right sternocleidomastoid muscle identified nemaline rods. Whole exome sequencing identified a c.1288 delT (homozygous pathogenic variant) in the CAP2 gene (NM_006366), yielding a CAP2 protein (NP_006357.1) with a p.C430fs. Both parents were heterozygous for the same variant but have no history of heart or muscle disease. Analysis of patient derived fibroblasts and cardiomyocytes derived from induced pluripotent stem cells confirmed the p.C430fs mutation (pathogenic variant), which appears to cause loss of both CAP2 protein and mRNA. The CAP2 gene encodes cyclase associated protein 2, an actin monomer binding and filament depolymerizing protein and CAP2 knockout mice develop severe dilated cardiomyopathy and muscle weakness. The patient underwent a heart transplant at 1 year of age. Heart tissue explanted at that time also showed nemaline rods and additionally disintegration of the myofibrillar structure. Other extra cardiac concerns include mild hypotonia, atrophic and widened scarring. This is the first description of a patient presenting with nemaline myopathy associated with a pathogenic variant of CAP2.
Collapse
Affiliation(s)
- Sharavana Gurunathan
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jessica Sebastian
- Department of Pediatrics, Division of Medical Genetics and Genomic Medicine, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jennifer Baker
- Department of Pediatrics, Division of Medical Genetics and Genomic Medicine, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Hoda Z Abdel-Hamid
- Department of Pediatrics, Division of Child Neurology, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Shawn C West
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Brian Feingold
- Department of Pediatrics and Clinical and Translational Science, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Vivek Peche
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Miguel Reyes-Múgica
- Department of Pathology, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Suneeta Madan-Khetarpal
- Department of Pediatrics, Division of Medical Genetics and Genomic Medicine, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jeffrey Field
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
148
|
Li TT, Li HY, Cheng J. Changes of serum uric acid and its clinical correlation in children with dilated cardiomyopathy. Transl Pediatr 2021; 10:3211-3217. [PMID: 35070835 PMCID: PMC8753472 DOI: 10.21037/tp-21-537] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 12/14/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Dilated cardiomyopathy (DCM) is the most common type of childhood cardiomyopathy and uric acid (UA) is considered closely associated with cardiovascular disease. There are few reports about the relationship between serum UA level and DCM in children, and the present study aimed to analyze the changes and clinical correlation of the two. METHODS The clinical data of 49 children under 16 years old and who were hospitalized with DCM, and 44 healthy children who underwent physical examination in the same period at Tianjin Children's Hospital from June 2015 to November 2019 were analyzed retrospectively. RESULTS The 49 children in the case group included 17 males and 32 females, aged from 2 to 172 months. The case group were divided into New York Heart Association (NYHA) functional class I (n=2), class II (n=17), class III (n=11), and class IV (n=19). The 44 healthy children selected as the control group included 20 males and 24 females aged from 2 to 161 months. The serum UA level was detected, and an ultrasonic cardiogram was conducted in each child. The serum UA level, left ventricular end-diastolic diameter (LVEDD), left ventricular end-systolic diameter (LVESD), and left atrial diameter (LAD) of the case group were higher than that of the control group, while the left ventricular ejection fraction (LVEF) and left ventricular fractional shortening (LVFS) were lower than that of the control group, and significant statistical differences were seen between the two groups (P<0.01). The serum UA level, LVEDD, LVESD, and LAD of NYHAIII-IV class patients were higher than that of the NYHAI-II class, but LVEF and LVFS were lower than that of the NYHA I-II class, and there were significant statistical differences between the two groups (P<0.01). Statistical correlations were seen between the serum UA level and NYHA functional class, LVEDD, LVESD, LAD, LVEF, and LVFS (rs=0.599, 0.567, 0.579, 0.475, -0.333, -0.341, respectively, P<0.05). CONCLUSIONS Elevated serum UA levels exist in children with DCM and correlate with NYHA functional class and ultrasonic values. Change in serum UA levels may be used as a biomarker reflecting the severity of DCM in children.
Collapse
Affiliation(s)
- Ting-Ting Li
- Department of Cardiology, Tianjin Children's Hospital/Tianjin University Children's Hospital, Tianjin, China
| | - Hao-Ying Li
- Department of Cardiology, Tianjin Children's Hospital/Tianjin University Children's Hospital, Tianjin, China
| | - Ji Cheng
- Department of Cardiology, Tianjin Children's Hospital/Tianjin University Children's Hospital, Tianjin, China
| |
Collapse
|
149
|
Garcia-Canadilla P, Sanchez-Martinez S, Martí-Castellote PM, Slorach C, Hui W, Piella G, Aguado AM, Nogueira M, Mertens L, Bijnens BH, Friedberg MK. Machine-learning–based exploration to identify remodeling patterns associated with death or heart-transplant in pediatric-dilated cardiomyopathy. J Heart Lung Transplant 2021; 41:516-526. [DOI: 10.1016/j.healun.2021.11.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 10/27/2021] [Accepted: 11/29/2021] [Indexed: 10/19/2022] Open
|
150
|
Parker LE, Landstrom AP. The clinical utility of pediatric cardiomyopathy genetic testing: From diagnosis to a precision medicine-based approach to care. PROGRESS IN PEDIATRIC CARDIOLOGY 2021; 62. [PMID: 34776723 DOI: 10.1016/j.ppedcard.2021.101413] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Background Pediatric-onset cardiomyopathies are rare yet cause significant morbidity and mortality in affected children. Genetic testing has a major role in the clinical evaluation of pediatric-onset cardiomyopathies, and identification of a variant in an associated gene can be used to confirm the clinical diagnosis and exclude syndromic causes that may warrant different treatment strategies. Further, risk-predictive testing of first-degree relatives can assess who is at-risk of disease and requires continued clinical follow-up. Aim of Review In this review, we seek to describe the current role of genetic testing in the clinical diagnosis and management of patients and families with the five major cardiomyopathies. Further, we highlight the ongoing development of precision-based approaches to diagnosis, prognosis, and treatment. Key Scientific Concepts of Review Emerging application of genotype-phenotype correlations opens the door for genetics to guide a precision medicine-based approach to prognosis and potentially for therapies. Despite advances in our understanding of the genetic etiology of cardiomyopathy and increased accessibility of clinical genetic testing, not all pediatric cardiomyopathy patients have a clear genetic explanation for their disease. Expanded genomic studies are needed to understand the cause of disease in these patients, improve variant classification and genotype-driven prognostic predictions, and ultimately develop truly disease preventing treatment.
Collapse
Affiliation(s)
- Lauren E Parker
- Department of Pediatrics, Division of Cardiology, Duke University School of Medicine, Durham, NC, United States
| | - Andrew P Landstrom
- Department of Pediatrics, Division of Cardiology, Duke University School of Medicine, Durham, NC, United States.,Department of Cell Biology, Duke University School of Medicine, Durham, NC, United States
| |
Collapse
|