101
|
The effects of interleukin-1beta in tumor necrosis factor-alpha-induced acute pulmonary inflammation in mice. Mediators Inflamm 2009; 2009:958658. [PMID: 19901996 PMCID: PMC2773377 DOI: 10.1155/2009/958658] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2009] [Revised: 07/08/2009] [Accepted: 08/12/2009] [Indexed: 12/21/2022] Open
Abstract
We determined the role of interleukin-1β (IL-1β) signaling on tumor necrosis factor alpha-induced (TNF-α) lung neutrophil influx as well as neutrophil chemoattractant macrophage inflammatory protein (MIP-2) and KC and soluble TNF-α receptor (TNFR) levels utilizing wildtype (WT), TNF receptor double knockout (TNFR1/TNFR2 KO), and IL-1β KO mice after oropharyngeal instillation with TNF-α. A significant increase in neutrophil accumulation in bronchoalveolar lavage fluid (BALF) and lung interstitium was detected in the WT mice six hours after TNF-α exposure. This correlated with an increase in BALF MIP-2. In contrast, BALF neutrophil numbers were not increased by TNF-α treatment of IL-1β KOs, correlating with a failure to induce BALF MIP-2 and a trend toward increased BALF soluble TNFR1. TNF-α-instillation increased lavage and serum KC and soluble TNFR2 irrespective of IL-1β expression. These results suggest IL-1β contributes, in part, to TNF-α-mediated, chemokine release, and neutrophil recruitment to the lung, potentially associated with altered soluble TNFR1 release into the BALF.
Collapse
|
102
|
DiStasi MR, Ley K. Opening the flood-gates: how neutrophil-endothelial interactions regulate permeability. Trends Immunol 2009; 30:547-56. [PMID: 19783480 PMCID: PMC2767453 DOI: 10.1016/j.it.2009.07.012] [Citation(s) in RCA: 181] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2009] [Revised: 07/22/2009] [Accepted: 07/22/2009] [Indexed: 12/17/2022]
Abstract
Many diseases have an inflammatory component, where neutrophil interactions with the vascular endothelium lead to barrier dysfunction and increased permeability. Neutrophils increase permeability through secreted products such as the chemokines CXCL1, 2, 3, and 8, through adhesion-dependent processes involving beta(2) integrins interacting with endothelial ICAM-1, and through combinations where beta(2) integrin engagement leads to degranulation and secretion of heparin-binding protein. Some neutrophil products, such as arachidonic acid or the leukotriene LTA4, are further processed by endothelial enzymes via transcellular metabolism before the resulting products thromboxane A2 or LTC4 can activate their cognate receptors. Neutrophils also generate reactive oxygen species that induce vascular leakage. This review focuses on the mechanisms of neutrophil-mediated leakage.
Collapse
Affiliation(s)
- Matthew R DiStasi
- La Jolla Institute of Allergy & Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
| | | |
Collapse
|
103
|
Sun Y, Hu G, Zhang X, Minshall RD. Phosphorylation of caveolin-1 regulates oxidant-induced pulmonary vascular permeability via paracellular and transcellular pathways. Circ Res 2009; 105:676-685. [PMID: 19713536 PMCID: PMC2776728 DOI: 10.1161/circresaha.109.201673] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE Oxidants are important signaling molecules known to increase endothelial permeability, although the mechanisms underlying permeability regulation are not clear. OBJECTIVE To define the role of caveolin-1 in the mechanism of oxidant-induced pulmonary vascular hyperpermeability and edema formation. METHODS AND RESULTS Using genetic approaches, we show that phosphorylation of caveolin-1 Tyr14 is required for increased pulmonary microvessel permeability induced by hydrogen peroxide (H(2)O(2)). Caveolin-1-deficient mice (cav-1(-/-)) were resistant to H(2)O(2)-induced pulmonary vascular albumin hyperpermeability and edema formation. Furthermore, the vascular hyperpermeability response to H(2)O(2) was completely rescued by expression of caveolin-1 in cav-1(-/-) mouse lung microvessels but was not restored by the phosphorylation-defective caveolin-1 mutant. The increase in caveolin-1 phosphorylation induced by H(2)O(2) was dose-dependently coupled to both increased (125)I-albumin transcytosis and decreased transendothelial electric resistance in pulmonary endothelial cells. Phosphorylation of caveolin-1 following H(2)O(2) exposure resulted in the dissociation of vascular endothelial cadherin/beta-catenin complexes and resultant endothelial barrier disruption. CONCLUSIONS Caveolin-1 phosphorylation-dependent signaling plays a crucial role in oxidative stress-induced pulmonary vascular hyperpermeability via transcellular and paracellular pathways. Thus, caveolin-1 phosphorylation may be an important therapeutic target for limiting oxidant-mediated vascular hyperpermeability, protein-rich edema formation, and acute lung injury.
Collapse
Affiliation(s)
- Yu Sun
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL
- Institute of Pharmacology, Shandong University School of Medicine, Jinan, Shandong, China
| | - Guochang Hu
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL
- Department of Anesthesiology, University of Illinois at Chicago, Chicago, IL
| | - Xiumei Zhang
- Institute of Pharmacology, Shandong University School of Medicine, Jinan, Shandong, China
| | - Richard D. Minshall
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL
- Department of Anesthesiology, University of Illinois at Chicago, Chicago, IL
- Department of Center for Lung and Vascular Biology, University of Illinois at Chicago, Chicago, IL
| |
Collapse
|
104
|
Sverdlov M, Shinin V, Place AT, Castellon M, Minshall RD. Filamin A regulates caveolae internalization and trafficking in endothelial cells. Mol Biol Cell 2009; 20:4531-40. [PMID: 19759182 DOI: 10.1091/mbc.e08-10-0997] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Transcytosis via caveolae is critical for maintaining vascular homeostasis by regulating the tissue delivery of macromolecules, hormones, and lipids. In the present study, we test the hypothesis that interactions between F-actin cross-linking protein filamin A and caveolin-1 facilitate the internalization and trafficking of caveolae. Small interfering RNA-mediated knockdown of filamin A, but not filamin B, reduced the uptake and transcytosis of albumin by approximately 35 and 60%, respectively, without altering the actin cytoskeletal structure or cell-cell adherens junctions. Mobility of both intracellular caveolin-1-green fluorescent protein (GFP)-labeled vesicles measured by fluorescence recovery after photobleaching and membrane-associated vesicles measured by total internal reflection-fluorescence microscopy was decreased in cells with reduced filamin A expression. In addition, in melanoma cells that lack filamin A (M2 cells), the majority of caveolin-1-GFP was localized on the plasma membrane, whereas in cells in which filamin A expression was reconstituted (A7 cells and M2 cells transfected with filamin A-RFP), caveolin-1-GFP was concentrated in intracellular vesicles. Filamin A association with caveolin-1 in endothelial cells was confirmed by cofractionation of these proteins in density gradients, as well as by coimmunoprecipitation. Moreover, this interaction was enhanced by Src activation, associated with increased caveolin-1 phosphorylation, and blocked by Src inhibition. Taken together, these data suggest that filamin A association with caveolin-1 promotes caveolae-mediated transport by regulating vesicle internalization, clustering, and trafficking.
Collapse
Affiliation(s)
- Maria Sverdlov
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | | | | | | | | |
Collapse
|
105
|
Molecular mechanisms of endothelial hyperpermeability: implications in inflammation. Expert Rev Mol Med 2009; 11:e19. [PMID: 19563700 DOI: 10.1017/s1462399409001112] [Citation(s) in RCA: 289] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Endothelial hyperpermeability is a significant problem in vascular inflammation associated with trauma, ischaemia-reperfusion injury, sepsis, adult respiratory distress syndrome, diabetes, thrombosis and cancer. An important mechanism underlying this process is increased paracellular leakage of plasma fluid and protein. Inflammatory stimuli such as histamine, thrombin, vascular endothelial growth factor and activated neutrophils can cause dissociation of cell-cell junctions between endothelial cells as well as cytoskeleton contraction, leading to a widened intercellular space that facilitates transendothelial flux. Such structural changes initiate with agonist-receptor binding, followed by activation of intracellular signalling molecules including calcium, protein kinase C, tyrosine kinases, myosin light chain kinase, and small Rho-GTPases; these kinases and GTPases then phosphorylate or alter the conformation of different subcellular components that control cell-cell adhesion, resulting in paracellular hypermeability. Targeting key signalling molecules that mediate endothelial-junction-cytoskeleton dissociation demonstrates a therapeutic potential to improve vascular barrier function during inflammatory injury.
Collapse
|
106
|
Parkar NS, Akpa BS, Nitsche LC, Wedgewood LE, Place AT, Sverdlov MS, Chaga O, Minshall RD. Vesicle formation and endocytosis: function, machinery, mechanisms, and modeling. Antioxid Redox Signal 2009; 11:1301-12. [PMID: 19113823 PMCID: PMC2850289 DOI: 10.1089/ars.2008.2397] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Vesicle formation provides a means of cellular entry for extracellular substances and for recycling of membrane constituents. Mechanisms governing the two primary endocytic pathways (i.e., caveolae- and clathrin-mediated endocytosis, as well as newly emerging vesicular pathways) have become the focus of intense investigation to improve our understanding of nutrient, hormone, and drug delivery, as well as opportunistic invasion of pathogens. In this review of endocytosis, we broadly discuss the structural and signaling proteins that compose the molecular machinery governing endocytic vesicle formation (budding, invagination, and fission from the membrane), with some regard for the specificity observed in certain cell types and species. Important biochemical functions of endocytosis and diseases caused by their disruption also are discussed, along with the structures of key components of endocytic pathways and their known mechanistic contributions. The mechanisms by which principal components of the endocytic machinery are recruited to the plasma membrane, where they interact to induce vesicle formation, are discussed, together with computational approaches used to simulate simplified versions of endocytosis with the hope of clarifying aspects of vesicle formation that may be difficult to determine experimentally. Finally, we pose several unanswered questions intended to stimulate further research interest in the cell biology and modeling of endocytosis.
Collapse
Affiliation(s)
- Nihal S Parkar
- Department of Chemical Engineering, College of Engineering and College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612, USA
| | | | | | | | | | | | | | | |
Collapse
|
107
|
Suri SS, Rakotondradany F, Myles AJ, Fenniri H, Singh B. The role of RGD-tagged helical rosette nanotubes in the induction of inflammation and apoptosis in human lung adenocarcinoma cells through the P38 MAPK pathway. Biomaterials 2009; 30:3084-90. [DOI: 10.1016/j.biomaterials.2009.02.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2008] [Accepted: 02/03/2009] [Indexed: 12/14/2022]
|
108
|
Abstract
Endocytic mechanisms control the lipid and protein composition of the plasma membrane, thereby regulating how cells interact with their environments. Here, we review what is known about mammalian endocytic mechanisms, with focus on the cellular proteins that control these events. We discuss the well-studied clathrin-mediated endocytic mechanisms and dissect endocytic pathways that proceed independently of clathrin. These clathrin-independent pathways include the CLIC/GEEC endocytic pathway, arf6-dependent endocytosis, flotillin-dependent endocytosis, macropinocytosis, circular doral ruffles, phagocytosis, and trans-endocytosis. We also critically review the role of caveolae and caveolin1 in endocytosis. We highlight the roles of lipids, membrane curvature-modulating proteins, small G proteins, actin, and dynamin in endocytic pathways. We discuss the functional relevance of distinct endocytic pathways and emphasize the importance of studying these pathways to understand human disease processes.
Collapse
Affiliation(s)
- Gary J Doherty
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom.
| | | |
Collapse
|
109
|
Hu G, Minshall RD. Regulation of transendothelial permeability by Src kinase. Microvasc Res 2009; 77:21-25. [PMID: 19027754 DOI: 10.1016/j.mvr.2008.10.002] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2008] [Accepted: 10/02/2008] [Indexed: 10/21/2022]
Abstract
Transcellular transport of albumin from the endothelial lumen to the abluminal perivascular interstitium via caveolae is a primary determinant of basal endothelial permeability. Albumin binding to specific caveolae-associated proteins induces the internalization of caveolae from the endothelial plasma membrane. Albumin-containing caveolae detach from the plasma membrane and traffic to the opposite membrane where they release albumin into the extravascular space. The events initiating transcytosis have been shown to be tightly regulated by Src family kinases, and thus Src signaling is thought to be a critical "switch" regulating caveolae-mediated transcellular transport of the plasma protein albumin. Recently, accumulating evidence indicates the importance of caveolae-mediated albumin transport in endothelial hyperpermeability in response to inflammatory stimuli. In this review, we focus on the current understanding of Src signaling in regulating basal permeability and inflammation-evoked increase in transcellular albumin permeability of the pulmonary endothelium.
Collapse
Affiliation(s)
- Guochang Hu
- Department of Anesthesiology, Center for Lung and Vascular Biology, University of Illinois, Chicago, IL, USA
| | | |
Collapse
|
110
|
Le Saux O, Teeters K, Miyasato S, Choi J, Nakamatsu G, Richardson JA, Starcher B, Davis EC, Tam EK, Jourdan-Le Saux C. The role of caveolin-1 in pulmonary matrix remodeling and mechanical properties. Am J Physiol Lung Cell Mol Physiol 2008; 295:L1007-17. [PMID: 18849439 DOI: 10.1152/ajplung.90207.2008] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Caveolin-1 (cav1) is a 22-kDa membrane protein essential to the formation of small invaginations in the plasma membrane, called caveolae. The cav1 gene is expressed primarily in adherent cells such as endothelial and smooth muscle cells and fibroblasts. Caveolae contain a variety of signaling receptors, and cav1 notably downregulates transforming growth factor (TGF)-beta signal transduction. In pulmonary pathologies such as interstitial fibrosis or emphysema, altered mechanical properties of the lungs are often associated with abnormal ECM deposition. In this study, we examined the physiological functions and the deposition of ECM in cav1(-/-) mice at various ages (1-12 mo). Cav1(-/-) mice lack caveolae and by 3 mo of age have significant reduced lung compliance and increased elastance and airway resistance. Pulmonary extravasation of fluid, as part of the cav1(-/-) mouse phenotype, probably contributed to the alteration of compliance, which was compounded by a progressive increase in deposition of collagen fibrils in airways and parenchyma. We also found that the increased elastance was caused by abundant elastic fiber deposition primarily around airways in cav1(-/-) mice at least 3 mo old. These observed changes in the ECM composition probably also contribute to the increased airway resistance. The higher deposition of collagen and elastic fibers was associated with increased tropoelastin and col1alpha2 and col3alpha1 gene expression in lung tissues, which correlated tightly with increased TGF-beta/Smad signal transduction. Our study illustrates that perturbation of cav1 function may contribute to several pulmonary pathologies as the result of the important role played by cav1, as part of the TGF-beta signaling pathway, in the regulation of the pulmonary ECM.
Collapse
Affiliation(s)
- O Le Saux
- Univ. of Hawaii, John A. Burns School of Medicine, Dept. of Cell and Molecular Biology, 651 Ilalo St., BSB 222, Honolulu, HI 96813, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|