101
|
Nagata Y, Watanabe R, Eichhorn C, Ohno S, Aiba T, Ishikawa T, Nakano Y, Aizawa Y, Hayashi K, Murakoshi N, Nakajima T, Yagihara N, Mishima H, Sudo T, Higuchi C, Takahashi A, Sekine A, Makiyama T, Tanaka Y, Watanabe A, Tachibana M, Morita H, Yoshiura KI, Tsunoda T, Watanabe H, Kurabayashi M, Nogami A, Kihara Y, Horie M, Shimizu W, Makita N, Tanaka T. Targeted deep sequencing analyses of long QT syndrome in a Japanese population. PLoS One 2022; 17:e0277242. [PMID: 36480497 PMCID: PMC9731492 DOI: 10.1371/journal.pone.0277242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 10/22/2022] [Indexed: 12/13/2022] Open
Abstract
Long QT syndrome (LQTS) is one of the most common inherited arrhythmias and multiple genes have been reported as causative. Presently, genetic diagnosis for LQTS patients is becoming widespread and contributing to implementation of therapies. However, causative genetic mutations cannot be detected in about 20% of patients. To elucidate additional genetic mutations in LQTS, we performed deep-sequencing of previously reported 15 causative and 85 candidate genes for this disorder in 556 Japanese LQTS patients. We performed in-silico filtering of the sequencing data and found 48 novel variants in 33 genes of 53 cases. These variants were predicted to be damaging to coding proteins or to alter the binding affinity of several transcription factors. Notably, we found that most of the LQTS-related variants in the RYR2 gene were in the large cytoplasmic domain of the N-terminus side. They might be useful for screening of LQTS patients who had no known genetic factors. In addition, when the mechanisms of these variants in the development of LQTS are revealed, it will be useful for early diagnosis, risk stratification, and selection of treatment.
Collapse
Affiliation(s)
- Yuki Nagata
- Bioresourse Research Center, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
- Department of Human Genetics and Disease Diversity, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Ryo Watanabe
- Department of Human Genetics and Disease Diversity, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Christian Eichhorn
- Department of Human Genetics and Disease Diversity, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
- Private University of the Principality of Liechtenstein, Triesen, Liechtenstein
| | - Seiko Ohno
- Department of Bioscience and Genetics, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Takeshi Aiba
- Devision of Arrhythmia, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Taisuke Ishikawa
- Omics Research Center, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Yukiko Nakano
- Department of Cardiovascular Medicine, Hiroshima University, Hiroshima, Japan
| | - Yoshiyasu Aizawa
- Department of Cardiology, International University of Health and Welfare Narita Hospital, Narita, Japan
| | - Kenshi Hayashi
- Department of Cardiovascular Medicine, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Nobuyuki Murakoshi
- Department of Cardiology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Tadashi Nakajima
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Nobue Yagihara
- Department of Cardiovascular Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Hiroyuki Mishima
- Department of Human Genetics, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
| | - Takeaki Sudo
- Institute of Education, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Chihiro Higuchi
- Artificial Intelligence Center for Health and Biomedical Research, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Japan
| | - Atsushi Takahashi
- Department of Genomic Medicine, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Akihiro Sekine
- Department of Infection and Host Defense, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Takeru Makiyama
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yoshihiro Tanaka
- Center for Arrhythmia Research, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Atsuyuki Watanabe
- Department of Cardiology, National Hospital Organization Okayama Medical Center, Okayama, Japan
| | - Motomi Tachibana
- Department of Cardiology, Sakakibara heart institute of Okayama, Okayama, Japan
| | - Hiroshi Morita
- Department of Cardiovascular Therapeutics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Koh-ichiro Yoshiura
- Department of Human Genetics, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
- Division of Advanced Preventive Medical Sciences and Leading Medical Research Core Unit, Nagasaki Univerisity Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Tatsuhiko Tsunoda
- Laboratory for Medical Science Mathematics, Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
- Laboratory for Medical Science Mathematics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Hiroshi Watanabe
- Department of Cardiovascular Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Masahiko Kurabayashi
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Akihiko Nogami
- Department of Cardiology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Yasuki Kihara
- Department of Cardiovascular Medicine, Hiroshima University, Hiroshima, Japan
| | - Minoru Horie
- Department of Cardiovascular Medicine, Shiga University of Medical Science, Otsu, Japan
| | - Wataru Shimizu
- Department of Cardiovascular Medicine, Nippon Medical School, Tokyo, Japan
| | - Naomasa Makita
- Omics Research Center, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Toshihiro Tanaka
- Bioresourse Research Center, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
- Department of Human Genetics and Disease Diversity, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| |
Collapse
|
102
|
Genome Editing and Myocardial Development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1396:53-73. [PMID: 36454459 DOI: 10.1007/978-981-19-5642-3_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Congenital heart disease (CHD) has a strong genetic etiology, making it a likely candidate for therapeutic intervention using genetic editing. Complex genetics involving an orchestrated series of genetic events and over 400 genes are responsible for myocardial development. Cooperation is required from a vast series of genetic networks, and mutations in such can lead to CHD and cardiovascular abnormalities, affecting up to 1% of all live births. Genome editing technologies are becoming better studied and with time and improved logistics, CHD could be a prime therapeutic target. Syndromic, nonsyndromic, and cases of familial inheritance all involve identifiable causative mutations and thus have the potential for genome editing therapy. Mouse models are well-suited to study and predict clinical outcome. This review summarizes the anatomical and genetic timeline of myocardial development in both mice and humans, the potential of gene editing in typical CHD categories, as well as the use of mice thus far in reproducing models of human CHD and correcting the mutations that create them.
Collapse
|
103
|
Rogers A, Taylor R, Poulik J, Shehata BM. Histopathology of the Conduction System in Long QT Syndrome. Fetal Pediatr Pathol 2022; 41:889-903. [PMID: 34766536 DOI: 10.1080/15513815.2021.2002988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Background: While much is known about the channelopathy disorder Long QT Syndrome (LQTS), the histopathological findings and their implications on the disease have remained largely unexplored to date. In this review, we discuss the background of LQTS and highlight the importance of histological findings in the absence of genetic markers or when genetic testing is unavailable.Materials and methods: Three pediatric cases of LQTS were identified, evaluated histologically, and compared to two adult cases.Results: Histological examination of three pediatric LQTS patients demonstrated fibrotic alterations to the cardiac conduction system with markedly decreased conductive tissue density and volume. Both adult cases revealed fibrosis with similar reductions in tissue volume.Conclusion: When diagnostic methods such as genetic testing are unavailable, histopathology offers clinicians an alternative tool for postmortem diagnosis of LQTS when considered alongside clinical presentation. Confirmation of diagnosis in a proband can prevent the death of relatives in hereditary LQTS.
Collapse
Affiliation(s)
- Alexandra Rogers
- Pediatric Pathology, Children's Hospital of Michigan, Detroit, MI, USA
| | - Rachel Taylor
- Pediatric Pathology, Children's Hospital of Michigan, Detroit, MI, USA
| | - Janet Poulik
- Pediatric Pathology, Children's Hospital of Michigan, Detroit, MI, USA
| | - Bahig M Shehata
- Pediatric Pathology, Children's Hospital of Michigan, Detroit, MI, USA
| |
Collapse
|
104
|
Fenrich AL, Shmorhun DP, Martin GC, Young JA, Cohen MI, Kelleher AS, Anyebuno MA, Rider ED, Motta CL, Clark RH. Long QT and Hearing Loss in High-Risk Infants Prospective Study Registry. Pediatr Cardiol 2022; 43:1898-1902. [PMID: 35661239 DOI: 10.1007/s00246-022-02939-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 05/16/2022] [Indexed: 11/30/2022]
Abstract
The objective of this study is to determine the prevalence of an abnormal electrocardiogram showing a prolonged QTc greater than 450 ms in infants with unilateral or bilateral sensorineural hearing loss. We conducted a prospective study of healthy term infants (≥37 weeks gestational age) who failed their newborn auditory brainstem response hearing screen, were seen by an audiologist and diagnosed as having sensorineural hearing loss during follow-up to 1 year of age. In infants with a diagnosis of hearing loss, we collected a detailed family history and performed an ECG between 2 and 6 months of age. We obtained follow-up for 1 year by calling the parent requesting the hearing and cardiac status of their child. Two of the 40 infants with sensorineural hearing loss (5%) had a QTc greater than 450 ms. Both had mild bilateral hearing loss and genetic testing did not identify a known mutation for long QT syndrome. The remaining 38 infants had QTc intervals of ≤ 450 ms. One patient diagnosed with bilateral severe sensorineural hearing loss had a normal ECG (QTc = 417 ms). Several months after the ECG was performed, the infant's mother contacted the study cardiologist after she learned that the infant's maternal grandmother was diagnosed with a cardiomyopathy and arrhythmias. Genetic testing was recommended even though the child was asymptomatic and was positive for a pathogenic mutation in the KCNQ1 gene. We speculate that molecular genetic testing in infants with hearing loss may become the standard of care rather than targeted electrocardiograms.Clinical Trial Registration NCT02082431 https://www.clinicaltrials.gov/ct2/show/NCT02692521?cond=NCT02692521&rank=1 .
Collapse
Affiliation(s)
| | | | - Gregory C Martin
- Banner University Medical Center, Phoenix, AZ, USA.,Phoenix Children's Hospital, Phoenix, AZ, USA
| | | | | | - Amy S Kelleher
- The MEDNAX Center for Research, Education, Quality and Safety, 1301 Concord Ter, Sunrise, FL, 33323, USA.
| | | | - Evelyn D Rider
- Childrens Hospital at Providence Alaska Medical Center, Anchorage, AK, USA
| | - Cheryl L Motta
- The Childrens Hospital of San Antonio, San Antonio, TX, USA
| | - Reese H Clark
- The MEDNAX Center for Research, Education, Quality and Safety, 1301 Concord Ter, Sunrise, FL, 33323, USA
| |
Collapse
|
105
|
Shiraishi W. Possible convulsion and electroencephalographic abnormality in a patient taking long-term oral clarithromycin: A case report. World J Neurol 2022; 8:10-13. [DOI: 10.5316/wjn.v8.i2.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 10/25/2022] [Accepted: 10/31/2022] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Clarithromycin is a macrolide antibiotic commonly prescribed to patients with upper respiratory and otolaryngological infections. Neuropsychiatric adverse effects of clarithromycin include agitation, insomnia, delirium, psychosis, and seizure.
CASE SUMMARY A 52-year-old man was admitted to our hospital with a convulsion. He had > 10-year history of clarithromycin intake for chronic sinusitis. One week before admission, he started to take diltiazem for angina pectoris. On admission, his convulsion subsided. His electroencephalography showed frontal intermittent rhythmic delta activity. One week after he ceased clarithromycin, his electroencephalographic abnormalities disappeared. We suggested that the patient developed convulsions due to increased blood levels of clarithromycin caused by oral administration of diltiazem, which is involved in CYP3A metabolism.
CONCLUSION Clarithromycin has a relatively high safety profile and is a frequently prescribed drug. However, there are a few previous reports of clarithromycin-related convulsive disorders. Clinicians should be aware of the drug interaction and rare side effects of seizures.
Collapse
Affiliation(s)
- Wataru Shiraishi
- Department of Neurology, Kokura Memorial Hospital, Kitakyushu 802-8555, Fukuoka, Japan
| |
Collapse
|
106
|
Structural mechanisms for the activation of human cardiac KCNQ1 channel by electro-mechanical coupling enhancers. Proc Natl Acad Sci U S A 2022; 119:e2207067119. [PMID: 36763058 PMCID: PMC9661191 DOI: 10.1073/pnas.2207067119] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The cardiac KCNQ1 potassium channel carries the important IKs current and controls the heart rhythm. Hundreds of mutations in KCNQ1 can cause life-threatening cardiac arrhythmia. Although KCNQ1 structures have been recently resolved, the structural basis for the dynamic electro-mechanical coupling, also known as the voltage sensor domain-pore domain (VSD-PD) coupling, remains largely unknown. In this study, utilizing two VSD-PD coupling enhancers, namely, the membrane lipid phosphatidylinositol 4,5-bisphosphate (PIP2) and a small-molecule ML277, we determined 2.5-3.5 Å resolution cryo-electron microscopy structures of full-length human KCNQ1-calmodulin (CaM) complex in the apo closed, ML277-bound open, and ML277-PIP2-bound open states. ML277 binds at the "elbow" pocket above the S4-S5 linker and directly induces an upward movement of the S4-S5 linker and the opening of the activation gate without affecting the C-terminal domain (CTD) of KCNQ1. PIP2 binds at the cleft between the VSD and the PD and brings a large structural rearrangement of the CTD together with the CaM to activate the PD. These findings not only elucidate the structural basis for the dynamic VSD-PD coupling process during KCNQ1 gating but also pave the way to develop new therapeutics for anti-arrhythmia.
Collapse
|
107
|
Dahlberg P, Axelsson K, Jensen SM, Lundahl G, Vahedi F, Perkins R, Gransberg L, Bergfeldt L. Accelerated QT adaptation following atropine-induced heart rate increase in LQT1 patients versus healthy controls: A sign of disturbed hysteresis. Physiol Rep 2022; 10:e15487. [PMID: 36324292 PMCID: PMC9630760 DOI: 10.14814/phy2.15487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/08/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023] Open
Abstract
Hysteresis, a ubiquitous regulatory phenomenon, is a salient feature of the adaptation of ventricular repolarization duration to heart rate (HR) change. We therefore compared the QT interval adaptation to rapid HR increase in patients with the long QT syndrome type 1 (LQT1) versus healthy controls because LQT1 is caused by loss-of-function mutations affecting the repolarizing potassium channel current IKs , presumably an important player in QT hysteresis. The study was performed in an outpatient hospital setting. HR was increased in LQT1 patients and controls by administering an intravenous bolus of atropine (0.04 mg/kg body weight) for 30 s. RR and QT intervals were recorded by continuous Frank vectorcardiography. Atropine induced transient expected side effects but no adverse arrhythmias. There was no difference in HR response (RR intervals) to atropine between the groups. Although atropine-induced ΔQT was 48% greater in 18 LQT1 patients than in 28 controls (p < 0.001), QT adaptation was on average 25% faster in LQT1 patients (measured as the time constant τ for the mono-exponential function and the time for 90% of ΔQT; p < 0.01); however, there was some overlap between the groups, possibly a beta-blocker effect. The shorter QT adaptation time to atropine-induced HR increase in LQT1 patients on the group level corroborates the importance of IKs in QT adaptation hysteresis in humans and shows that LQT1 patients have a disturbed ultra-rapid cardiac memory. On the individual level, the QT adaptation time possibly reflects the effect-size of the loss-of-function mutation, but its clinical implications need to be shown.
Collapse
Affiliation(s)
- Pia Dahlberg
- Department of Molecular and Clinical MedicineInstitute of Medicine, Sahlgrenska Academy, University of GothenburgGothenburgSweden
- Region Västra Götaland, Department of CardiologySahlgrenska University HospitalGothenburgSweden
| | - Karl‐Jonas Axelsson
- Department of Molecular and Clinical MedicineInstitute of Medicine, Sahlgrenska Academy, University of GothenburgGothenburgSweden
- Region Västra Götaland, Department of CardiologySahlgrenska University HospitalGothenburgSweden
| | - Steen M. Jensen
- Department of Public Health and Clinical Medicine, and Heart CentreUmeå UniversityUmeåSweden
| | - Gunilla Lundahl
- Department of Molecular and Clinical MedicineInstitute of Medicine, Sahlgrenska Academy, University of GothenburgGothenburgSweden
| | - Farzad Vahedi
- Department of Molecular and Clinical MedicineInstitute of Medicine, Sahlgrenska Academy, University of GothenburgGothenburgSweden
- Region Västra Götaland, Department of CardiologySahlgrenska University HospitalGothenburgSweden
| | - Rosie Perkins
- Department of Molecular and Clinical MedicineInstitute of Medicine, Sahlgrenska Academy, University of GothenburgGothenburgSweden
| | - Lennart Gransberg
- Department of Molecular and Clinical MedicineInstitute of Medicine, Sahlgrenska Academy, University of GothenburgGothenburgSweden
| | - Lennart Bergfeldt
- Department of Molecular and Clinical MedicineInstitute of Medicine, Sahlgrenska Academy, University of GothenburgGothenburgSweden
- Region Västra Götaland, Department of CardiologySahlgrenska University HospitalGothenburgSweden
| |
Collapse
|
108
|
Lu H, Ding W, Xiao H, Dai M, Xue Y, Jia Z, Guo J, Wu M, Shen B, Zhao R. Association of the P441L KCNQ1 variant with severity of long QT syndrome and risk of cardiac events. Front Cardiovasc Med 2022; 9:922335. [PMID: 36386331 PMCID: PMC9659898 DOI: 10.3389/fcvm.2022.922335] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 09/12/2022] [Indexed: 11/27/2022] Open
Abstract
Dysfunction of potassium voltage-gated channel subfamily Q member 1 (KCNQ1) is a primary cause of long QT syndrome type 1 (LQT1). Here, we report a missense mutation P441L in KCNQ1 C-terminus of a 37-year-old woman with severe LQT1 phenotype. Variant P441L transporting to the plasma membrane and interacting with KCNE1 were both markedly decreased, leading to potassium efflux disorder and eventually LQT1. Mutations between the C-terminal helix A and helix B of KCNQ1 have linked with low cardiac event risk, however, we firstly find variant P441L causing a severe LQT1 phenotype with a high risk of cardiac events.
Collapse
Affiliation(s)
- Haoyang Lu
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Wen Ding
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Hui Xiao
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Manyu Dai
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yangcheng Xue
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zhuoran Jia
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jie Guo
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Mengzuo Wu
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Bing Shen
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- Bing Shen,
| | - Ren Zhao
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- *Correspondence: Ren Zhao,
| |
Collapse
|
109
|
Akbuğa K, Karanfil M. Same family, same mutation, different ECG. Mol Genet Genomic Med 2022; 11:e2079. [PMID: 36305573 PMCID: PMC9834179 DOI: 10.1002/mgg3.2079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 09/01/2022] [Accepted: 10/21/2022] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Different types of long QT syndromes (LQTS) have distinct ECG manifestations according to the type and magnitude of ion channel dysfunction. While LQT1 carriers usually have broad-based T waves and LQT3 carriers have extended ST segments with relatively narrow peaked T waves; LQT2 carriers have low-amplitude T waves with high incidences of notches. METHODS We describe three members of a family with the same LQTS2 pathogenic variant, but different surface ECG findings. CONCLUSION This case shows ECG differences may also occur between family members who have pathogenic variants associated with long QT syndrome.
Collapse
Affiliation(s)
- Kürşat Akbuğa
- Cardiology Department, Faculty of MedicineTOBB ETUAnkaraTurkey
| | | |
Collapse
|
110
|
Berberian J. Hereditary Syndromes of Sudden Cardiac Death. Emerg Med Clin North Am 2022; 40:651-662. [DOI: 10.1016/j.emc.2022.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
111
|
Dong M, Liu J, Liu C, Wang H, Sun W, Liu B. CRISPR/CAS9: A promising approach for the research and treatment of cardiovascular diseases. Pharmacol Res 2022; 185:106480. [PMID: 36191879 DOI: 10.1016/j.phrs.2022.106480] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 10/31/2022]
Abstract
The development of gene-editing technology has been one of the biggest advances in biomedicine over the past two decades. Not only can it be used as a research tool to build a variety of disease models for the exploration of disease pathogenesis at the genetic level, it can also be used for prevention and treatment. This is done by intervening with the expression of target genes and carrying out precise molecular targeted therapy for diseases. The simple and flexible clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 gene-editing technology overcomes the limitations of zinc finger nucleases (ZFNs) and transcription activator-like effector nucleases (TALENs). For this reason, it has rapidly become a preferred method for gene editing. As a new gene intervention method, CRISPR/Cas9 has been widely used in the clinical treatment of tumours and rare diseases; however, its application in the field of cardiovascular diseases is currently limited. This article reviews the application of the CRISPR/Cas9 editing technology in cardiovascular disease research and treatment, and discusses the limitations and prospects of this technology.
Collapse
Affiliation(s)
- Mengying Dong
- Department of Cardiology, The Second Hospital of Jilin University, 218 Ziqiang Road, Changchun, China, 130041
| | - Jiangen Liu
- Department of Cardiology, The Second Hospital of Jilin University, 218 Ziqiang Road, Changchun, China, 130041
| | - Caixia Liu
- Department of Neurology, The Liaoning Province People's Hospital, 33 Wenyi Road, ShenYang, China, 110016
| | - He Wang
- Department of Cardiology, The Second Hospital of Jilin University, 218 Ziqiang Road, Changchun, China, 130041
| | - Wei Sun
- Department of Cardiology, The Second Hospital of Jilin University, 218 Ziqiang Road, Changchun, China, 130041.
| | - Bin Liu
- Department of Cardiology, The Second Hospital of Jilin University, 218 Ziqiang Road, Changchun, China, 130041.
| |
Collapse
|
112
|
Suzuki N, Otsuki S, Izumi D, Akagawa R, Sakaguchi Y, Hakamata T, Ikami Y, Hasegawa Y, Yagihara N, Iijima K, Chinushi M, Inomata T. Clinical impact of nocturnal ventricular tachyarrythmias in electrical storm. Pacing Clin Electrophysiol 2022; 45:1330-1337. [DOI: 10.1111/pace.14592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/28/2022] [Accepted: 09/09/2022] [Indexed: 11/29/2022]
Affiliation(s)
- Naomasa Suzuki
- Niigata University Graduate School of Medical and Dental Sciences Niigata Japan
| | - Sou Otsuki
- Niigata University Graduate School of Medical and Dental Sciences Niigata Japan
| | - Daisuke Izumi
- Niigata University Graduate School of Medical and Dental Sciences Niigata Japan
| | - Rie Akagawa
- Niigata University Graduate School of Medical and Dental Sciences Niigata Japan
| | - Yuta Sakaguchi
- Niigata University Graduate School of Medical and Dental Sciences Niigata Japan
| | - Takahiro Hakamata
- Niigata University Graduate School of Medical and Dental Sciences Niigata Japan
| | - Yasuhiro Ikami
- Niigata University Graduate School of Medical and Dental Sciences Niigata Japan
| | - Yuki Hasegawa
- Niigata University Graduate School of Medical and Dental Sciences Niigata Japan
| | - Nobue Yagihara
- Niigata University Graduate School of Medical and Dental Sciences Niigata Japan
| | - Kenichi Iijima
- Niigata University Graduate School of Medical and Dental Sciences Niigata Japan
| | | | - Takayuki Inomata
- Niigata University Graduate School of Medical and Dental Sciences Niigata Japan
| |
Collapse
|
113
|
Yee LA, Han H, Davies B, Pearman CM, Laksman ZWM, Roberts JD, Steinberg C, Tadros R, Cadrin‐Tourigny J, Simpson CS, Gardner M, MacIntyre C, Arbour L, Leather R, Fournier A, Green MS, Kimber S, Angaran P, Sanatani S, Joza J, Khan H, Healey JS, Atallah J, Seifer C, Krahn AD. Sex Differences and Utility of Treadmill Testing in Long‐QT Syndrome. J Am Heart Assoc 2022; 11:e025108. [DOI: 10.1161/jaha.121.025108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background
Diagnosis of congenital long‐QT syndrome (LQTS) is complicated by phenotypic ambiguity, with a frequent normal‐to‐borderline resting QT interval. A 3‐step algorithm based on exercise response of the corrected QT interval (QTc) was previously developed to diagnose patients with LQTS and predict subtype. This study evaluated the 3‐step algorithm in a population that is more representative of the general population with LQTS with milder phenotypes and establishes sex‐specific cutoffs beyond the resting QTc.
Methods and Results
We identified 208 LQTS likely pathogenic or pathogenic
KCNQ1
or
KCNH2
variant carriers in the Canadian NLQTS (National Long‐QT Syndrome) Registry and 215 unaffected controls from the HiRO (Hearts in Rhythm Organization) Registry. Exercise treadmill tests were analyzed across the 5 stages of the Bruce protocol. The predictive value of exercise ECG characteristics was analyzed using receiver operating characteristic curve analysis to identify optimal cutoff values. A total of 78% of male carriers and 74% of female carriers had a resting QTc value in the normal‐to‐borderline range. The 4‐minute recovery QTc demonstrated the best predictive value for carrier status in both sexes, with better LQTS ascertainment in female patients (area under the curve, 0.90 versus 0.82), with greater sensitivity and specificity. The optimal cutoff value for the 4‐minute recovery period was 440 milliseconds for male patients and 450 milliseconds for female patients. The 1‐minute recovery QTc had the best predictive value in female patients for differentiating LQTS1 versus LQTS2 (area under the curve, 0.82), and the peak exercise QTc had a marginally better predictive value in male patients for subtype with (area under the curve, 0.71). The optimal cutoff value for the 1‐minute recovery period was 435 milliseconds for male patients and 455 milliseconds for femal patients.
Conclusions
The 3‐step QT exercise algorithm is a valid tool for the diagnosis of LQTS in a general population with more frequent ambiguity in phenotype. The algorithm is a simple and reliable method for the identification and prediction of the 2 major genotypes of LQTS.
Collapse
Affiliation(s)
- Lauren A. Yee
- Center for Cardiovascular Innovation, Heart Rhythm Services, Division of Cardiology, Department of Medicine University of British Columbia Vancouver British Columbia Canada
| | - Hui‐Chen Han
- Center for Cardiovascular Innovation, Heart Rhythm Services, Division of Cardiology, Department of Medicine University of British Columbia Vancouver British Columbia Canada
| | - Brianna Davies
- Center for Cardiovascular Innovation, Heart Rhythm Services, Division of Cardiology, Department of Medicine University of British Columbia Vancouver British Columbia Canada
| | - Charles M. Pearman
- Center for Cardiovascular Innovation, Heart Rhythm Services, Division of Cardiology, Department of Medicine University of British Columbia Vancouver British Columbia Canada
| | - Zachary W. M. Laksman
- Center for Cardiovascular Innovation, Heart Rhythm Services, Division of Cardiology, Department of Medicine University of British Columbia Vancouver British Columbia Canada
| | - Jason D. Roberts
- Population Health Research Institute, McMaster University, and Hamilton Health Sciences Hamilton Ontario Canada
| | - Christian Steinberg
- Institut Universitaire de Cardiologie et Pneumologie de Québec, Laval University Quebec City Quebec Canada
| | - Rafik Tadros
- Cardiovascular Genetics Center, Montreal Heart Institute, Université de Montréal Montreal Quebec Canada
| | - Julia Cadrin‐Tourigny
- Cardiovascular Genetics Center, Montreal Heart Institute, Université de Montréal Montreal Quebec Canada
| | | | - Martin Gardner
- Queen Elizabeth II Health Sciences Center Halifax Nova Scotia Canada
| | - Ciorsti MacIntyre
- Queen Elizabeth II Health Sciences Center Halifax Nova Scotia Canada
| | - Laura Arbour
- Department of Medical Genetics University of British Columbia, and Island Health Victoria British Columbia Canada
| | | | - Anne Fournier
- Centre Hospitalier Universitaire Sainte‐Justine Montréal Quebec Canada
| | | | | | - Paul Angaran
- St. Michael’s Hospital, University of Toronto Toronto Ontario Canada
| | | | - Jacqueline Joza
- McGill University Health Sciences Center Montreal Quebec Canada
| | - Habib Khan
- London Health Sciences Center London Ontario Canada
| | | | | | | | - Andrew D. Krahn
- Center for Cardiovascular Innovation, Heart Rhythm Services, Division of Cardiology, Department of Medicine University of British Columbia Vancouver British Columbia Canada
| |
Collapse
|
114
|
Young WJ, Lahrouchi N, Isaacs A, Duong T, Foco L, Ahmed F, Brody JA, Salman R, Noordam R, Benjamins JW, Haessler J, Lyytikäinen LP, Repetto L, Concas MP, van den Berg ME, Weiss S, Baldassari AR, Bartz TM, Cook JP, Evans DS, Freudling R, Hines O, Isaksen JL, Lin H, Mei H, Moscati A, Müller-Nurasyid M, Nursyifa C, Qian Y, Richmond A, Roselli C, Ryan KA, Tarazona-Santos E, Thériault S, van Duijvenboden S, Warren HR, Yao J, Raza D, Aeschbacher S, Ahlberg G, Alonso A, Andreasen L, Bis JC, Boerwinkle E, Campbell A, Catamo E, Cocca M, Cutler MJ, Darbar D, De Grandi A, De Luca A, Ding J, Ellervik C, Ellinor PT, Felix SB, Froguel P, Fuchsberger C, Gögele M, Graff C, Graff M, Guo X, Hansen T, Heckbert SR, Huang PL, Huikuri HV, Hutri-Kähönen N, Ikram MA, Jackson RD, Junttila J, Kavousi M, Kors JA, Leal TP, Lemaitre RN, Lin HJ, Lind L, Linneberg A, Liu S, MacFarlane PW, Mangino M, Meitinger T, Mezzavilla M, Mishra PP, Mitchell RN, Mononen N, Montasser ME, Morrison AC, Nauck M, Nauffal V, Navarro P, Nikus K, Pare G, Patton KK, Pelliccione G, Pittman A, Porteous DJ, Pramstaller PP, Preuss MH, Raitakari OT, Reiner AP, Ribeiro ALP, et alYoung WJ, Lahrouchi N, Isaacs A, Duong T, Foco L, Ahmed F, Brody JA, Salman R, Noordam R, Benjamins JW, Haessler J, Lyytikäinen LP, Repetto L, Concas MP, van den Berg ME, Weiss S, Baldassari AR, Bartz TM, Cook JP, Evans DS, Freudling R, Hines O, Isaksen JL, Lin H, Mei H, Moscati A, Müller-Nurasyid M, Nursyifa C, Qian Y, Richmond A, Roselli C, Ryan KA, Tarazona-Santos E, Thériault S, van Duijvenboden S, Warren HR, Yao J, Raza D, Aeschbacher S, Ahlberg G, Alonso A, Andreasen L, Bis JC, Boerwinkle E, Campbell A, Catamo E, Cocca M, Cutler MJ, Darbar D, De Grandi A, De Luca A, Ding J, Ellervik C, Ellinor PT, Felix SB, Froguel P, Fuchsberger C, Gögele M, Graff C, Graff M, Guo X, Hansen T, Heckbert SR, Huang PL, Huikuri HV, Hutri-Kähönen N, Ikram MA, Jackson RD, Junttila J, Kavousi M, Kors JA, Leal TP, Lemaitre RN, Lin HJ, Lind L, Linneberg A, Liu S, MacFarlane PW, Mangino M, Meitinger T, Mezzavilla M, Mishra PP, Mitchell RN, Mononen N, Montasser ME, Morrison AC, Nauck M, Nauffal V, Navarro P, Nikus K, Pare G, Patton KK, Pelliccione G, Pittman A, Porteous DJ, Pramstaller PP, Preuss MH, Raitakari OT, Reiner AP, Ribeiro ALP, Rice KM, Risch L, Schlessinger D, Schotten U, Schurmann C, Shen X, Shoemaker MB, Sinagra G, Sinner MF, Soliman EZ, Stoll M, Strauch K, Tarasov K, Taylor KD, Tinker A, Trompet S, Uitterlinden A, Völker U, Völzke H, Waldenberger M, Weng LC, Whitsel EA, Wilson JG, Avery CL, Conen D, Correa A, Cucca F, Dörr M, Gharib SA, Girotto G, Grarup N, Hayward C, Jamshidi Y, Järvelin MR, Jukema JW, Kääb S, Kähönen M, Kanters JK, Kooperberg C, Lehtimäki T, Lima-Costa MF, Liu Y, Loos RJF, Lubitz SA, Mook-Kanamori DO, Morris AP, O'Connell JR, Olesen MS, Orini M, Padmanabhan S, Pattaro C, Peters A, Psaty BM, Rotter JI, Stricker B, van der Harst P, van Duijn CM, Verweij N, Wilson JF, Arking DE, Ramirez J, Lambiase PD, Sotoodehnia N, Mifsud B, Newton-Cheh C, Munroe PB. Genetic analyses of the electrocardiographic QT interval and its components identify additional loci and pathways. Nat Commun 2022; 13:5144. [PMID: 36050321 PMCID: PMC9436946 DOI: 10.1038/s41467-022-32821-z] [Show More Authors] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 08/17/2022] [Indexed: 11/10/2022] Open
Abstract
The QT interval is an electrocardiographic measure representing the sum of ventricular depolarization and repolarization, estimated by QRS duration and JT interval, respectively. QT interval abnormalities are associated with potentially fatal ventricular arrhythmia. Using genome-wide multi-ancestry analyses (>250,000 individuals) we identify 177, 156 and 121 independent loci for QT, JT and QRS, respectively, including a male-specific X-chromosome locus. Using gene-based rare-variant methods, we identify associations with Mendelian disease genes. Enrichments are observed in established pathways for QT and JT, and previously unreported genes indicated in insulin-receptor signalling and cardiac energy metabolism. In contrast for QRS, connective tissue components and processes for cell growth and extracellular matrix interactions are significantly enriched. We demonstrate polygenic risk score associations with atrial fibrillation, conduction disease and sudden cardiac death. Prioritization of druggable genes highlight potential therapeutic targets for arrhythmia. Together, these results substantially advance our understanding of the genetic architecture of ventricular depolarization and repolarization.
Collapse
Affiliation(s)
- William J Young
- William Harvey Research Institute, Clinical Pharmacology, Queen Mary University of London, London, UK
- Barts Heart Centre, St Bartholomew's Hospital, Barts Health NHS trust, London, UK
| | - Najim Lahrouchi
- Amsterdam UMC, University of Amsterdam, Heart Center, Department of Clinical and Experimental Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Cardiovascular Research Center, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Aaron Isaacs
- Deptartment of Physiology, Cardiovascular Research Institute Maastricht CARIM, Maastricht University, Maastricht, The Netherlands
- Maastricht Center for Systems Biology MaCSBio, Maastricht University, Maastricht, The Netherlands
| | - ThuyVy Duong
- McKusick-Nathans Institute, Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Luisa Foco
- Eurac Research, Institute for Biomedicine affiliated with the University of Lübeck, Bolzano, Italy
| | - Farah Ahmed
- William Harvey Research Institute, Clinical Pharmacology, Queen Mary University of London, London, UK
| | - Jennifer A Brody
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Reem Salman
- William Harvey Research Institute, Clinical Pharmacology, Queen Mary University of London, London, UK
| | - Raymond Noordam
- Department of Internal Medicine, section of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, The Netherlands
| | - Jan-Walter Benjamins
- University of Groningen, University Medical Center Groningen, Department of Cardiology, Groningen, The Netherlands
| | - Jeffrey Haessler
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Leo-Pekka Lyytikäinen
- Department of Clinical Chemistry, Fimlab Laboratories, Tampere, Finland
- Department of Clinical Chemistry, Finnish Cardiovascular Research Center - Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Linda Repetto
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Edinburgh, Scotland
| | - Maria Pina Concas
- Institute for Maternal and Child Health - IRCCS "Burlo Garofolo", Trieste, Italy
| | - Marten E van den Berg
- Department of Epidemiology, Erasmus MC - University Medical Center, Rotterdam, The Netherlands
| | - Stefan Weiss
- DZHK German Centre for Cardiovascular Research; partner site Greifswald, Greifswald, Germany
- Interfaculty Institute for Genetics and Functional Genomics; Department of Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Antoine R Baldassari
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, USA
| | - Traci M Bartz
- Cardiovascular Health Research Unit, Departments of Biostatistics and Medicine, University of Washington, Seattle, WA, USA
| | - James P Cook
- Department of Health Data Science, University of Liverpool, Liverpool, UK
| | - Daniel S Evans
- California Pacific Medical Center, Research Institute, San Francisco, CA, USA
| | - Rebecca Freudling
- Department of Cardiology, University Hospital, LMU Munich, Munich, Germany
- Institute of Genetic Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Oliver Hines
- Genetics Research Centre, St George's University of London, London, UK
- Department of Medical Statistics, London School of Hygiene and Tropical Medicine, London, UK
| | - Jonas L Isaksen
- Laboratory of Experimental Cardiology, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Honghuang Lin
- National Heart Lung and Blood Institute's and Boston University's Framingham Heart Study, Framingham, MA, USA
- Section of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Hao Mei
- Department of Data Science, University of Mississippi Medical Center, Jackson, USA
| | - Arden Moscati
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Martina Müller-Nurasyid
- Institute of Genetic Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
- IBE, Faculty of Medicine, LMU Munich, Munich, Germany
- Institute of Medical Biostatistics, Epidemiology and Informatics IMBEI, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Casia Nursyifa
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Yong Qian
- Translational Gerontology Branch, National Institute on Aging, National Institute of Health, Baltimore, US
| | - Anne Richmond
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Edinburgh, UK
| | - Carolina Roselli
- University of Groningen, University Medical Center Groningen, Department of Cardiology, Groningen, The Netherlands
- Cardiovascular Disease Initiative, Broad Institute, Cambridge, MA, USA
| | - Kathleen A Ryan
- Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Baltimore, MD, USA
- Program for Personalized and Genomic Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Eduardo Tarazona-Santos
- Department of Genetics, Ecology and Evolution, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte/Minas Gerais, Brazil
| | - Sébastien Thériault
- Population Health Research Institute, McMaster University, Hamilton, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Université Laval, Quebec, Canada
| | - Stefan van Duijvenboden
- William Harvey Research Institute, Clinical Pharmacology, Queen Mary University of London, London, UK
- Institute of Cardiovascular Sciences, University of College London, London, UK
| | - Helen R Warren
- William Harvey Research Institute, Clinical Pharmacology, Queen Mary University of London, London, UK
- NIHR Barts Cardiovascular Biomedical Research Centre, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Jie Yao
- Institute for Translational Genomics and Population Sciences/The Lundquist Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Dania Raza
- William Harvey Research Institute, Clinical Pharmacology, Queen Mary University of London, London, UK
- Brighton and Sussex Medical School, Brighton, UK
| | - Stefanie Aeschbacher
- Cardiovascular Research Institute Basel, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Gustav Ahlberg
- Laboratory for Molecular Cardiology, The Heart Centre, Department of Cardiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Alvaro Alonso
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Laura Andreasen
- Laboratory for Molecular Cardiology, The Heart Centre, Department of Cardiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Joshua C Bis
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Eric Boerwinkle
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Archie Campbell
- Usher Institute, University of Edinburgh, Nine, Edinburgh Bioquarter, 9 Little France Road, Edinburgh, UK
- Health Data Research UK, University of Edinburgh, Nine, Edinburgh Bioquarter, 9 Little France Road, Edinburgh, UK
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Edinburgh, UK
| | - Eulalia Catamo
- Institute for Maternal and Child Health - IRCCS "Burlo Garofolo", Trieste, Italy
| | - Massimiliano Cocca
- Institute for Maternal and Child Health - IRCCS "Burlo Garofolo", Trieste, Italy
| | - Michael J Cutler
- Intermountain Heart Institute, Intermountain Medical Center, Murray, UT, USA
| | - Dawood Darbar
- Department of Medicine, University of Illinois at Chicago, Chicago, USA
| | - Alessandro De Grandi
- Eurac Research, Institute for Biomedicine affiliated with the University of Lübeck, Bolzano, Italy
| | - Antonio De Luca
- Cardiothoracovascular Department, ASUGI, University of Trieste, Trieste, Italy
| | - Jun Ding
- Translational Gerontology Branch, National Institute on Aging, National Institute of Health, Baltimore, US
| | - Christina Ellervik
- Department of Data and Data Support, Region Zealand, 4180, Sorø, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2100, Copenhagen, Denmark
- Department of Laboratory Medicine, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Patrick T Ellinor
- Cardiovascular Disease Initiative, Broad Institute, Cambridge, MA, USA
- Demoulas Center for Cardiac Arrhythmias and Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Stephan B Felix
- DZHK German Centre for Cardiovascular Research; partner site Greifswald, Greifswald, Germany
- Department of Internal Medicine B - Cardiology, Pneumology, Infectious Diseases, Intensive Care Medicine; University Medicine Greifswald, Greifswald, Germany
| | - Philippe Froguel
- Department of Epidemiology and Biostatistics, MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
- University of Lille Nord de France, Lille, France
- CNRS UMR8199, Institut Pasteur de Lille, Lille, France
| | - Christian Fuchsberger
- Eurac Research, Institute for Biomedicine affiliated with the University of Lübeck, Bolzano, Italy
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, USA
- Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor, USA
| | - Martin Gögele
- Eurac Research, Institute for Biomedicine affiliated with the University of Lübeck, Bolzano, Italy
| | - Claus Graff
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Mariaelisa Graff
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Xiuqing Guo
- Institute for Translational Genomics and Population Sciences/The Lundquist Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
- Department of Pediatrics/Harbor-UCLA Medical Center, Torrance, CA, USA
- Department of Pediatrics/David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Torben Hansen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Susan R Heckbert
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
- Department of Epidemiology/University of Washington, Seattle, WA, USA
| | - Paul L Huang
- Cardiology Division and Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Heikki V Huikuri
- Research Unit of Internal Medicine, Medical Research Center Oulu, University of Oulu and University Hospital of Oulu, Oulu, Finland
| | - Nina Hutri-Kähönen
- Department of Pediatrics, Tampere University Hospital, Tampere, Finland
- Department of Pediatrics, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Tampere Centre for Skills Training and Simulation, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - M Arfan Ikram
- Department of Epidemiology, Erasmus MC - University Medical Center, Rotterdam, The Netherlands
| | - Rebecca D Jackson
- Center for Clinical and Translational Science, Ohio State Medical Center, Columbus, OH, USA
| | - Juhani Junttila
- Research Unit of Internal Medicine, Medical Research Center Oulu, University of Oulu and University Hospital of Oulu, Oulu, Finland
| | - Maryam Kavousi
- Department of Epidemiology, Erasmus MC - University Medical Center, Rotterdam, The Netherlands
| | - Jan A Kors
- Department of Medical Informatics, Erasmus University Medical Center, Rotterdam, NL, The Netherlands
| | - Thiago P Leal
- Department of Genetics, Ecology and Evolution, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte/Minas Gerais, Brazil
- Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Rozenn N Lemaitre
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Henry J Lin
- Institute for Translational Genomics and Population Sciences/The Lundquist Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
- Department of Pediatrics/Harbor-UCLA Medical Center, Torrance, CA, USA
- Department of Pediatrics/David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Lars Lind
- Deptartment of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Allan Linneberg
- Center for Clinical Research and Prevention, Bispebjerg and Frederiksberg Hospital, Frederiksberg, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Simin Liu
- Center for Global Cardiometabolic Health, Departments of Epidemiology, Medicine and Surgery, Brown University, Providence, USA
| | - Peter W MacFarlane
- Institute of Health and Wellbeing, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Massimo Mangino
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
- NIHR Biomedical Research Centre at Guy's and St Thomas' Foundation Trust, London, UK
| | - Thomas Meitinger
- Institute of Genetic Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Human Genetics, Technical University of Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research, partner site: Munich Heart Alliance, Munich, Germany
| | - Massimo Mezzavilla
- Institute for Maternal and Child Health - IRCCS "Burlo Garofolo", Trieste, Italy
| | - Pashupati P Mishra
- Department of Clinical Chemistry, Fimlab Laboratories, Tampere, Finland
- Department of Clinical Chemistry, Finnish Cardiovascular Research Center - Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Rebecca N Mitchell
- McKusick-Nathans Institute, Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Nina Mononen
- Department of Clinical Chemistry, Fimlab Laboratories, Tampere, Finland
- Department of Clinical Chemistry, Finnish Cardiovascular Research Center - Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - May E Montasser
- Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Baltimore, MD, USA
- Program for Personalized and Genomic Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Alanna C Morrison
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Matthias Nauck
- DZHK German Centre for Cardiovascular Research; partner site Greifswald, Greifswald, Germany
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Victor Nauffal
- Cardiovascular Disease Initiative, Broad Institute, Cambridge, MA, USA
- Division of Cardiovascular Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Pau Navarro
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, Scotland
| | - Kjell Nikus
- Department of Cardiology, Heart Center, Tampere University Hospital, Tampere, Finland
- Department of Cardiology, Finnish Cardiovascular Research Center - Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Guillaume Pare
- Population Health Research Institute, McMaster University, Hamilton, Canada
| | - Kristen K Patton
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Giulia Pelliccione
- Institute for Maternal and Child Health - IRCCS "Burlo Garofolo", Trieste, Italy
| | - Alan Pittman
- Genetics Research Centre, St George's University of London, London, UK
| | - David J Porteous
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Edinburgh, UK
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
| | - Peter P Pramstaller
- Eurac Research, Institute for Biomedicine affiliated with the University of Lübeck, Bolzano, Italy
- Department of Neurology, University of Lübeck, Lübeck, Germany
| | - Michael H Preuss
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Olli T Raitakari
- Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland
- Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, Turku, Finland
| | - Alexander P Reiner
- Department of Epidemiology/University of Washington, Seattle, WA, USA
- Fred Hutchinson Cancer Center, University of Washington, Seattle, WA, USA
| | - Antonio Luiz P Ribeiro
- Department of Internal Medicine, Faculdade de Medicina, Universidade Federal de Minas Gerais, Brazil, Belo Horizonte, Minas Gerais, Brazil
- Cardiology Service and Telehealth Center, Hospital das Clínicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil, Belo Horizonte, Minas Gerais, Brazil
| | - Kenneth M Rice
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Lorenz Risch
- Labormedizinisches zentrum Dr. Risch, Vaduz, Liechtenstein
- Faculty of Medical Sciences, Private University in the Principality of Liechtenstein, Triesen, Liechtenstein
- Center of Laboratory Medicine, University Institute of Clinical Chemistry, University of Bern, Inselspital, Bern, Switzerland
| | - David Schlessinger
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institute of Health, Baltimore, US
| | - Ulrich Schotten
- Deptartment of Physiology, Cardiovascular Research Institute Maastricht CARIM, Maastricht University, Maastricht, The Netherlands
| | - Claudia Schurmann
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Digital Health Center, Hasso Plattner Institute, University of Potsdam, Potsdam, Germany
- Hasso Plattner Institute for Digital Health at Mount Sinai, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Xia Shen
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Edinburgh, Scotland
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Greater Bay Area Institute of Precision Medicine Guangzhou, Fudan University, Nansha District, Guangzhou, China
| | - M Benjamin Shoemaker
- Department of Medicine, Division of Cardiovascular Medicine, Arrhythmia Section, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Gianfranco Sinagra
- Cardiothoracovascular Department, ASUGI, University of Trieste, Trieste, Italy
| | - Moritz F Sinner
- Department of Cardiology, University Hospital, LMU Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research, partner site: Munich Heart Alliance, Munich, Germany
| | - Elsayed Z Soliman
- Epidemiological Cardiology Research Center EPICARE, Wake Forest School of Medicine, Winston Salem, USA
| | - Monika Stoll
- Maastricht Center for Systems Biology MaCSBio, Maastricht University, Maastricht, The Netherlands
- Dept. of Biochemistry, Cardiovascular Research Institute Maastricht CARIM, Maastricht University, Maastricht, NL, The Netherlands
- Institute of Human Genetics, Genetic Epidemiology, University of Muenster, Muenster, Germany
| | - Konstantin Strauch
- Institute of Genetic Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
- IBE, Faculty of Medicine, LMU Munich, Munich, Germany
- Institute of Medical Biostatistics, Epidemiology and Informatics IMBEI, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Kirill Tarasov
- Laboratory of Cardiovascular Sciences, National Institute on Aging, National Institute of Health, Baltimore, US
| | - Kent D Taylor
- Institute for Translational Genomics and Population Sciences/The Lundquist Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
- Department of Pediatrics/Harbor-UCLA Medical Center, Torrance, CA, USA
- Department of Pediatrics/David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Andrew Tinker
- William Harvey Research Institute, Clinical Pharmacology, Queen Mary University of London, London, UK
- NIHR Barts Cardiovascular Biomedical Research Centre, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Stella Trompet
- Department of Internal Medicine, section of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, The Netherlands
- Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Uwe Völker
- DZHK German Centre for Cardiovascular Research; partner site Greifswald, Greifswald, Germany
- Interfaculty Institute for Genetics and Functional Genomics; Department of Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Henry Völzke
- DZHK German Centre for Cardiovascular Research; partner site Greifswald, Greifswald, Germany
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Melanie Waldenberger
- DZHK (German Centre for Cardiovascular Research, partner site: Munich Heart Alliance, Munich, Germany
- Research Unit Molecular Epidemiology, Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Lu-Chen Weng
- Cardiovascular Disease Initiative, Broad Institute, Cambridge, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Eric A Whitsel
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, USA
- Department of Medicine, School of Medicine, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - James G Wilson
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, USA
- Department of Cardiology, Beth Israel Deaconess Medical Center, Boston, USA
| | - Christy L Avery
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, USA
| | - David Conen
- Population Health Research Institute, McMaster University, Hamilton, Canada
| | - Adolfo Correa
- Departments of Medicine, Pediatrics and Population Health Science, University of Mississippi Medical Center, Jackson, USA
| | - Francesco Cucca
- Institute of Genetic and Biomedical Rsearch, Italian National Research Council, Monserrato, Italy
| | - Marcus Dörr
- DZHK German Centre for Cardiovascular Research; partner site Greifswald, Greifswald, Germany
- Department of Internal Medicine B - Cardiology, Pneumology, Infectious Diseases, Intensive Care Medicine; University Medicine Greifswald, Greifswald, Germany
| | - Sina A Gharib
- Center for Lung Biology, Division of Pulmonary, Critical Care and Sleep Medicine, University of Washington, Seattle, WA, USA
| | - Giorgia Girotto
- Institute for Maternal and Child Health - IRCCS "Burlo Garofolo", Trieste, Italy
- Department of Medical Sciences, University of Trieste, Trieste, Italy
| | - Niels Grarup
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Caroline Hayward
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Edinburgh, UK
| | - Yalda Jamshidi
- Genetics Research Centre, St George's University of London, London, UK
| | - Marjo-Riitta Järvelin
- Center for Life Course Health Research, Faculty of Medicine, University of Oulu, Oulu, Finland
- Unit of Primary Health Care, Oulu University Hospital, Oulu, Finland
- Department of Epidemiology and Biostatistics, MRC PHE Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
- Department of Life Sciences, College of Health and Life Sciences, Brunel University London, London, UK
| | - J Wouter Jukema
- Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
- Netherlands Heart Institute, Utrecht, The Netherlands
| | - Stefan Kääb
- Department of Cardiology, University Hospital, LMU Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research, partner site: Munich Heart Alliance, Munich, Germany
| | - Mika Kähönen
- Department of Clinical Physiology, Tampere University Hospital, Tampere, Finland
- Department of Clinical Physiology, Finnish Cardiovascular Research Center - Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Jørgen K Kanters
- Laboratory of Experimental Cardiology, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Charles Kooperberg
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Fimlab Laboratories, Tampere, Finland
- Department of Clinical Chemistry, Finnish Cardiovascular Research Center - Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | | | - Yongmei Liu
- Department of Medicine, Duke University, Durham, NC, USA
| | - Ruth J F Loos
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Steven A Lubitz
- Cardiovascular Disease Initiative, Broad Institute, Cambridge, MA, USA
- Demoulas Center for Cardiac Arrhythmias and Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Dennis O Mook-Kanamori
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Public Health and Primary Care, Leiden University Medical Center, Leiden, The Netherlands
| | - Andrew P Morris
- Department of Health Data Science, University of Liverpool, Liverpool, UK
- Centre for Genetics and Genomics Versus Arthritis, Centre for Musculoskeletal Research, The University of Manchester, Manchester, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Jeffrey R O'Connell
- Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Baltimore, MD, USA
- Program for Personalized and Genomic Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | | | - Michele Orini
- Barts Heart Centre, St Bartholomew's Hospital, Barts Health NHS trust, London, UK
- Institute of Cardiovascular Sciences, University of College London, London, UK
| | - Sandosh Padmanabhan
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Cristian Pattaro
- Eurac Research, Institute for Biomedicine affiliated with the University of Lübeck, Bolzano, Italy
| | - Annette Peters
- Institute of Genetic Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
- DZHK (German Centre for Cardiovascular Research, partner site: Munich Heart Alliance, Munich, Germany
| | - Bruce M Psaty
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
- Department of Epidemiology/University of Washington, Seattle, WA, USA
- Health Systems and Population Health, University of Washington, Seattle, WA, USA
| | - Jerome I Rotter
- Institute for Translational Genomics and Population Sciences/The Lundquist Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
- Department of Pediatrics/Harbor-UCLA Medical Center, Torrance, CA, USA
- Departments of Pediatrics and Human Genetics/David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Bruno Stricker
- Department of Epidemiology, Erasmus MC - University Medical Center, Rotterdam, The Netherlands
| | - Pim van der Harst
- University of Groningen, University Medical Center Groningen, Department of Cardiology, Groningen, The Netherlands
- Department of Cardiology, Heart and Lung Division, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Cornelia M van Duijn
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Niek Verweij
- University of Groningen, University Medical Center Groningen, Department of Cardiology, Groningen, The Netherlands
| | - James F Wilson
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Edinburgh, Scotland
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, Scotland
| | - Dan E Arking
- McKusick-Nathans Institute, Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Julia Ramirez
- William Harvey Research Institute, Clinical Pharmacology, Queen Mary University of London, London, UK
- Institute of Cardiovascular Sciences, University of College London, London, UK
| | - Pier D Lambiase
- Barts Heart Centre, St Bartholomew's Hospital, Barts Health NHS trust, London, UK
- Institute of Cardiovascular Sciences, University of College London, London, UK
| | - Nona Sotoodehnia
- Cardiovascular Health Research Unit, Division of Cardiology, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Borbala Mifsud
- William Harvey Research Institute, Clinical Pharmacology, Queen Mary University of London, London, UK
- Genomics and Translational Biomedicine, College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Christopher Newton-Cheh
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA.
- Cardiovascular Research Center, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA.
| | - Patricia B Munroe
- William Harvey Research Institute, Clinical Pharmacology, Queen Mary University of London, London, UK.
- NIHR Barts Cardiovascular Biomedical Research Centre, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK.
| |
Collapse
|
115
|
Quiñones ME, Joseph JK, Dowell S, Moore HJ, Karasik PE, Fonarow GC, Fletcher RD, Cheng Y, Zeng-Treitler Q, Arundel C, Liappis AP, Sheriff HM, Zhang S, Taub DD, Heimall MS, Faselis C, Kerr GS, Ahmed A. Hydroxychloroquine and Risk of Long QT Syndrome in Rheumatoid Arthritis: A Veterans Cohort Study With Nineteen-Year Follow-up. Arthritis Care Res (Hoboken) 2022. [PMID: 36039941 DOI: 10.1002/acr.25005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 08/14/2022] [Accepted: 08/25/2022] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Recent evidence suggests that hydroxychloroquine use is not associated with higher 1-year risk of long QT syndrome (LQTS) in patients with rheumatoid arthritis (RA). Less is known about its long-term risk, the examination of which was the objective of this study. METHODS We conducted a propensity score-matched active-comparator safety study of hydroxychloroquine in 8,852 veterans (mean age 64 ± 12 years, 14% women, 28% Black) with newly diagnosed RA. A total of 4,426 patients started on hydroxychloroquine and 4,426 started on another nonbiologic disease-modifying antirheumatic drug (DMARD) and were balanced on 87 baseline characteristics. The primary outcome was LQTS during 19-year follow-up through December 31, 2019. RESULTS Incident LQTS occurred in 4 (0.09%) and 5 (0.11%) patients in the hydroxychloroquine and other DMARD groups, respectively, during the first 2 years. Respective 5-year incidences were 17 (0.38%) and 6 (0.14%), representing 11 additional LQTS events in the hydroxychloroquine group (number needed to harm 403; [95% confidence interval (95% CI)], 217-1,740) and a 181% greater relative risk (95% CI 11%-613%; P = 0.030). Although overall 10-year risk remained significant (hazard ratio 2.17; 95% CI 1.13-4.18), only 5 extra LQTS occurred in hydroxychloroquine group over the next 5 years (years 6-10) and 1 over the next 9 years (years 11-19). There was no association with arrhythmia-related hospitalization or all-cause mortality. CONCLUSIONS Hydroxychloroquine use had no association with LQTS during the first 2 years after initiation of therapy. There was a higher risk thereafter that became significant after 5 years of therapy. However, the 5-year absolute risk was very low, and the absolute risk difference was even lower. Both risks attenuated during longer follow-up. These findings provide evidence for long-term safety of hydroxychloroquine in patients with RA.
Collapse
Affiliation(s)
| | | | - Sharon Dowell
- Veterans Affairs Medical Center, and Howard University, Washington, DC
| | - Hans J Moore
- Veterans Affairs Medical Center, Georgetown University, George Washington University, Uniformed Services University, and US Department of Veterans Affairs, Washington, DC
| | - Pamela E Karasik
- Veterans Affairs Medical Center, Georgetown University, George Washington University, and Uniformed Services University, Washington, DC
| | | | | | - Yan Cheng
- Veterans Affairs Medical Center and George Washington University, Washington, DC
| | - Qing Zeng-Treitler
- Veterans Affairs Medical Center and George Washington University, Washington, DC
| | - Cherinne Arundel
- Veterans Affairs Medical Center, George Washington University, and Uniformed Services University, Washington, DC
| | - Angelike P Liappis
- Veterans Affairs Medical Center, George Washington University, and Uniformed Services University, Washington, DC
| | - Helen M Sheriff
- Veterans Affairs Medical Center and George Washington University, Washington, DC
| | | | - Daniel D Taub
- Veterans Affairs Medical Center and George Washington University, Washington, DC
| | | | - Charles Faselis
- Veterans Affairs Medical Center, George Washington University, and Uniformed Services University, Washington, DC
| | - Gail S Kerr
- Veterans Affairs Medical Center, Howard University, and Georgetown University, Washington, DC
| | - Ali Ahmed
- Veterans Affairs Medical Center, Georgetown University, and George Washington University, Washington, DC
| |
Collapse
|
116
|
Cerebral Seizures in an Adolescent with Jervell and Lange-Nielsen Syndrome: It May Not Be Epilepsy. Clin Pract 2022; 12:677-685. [PMID: 36136864 PMCID: PMC9498825 DOI: 10.3390/clinpract12050070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/18/2022] [Accepted: 08/23/2022] [Indexed: 12/02/2022] Open
Abstract
A 13-year-old girl with Jervell and Lange-Nielsen syndrome associated congenital long QT syndrome (LQTS) and central deafness was admitted for generalized seizures. LQTS had been diagnosed after birth and confirmed at genetic testing. β-blocker treatment was immediately started. Despite this, since the age of 12 months, recurrent cerebral seizures occurred leading to the diagnosis of epilepsy. Anti-convulsive therapy was initiated but without success. At the last admission, nadolol dosage seemed infratherapeutic. Considering malignant ventricular arrhythmias as the cause of seizures, the β-blocker dosage was adjusted to weight and levels of magnesium and potassium optimized. Furthermore, the patient received an implantable Medtronic Reveal LINQ Recorder®. Since then, the adolescent has been asymptomatic with no arrhythmia documented. LQTS is due to one or more mutations of genes coding for ion channels. It may induce malignant ventricular arrhythmias and is a major cause of sudden cardiac death in children. Generalized cerebral seizures are extra-cardiac manifestations caused by decreased cerebral perfusion during ventricular arrhythmia. They are commonly misinterpreted as manifestations of epilepsy. For any patient with known or unknown LQTS who presents seizures with resistance to anti-convulsive therapy, a cardiac electrophysiological investigation should be performed promptly to ensure etiological diagnosis and optimize treatment.
Collapse
|
117
|
In Vitro Drug Screening Using iPSC-Derived Cardiomyocytes of a Long QT-Syndrome Patient Carrying KCNQ1 & TRPM4 Dual Mutation: An Experimental Personalized Treatment. Cells 2022; 11:cells11162495. [PMID: 36010573 PMCID: PMC9406448 DOI: 10.3390/cells11162495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 06/24/2022] [Accepted: 07/26/2022] [Indexed: 11/17/2022] Open
Abstract
Congenital long QT syndrome is a type of inherited cardiovascular disorder characterized by prolonged QT interval. Patient often suffer from syncopal episodes, electrocardiographic abnormalities and life-threatening arrhythmia. Given the complexity of the root cause of the disease, a combination of clinical diagnosis and drug screening using patient-derived cardiomyocytes represents a more effective way to identify potential cures. We identified a long QT syndrome patient carrying a heterozygous KCNQ1 c.656G>A mutation and a heterozygous TRPM4 c.479C>T mutation. Implantation of implantable cardioverter defibrillator in combination with conventional medication demonstrated limited success in ameliorating long-QT-syndrome-related symptoms. Frequent defibrillator discharge also caused deterioration of patient quality of life. Aiming to identify better therapeutic agents and treatment strategy, we established a patient-specific iPSC line carrying the dual mutations and differentiated these patient-specific iPSCs into cardiomyocytes. We discovered that both verapamil and lidocaine substantially shortened the QT interval of the long QT syndrome patient-specific cardiomyocytes. Verapamil treatment was successful in reducing defibrillator discharge frequency of the KCNQ1/TRPM4 dual mutation patient. These results suggested that verapamil and lidocaine could be alternative therapeutic agents for long QT syndrome patients that do not respond well to conventional treatments. In conclusion, our approach indicated the usefulness of the in vitro disease model based on patient-specific iPSCs in identifying pharmacological mechanisms and drug screening. The long QT patient-specific iPSC line carrying KCNQ1/TRPM4 dual mutations also represents a tool for further understanding long QT syndrome pathogenesis.
Collapse
|
118
|
Wu CI, Schwartz PJ, Ackerman MJ, Wilde AA. COVID-19 vaccination in patients with long QT syndrome. Heart Rhythm O2 2022; 3:706-709. [PMID: 35937046 PMCID: PMC9345651 DOI: 10.1016/j.hroo.2022.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 07/15/2022] [Accepted: 07/20/2022] [Indexed: 11/16/2022] Open
Affiliation(s)
- Cheng-I. Wu
- Amsterdam UMC, University of Amsterdam, Heart Center; Department of Clinical and Experimental Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
- Heart Rhythm Center, Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Peter J. Schwartz
- Center for Cardiac Arrhythmias of Genetic Origin and Laboratory of Cardiovascular Genetics, Istituto Auxologico Italiano, IRCCS, Milan, Italy
- European Reference Network (ERN) GUARD-Heart
| | - Michael J. Ackerman
- Departments of Cardiovascular Medicine (Division of Heart Rhythm Services and the Windland Smith Rice Genetic Heart Rhythm Clinic), Pediatric and Adolescent Medicine (Division of Pediatric Cardiology), and Molecular Pharmacology & Experimental Therapeutics (Windland Smith Rice Sudden Death Genomics Laboratory), Mayo Clinic, Rochester, Minnesota
| | - Arthur A.M. Wilde
- Amsterdam UMC, University of Amsterdam, Heart Center; Department of Clinical and Experimental Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
- European Reference Network (ERN) GUARD-Heart
- Address reprint requests and correspondence: Dr Arthur A.M. Wilde, Amsterdam UMC, University of Amsterdam, Heart Center; Department of Clinical and Experimental Cardiology, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
| |
Collapse
|
119
|
El Harchi A, Brincourt O. Pharmacological activation of the hERG K + channel for the management of the long QT syndrome: A review. J Arrhythm 2022; 38:554-569. [PMID: 35936037 PMCID: PMC9347208 DOI: 10.1002/joa3.12741] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/28/2022] [Accepted: 05/16/2022] [Indexed: 11/10/2022] Open
Abstract
In the human heart, the rapid delayed rectifier K+ current (I Kr) contributes significantly to ventricular action potential (AP) repolarization and to set the duration of the QT interval of the surface electrocardiogram (ECG). The pore-forming (α) subunit of the I Kr channel is encoded by KCNH2 or human ether-à-go-go-related gene 1 (hERG1). Impairment of hERG function through either gene mutation (congenital) or pharmacological blockade by diverse drugs in clinical use (acquired) can cause a prolongation of the AP duration (APD) reflected onto the surface ECG as a prolonged QT interval or Long QT Syndrome (LQTS). LQTS can increase the risk of triggered activity of ventricular cardiomyocytes and associated life-threatening arrhythmia. Current treatments all focus on reducing the incidence of arrhythmia or terminating it after its onset but there is to date no prophylactic treatment for the pharmacological management of LQTS. A new class of hERG modulators (agonists) have been suggested through direct interaction with the hERG channel to shorten the action potential duration (APD) and/or increase the postrepolarisation refractoriness period (PRRP) of ventricular cardiomyocytes protecting thereby against triggered activity and associated arrhythmia. Although promising drug candidates, there remain major obstacles to their clinical development. The aim of this review is to summarize the latest advances as well as the limitations of this proposed pharmacotherapy.
Collapse
Affiliation(s)
- Aziza El Harchi
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences BuildingUniversity of Bristol, University WalkBristolUK
| | - Oriane Brincourt
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences BuildingUniversity of Bristol, University WalkBristolUK
| |
Collapse
|
120
|
Yang Y, Lv T, Li S, Liu P, Gao Q, Zhang P. Utility of Provocative Testing in the Diagnosis and Genotyping of Congenital Long QT Syndrome: A Systematic Review and Meta-Analysis. J Am Heart Assoc 2022; 11:e025246. [PMID: 35861842 PMCID: PMC9707831 DOI: 10.1161/jaha.122.025246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 04/27/2022] [Indexed: 11/16/2022]
Abstract
Background Diagnosis is particularly challenging in concealed or asymptomatic long QT syndrome (LQTS). Provocative testing, unmasking the characterization of LQTS, is a promising alternative method for the diagnosis of LQTS, but without uniform standards. Methods and Results A comprehensive search was conducted in PubMed, Embase, and the Cochrane Library through October 14, 2021. The fixed effects model was used to assess the effect of the provocative testing on QTc interval. A total of 22 studies with 1137 patients with LQTS were included. At baseline, QTc interval was 40 ms longer in patients with LQTS than in controls (mean difference [MD], 40.54 [95% CI, 37.43-43.65]; P<0.001). Compared with the control group, patients with LQTS had 28 ms longer ΔQTc upon standing (MD, 28.82 [95% CI, 23.05-34.58]; P<0.001), nearly 30 ms longer both at peak exercise (MD, 27.31 [95% CI, 21.51-33.11]; P<0.001) and recovery 4 to 5 minutes (MD, 29.85 [95% CI, 24.36-35.35]; P<0.001). With epinephrine infusion, QTc interval was prolonged both in controls and patients with QTS, most obviously in LQT1 (MD, 68.26 [95% CI, 58.91-77.60]; P<0.001) and LQT2 (MD, 60.17 [95% CI, 50.18-70.16]; P<0.001). Subgroup analysis showed QTc interval response to abrupt stand testing and exercise testing varied between LQT1, LQT2, and LQT3, named Type Ⅰ, Type Ⅱ, and Type Ⅲ. Conclusions QTc trend Type Ⅰ and Type Ⅲ during abrupt stand testing and exercise testing can be used to propose a prospective evaluation of LQT1 and LQT3, respectively. Type Ⅱ QTc trend combined epinephrine infusion testing could distinguish LQT2 from control. A preliminary diagnostic workflow was proposed but deserves further evaluation.
Collapse
Affiliation(s)
- Ying Yang
- School of Clinical MedicineTsinghua UniversityBeijingChina
| | - Ting‐ting Lv
- Department of CardiologySchool of Clinical MedicineBeijing Tsinghua Changgung HospitalTsinghua UniversityBeijingChina
| | - Si‐yuan Li
- Department of CardiologySchool of Clinical MedicineBeijing Tsinghua Changgung HospitalTsinghua UniversityBeijingChina
| | - Peng Liu
- School of Clinical MedicineTsinghua UniversityBeijingChina
| | - Qing‐gele Gao
- School of Clinical MedicineTsinghua UniversityBeijingChina
| | - Ping Zhang
- School of Clinical MedicineTsinghua UniversityBeijingChina
- Department of CardiologySchool of Clinical MedicineBeijing Tsinghua Changgung HospitalTsinghua UniversityBeijingChina
| |
Collapse
|
121
|
Rieder M, Kreifels P, Stuplich J, Ziupa D, Servatius H, Nicolai L, Castiglione A, Zweier C, Asatryan B, Odening KE. Genotype-Specific ECG-Based Risk Stratification Approaches in Patients With Long-QT Syndrome. Front Cardiovasc Med 2022; 9:916036. [PMID: 35911527 PMCID: PMC9329832 DOI: 10.3389/fcvm.2022.916036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
Background Congenital long-QT syndrome (LQTS) is a major cause of sudden cardiac death (SCD) in young individuals, calling for sophisticated risk assessment. Risk stratification, however, is challenging as the individual arrhythmic risk varies pronouncedly, even in individuals carrying the same variant. Materials and Methods In this study, we aimed to assess the association of different electrical parameters with the genotype and the symptoms in patients with LQTS. In addition to the heart-rate corrected QT interval (QTc), markers for regional electrical heterogeneity, such as QT dispersion (QTmax-QTmin in all ECG leads) and delta Tpeak/end (Tpeak/end V5 – Tpeak/end V2), were assessed in the 12-lead ECG at rest and during exercise testing. Results QTc at rest was significantly longer in symptomatic than asymptomatic patients with LQT2 (493.4 ms ± 46.5 ms vs. 419.5 ms ± 28.6 ms, p = 0.004), but surprisingly not associated with symptoms in LQT1. In contrast, post-exercise QTc (minute 4 of recovery) was significantly longer in symptomatic than asymptomatic patients with LQT1 (486.5 ms ± 7.0 ms vs. 463.3 ms ± 16.3 ms, p = 0.04), while no such difference was observed in patients with LQT2. Enhanced delta Tpeak/end and QT dispersion were only associated with symptoms in LQT1 (delta Tpeak/end 19.0 ms ± 18.1 ms vs. −4.0 ms ± 4.4 ms, p = 0.02; QT-dispersion: 54.3 ms ± 10.2 ms vs. 31.4 ms ± 10.4 ms, p = 0.01), but not in LQT2. Delta Tpeak/end was particularly discriminative after exercise, where all symptomatic patients with LQT1 had positive and all asymptomatic LQT1 patients had negative values (11.8 ± 7.9 ms vs. −7.5 ± 1.7 ms, p = 0.003). Conclusion Different electrical parameters can distinguish between symptomatic and asymptomatic patients in different genetic forms of LQTS. While the classical “QTc at rest” was only associated with symptoms in LQT2, post-exercise QTc helped distinguish between symptomatic and asymptomatic patients with LQT1. Enhanced regional electrical heterogeneity was only associated with symptoms in LQT1, but not in LQT2. Our findings indicate that genotype-specific risk stratification approaches based on electrical parameters could help to optimize risk assessment in LQTS.
Collapse
Affiliation(s)
- Marina Rieder
- Translational Cardiology, Department of Cardiology, Inselspital, University Hospital Bern, University of Bern, Bern, Switzerland
| | - Paul Kreifels
- Department of Cardiology and Angiology I, Faculty of Medicine, University Heart Center Freiburg-Bad Krozingen, University of Freiburg, Freiburg, Germany
| | - Judith Stuplich
- Department of Cardiology and Angiology I, Faculty of Medicine, University Heart Center Freiburg-Bad Krozingen, University of Freiburg, Freiburg, Germany
| | - David Ziupa
- Department of Cardiology and Angiology I, Faculty of Medicine, University Heart Center Freiburg-Bad Krozingen, University of Freiburg, Freiburg, Germany
| | - Helge Servatius
- Translational Cardiology, Department of Cardiology, Inselspital, University Hospital Bern, University of Bern, Bern, Switzerland
| | - Luisa Nicolai
- Translational Cardiology, Department of Cardiology, Inselspital, University Hospital Bern, University of Bern, Bern, Switzerland
| | - Alessandro Castiglione
- Translational Cardiology, Department of Cardiology, Inselspital, University Hospital Bern, University of Bern, Bern, Switzerland
| | - Christiane Zweier
- Department of Human Genetics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Babken Asatryan
- Translational Cardiology, Department of Cardiology, Inselspital, University Hospital Bern, University of Bern, Bern, Switzerland
| | - Katja E Odening
- Translational Cardiology, Department of Cardiology, Inselspital, University Hospital Bern, University of Bern, Bern, Switzerland
- Department of Physiology, University of Bern, Bern, Switzerland
| |
Collapse
|
122
|
Xue H, Li Y, Zhao Z, Ren J, Yu W, Wang F, Li X, Li J, Xia Q, Zhang Y, Li B. Deacetylation mechanism and potential reversal strategy of long QT syndrome on hERG K + channel under hypoxia. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166487. [PMID: 35840042 DOI: 10.1016/j.bbadis.2022.166487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 11/30/2022]
Abstract
Clinically, hypoxia is a major risk factor for long QT syndrome (LQTS), which is associated with many diseases, such as myocardial ischemia. LQTS can be caused by the deficiency of hERG, a potassium ion channel that plays a key role in cardiac repolarization. Modifications such as acetylation of histones or non-histone proteins can affect the protein expression. In the present study, we explored the mechanism underlying hypoxia-induced LQTS and a potential reversal strategy. Experiments were performed under hypoxia to determine transcriptional and post-transcriptional expression changes. We used real-time PCR, chromatin immunoprecipitation assay, and western blotting to determine the histones acetylation in the hERG gene and the mechanism. Molecular docking, western blotting, IP, and patch -clamp assay were performed to determine the acetylation and ubiquitination levels of hERG protein and the mechanism. hERG mRNA and protein expression were found to decrease under hypoxia. The histone deacetylation level increased under hypoxia at both H3K27 and H4 of the hERG gene. HDAC1 and HDAC2 are the key enzymes for the mechanism. HDAC6 directly interacts with hERG. The acetylation level of hERG decreased and the ubiquitination level of hERG increased under hypoxia. The inhibitors of HDAC1, HDAC2, and HDAC6 could reverse the reduction of hERG mRNA and hERG protein expression under hypoxia. In conclusion, deacetylation of hERG gene-associated histones and hERG protein might be the mechanisms for LQTS in patients with hypoxia, and the inhibition of HDAC1, HDAC2, and HDAC6 might be a promising reversal strategy for reducing hERG expression under different pathological conditions.
Collapse
Affiliation(s)
- Hui Xue
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Yuexin Li
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Zhengrong Zhao
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Jiacheng Ren
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Wenting Yu
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Fang Wang
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Xianghua Li
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Jiaxin Li
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Qianqian Xia
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Yuxin Zhang
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Baoxin Li
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China.
| |
Collapse
|
123
|
Kekenes-Huskey PM, Burgess DE, Sun B, Bartos DC, Rozmus ER, Anderson CL, January CT, Eckhardt LL, Delisle BP. Mutation-Specific Differences in Kv7.1 ( KCNQ1) and Kv11.1 ( KCNH2) Channel Dysfunction and Long QT Syndrome Phenotypes. Int J Mol Sci 2022; 23:7389. [PMID: 35806392 PMCID: PMC9266926 DOI: 10.3390/ijms23137389] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 06/22/2022] [Accepted: 06/24/2022] [Indexed: 11/16/2022] Open
Abstract
The electrocardiogram (ECG) empowered clinician scientists to measure the electrical activity of the heart noninvasively to identify arrhythmias and heart disease. Shortly after the standardization of the 12-lead ECG for the diagnosis of heart disease, several families with autosomal recessive (Jervell and Lange-Nielsen Syndrome) and dominant (Romano-Ward Syndrome) forms of long QT syndrome (LQTS) were identified. An abnormally long heart rate-corrected QT-interval was established as a biomarker for the risk of sudden cardiac death. Since then, the International LQTS Registry was established; a phenotypic scoring system to identify LQTS patients was developed; the major genes that associate with typical forms of LQTS were identified; and guidelines for the successful management of patients advanced. In this review, we discuss the molecular and cellular mechanisms for LQTS associated with missense variants in KCNQ1 (LQT1) and KCNH2 (LQT2). We move beyond the "benign" to a "pathogenic" binary classification scheme for different KCNQ1 and KCNH2 missense variants and discuss gene- and mutation-specific differences in K+ channel dysfunction, which can predispose people to distinct clinical phenotypes (e.g., concealed, pleiotropic, severe, etc.). We conclude by discussing the emerging computational structural modeling strategies that will distinguish between dysfunctional subtypes of KCNQ1 and KCNH2 variants, with the goal of realizing a layered precision medicine approach focused on individuals.
Collapse
Affiliation(s)
- Peter M. Kekenes-Huskey
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA
| | - Don E. Burgess
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY 40536, USA; (D.E.B.); (E.R.R.)
| | - Bin Sun
- Department of Pharmacology, Harbin Medical University, Harbin 150081, China;
| | | | - Ezekiel R. Rozmus
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY 40536, USA; (D.E.B.); (E.R.R.)
| | - Corey L. Anderson
- Cellular and Molecular Arrythmias Program, Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA; (C.L.A.); (C.T.J.); (L.L.E.)
| | - Craig T. January
- Cellular and Molecular Arrythmias Program, Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA; (C.L.A.); (C.T.J.); (L.L.E.)
| | - Lee L. Eckhardt
- Cellular and Molecular Arrythmias Program, Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA; (C.L.A.); (C.T.J.); (L.L.E.)
| | - Brian P. Delisle
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY 40536, USA; (D.E.B.); (E.R.R.)
| |
Collapse
|
124
|
Kawakami S, Kambayashi R, Takada K, Aimoto M, Nagasawa Y, Takahara A. Role of cardiac α1-adrenoreceptors for the torsadogenic action of IKr blocker nifekalant in the anesthetized atrioventricular block rabbit. J Pharmacol Sci 2022; 150:67-73. [DOI: 10.1016/j.jphs.2022.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/30/2022] [Accepted: 07/19/2022] [Indexed: 10/16/2022] Open
|
125
|
Guo F, Sun Y, Wang H, Wang H, Zhou J, Fan H, Su J, Gong T, Jiang C, Liang P. Generation of an induced pluripotent stem cell line from a long QT syndrome patient carrying KCNH2/1956C > A mutation. Stem Cell Res 2022; 62:102813. [DOI: 10.1016/j.scr.2022.102813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/06/2022] [Accepted: 05/08/2022] [Indexed: 11/28/2022] Open
|
126
|
Wang Q, Zhang Y, Zhang F, Li Z, Cheng H, Lin Y, Zhu Y, Chen H, Cui C, Chen M. Generation of a human induced pluripotent stem cell line (JSPHi002-A) from a patient with long-QT syndrome type 1 caused by KCNQ1 c.773A > T mutation. Stem Cell Res 2022; 62:102810. [DOI: 10.1016/j.scr.2022.102810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/07/2022] [Indexed: 11/29/2022] Open
|
127
|
Song Y, Guo T, Jiang Y, Zhu M, Wang H, Lu W, Jiang M, Qi M, Lan F, Cui M. KCNQ1-deficient and KCNQ1-mutant human embryonic stem cell-derived cardiomyocytes for modeling QT prolongation. Stem Cell Res Ther 2022; 13:287. [PMID: 35765105 PMCID: PMC9241307 DOI: 10.1186/s13287-022-02964-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/20/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The slowly activated delayed rectifier potassium current (IKs) mediated by the KCNQ1 gene is one of the main currents involved in repolarization. KCNQ1 mutation can result in long-QT syndrome type 1 (LQT1). IKs does not participate in repolarization in mice; thus, no good model is currently available for research on the mechanism of and drug screening for LQT1. In this study, we established a KCNQ1-deficient human cardiomyocyte (CM) model and performed a series of microelectrode array (MEA) detection experiments on KCNQ1-mutant CMs constructed in other studies to explore the pathogenic mechanism of KCNQ1 deletion and mutation and perform drug screening. METHOD KCNQ1 was knocked out in human embryonic stem cell (hESC) H9 line using the CRISPR/cas9 system. KCNQ1-deficient and KCNQ1-mutant hESCs were differentiated into CMs through a chemically defined differentiation protocol. Subsequently, high-throughput MEA analysis and drug intervention were performed to determine the electrophysiological characteristics of KCNQ1-deficient and KCNQ1-mutant CMs. RESULTS During high-throughput MEA analysis, the electric field potential and action potential durations in KCNQ1-deficient CMs were significantly longer than those in wild-type CMs. KCNQ1-deficient CMs also showed an irregular rhythm. Furthermore, KCNQ1-deficient and KCNQ1-mutant CMs showed different responses to different drug treatments, which reflected the differences in their pathogenic mechanisms. CONCLUSION We established a human CM model with KCNQ1 deficiency showing a prolonged QT interval and an irregular heart rhythm. Further, we used various drugs to treat KCNQ1-deficient and KCNQ1-mutant CMs, and the three models showed different responses to these drugs. These models can be used as important tools for studying the different pathogenic mechanisms of KCNQ1 mutation and the relationship between the genotype and phenotype of KCNQ1, thereby facilitating drug development.
Collapse
Affiliation(s)
- Yuanxiu Song
- Department of Cardiology, Peking University Third Hospital, 49 Huayuan North Road, Haidian District, Beijing, 100191, China
| | - Tianwei Guo
- Beijing Lab for Cardiovascular Precision Medicine, Anzhen Hospital, Capital Medical University, Beijing, 100029, China
| | - Youxu Jiang
- Department of Cardiology, The Second Affiliated Hospital of Zhengzhou University, Jingba Road, Zhengzhou, 450053, China
| | - Min Zhu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Hongyue Wang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Wenjing Lu
- Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518057, China
| | - Mengqi Jiang
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Man Qi
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Feng Lan
- Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518057, China.
| | - Ming Cui
- Department of Cardiology, Peking University Third Hospital, 49 Huayuan North Road, Haidian District, Beijing, 100191, China.
| |
Collapse
|
128
|
Krahn AD, Laksman Z, Sy RW, Postema PG, Ackerman MJ, Wilde AAM, Han HC. Congenital Long QT Syndrome. JACC Clin Electrophysiol 2022; 8:687-706. [PMID: 35589186 DOI: 10.1016/j.jacep.2022.02.017] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 02/16/2022] [Accepted: 02/16/2022] [Indexed: 12/14/2022]
Abstract
Congenital long QT syndrome (LQTS) encompasses a group of heritable conditions that are associated with cardiac repolarization dysfunction. Since its initial description in 1957, our understanding of LQTS has increased dramatically. The prevalence of LQTS is estimated to be ∼1:2,000, with a slight female predominance. The diagnosis of LQTS is based on clinical, electrocardiogram, and genetic factors. Risk stratification of patients with LQTS aims to identify those who are at increased risk of cardiac arrest or sudden cardiac death. Factors including age, sex, QTc interval, and genetic background all contribute to current risk stratification paradigms. The management of LQTS involves conservative measures such as the avoidance of QT-prolonging drugs, pharmacologic measures with nonselective β-blockers, and interventional approaches such as device therapy or left cardiac sympathetic denervation. In general, most forms of exercise are considered safe in adequately treated patients, and implantable cardioverter-defibrillator therapy is reserved for those at the highest risk. This review summarizes our current understanding of LQTS and provides clinicians with a practical approach to diagnosis and management.
Collapse
Affiliation(s)
- Andrew D Krahn
- Center for Cardiovascular Innovation, Heart Rhythm Services, Division of Cardiology, University of British Columbia, Vancouver, BC, Canada.
| | - Zachary Laksman
- Center for Cardiovascular Innovation, Heart Rhythm Services, Division of Cardiology, University of British Columbia, Vancouver, BC, Canada
| | - Raymond W Sy
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Pieter G Postema
- Department of Clinical and Experimental Cardiology, Heart Center, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Michael J Ackerman
- Department of Cardiovascular Medicine, Division of Heart Rhythm Services, Windland Smith Rice Genetic Heart Rhythm Clinic, Mayo Clinic, Rochester, Minnesota, USA; Department of Pediatric and Adolescent Medicine, Division of Pediatric Cardiology, Mayo Clinic, Rochester, Minnesota, USA; Departments of Molecular Pharmacology and Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Rochester, Minnesota, USA
| | - Arthur A M Wilde
- Department of Clinical and Experimental Cardiology, Heart Center, Amsterdam University Medical Centers, Amsterdam, the Netherlands; European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart (ERN GUARD-Heart), Academic University Medical Center, Amsterdam, the Netherlands
| | - Hui-Chen Han
- Center for Cardiovascular Innovation, Heart Rhythm Services, Division of Cardiology, University of British Columbia, Vancouver, BC, Canada; Victorian Heart Institute, Monash University, Clayton, VIC, Australia
| |
Collapse
|
129
|
Valentin JP, Hoffmann P, Ortemann-Renon C, Koerner J, Pierson J, Gintant G, Willard J, Garnett C, Skinner M, Vargas HM, Wisialowski T, Pugsley MK. The Challenges of Predicting Drug-Induced QTc Prolongation in Humans. Toxicol Sci 2022; 187:3-24. [PMID: 35148401 PMCID: PMC9041548 DOI: 10.1093/toxsci/kfac013] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The content of this article derives from a Health and Environmental Sciences Institute (HESI) consortium with a focus to improve cardiac safety during drug development. A detailed literature review was conducted to evaluate the concordance between nonclinical repolarization assays and the clinical thorough QT (TQT) study. Food and Drug Administration and HESI developed a joint database of nonclinical and clinical data, and a retrospective analysis of 150 anonymized drug candidates was reviewed to compare the performance of 3 standard nonclinical assays with clinical TQT study findings as well as investigate mechanism(s) potentially responsible for apparent discrepancies identified. The nonclinical assays were functional (IKr) current block (Human ether-a-go-go related gene), action potential duration, and corrected QT interval in animals (in vivo corrected QT). Although these nonclinical assays demonstrated good specificity for predicting negative clinical QT prolongation, they had relatively poor sensitivity for predicting positive clinical QT prolongation. After review, 28 discordant TQT-positive drugs were identified. This article provides an overview of direct and indirect mechanisms responsible for QT prolongation and theoretical reasons for lack of concordance between clinical TQT studies and nonclinical assays. We examine 6 specific and discordant TQT-positive drugs as case examples. These were derived from the unique HESI/Food and Drug Administration database. We would like to emphasize some reasons for discordant data including, insufficient or inadequate nonclinical data, effects of the drug on other cardiac ion channels, and indirect and/or nonelectrophysiological effects of drugs, including altered heart rate. We also outline best practices that were developed based upon our evaluation.
Collapse
Affiliation(s)
- Jean-Pierre Valentin
- Department of Investigative Toxicology, UCB Biopharma SRL, Braine-l’Alleud B-1420, Belgium
| | | | | | - John Koerner
- Center for Drug Evaluation and Research, FDA, Silver Spring, Maryland 20993, USA
| | - Jennifer Pierson
- Health and Environmental Sciences Institute, Washington, District of Columbia 20005, USA
| | | | - James Willard
- Center for Drug Evaluation and Research, FDA, Silver Spring, Maryland 20993, USA
| | - Christine Garnett
- Center for Drug Evaluation and Research, FDA, Silver Spring, Maryland 20993, USA
| | | | - Hugo M Vargas
- Department of Safety Pharmacology & Animal Research Center, Amgen, Thousand Oaks, California 91320, USA
| | - Todd Wisialowski
- Department of Safety Pharmacology, Pfizer, Groton, Connecticut 06340, USA
| | - Michael K Pugsley
- Department of Toxicology, Cytokinetics, South San Francisco, California 94080, USA
| |
Collapse
|
130
|
Kojima K, Kato K, Fujii Y, Okuyama Y, Ohno S, Ozawa T, Horie M, Nakagawa Y. Successful Management of a Young Athlete with Type 2 Long QT Syndrome by Genotype-specific Risk Stratification and Bridging Therapy with a Wearable Cardioverter Defibrillator. Intern Med 2022; 61:1179-1182. [PMID: 35110475 PMCID: PMC9107976 DOI: 10.2169/internalmedicine.8093-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 11/25/2021] [Indexed: 11/13/2022] Open
Abstract
We herein report a 14-year-old boy with repetitive nocturnal syncope related to medication-refractory long QT syndrome (LQTS). Although the use of an implantable cardioverter-defibrillator (ICD) was inevitable to prevent sudden cardiac death, he refused immediate implantation in order to play in a baseball competition six weeks away. Given his genetic diagnosis of type 2 LQTS, which is associated with cardiac events unrelated to exercise, we prescribed a wearable cardioverter defibrillator (WCD) to be donned at night, without limiting his exercise participation. An ICD was implanted after the competition. We successfully performed the preplanned treatment while maximizing the patient's quality-of-life with a WCD and genotype-specific risk stratification.
Collapse
Affiliation(s)
- Katsumi Kojima
- Department of Cardiovascular Medicine, Shiga University of Medical Science, Japan
| | - Koichi Kato
- Department of Cardiovascular Medicine, Shiga University of Medical Science, Japan
| | - Yusuke Fujii
- Department of Cardiovascular Medicine, Shiga University of Medical Science, Japan
| | - Yusuke Okuyama
- Department of Cardiovascular Medicine, Shiga University of Medical Science, Japan
| | - Seiko Ohno
- Department of Bioscience and Genetics, National Cerebral and Cardiovascular Center, Japan
| | - Tomoya Ozawa
- Department of Cardiovascular Medicine, Shiga University of Medical Science, Japan
| | - Minoru Horie
- Department of Cardiovascular Medicine, Shiga University of Medical Science, Japan
| | - Yoshihisa Nakagawa
- Department of Cardiovascular Medicine, Shiga University of Medical Science, Japan
| |
Collapse
|
131
|
Lorca R, Junco-Vicente A, Pérez-Pérez A, Pascual I, Persia-Paulino YR, González-Urbistondo F, Cuesta-Llavona E, Fernández-Barrio BC, Morís C, Rubín JM, Coto E, Gómez J, Reguero JJR. KCNH2 p.Gly262AlafsTer98: A New Threatening Variant Associated with Long QT Syndrome in a Spanish Cohort. Life (Basel) 2022; 12:life12040556. [PMID: 35455047 PMCID: PMC9024605 DOI: 10.3390/life12040556] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/27/2022] [Accepted: 04/05/2022] [Indexed: 11/16/2022] Open
Abstract
Long QT syndrome (LQTS) is an inherited (autosomal dominant) channelopathy associated with susceptibility to ventricular arrhythmias due to malfunction of ion channels in cardiomyocytes, that could lead to sudden death (SD). Most pathogenic variants are in the main 3 genes: KCNQ1 (LQT1), KCNH2 (LQT2) and SCN5A (LQT3). Efforts to improve the understanding of the genotype-phenotype relationship are essential to improve the medical clinical practice. In this study, we identified all index patients referred for NGS genetic sequencing due to LQTS, in a Spanish cohort, who were carriers of a new pathogenic variant (KCNH2 p.Gly262AlafsTer98). Genetic and clinical family screening was performed in order to describe its phenotypic characteristics. We identified 22 relatives of Romani ethnicity, who were carriers of the variant. Penetrance reached a 100% and adherence to medical treatment was low. There was a high rate of clinical events, particularly arrhythmic events and SD (1 in every 4 patients presented syncope, 1 presented an aborted SD, 2 obligated carriers suffered SD before the age of 40 and 4 out of 6 carriers of an implantable cardioverter-defibrillator (ICD) had appropriate ICD therapies. Correct adherence to medical treatment in all carriers should be specially encouraged in this population. ICD implantation decision in non-compliant patients, and refusing left cardiac sympathetic denervation, should be carefully outweighed.
Collapse
Affiliation(s)
- Rebeca Lorca
- Unidad de Referencia de Cardiopatías Familiares-HUCA, Área del Corazón y Departamento de Genética Molecular, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain; (R.L.); (E.C.-L.); (C.M.); (J.M.R.); (E.C.); (J.G.); (J.J.R.R.)
- Heart Area, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain; (A.J.-V.); (Y.R.P.-P.); (F.G.-U.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Alejandro Junco-Vicente
- Heart Area, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain; (A.J.-V.); (Y.R.P.-P.); (F.G.-U.)
| | - Alicia Pérez-Pérez
- Pediatric Area, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain; (A.P.-P.); (B.C.F.-B.)
| | - Isaac Pascual
- Heart Area, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain; (A.J.-V.); (Y.R.P.-P.); (F.G.-U.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Correspondence:
| | - Yvan Rafael Persia-Paulino
- Heart Area, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain; (A.J.-V.); (Y.R.P.-P.); (F.G.-U.)
| | | | - Elías Cuesta-Llavona
- Unidad de Referencia de Cardiopatías Familiares-HUCA, Área del Corazón y Departamento de Genética Molecular, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain; (R.L.); (E.C.-L.); (C.M.); (J.M.R.); (E.C.); (J.G.); (J.J.R.R.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | | | - César Morís
- Unidad de Referencia de Cardiopatías Familiares-HUCA, Área del Corazón y Departamento de Genética Molecular, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain; (R.L.); (E.C.-L.); (C.M.); (J.M.R.); (E.C.); (J.G.); (J.J.R.R.)
- Heart Area, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain; (A.J.-V.); (Y.R.P.-P.); (F.G.-U.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - José Manuel Rubín
- Unidad de Referencia de Cardiopatías Familiares-HUCA, Área del Corazón y Departamento de Genética Molecular, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain; (R.L.); (E.C.-L.); (C.M.); (J.M.R.); (E.C.); (J.G.); (J.J.R.R.)
- Heart Area, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain; (A.J.-V.); (Y.R.P.-P.); (F.G.-U.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Eliecer Coto
- Unidad de Referencia de Cardiopatías Familiares-HUCA, Área del Corazón y Departamento de Genética Molecular, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain; (R.L.); (E.C.-L.); (C.M.); (J.M.R.); (E.C.); (J.G.); (J.J.R.R.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Juan Gómez
- Unidad de Referencia de Cardiopatías Familiares-HUCA, Área del Corazón y Departamento de Genética Molecular, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain; (R.L.); (E.C.-L.); (C.M.); (J.M.R.); (E.C.); (J.G.); (J.J.R.R.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- CIBER-Enfermedades Respiratorias, 28029 Madrid, Spain
| | - José Julián Rodríguez Reguero
- Unidad de Referencia de Cardiopatías Familiares-HUCA, Área del Corazón y Departamento de Genética Molecular, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain; (R.L.); (E.C.-L.); (C.M.); (J.M.R.); (E.C.); (J.G.); (J.J.R.R.)
- Heart Area, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain; (A.J.-V.); (Y.R.P.-P.); (F.G.-U.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| |
Collapse
|
132
|
Franciosi S, Abrams DJ, Ingles J, Sanatani S. Sudden Cardiac Arrest in the Paediatric Population. CJC PEDIATRIC AND CONGENITAL HEART DISEASE 2022; 1:45-59. [PMID: 37969243 PMCID: PMC10642157 DOI: 10.1016/j.cjcpc.2022.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 02/03/2022] [Indexed: 11/17/2023]
Abstract
Sudden cardiac arrest in the young is a rare event with a range of potential causes including cardiomyopathies, ion channelopathies, and autonomic nervous system dysfunction. Investigations into the cause involve a multidisciplinary team, including cardiologists, geneticists, and psychologists. In addition to a detailed medical history, family history and circumstances surrounding the event are important in determining the cause. Clinical investigations including an electrocardiogram are fundamental in diagnosis and should be interpreted cautiously because some children may have atypical presentations and an evolving phenotype. The potential for misdiagnosis exists that could lead to incorrect long-term management strategies. If an inherited condition is suspected, genetic testing of the patient and cascade screening of family members is recommended with genetic counselling and psychological support. Medical management is left to the treating physician acknowledging that a clear diagnosis cannot be made in approximately half of cases. Secondary prevention implantable defibrillators are widely deployed but can be associated with complications in young patients. A plan for safe return to activity is recommended along with a proper transition of care into adulthood. Broad screening of the general population for arrhythmia syndromes is not recommended; preventative measures include screening paediatric patients for risk factors by their primary care physician. Several milestone events or activities that take place in youth could be used as opportunities to promote safety. Further work into risk stratification of this paediatric population through patient registries and greater awareness of cardiopulmonary resuscitation and automated external defibrillator use in saving lives is warranted.
Collapse
Affiliation(s)
- Sonia Franciosi
- BC Children’s Hospital Heart Centre, Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Dominic J. Abrams
- Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Jodie Ingles
- Centre for Population Genomics, Garvan Institute of Medical Research, and UNSW Sydney, Sydney, New South Wales, Australia
- Centre for Population Genomics, Murdoch Children’s Research Institute, Melbourne, Victoria, Australia
| | - Shubhayan Sanatani
- BC Children’s Hospital Heart Centre, Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
133
|
Castiglione A, Hornyik T, Wülfers EM, Giammarino L, Edler I, Jowais JJ, Rieder M, Perez-Feliz S, Koren G, Bősze Z, Varró A, Zehender M, Brunner M, Bode C, Liin SI, Larsson HP, Baczkó I, Odening KE. Docosahexaenoic acid normalizes QT interval in long QT type 2 transgenic rabbit models in a genotype-specific fashion. Europace 2022; 24:511-522. [PMID: 34601592 PMCID: PMC9125797 DOI: 10.1093/europace/euab228] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/11/2021] [Indexed: 11/13/2022] Open
Abstract
AIM Long QT syndrome (LQTS) is a cardiac channelopathy predisposing to ventricular arrhythmias and sudden cardiac death. Since current therapies often fail to prevent arrhythmic events in certain LQTS subtypes, new therapeutic strategies are needed. Docosahexaenoic acid (DHA) is a polyunsaturated fatty acid, which enhances the repolarizing IKs current. METHODS AND RESULTS We investigated the effects of DHA in wild type (WT) and transgenic long QT Type 1 (LQT1; loss of IKs), LQT2 (loss of IKr), LQT5 (reduction of IKs), and LQT2-5 (loss of IKr and reduction of IKs) rabbits. In vivo ECGs were recorded at baseline and after 10 µM/kg DHA to assess changes in heart-rate corrected QT (QTc) and short-term variability of QT (STVQT). Ex vivo monophasic action potentials were recorded in Langendorff-perfused rabbit hearts, and action potential duration (APD75) and triangulation were assessed. Docosahexaenoic acid significantly shortened QTc in vivo only in WT and LQT2 rabbits, in which both α- and β-subunits of IKs-conducting channels are functionally intact. In LQT2, this led to a normalization of QTc and of its short-term variability. Docosahexaenoic acid had no effect on QTc in LQT1, LQT5, and LQT2-5. Similarly, ex vivo, DHA shortened APD75 in WT and normalized it in LQT2, and additionally decreased AP triangulation in LQT2. CONCLUSIONS Docosahexaenoic acid exerts a genotype-specific beneficial shortening/normalizing effect on QTc and APD75 and reduces pro-arrhythmia markers STVQT and AP triangulation through activation of IKs in LQT2 rabbits but has no effects if either α- or β-subunits to IKs are functionally impaired. Docosahexaenoic acid could represent a new genotype-specific therapy in LQT2.
Collapse
Affiliation(s)
- Alessandro Castiglione
- Department of Cardiology and Angiology I, University Heart Center Freiburg, Medical Faculty, University of Freiburg, Freiburg, Germany
- Translational Cardiology, Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Buehlplatz 5, CH-3012 Bern, Switzerland
- Department of Translational Cardiology/Electrophysiology, Institute of Physiology, University of Bern, Bern, Switzerland
| | - Tibor Hornyik
- Department of Cardiology and Angiology I, University Heart Center Freiburg, Medical Faculty, University of Freiburg, Freiburg, Germany
- Translational Cardiology, Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Buehlplatz 5, CH-3012 Bern, Switzerland
- Department of Translational Cardiology/Electrophysiology, Institute of Physiology, University of Bern, Bern, Switzerland
- Institute of Experimental Cardiovascular Medicine, University Heart Center Freiburg—Bad Krozingen, Medical Faculty, University of Freiburg, Freiburg, Germany
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary
| | - Eike M Wülfers
- Institute of Experimental Cardiovascular Medicine, University Heart Center Freiburg—Bad Krozingen, Medical Faculty, University of Freiburg, Freiburg, Germany
| | - Lucilla Giammarino
- Translational Cardiology, Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Buehlplatz 5, CH-3012 Bern, Switzerland
- Department of Translational Cardiology/Electrophysiology, Institute of Physiology, University of Bern, Bern, Switzerland
| | - Iask Edler
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Jessica J Jowais
- Department of Physiology and Biophysics, University of Miami, Miami, FL, USA
| | - Marina Rieder
- Department of Cardiology and Angiology I, University Heart Center Freiburg, Medical Faculty, University of Freiburg, Freiburg, Germany
- Translational Cardiology, Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Buehlplatz 5, CH-3012 Bern, Switzerland
- Department of Translational Cardiology/Electrophysiology, Institute of Physiology, University of Bern, Bern, Switzerland
| | - Stefanie Perez-Feliz
- Department of Cardiology and Angiology I, University Heart Center Freiburg, Medical Faculty, University of Freiburg, Freiburg, Germany
- Institute of Experimental Cardiovascular Medicine, University Heart Center Freiburg—Bad Krozingen, Medical Faculty, University of Freiburg, Freiburg, Germany
| | - Gideon Koren
- Division of Cardiology, Cardiovascular Research Center, Brown University, Providence, RI, USA
| | - Zsuzsanna Bősze
- Animal Biotechnology Department, NARIC Agricultural Biotechnology Institute, Gödöllő, Hungary
| | - András Varró
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary
| | - Manfred Zehender
- Department of Cardiology and Angiology I, University Heart Center Freiburg, Medical Faculty, University of Freiburg, Freiburg, Germany
| | - Michael Brunner
- Department of Cardiology and Angiology I, University Heart Center Freiburg, Medical Faculty, University of Freiburg, Freiburg, Germany
- Department of Cardiology and Medical Intensive Care, St. Josefskrankenhaus, Freiburg, Germany
| | - Christoph Bode
- Department of Cardiology and Angiology I, University Heart Center Freiburg, Medical Faculty, University of Freiburg, Freiburg, Germany
| | - Sara I Liin
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Hans Peter Larsson
- Department of Physiology and Biophysics, University of Miami, Miami, FL, USA
| | - István Baczkó
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary
| | - Katja E Odening
- Department of Cardiology and Angiology I, University Heart Center Freiburg, Medical Faculty, University of Freiburg, Freiburg, Germany
- Translational Cardiology, Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Buehlplatz 5, CH-3012 Bern, Switzerland
- Department of Translational Cardiology/Electrophysiology, Institute of Physiology, University of Bern, Bern, Switzerland
| |
Collapse
|
134
|
Chan CH, Hu YF, Chen PF, Wu IC, Chen SA. Exercise Test for Patients with Long QT Syndrome. ACTA CARDIOLOGICA SINICA 2022; 38:124-133. [PMID: 35273433 PMCID: PMC8888329 DOI: 10.6515/acs.202203_38(2).20211101a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 11/01/2021] [Indexed: 01/24/2023]
Abstract
Congenital long QT syndrome (LQTS) causes life-threatening cardiac arrhythmias and is the leading cause of sudden cardiac death in young people. Measurements of QT prolongation during exercise or postural change have been recommended to assist in the diagnosis of LQTS, particularly in those with hidden phenotypes. However, most evidence has come from single-center studies without external validation in an independent cohort. Inter-study heterogeneity leads to significant difficulties in interpreting and applying consistent diagnostic criteria for LQTS. A comprehensive systematic review is critically needed to summarize the evidence and validate the diagnostic performance of QT intervals during exercise or postural change across a variety of studies. In this study, we review cross-sectional and cohort studies evaluating the efficacy and feasibility of exercise tests or postural changes in diagnosing LQTS, and propose possible problems resulting from exercise tests.
Collapse
Affiliation(s)
- Cheng-Han Chan
- Department of Medicine, Taipei Veterans General Hospital
| | - Yu-Feng Hu
- Faculty of Medicine, National Yang-Ming University;
,
Heart Rhythm Center, Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital;
,
Institute of Biomedical Sciences, Academia Sinica, Taipei
| | - Pei-Fen Chen
- Institute of Population Health Sciences, National Health Research Institutes, Miaoli
| | - I-Chien Wu
- Institute of Population Health Sciences, National Health Research Institutes, Miaoli
| | - Shih-Ann Chen
- Faculty of Medicine, National Yang-Ming University;
,
Heart Rhythm Center, Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital;
,
Cardiovascular Center, Taichung Veterans General Hospital, Taichung, Taiwan
| |
Collapse
|
135
|
Lubberding AF, Juhl CR, Skovhøj EZ, Kanters JK, Mandrup‐Poulsen T, Torekov SS. Celebrities in the heart, strangers in the pancreatic beta cell: Voltage-gated potassium channels K v 7.1 and K v 11.1 bridge long QT syndrome with hyperinsulinaemia as well as type 2 diabetes. Acta Physiol (Oxf) 2022; 234:e13781. [PMID: 34990074 PMCID: PMC9286829 DOI: 10.1111/apha.13781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 12/20/2021] [Accepted: 01/02/2022] [Indexed: 12/13/2022]
Abstract
Voltage‐gated potassium (Kv) channels play an important role in the repolarization of a variety of excitable tissues, including in the cardiomyocyte and the pancreatic beta cell. Recently, individuals carrying loss‐of‐function (LoF) mutations in KCNQ1, encoding Kv7.1, and KCNH2 (hERG), encoding Kv11.1, were found to exhibit post‐prandial hyperinsulinaemia and episodes of hypoglycaemia. These LoF mutations also cause the cardiac disorder long QT syndrome (LQTS), which can be aggravated by hypoglycaemia. Interestingly, patients with LQTS also have a higher burden of diabetes compared to the background population, an apparent paradox in relation to the hyperinsulinaemic phenotype, and KCNQ1 has been identified as a type 2 diabetes risk gene. This review article summarizes the involvement of delayed rectifier K+ channels in pancreatic beta cell function, with emphasis on Kv7.1 and Kv11.1, using the cardiomyocyte for context. The functional and clinical consequences of LoF mutations and polymorphisms in these channels on blood glucose homeostasis are explored using evidence from pre‐clinical, clinical and genome‐wide association studies, thereby evaluating the link between LQTS, hyperinsulinaemia and type 2 diabetes.
Collapse
Affiliation(s)
- Anniek F. Lubberding
- Department of Biomedical Sciences Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| | - Christian R. Juhl
- Department of Biomedical Sciences Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| | - Emil Z. Skovhøj
- Department of Biomedical Sciences Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| | - Jørgen K. Kanters
- Department of Biomedical Sciences Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| | - Thomas Mandrup‐Poulsen
- Department of Biomedical Sciences Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| | - Signe S. Torekov
- Department of Biomedical Sciences Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| |
Collapse
|
136
|
Armbruster AL, Campbell KB, Kahanda MG, Cuculich PS. The role of inflammation in the pathogenesis and treatment of arrhythmias. Pharmacotherapy 2022; 42:250-262. [PMID: 35098555 DOI: 10.1002/phar.2663] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 11/30/2021] [Accepted: 12/03/2021] [Indexed: 12/20/2022]
Abstract
The pathogenesis of arrhythmias is complex and multifactorial. The role of inflammation in the pathogenesis of both atrial and ventricular arrhythmias (VA) has been explored. However, developing successful pharmacotherapy regimens based on those pathways has proven more of a challenge. This narrative review provides an overview of five common arrhythmias impacted by inflammation, including atrial fibrillation (AF), myocardial infarction, arrhythmogenic cardiomyopathy, cardiac sarcoidosis, and QT prolongation, and the potential role for anti-inflammatory therapy in their management. We identified arrhythmias and arrhythmogenic disease states with the most evidence linking pathogenesis to inflammation and conducted comprehensive searches of United States National Library of Medicine MEDLINE® and PubMed databases. Although a variety of agents have been studied for the management of AF, primarily in an effort to reduce postoperative AF following cardiac surgery, no standard anti-inflammatory agents are used in clinical practice at this time. Although inflammation following myocardial infarction may contribute to the development of VA, there is no clear benefit with the use of anti-inflammatory agents at this time. Similarly, although inflammation is clearly linked to the development of arrhythmias in arrhythmogenic cardiomyopathy, data demonstrating a benefit with anti-inflammatory agents are limited. Cardiac sarcoidosis, an infiltrative disease eliciting an immune response, is primarily treated by immunosuppressive therapy and steroids, despite a lack of primary literature to support such regimens. In this case, anti-inflammatory agents are frequently used in clinical practice. The pathophysiology of arrhythmias is complex, and inflammation likely plays a role in both onset and duration, however, for most arrhythmias the role of pharmacotherapy targeting inflammation remains unclear.
Collapse
Affiliation(s)
- Anastasia L Armbruster
- St. Louis College of Pharmacy, University of Health Sciences and Pharmacy in St. Louis, St. Louis, Missouri, USA
| | | | - Milan G Kahanda
- Cardiovascular Division, Department of Internal Medicine, Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA
| | - Phillip S Cuculich
- Cardiovascular Division, Department of Internal Medicine, Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
137
|
Bakur KH, Al-Aama JY, Alhassnan ZN, Brooks H, Clancy T, Manea W, Takroni SA, Ulph F. Exploring the role of Islam on the lived experience of patients with Long QT Syndrome in Saudi Arabia. J Genet Couns 2022; 31:922-936. [PMID: 35194886 DOI: 10.1002/jgc4.1562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 01/30/2022] [Accepted: 01/31/2022] [Indexed: 11/10/2022]
Abstract
Genetic services are rapidly growing in the Arab world leading to increasing number of patients being diagnosed with genetic disorders. Islam is the only/major religion of the local population in these countries. Muslim patients integrate religion in virtually every aspect of their lives, and it is vital to understand the role of Islam on their coping and decision-making in the context of genetic counseling. This will help provide patients with the most appropriate services aligned to their religious beliefs and will improve outcomes. Increasing numbers of patients are being diagnosed with Long QT syndrome in Saudi Arabia. Using semi-structured interviews, this study explored the role of Islam on the lived experience of 13 Saudi participants diagnosed with autosomal dominant Long QT syndrome (3/13) or who are carriers of Jervell and Lange-Nielsen syndrome (10/13). The interviews investigated how they made sense of living with the condition in light of their religion/spirituality. The data were analyzed using interpretative phenomenological analysis and produced four superordinate themes: 1) Common belief and idiosyncratic interpretation; 2) Using religion to justify positive reframing of current illnesses; 3) Interplay between belief in medicine and in religion; and 4) Complex impact of diagnosis on religiosity. The results show that the participants' idiosyncratic interpretations of the religious principles, not the principles themselves, had an important influence on their coping, medical decision-making, perceptions regarding the cause of their disease, and compliance with medical advice. A novel insight of the current study is that the personal understanding and interpretation of medical information played the greatest role in the decision-making process, and not the religious beliefs. Thus, it is important for health professionals to give patients' information in a manner that is clear and detailed in order for them to facilitate an informed decision, and to ensure that they fully understand the implications.
Collapse
Affiliation(s)
- Khadijah H Bakur
- School of Biological Science, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.,Department of Genetic Medicine, King Abdulaziz University Hospital, Jeddah, Saudi Arabia.,Princess Al-Jawhara Centre of Excellence in Research of Hereditary Disorders, King AbdulAziz University, Jeddah, Saudi Arabia
| | - Jumana Y Al-Aama
- Princess Al-Jawhara Centre of Excellence in Research of Hereditary Disorders, King AbdulAziz University, Jeddah, Saudi Arabia.,Department of Genetic Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Zuhair N Alhassnan
- Department of Medical Genetics, King Faisal Specialist Hospital & Research Center, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Helen Brooks
- Division of Nursing, Midwifery and Social Work, School of Health Sciences, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Tara Clancy
- Manchester Centre for Genomic Medicine, St. Mary's Hospital, Manchester, UK
| | - Waleed Manea
- Heart Center Department, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - Saud A Takroni
- Department of Medical Genetics, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - Fiona Ulph
- Division of Psychology and Mental Health, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| |
Collapse
|
138
|
Tiver KD, Dharmaprani D, Quah JX, Lahiri A, Waddell-Smith KE, Ganesan AN. Vomiting, electrolyte disturbance, and medications; the perfect storm for acquired long QT syndrome and cardiac arrest: a case report. J Med Case Rep 2022; 16:9. [PMID: 35012656 PMCID: PMC8751273 DOI: 10.1186/s13256-021-03204-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 11/22/2021] [Indexed: 01/30/2023] Open
Abstract
Background Acquired long QT syndrome is an important and preventable cause of cardiac arrest. Certain medications and electrolyte disturbance are common contributors, and often coexist. In this case, we report five contributors to cardiac arrest. Case presentation This case is of a 51-year-old Caucasian female patient who presented with vomiting associated with hypokalemia and hypomagnesemia. She subsequently received ondansetron and metoclopramide, on the background of chronic treatment with fluoxetine. She then suffered an in-hospital monitored cardiac arrest, with features of long QT and torsades de pointes retrospectively noted on her prearrest electrocardiogram. She was diagnosed with acquired long QT syndrome, and her QT interval later normalized after removal of offending causes. Conclusions This case highlights the importance of proper consideration prior to prescribing QT prolonging medications, especially in patients who have other risk factors for prolonged QT, such as electrolyte disturbances and pretreatment with QT prolonging medications.
Collapse
Affiliation(s)
- K D Tiver
- Department of Cardiology, Level 6, Flinders Medical Centre, Flinders Drive, Bedford Park, SA, 5042, Australia.,College of Medicine and Public Health, Flinders University, Bedford Park, Australia
| | - D Dharmaprani
- College of Medicine and Public Health, Flinders University, Bedford Park, Australia
| | - J X Quah
- Department of Cardiology, Level 6, Flinders Medical Centre, Flinders Drive, Bedford Park, SA, 5042, Australia.,College of Medicine and Public Health, Flinders University, Bedford Park, Australia
| | - A Lahiri
- Department of Cardiology, Level 6, Flinders Medical Centre, Flinders Drive, Bedford Park, SA, 5042, Australia
| | - K E Waddell-Smith
- Department of Cardiology, Level 6, Flinders Medical Centre, Flinders Drive, Bedford Park, SA, 5042, Australia
| | - A N Ganesan
- Department of Cardiology, Level 6, Flinders Medical Centre, Flinders Drive, Bedford Park, SA, 5042, Australia. .,College of Medicine and Public Health, Flinders University, Bedford Park, Australia.
| |
Collapse
|
139
|
Andrzejewska M, Żebrowski JJ, Rams K, Ozimek M, Baranowski R. Assessment of time irreversibility in a time series using visibility graphs. FRONTIERS IN NETWORK PHYSIOLOGY 2022; 2:877474. [PMID: 36926071 PMCID: PMC10013024 DOI: 10.3389/fnetp.2022.877474] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 08/24/2022] [Indexed: 11/07/2022]
Abstract
In this paper, we studied the time-domain irreversibility of time series, which is a fundamental property of systems in a nonequilibrium state. We analyzed a subgroup of the databases provided by University of Rochester, namely from the THEW Project. Our data consists of LQTS (Long QT Syndrome) patients and healthy persons. LQTS may be associated with an increased risk of sudden cardiac death (SCD), which is still a big clinical problem. ECG-based artificial intelligence methods can identify sudden cardiac death with a high accuracy. It follows that heart rate variability contains information about the possibility of SCD, which may be extracted, provided that appropriate methods are developed for this purpose. Our aim was to assess the complexity of both groups using visibility graph (VG) methods. Multivariate analysis of connection patterns of graphs built from time series was performed using multiplex visibility graph methods. For univariate time series, time irreversibility of the ECG interval QT of patients with LQTS was lower than for the healthy. However, we did not observe statistically significant difference in the comparison of RR intervals time series of the two groups studied. The connection patterns retrieved from multiplex VGs have more similarity with each other in the case of LQTS patients. This observation may be used to develop better methods for SCD risk stratification.
Collapse
Affiliation(s)
- Małgorzata Andrzejewska
- Cardiovascular Physics Group, Physics of Complex Systems Division, Faculty of Physics, Warsaw University of Technology, Warszawa, Poland
| | - Jan J Żebrowski
- Cardiovascular Physics Group, Physics of Complex Systems Division, Faculty of Physics, Warsaw University of Technology, Warszawa, Poland
| | - Karolina Rams
- Cardiovascular Physics Group, Physics of Complex Systems Division, Faculty of Physics, Warsaw University of Technology, Warszawa, Poland
| | - Mateusz Ozimek
- Cardiovascular Physics Group, Physics of Complex Systems Division, Faculty of Physics, Warsaw University of Technology, Warszawa, Poland
| | | |
Collapse
|
140
|
Ahn KJ, Song MK, Lee SY, Yoon JK, Kim GB, Oh S, Bae EJ. The Outcome of Long QT Syndrome, a Korean Single Center Study. Korean Circ J 2022; 52:771-781. [PMID: 36217598 PMCID: PMC9551231 DOI: 10.4070/kcj.2022.0081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 07/14/2022] [Accepted: 08/10/2022] [Indexed: 01/08/2023] Open
Abstract
Congenital long QT syndrome is an inherited cardiac channelopathy, causing fatal arrhythmia. In this study, we conducted a retrospective cohort study on 105 congenital LQTS patients and its outcome in a tertiary center. The 10-year event free survival rate was 73.2%, and the outcome was different according to the genotypes. With treatment, all survived except one. The genetic analysis and risk stratification may be essential for better outcome and further nationwide and large scaled studies are required. Background and Objectives Although long QT syndrome (LQTS) is a potentially life-threatening inherited cardiac channelopathy, studies documenting the long-term clinical data of Korean patients with LQTS are scarce. Methods This retrospective cohort study included 105 patients with LQTS (48 women; 45.7%) from a single tertiary center. The clinical outcomes were analyzed for the rate of freedom from breakthrough cardiac events (BCEs), additional treatment needed, and death. Results LQTS was diagnosed at a median age of 11 (range, 0.003–80) years. Genetic testing was performed on 90 patients (yield, 71.1%). The proportions of genetically confirmed patients with LQTS types 1, 2, 3, and others were 34.4%, 12.2%, 12.2%, and 12.2%, respectively. In the symptomatic group (n=70), aborted cardiac arrest was observed in 30% of the patients. Treatments included medications in 60 patients (85.7%), implantable cardioverter-defibrillators in 27 (38.6%; median age, 17 years; range, 2–79 years), and left cardiac sympathetic denervation surgery in 7 (10%; median age, 13 years; range, 2–34). The 10-year BCE-free survival rate was 73.2%. By genotype, significant differences were observed in BCEs despite medication (p<0.001). The 10-year BCE-free survival rate was the highest in patients with LQTS type 1 (81.8%) and the lowest in those with multiple LQTS-associated mutations (LQTM). All patients with LQTS survived, except for one patient who had LQTM. Conclusions Good long-term outcomes can be achieved by using recently developed genetically tailored management strategies for patients with LQTS.
Collapse
Affiliation(s)
- Kyung Jin Ahn
- Department of Pediatrics, Seoul National University Children’s Hospital, Seoul National University College of Medicine, Seoul, Korea
- Department of Pediatrics, Gachon University Gil Medical Center, Incheon, Korea
| | - Mi Kyoung Song
- Department of Pediatrics, Seoul National University Children’s Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Sang Yun Lee
- Department of Pediatrics, Seoul National University Children’s Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Ja Kyoung Yoon
- Department of Pediatrics, Sejong General Hospital, Bucheon, Korea
| | - Gi Beom Kim
- Department of Pediatrics, Seoul National University Children’s Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Seil Oh
- Department of Internal Medicine, Seoul National University Children’s Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Eun Jung Bae
- Department of Pediatrics, Seoul National University Children’s Hospital, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
141
|
Thomas B, Babu I, George S, Janardhanan A. Congenital long QT syndrome: The masquerader. Indian J Anaesth 2022; 66:S278-S280. [PMID: 36262728 PMCID: PMC9575914 DOI: 10.4103/ija.ija_814_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 11/04/2022] Open
|
142
|
Hartmann J, Pærregaard MM, Norsk J, Pietersen A, Iversen KK, Bundgaard H, Christensen AH. Gestational Age and Neonatal Electrocardiograms. Pediatrics 2021; 148:183443. [PMID: 34814190 DOI: 10.1542/peds.2021-050942] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/07/2021] [Indexed: 11/24/2022] Open
Abstract
OBJECTIVES Interpretation of the neonatal electrocardiogram (ECG) is challenging due to the profound changes of the cardiovascular system in this period. We aimed to investigate the impact of gestational age (GA) on the neonatal ECG and create GA-specific reference values. METHODS The Copenhagen Baby Heart Study is a prospective general population study that offered cardiac evaluation of neonates. ECGs and echocardiograms were obtained and systematically analyzed. GA, weight, height, and other baseline variables were registered. RESULTS We included 16 462 neonates (52% boys) with normal echocardiograms. The median postnatal age was 11 days (range 0 to 30), and the median GA was 281 days (range 238 to 301). Analyzing the ECG parameters as a function of GA, we found an effect of GA on almost all investigated ECG parameters. The largest percentual effect of GA was on heart rate (HR; 147 vs 139 beats per minute), the QRS axis (103° vs 116°), and maximum R-wave amplitude in V1 (R-V1; 0.97 vs 1.19 mV) for GA ≤35 vs ≥42 weeks, respectively. Boys had longer PR and QRS intervals and a more right-shifted QRS axis within multiple GA intervals (all P < .01). The effect of GA generally persisted after multifactorial adjustment. CONCLUSIONS GA was associated with significant differences in multiple neonatal ECG parameters. The association generally persisted after multifactorial adjustment, indicating a direct effect of GA on the developing neonatal cardiac conduction system. For HR, the QRS axis, and R-V1, the use of GA-specific reference values may optimize clinical handling of neonates.
Collapse
Affiliation(s)
- Joachim Hartmann
- Department of Cardiology, Herlev-Gentofte Hospital, Copenhagen University Hospital, Copenhagen, Denmark
| | - Maria Munk Pærregaard
- Department of Cardiology, Herlev-Gentofte Hospital, Copenhagen University Hospital, Copenhagen, Denmark
| | - Jakob Norsk
- Department of Cardiology, Herlev-Gentofte Hospital, Copenhagen University Hospital, Copenhagen, Denmark
| | - Adrian Pietersen
- Department of Cardiology, Herlev-Gentofte Hospital, Copenhagen University Hospital, Copenhagen, Denmark
| | - Kasper Karmark Iversen
- Department of Cardiology, Herlev-Gentofte Hospital, Copenhagen University Hospital, Copenhagen, Denmark
| | - Henning Bundgaard
- The Capital Regions Unit for Inherited Cardiac Diseases, Department of Cardiology, The Heart Center and Department of Clinical Medicine, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Alex Hørby Christensen
- Department of Cardiology, Herlev-Gentofte Hospital, Copenhagen University Hospital, Copenhagen, Denmark.,The Capital Regions Unit for Inherited Cardiac Diseases, Department of Cardiology, The Heart Center and Department of Clinical Medicine, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| |
Collapse
|
143
|
Monteiro O, Bhaskar A, Ng AKM, Murdoch CE, Baptista-Hon DT. Computer-based virtual laboratory simulations: LabHEART cardiac physiology practical. ADVANCES IN PHYSIOLOGY EDUCATION 2021; 45:856-868. [PMID: 34473584 DOI: 10.1152/advan.00094.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/17/2021] [Indexed: 06/13/2023]
Abstract
Practical demonstration of cardiomyocyte function requires substantial preparation, a source of freshly isolated animal hearts, and specialized equipment. Even where such resources are available, it is not conducive for demonstration to any more than a few students at a time. These approaches are also not consistent with the 3R principle (replacement, reduction, and refinement) of ethical use of animals. We present an implementation of the LabHEART software, developed by Donald Bers and Jose Puglisi, for medical students. Prior to the activity, students had lectures covering the physiological and pharmacological aspects of cardiac excitation-contraction (EC) coupling. We used this problem-based activity to help students consolidate their knowledge and to allow a hands-on approach to explore the key features of EC coupling. Students simulate and measure action potentials, intracellular calcium changes, and cardiomyocyte contraction. They also apply drugs that target ion channels (e.g., nifedipine or tetrodotoxin) or sympathetic input (using isoproterenol) and explore changes to EC coupling. Furthermore, by modifying the biophysical parameters of key ion channels involved in the electrical activity of the heart, students also explore the effect of channelopathies such as long QT syndromes. We describe approaches to implement this activity in a flipped classroom format, with recorded lecture materials provided ahead of the practical to facilitate active learning. We also describe our experiences implementing this activity online. The content and difficulty of the activity can be altered to suit individual courses and is also amenable to promote peer-driven learning.
Collapse
Affiliation(s)
- Olivia Monteiro
- Department of Biomedical Sciences, Faculty of Medicine, Macau University of Science and Technology, Taipa, Macau S.A.R., China
| | - Anand Bhaskar
- Department of Biomedical Sciences, Faculty of Medicine, Macau University of Science and Technology, Taipa, Macau S.A.R., China
| | - Anna K M Ng
- Department of Biomedical Sciences, Faculty of Medicine, Macau University of Science and Technology, Taipa, Macau S.A.R., China
| | - Colin E Murdoch
- Systems Medicine, School of Medicine, University of Dundee, Dundee, United Kingdom
| | - Daniel T Baptista-Hon
- Department of Biomedical Sciences, Faculty of Medicine, Macau University of Science and Technology, Taipa, Macau S.A.R., China
- Systems Medicine, School of Medicine, University of Dundee, Dundee, United Kingdom
| |
Collapse
|
144
|
Kean AC, Ayers MD, Farrell AG, Kean KA, Brooks PW, Shew ML. The effects of progestin-only hormone treatment on QT interval in the adolescent female. PROGRESS IN PEDIATRIC CARDIOLOGY 2021. [DOI: 10.1016/j.ppedcard.2021.101341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
145
|
Zhang S, Lu W, Wei Z, Zhang H. Air Pollution and Cardiac Arrhythmias: From Epidemiological and Clinical Evidences to Cellular Electrophysiological Mechanisms. Front Cardiovasc Med 2021; 8:736151. [PMID: 34778399 PMCID: PMC8581215 DOI: 10.3389/fcvm.2021.736151] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 10/04/2021] [Indexed: 01/08/2023] Open
Abstract
Cardiovascular disease is the leading cause of death worldwide and kills over 17 million people per year. In the recent decade, growing epidemiological evidence links air pollution and cardiac arrhythmias, suggesting a detrimental influence of air pollution on cardiac electrophysiological functionality. However, the proarrhythmic mechanisms underlying the air pollution-induced cardiac arrhythmias are not fully understood. The purpose of this work is to provide recent advances in air pollution-induced arrhythmias with a comprehensive review of the literature on the common air pollutants and arrhythmias. Six common air pollutants of widespread concern are discussed, namely particulate matter, carbon monoxide, hydrogen sulfide, sulfur dioxide, nitrogen dioxide, and ozone. The epidemiological and clinical reports in recent years are reviewed by pollutant type, and the recently identified mechanisms including both the general pathways and the direct influences of air pollutants on the cellular electrophysiology are summarized. Particularly, this review focuses on the impaired ion channel functionality underlying the air pollution-induced arrhythmias. Alterations of ionic currents directly by the air pollutants, as well as the alterations mediated by intracellular signaling or other more general pathways are reviewed in this work. Finally, areas for future research are suggested to address several remaining scientific questions.
Collapse
Affiliation(s)
- Shugang Zhang
- Computational Cardiology Group, College of Computer Science and Technology, Ocean University of China, Qingdao, China.,Biological Physics Group, School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
| | - Weigang Lu
- Computational Cardiology Group, College of Computer Science and Technology, Ocean University of China, Qingdao, China.,Biological Physics Group, School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
| | - Zhiqiang Wei
- Computational Cardiology Group, College of Computer Science and Technology, Ocean University of China, Qingdao, China
| | - Henggui Zhang
- Biological Physics Group, School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
146
|
Lin DJ, Lee WS, Chien YC, Chen TY, Yang KT. The link between abnormalities of calcium handling proteins and catecholaminergic polymorphic ventricular tachycardia. Tzu Chi Med J 2021; 33:323-331. [PMID: 34760626 PMCID: PMC8532576 DOI: 10.4103/tcmj.tcmj_288_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 02/09/2021] [Accepted: 03/03/2021] [Indexed: 01/18/2023] Open
Abstract
Catecholaminergic polymorphic ventricular tachycardia (CPVT), a rare autosomal dominant or recessive disease, usually results in syncope or sudden cardiac death. Most CPVT patients do not show abnormal cardiac structure and electrocardiogram features and symptoms, usually onset during adrenergically mediated physiological conditions. CPVT tends to occur at a younger age and is not easy to be diagnosed and managed. The main cause of CPVT is associated with mishandling Ca2+ in cardiomyocytes. Intracellular Ca2+ is strictly controlled by a protein located in the sarcoplasm reticulum (SR), such as ryanodine receptor, histidine-rich Ca2+-binding protein, triadin, and junctin. Mutation in these proteins results in misfolding or malfunction of these proteins, thereby affecting their Ca2+-binding affinity, and subsequently disturbs Ca2+ homeostasis during excitation–contraction coupling (E-C coupling). Furthermore, transient disturbance of Ca2+ homeostasis increases membrane potential and causes Ca2+ store overload-induced Ca2+ release, which in turn leads to delayed after depolarization and arrhythmia. Previous studies have focused on the interaction between ryanodine receptors and protein kinase or phosphatase in the cytosol. However, recent studies showed the regulation signaling for ryanodine receptor not only from the cytosol but also within the SR. The changing of Ca2+ concentration is critical for protein interaction inside the SR which changes protein conformation to regulate the open probability of ryanodine receptors. Thus, it influences the threshold of Ca2+ released from the SR, making it easier to release Ca2+ during E-C coupling. In this review, we briefly discuss how Ca2+ handling protein variations affect the Ca2+ handling in CPVT.
Collapse
Affiliation(s)
- Ding-Jyun Lin
- School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Wen-Sen Lee
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | | | - Tsung-Yu Chen
- School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Kun-Ta Yang
- Master Program in Medical Physiology, School of Medicine, Tzu Chi University, Hualien, Taiwan.,Department of Physiology, School of Medicine, Tzu Chi University, Hualien, Taiwan
| |
Collapse
|
147
|
Oliveira‐Mendes B, Feliciangeli S, Ménard M, Chatelain F, Alameh M, Montnach J, Nicolas S, Ollivier B, Barc J, Baró I, Schott J, Probst V, Kyndt F, Denjoy I, Lesage F, Loussouarn G, De Waard M. A standardised hERG phenotyping pipeline to evaluate KCNH2 genetic variant pathogenicity. Clin Transl Med 2021; 11:e609. [PMID: 34841674 PMCID: PMC8609418 DOI: 10.1002/ctm2.609] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 09/22/2021] [Accepted: 09/28/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND AND AIMS Mutations in KCNH2 cause long or short QT syndromes (LQTS or SQTS) predisposing to life-threatening arrhythmias. Over 1000 hERG variants have been described by clinicians, but most remain to be characterised. The objective is to standardise and accelerate the phenotyping process to contribute to clinician diagnosis and patient counselling. In silico evaluation was also included to characterise the structural impact of the variants. METHODS We selected 11 variants from known LQTS patients and two variants for which diagnosis was problematic. Using the Gibson assembly strategy, we efficiently introduced mutations in hERG cDNA despite GC-rich sequences. A pH-sensitive fluorescent tag was fused to hERG for efficient evaluation of channel trafficking. An optimised 35-s patch-clamp protocol was developed to evaluate hERG channel activity in transfected cells. R software was used to speed up analyses. RESULTS In the present work, we observed a good correlation between cell surface expression, assessed by the pH-sensitive tag, and current densities. Also, we showed that the new biophysical protocol allows a significant gain of time in recording ion channel properties and provides extensive information on WT and variant channel biophysical parameters, that can all be recapitulated in a single parameter defined herein as the repolarisation power. The impacts of the variants on channel structure were also reported where structural information was available. These three readouts (trafficking, repolarisation power and structural impact) define three pathogenicity indexes that may help clinical diagnosis. CONCLUSIONS Fast-track characterisation of KCNH2 genetic variants shows its relevance to discriminate mutants that affect hERG channel activity from variants with undetectable effects. It also helped the diagnosis of two new variants. This information is meant to fill a patient database, as a basis for personalised medicine. The next steps will be to further accelerate the process using an automated patch-clamp system.
Collapse
Affiliation(s)
| | - Sylvain Feliciangeli
- Labex ICST, Université Côte d'Azur, INSERMCentre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et CellulaireValbonneFrance
| | - Mélissa Ménard
- l'Institut du ThoraxInserm UMR 1087/CNRS UMR 6291NantesFrance
| | - Frank Chatelain
- Labex ICST, Université Côte d'Azur, INSERMCentre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et CellulaireValbonneFrance
| | - Malak Alameh
- l'Institut du ThoraxInserm UMR 1087/CNRS UMR 6291NantesFrance
| | - Jérôme Montnach
- l'Institut du ThoraxInserm UMR 1087/CNRS UMR 6291NantesFrance
| | | | | | - Julien Barc
- l'Institut du ThoraxInserm UMR 1087/CNRS UMR 6291NantesFrance
| | - Isabelle Baró
- l'Institut du ThoraxInserm UMR 1087/CNRS UMR 6291NantesFrance
| | | | - Vincent Probst
- CHU Nantes, l'Institut du Thorax, INSERM, CNRSUNIV NantesNantesFrance
| | - Florence Kyndt
- CHU Nantes, l'Institut du Thorax, INSERM, CNRSUNIV NantesNantesFrance
| | - Isabelle Denjoy
- Service de Cardiologie et CNMR Maladies Cardiaques Héréditaires RaresHôpital BichatParisFrance
| | - Florian Lesage
- Labex ICST, Université Côte d'Azur, INSERMCentre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et CellulaireValbonneFrance
| | | | - Michel De Waard
- l'Institut du ThoraxInserm UMR 1087/CNRS UMR 6291NantesFrance
| |
Collapse
|
148
|
Abstract
It has been nearly 15 years since the discovery of human-induced pluripotent stem cells (iPSCs). During this time, differentiation methods to targeted cells have dramatically improved, and many types of cells in the human body can be currently generated at high efficiency. In the cardiovascular field, the ability to generate human cardiomyocytes in vitro with the same genetic background as patients has provided a great opportunity to investigate human cardiovascular diseases at the cellular level to clarify the molecular mechanisms underlying the diseases and discover potential therapeutics. Additionally, iPSC-derived cardiomyocytes have provided a powerful platform to study drug-induced cardiotoxicity and identify patients at high risk for the cardiotoxicity; thus, accelerating personalized precision medicine. Moreover, iPSC-derived cardiomyocytes can be sources for cardiac cell therapy. Here, we review these achievements and discuss potential improvements for the future application of iPSC technology in cardiovascular diseases.
Collapse
|
149
|
Olgar Y, Durak A, Bitirim CV, Tuncay E, Turan B. Insulin acts as an atypical KCNQ1/KCNE1-current activator and reverses long QT in insulin-resistant aged rats by accelerating the ventricular action potential repolarization through affecting the β 3 -adrenergic receptor signaling pathway. J Cell Physiol 2021; 237:1353-1371. [PMID: 34632595 DOI: 10.1002/jcp.30597] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 09/22/2021] [Accepted: 09/24/2021] [Indexed: 12/13/2022]
Abstract
Insufficient-heart function is associated with myocardial insulin resistance in the elderly, particularly associated with long-QT, in a dependency on dysfunctional KCNQ1/KCNE1-channels. So, we aimed to examine the contribution of alterations in KCNQ1/KCNE1-current (IKs ) to the aging-related remodeling of the heart as well as the role of insulin treatment on IKs in the aged rats. Prolonged late-phase action potential (AP) repolarization of ventricular cardiomyocytes from insulin-resistant 24-month-old rats was significantly reversed by in vitro treatment of insulin or PKG inhibitor (in vivo, as well) via recovery in depressed IKs . Although the protein level of either KCNQ1 or KCNE1 in cardiomyocytes was not affected with aging, PKG level was significantly increased in those cells. The inhibited IKs in β3 -ARs-stimulated cells could be reversed with a PKG inhibitor, indicating the correlation between PKG-activation and β3 -ARs activation. Furthermore, in vivo treatment of aged rats, characterized by β3 -ARs activation, with either insulin or a PKG inhibitor for 2 weeks provided significant recoveries in IKs , prolonged late phases of APs, prolonged QT-intervals, and low heart rates without no effect on insulin resistance. In vivo insulin treatment provided also significant recovery in increased PKG and decreased PIP2 level, without the insulin effect on the KCNQ1 level in β3 -ARs overexpressed cells. The inhibition of IKs in aged-rat cardiomyocytes seems to be associated with activated β3 -ARs dependent remodeling in the interaction between KCNQ1 and KCNE1. Significant recoveries in ventricular-repolarization of insulin-treated aged cardiomyocytes via recovery in IKs strongly emphasize two important issues: (1) IKs can be a novel target in aging-associated remodeling in the heart and insulin may be a cardioprotective agent in the maintenance of normal heart function during the aging process. (2) This study is one of the first to demonstrate insulin's benefits on long-QT in insulin-resistant aged rats by accelerating the ventricular AP repolarization through reversing the depressed IKs via affecting the β3 -ARs signaling pathway and particularly affecting activated PKG.
Collapse
Affiliation(s)
- Yusuf Olgar
- Department of Biophysics, Faculty of Medicine, Ankara University, Ankara, Turkey
| | - Aysegul Durak
- Department of Biophysics, Faculty of Medicine, Ankara University, Ankara, Turkey
| | | | - Erkan Tuncay
- Department of Biophysics, Faculty of Medicine, Ankara University, Ankara, Turkey
| | - Belma Turan
- Department of Biophysics, Faculty of Medicine, Ankara University, Ankara, Turkey.,Department of Biophysics, Faculty of Medicine, Lokman Hekim University, Ankara, Turkey
| |
Collapse
|
150
|
Tsai WC, Chen PS, Rubart M. Calmodulinopathy in inherited arrhythmia syndromes. Tzu Chi Med J 2021; 33:339-344. [PMID: 34760628 PMCID: PMC8532581 DOI: 10.4103/tcmj.tcmj_182_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/02/2020] [Accepted: 10/07/2020] [Indexed: 11/04/2022] Open
Abstract
Calmodulin (CaM) is a ubiquitous intracellular calcium sensor that controls and regulates key cellular functions. In all vertebrates, three CaM genes located on separate chromosomes encode an identical 149 amino acid protein, implying an extraordinarily high level of evolutionary importance and suggesting that CaM mutations would be possibly fatal. Inherited arrhythmia syndromes comprise a spectrum of primary electrical disorders caused by mutations in genes encoding ion channels or associated proteins leading to various cardiac arrhythmias, unexplained syncope, and sudden cardiac death. CaM mutations have emerged as an independent entity among inherited arrhythmia syndromes, referred to as calmodulinopathies. The most common clinical presentation associated with calmodulinopathy is congenital long QT syndrome, followed by catecholaminergic polymorphic ventricular tachycardia, both of which significantly increase the possibility of repeated syncope, lethal arrhythmic events, and sudden cardiac death, especially in young individuals. Here, we aim to give an overview of biochemical and structural characteristics of CaM and progress toward updating current known CaM mutations and associated clinical phenotypes. We also review the possible mechanisms underlying calmodulinopathy, based on several key in vitro studies. We expect that further experimental studies are needed to explore the complexity of calmodulinopathy.
Collapse
Affiliation(s)
- Wen-Chin Tsai
- Department of Cardiology, Cardiovascular Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, and Tzu Chi University, Hualien, Taiwan
| | - Peng-Sheng Chen
- Department of Cardiology, Cedar-Sinai Medical Center, Los Angeles, CA, USA
- Krannert Institute of Cardiology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Michael Rubart
- Krannert Institute of Cardiology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Pediatrics, Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|