101
|
Liu X, Akiyoshi K, Nakano M, Brady K, Bush B, Nadkarni R, Venkataraman A, Koehler RC, Lee JK, Hogue CW, Czosnyka M, Smielewski P, Brown CH. Determining Thresholds for Three Indices of Autoregulation to Identify the Lower Limit of Autoregulation During Cardiac Surgery. Crit Care Med 2021; 49:650-660. [PMID: 33278074 PMCID: PMC7979429 DOI: 10.1097/ccm.0000000000004737] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Monitoring cerebral autoregulation may help identify the lower limit of autoregulation in individual patients. Mean arterial blood pressure below lower limit of autoregulation appears to be a risk factor for postoperative acute kidney injury. Cerebral autoregulation can be monitored in real time using correlation approaches. However, the precise thresholds for different cerebral autoregulation indexes that identify the lower limit of autoregulation are unknown. We identified thresholds for intact autoregulation in patients during cardiopulmonary bypass surgery and examined the relevance of these thresholds to postoperative acute kidney injury. DESIGN A single-center retrospective analysis. SETTING Tertiary academic medical center. PATIENTS Data from 59 patients was used to determine precise cerebral autoregulation thresholds for identification of the lower limit of autoregulation. These thresholds were validated in a larger cohort of 226 patients. METHODS AND MAIN RESULTS Invasive mean arterial blood pressure, cerebral blood flow velocities, regional cortical oxygen saturation, and total hemoglobin were recorded simultaneously. Three cerebral autoregulation indices were calculated, including mean flow index, cerebral oximetry index, and hemoglobin volume index. Cerebral autoregulation curves for the three indices were plotted, and thresholds for each index were used to generate threshold- and index-specific lower limit of autoregulations. A reference lower limit of autoregulation could be identified in 59 patients by plotting cerebral blood flow velocity against mean arterial blood pressure to generate gold-standard Lassen curves. The lower limit of autoregulations defined at each threshold were compared with the gold-standard lower limit of autoregulation determined from Lassen curves. The results identified the following thresholds: mean flow index (0.45), cerebral oximetry index (0.35), and hemoglobin volume index (0.3). We then calculated the product of magnitude and duration of mean arterial blood pressure less than lower limit of autoregulation in a larger cohort of 226 patients. When using the lower limit of autoregulations identified by the optimal thresholds above, mean arterial blood pressure less than lower limit of autoregulation was greater in patients with acute kidney injury than in those without acute kidney injury. CONCLUSIONS This study identified thresholds of intact and impaired cerebral autoregulation for three indices and showed that mean arterial blood pressure below lower limit of autoregulation is a risk factor for acute kidney injury after cardiac surgery.
Collapse
Affiliation(s)
- Xiuyun Liu
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kei Akiyoshi
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Mitsunori Nakano
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Saitama Medical Center, Jichi Medical University, Saitama, Japan 330-8503
| | - Ken Brady
- Northwestern University, Ann & Robert H. Lurie Children’s Hospital of Chicago, Department of Anesthesiology, Chicago, Illinois, USA
| | - Brian Bush
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Rohan Nadkarni
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Archana Venkataraman
- Department of Electrical and Computer Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Raymond C. Koehler
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jennifer K. Lee
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Charles W. Hogue
- Department of Anesthesiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Marek Czosnyka
- Brain Physics Laboratory, Division of Neurosurgey, Cambridge University Hospitals, University of Cambridge, Cambridge, UK
- Institute of Electronic Systems, Warsaw University of Technology, Warsaw, Poland
| | - Peter Smielewski
- Brain Physics Laboratory, Division of Neurosurgey, Cambridge University Hospitals, University of Cambridge, Cambridge, UK
| | - Charles H. Brown
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
102
|
Cerebral autoregulation in the operating room and intensive care unit after cardiac surgery. Br J Anaesth 2021; 126:967-974. [PMID: 33741137 DOI: 10.1016/j.bja.2020.12.043] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 12/14/2020] [Accepted: 12/24/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Cerebral autoregulation monitoring is a proposed method to monitor perfusion during cardiac surgery. However, limited data exist from the ICU as prior studies have focused on intraoperative measurements. Our objective was to characterise cerebral autoregulation during surgery and early ICU care, and as a secondary analysis to explore associations with delirium. METHODS In patients undergoing cardiac surgery (n=134), cerebral oximetry values and arterial BP were monitored and recorded until the morning after surgery. A moving Pearson's correlation coefficient between mean arterial proessure (MAP) and near-infrared spectroscopy signals generated the cerebral oximetry index (COx). Three metrics were derived: (1) globally impaired autoregulation, (2) MAP time and duration outside limits of autoregulation (MAP dose), and (3) average COx. Delirium was assessed using the 3-Minute Diagnostic Interview for CAM-defined Delirium (3D-CAM) and the Confusion Assessment Method for the ICU (CAM-ICU). Autoregulation metrics were compared using χ2 and rank-sum tests, and associations with delirium were estimated using regression models, adjusted for age, bypass time, and logEuroSCORE. RESULTS The prevalence of globally impaired autoregulation was higher in the operating room vs ICU (40% vs 13%, P<0.001). The MAP dose outside limits of autoregulation was similar in the operating room and ICU (median 16.9 mm Hg×h; inter-quartile range [IQR] 10.1-38.8 vs 16.9 mm Hg×h; IQR 5.4-35.1, P=0.20). In exploratory adjusted analyses, globally impaired autoregulation in the ICU, but not the operating room, was associated with delirium. The MAP dose outside limits of autoregulation in the operating room and ICU was also associated with delirium. CONCLUSIONS Metrics of cerebral autoregulation are altered in the ICU, and may be clinically relevant with respect to delirium. Further studies are needed to investigate these findings and determine possible benefits of autoregulation-based MAP targeting in the ICU.
Collapse
|
103
|
Neonatal NIRS monitoring: recommendations for data capture and review of analytics. J Perinatol 2021; 41:675-688. [PMID: 33589724 PMCID: PMC7883881 DOI: 10.1038/s41372-021-00946-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/20/2020] [Accepted: 01/19/2021] [Indexed: 01/29/2023]
Abstract
Brain injury is one of the most consequential problems facing neonates, with many preterm and term infants at risk for cerebral hypoxia and ischemia. To develop effective neuroprotective strategies, the mechanistic basis for brain injury must be understood. The fragile state of neonates presents unique research challenges; invasive measures of cerebral blood flow and oxygenation assessment exceed tolerable risk profiles. Near-infrared spectroscopy (NIRS) can safely and non-invasively estimate cerebral oxygenation, a correlate of cerebral perfusion, offering insight into brain injury-related mechanisms. Unfortunately, lack of standardization in device application, recording methods, and error/artifact correction have left the field fractured. In this article, we provide a framework for neonatal NIRS research. Our goal is to provide a rational basis for NIRS data capture and processing that may result in better comparability between studies. It is also intended to serve as a primer for new NIRS researchers and assist with investigation initiation.
Collapse
|
104
|
Leon RL, Ortigoza EB, Ali N, Angelis D, Wolovits JS, Chalak LF. Cerebral Blood Flow Monitoring in High-Risk Fetal and Neonatal Populations. Front Pediatr 2021; 9:748345. [PMID: 35087771 PMCID: PMC8787287 DOI: 10.3389/fped.2021.748345] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 12/15/2021] [Indexed: 12/18/2022] Open
Abstract
Cerebrovascular pressure autoregulation promotes stable cerebral blood flow (CBF) across a range of arterial blood pressures. Cerebral autoregulation (CA) is a developmental process that reaches maturity around term gestation and can be monitored prenatally with both Doppler ultrasound and magnetic resonance imaging (MRI) techniques. Postnatally, there are key advantages and limitations to assessing CA with Doppler ultrasound, MRI, and near-infrared spectroscopy. Here we review these CBF monitoring techniques as well as their application to both fetal and neonatal populations at risk of perturbations in CBF. Specifically, we discuss CBF monitoring in fetuses with intrauterine growth restriction, anemia, congenital heart disease, neonates born preterm and those with hypoxic-ischemic encephalopathy. We conclude the review with insights into the future directions in this field with an emphasis on collaborative science and precision medicine approaches.
Collapse
Affiliation(s)
- Rachel L Leon
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Eric B Ortigoza
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Noorjahan Ali
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Dimitrios Angelis
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Joshua S Wolovits
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Lina F Chalak
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, United States.,Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
105
|
Hoffman SB, Lakhani A, Viscardi RM. The association between carbon dioxide, cerebral blood flow, and autoregulation in the premature infant. J Perinatol 2021; 41:324-329. [PMID: 33033388 PMCID: PMC7542091 DOI: 10.1038/s41372-020-00835-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 08/24/2020] [Accepted: 09/18/2020] [Indexed: 12/03/2022]
Abstract
OBJECTIVE Evaluate the association between carbon dioxide (pCO2), cerebral blood flow (CBF), and cerebral autoregulation (CA) in preterm infants. STUDY DESIGN Cerebral saturations (rScO2, surrogate for CBF using NIRS) and mean arterial blood pressure (MAP) monitored for 96 h in infants <29 weeks gestation. Relationship between rScO2, the rScO2-MAP correlation (CA analysis) and pCO2 category assessed by mixed effects modeling. RESULTS Median pCO2 differed by postnatal day (p < 0.0001)-pCO2 increased between day 1 and 2, and low variability seen on day 4. A 5% increase in rScO2 was noted when pCO2 was >55 mmHg on each postnatal day (p < 0.001). No association observed between the overall rScO2-MAP correlation and pCO2. On day 1 only, the correlation coefficient decreased from 0.26 to -0.09 as pCO2 category increased (p = 0.02). CONCLUSIONS CBF increased above a pCO2 threshold of 55 mmHg, but overall, no association between pCO2 and CA was noted.
Collapse
Affiliation(s)
- Suma Bhat Hoffman
- Department of Pediatrics, University of Maryland Baltimore, School of Medicine, Baltimore, MD, USA.
| | - Anisa Lakhani
- grid.411024.20000 0001 2175 4264Department of Pediatrics, University of Maryland Baltimore, School of Medicine, Baltimore, MD USA
| | - Rose Marie Viscardi
- grid.411024.20000 0001 2175 4264Department of Pediatrics, University of Maryland Baltimore, School of Medicine, Baltimore, MD USA
| |
Collapse
|
106
|
Hogue CW, Brown CH, Hori D, Ono M, Nomura Y, Balmert LC, Srdanovic N, Grafman J, Brady K. Personalized Blood Pressure Management During Cardiac Surgery With Cerebral Autoregulation Monitoring: A Randomized Trial. Semin Thorac Cardiovasc Surg 2021; 33:429-438. [DOI: 10.1053/j.semtcvs.2020.09.032] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 09/08/2020] [Indexed: 01/12/2023]
|
107
|
Hori D, Nomura Y, Nakano M, Akiyoshi K, Kimura N, Yamaguchi A. Relationship between endothelial function and vascular stiffness on lower limit of cerebral autoregulation in patients undergoing cardiovascular surgery. Artif Organs 2020; 45:382-389. [PMID: 33191501 DOI: 10.1111/aor.13868] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 09/29/2020] [Indexed: 01/02/2023]
Abstract
Hemodynamic management based on cerebral autoregulation range is a possible strategy for preserving major organ perfusion during cardiovascular surgery. The purpose of this study was to evaluate the relation of vascular properties with lower limit of cerebral autoregulation (LLA). LLA was monitored in 66 patients undergoing cardiovascular surgery using near-infrared spectroscopy. To determine the clinical importance of LLA monitoring, association of blood pressure excursions below LLA and acute kidney injury (AKI) was evaluated. Flow-mediated dilation (FMD) and pulse wave velocity (PWV) were measured for the evaluation of endothelial function and aortic stiffness. Variables associated with LLA were evaluated. Excluding patients on hemodialysis, there were 15 patients (25.9%) who developed AKI. Blood pressure excursions below LLA were higher in patients who developed AKI (4.55 mm Hg × hr vs. 1.23 mm Hg × hr, P = .017). In the univariate analysis, prevalence of ischemic heart disease (No IHD: 53 ± 13.0 mm Hg vs. IHD: 60.0 ± 13.6 mm Hg, P = .056) and FMD (r = -0.42, 95% CI -0.61 to -0.19, P < .001) were associated with LLA before cardiopulmonary bypass (CPB). During CPB, calcium channel blocker (No Ca blocker: 42 ± 10.6 mm Hg vs. Ca blocker: 49 ± 14.3 mm Hg, P = .033), diabetes (no DM: 44 ± 13.2 mm Hg vs. DM: 55 ± 10.0 mm Hg, P = .024), FMD (r = -0.32, 95% CI -0.55 to -0.05, P = .021), and PWV (r = 0.28, 95% CI 0.012 to 0.513, P = .041) were associated with LLA. Multivariate analysis showed that FMD was correlated with LLA before CPB (r = -2.19, 95% CI -3.621 to -0.755, P = .003), while PWV was correlated with LLA during CPB (r = 0.01, 95% CI 0.001-0.019, P = .023). Endothelial function and aortic stiffness may be important factors in determining LLA at different phases in cardiovascular surgery.
Collapse
Affiliation(s)
- Daijiro Hori
- Department of Cardiovascular Surgery, Saitama Medical Center, Jichi Medical University, Saitama, Japan
| | - Yohei Nomura
- Department of Cardiovascular Surgery, Saitama Medical Center, Jichi Medical University, Saitama, Japan
| | - Mitsunori Nakano
- Department of Cardiovascular Surgery, Saitama Medical Center, Jichi Medical University, Saitama, Japan
| | - Kei Akiyoshi
- Department of Cardiovascular Surgery, Saitama Medical Center, Jichi Medical University, Saitama, Japan
| | - Naoyuki Kimura
- Department of Cardiovascular Surgery, Saitama Medical Center, Jichi Medical University, Saitama, Japan
| | - Atsushi Yamaguchi
- Department of Cardiovascular Surgery, Saitama Medical Center, Jichi Medical University, Saitama, Japan
| |
Collapse
|
108
|
Busch DR, Baker WB, Mavroudis CD, Ko TS, Lynch JM, McCarthy AL, DuPont-Thibodeau G, Buckley EM, Jacobwitz M, Boorady TW, Mensah-Brown K, Connelly JT, Yodh AG, Kilbaugh TJ, Licht DJ. Noninvasive optical measurement of microvascular cerebral hemodynamics and autoregulation in the neonatal ECMO patient. Pediatr Res 2020; 88:925-933. [PMID: 32172282 PMCID: PMC7492409 DOI: 10.1038/s41390-020-0841-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 02/12/2020] [Accepted: 02/19/2020] [Indexed: 01/14/2023]
Abstract
BACKGROUND Extra-corporeal membrane oxygenation (ECMO) is a life-saving intervention for severe respiratory and cardiac diseases. However, 50% of survivors have abnormal neurologic exams. Current ECMO management is guided by systemic metrics, which may poorly predict cerebral perfusion. Continuous optical monitoring of cerebral hemodynamics during ECMO holds potential to detect risk factors of brain injury such as impaired cerebrovascular autoregulation (CA). METHODS We conducted daily measurements of microvascular cerebral blood flow (CBF), oxygen saturation, and total hemoglobin concentration using diffuse correlation spectroscopy (DCS) and frequency-domain diffuse optical spectroscopy in nine neonates. We characterize CA utilizing the correlation coefficient (DCSx) between CBF and mean arterial blood pressure (MAP) during ECMO pump flow changes. RESULTS Average MAP and pump flow levels were weakly correlated with CBF and were not correlated with cerebral oxygen saturation. CA integrity varied between individuals and with time. Systemic measurements of MAP, pulse pressure, and left cardiac dysfunction were not predictive of impaired CA. CONCLUSIONS Our pilot results suggest that systemic measures alone cannot distinguish impaired CA from intact CA during ECMO. Furthermore, optical neuromonitoring could help determine patient-specific ECMO pump flows for optimal CA integrity, thereby reducing risk of secondary brain injury. IMPACT Cerebral blood flow and oxygenation are not well predicted by systemic proxies such as ECMO pump flow or blood pressure. Continuous, quantitative, bedside monitoring of cerebral blood flow and oxygenation with optical tools enables new insight into the adequacy of cerebral perfusion during ECMO. A demonstration of hybrid diffuse optical and correlation spectroscopies to continuously measure cerebral blood oxygen saturation and flow in patients on ECMO, enabling assessment of cerebral autoregulation. An observation of poor correlation of cerebral blood flow and oxygenation with systemic mean arterial pressure and ECMO pump flow, suggesting that clinical decision making guided by target values for these surrogates may not be neuroprotective. ~50% of ECMO survivors have long-term neurological deficiencies; continuous monitoring of brain health throughout therapy may reduce these tragically common sequelae through brain-focused adjustment of ECMO parameters.
Collapse
Affiliation(s)
- David R Busch
- Departments of Anesthesiology & Pain Management and Neurology & Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Wesley B Baker
- Division of Neurology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Constantine D Mavroudis
- Division of Cardiovascular Surgery, Department of Surgery, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Tiffany S Ko
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA, USA
| | - Jennifer M Lynch
- Department of Anesthesiology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Ann L McCarthy
- Division of Neurology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | | | - Erin M Buckley
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA, USA
| | - Marin Jacobwitz
- Division of Neurology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Timothy W Boorady
- Division of Neurology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Kobina Mensah-Brown
- Division of Neurology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - James T Connelly
- ECMO Center, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Arjun G Yodh
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA, USA
| | - Todd J Kilbaugh
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Daniel J Licht
- Division of Neurology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| |
Collapse
|
109
|
Massaro AN, Lee JK, Vezina G, Glass P, O'Kane A, Li R, Chang T, Brady K, Govindan R. Exploratory Assessment of the Relationship Between Hemoglobin Volume Phase Index, Magnetic Resonance Imaging, and Functional Outcome in Neonates with Hypoxic-Ischemic Encephalopathy. Neurocrit Care 2020; 35:121-129. [PMID: 33215394 DOI: 10.1007/s12028-020-01150-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 11/03/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND/OBJECTIVE Near-infrared spectroscopy (NIRS)-based measures of cerebral autoregulation (CAR) can potentially identify neonates with hypoxic-ischemic encephalopathy (HIE) who are at greatest risk of irreversible brain injury. However, modest predictive abilities have precluded previously described metrics from entering clinical care. We previously validated a novel autoregulation metric in a piglet model of induced hypotension called the hemoglobin volume phase index (HVP). The objective of this study was to evaluate the clinical ability of the HVP to predict adverse outcomes neonates with HIE. METHODS This is a prospective study of neonates with HIE who underwent therapeutic hypothermia (TH) at a level 4 neonatal intensive care unit (NICU). Continuous cerebral NIRS and mean arterial blood pressure (MAP) from indwelling arterial catheters were measured during TH and through rewarming. Multivariate autoregressive process was used to calculate the coherence between MAP and the sum total of the oxy- and deoxygenated Hb densities (HbT), a surrogate measure of cerebral blood volume (CBV). The HVP was calculated as the cosine-transformed phase shift at the frequency of maximal MAP-HbT coherence. Brain injury was assessed by neonatal magnetic resonance imaging (MRI), and developmental outcomes were assessed by the Bayley Scales of Infant Development (BSID-III) at 15-30 months. The ability of the HVP to predict (a) death or severe brain injury by MRI and (b) death or significant developmental delay was assessed using logistic regression analyses. RESULTS In total, 50 neonates with moderate or severe HIE were monitored. Median HVP was higher, representing more dysfunctional autoregulation, in infants who had adverse outcomes. After adjusting for sex and encephalopathy grade at presentation, HVP at 21-24 and 24-27 h of life predicted death or brain injury by MRI (21-24 h: OR 8.8, p = 0.037; 24-27 h: OR 31, p = 0.011) and death or developmental delay at 15-30 months (21-24 h: OR 11.8, p = 0.05; 24-27 h: OR 15, p = 0.035). CONCLUSIONS Based on this pilot study of neonates with HIE, HVP merits further study as an indicator of death or severe brain injury on neonatal MRI and neurodevelopmental delay in early childhood. Larger studies are warranted for further clinical validation of the HVP to evaluate cerebral autoregulation following HIE.
Collapse
Affiliation(s)
- An N Massaro
- Division of Neonatology, Children's National Hospital, Washington, DC, USA. .,The George Washington University School of Medicine, Washington, DC, USA.
| | - Jennifer K Lee
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Gilbert Vezina
- Diagnostic Imaging and Radiology, Children's National Hospital, Washington, DC, USA.,The George Washington University School of Medicine, Washington, DC, USA
| | - Penny Glass
- Psychology and Behavioral Health, Children's National Hospital, Washington, DC, USA.,The George Washington University School of Medicine, Washington, DC, USA
| | | | - Ruoying Li
- Neurology, Children's National Hospital, Washington, DC, USA
| | - Taeun Chang
- Neurology, Children's National Hospital, Washington, DC, USA.,The George Washington University School of Medicine, Washington, DC, USA
| | - Kenneth Brady
- Department of Anesthesia, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Rathinaswamy Govindan
- Fetal and Transitional Medicine, Children's National Hospital, Washington, DC, USA.,The George Washington University School of Medicine, Washington, DC, USA
| |
Collapse
|
110
|
The Role of Near-infrared Spectroscopy in Cerebral Autoregulation Monitoring. J Neurosurg Anesthesiol 2020; 31:269-270. [PMID: 31058675 DOI: 10.1097/ana.0000000000000607] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
111
|
Dar IA, Khan IR, Maddox RK, Selioutski O, Donohue KL, Marinescu MA, Prasad SM, Quazi NH, Donlon JS, Loose EA, Ramirez GA, Ren J, Majeski JB, Abramson K, Durduran T, Busch DR, Choe R. Towards detection of brain injury using multimodal non-invasive neuromonitoring in adults undergoing extracorporeal membrane oxygenation. BIOMEDICAL OPTICS EXPRESS 2020; 11:6551-6569. [PMID: 33282508 PMCID: PMC7687959 DOI: 10.1364/boe.401641] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/16/2020] [Accepted: 10/02/2020] [Indexed: 05/27/2023]
Abstract
Extracorporeal membrane oxygenation (ECMO) is a form of cardiopulmonary bypass that provides life-saving support to critically ill patients whose illness is progressing despite maximal conventional support. Use in adults is expanding, however neurological injuries are common. Currently, the existing brain imaging tools are a snapshot in time and require high-risk patient transport. Here we assess the feasibility of measuring diffuse correlation spectroscopy, transcranial Doppler ultrasound, electroencephalography, and auditory brainstem responses at the bedside, and developing a cerebral autoregulation metric. We report preliminary results from two patients, demonstrating feasibility and laying the foundation for future studies monitoring neurological health during ECMO.
Collapse
Affiliation(s)
- Irfaan A. Dar
- Department of Biomedical Engineering, University of Rochester, Rochester, New York 14620, USA
| | - Imad R. Khan
- Department of Neurology, Division of Neurocritical Care, University of Rochester Medical Center, Rochester, New York 14642, USA
| | - Ross K. Maddox
- Department of Biomedical Engineering, University of Rochester, Rochester, New York 14620, USA
- Department of Neuroscience, University of Rochester, Rochester, New York 14620, USA
| | - Olga Selioutski
- Department of Neurology, Division of Epilepsy, University of Rochester Medical Center, Rochester, New York 14642, USA
| | - Kelly L. Donohue
- Department of Neurology, Division of Neurocritical Care, University of Rochester Medical Center, Rochester, New York 14642, USA
| | - Mark A. Marinescu
- Department of Medicine, Division of Cardiology, University of Rochester Medical Center, Rochester, New York 14642, USA
| | - Sunil M. Prasad
- Department of Surgery, Division of Cardiac Surgery, University of Rochester Medical Center, Rochester, New York 14642, USA
| | - Nadim H. Quazi
- Department of Biology, University of Rochester, Rochester, New York 14620, USA
| | - Jack S. Donlon
- Department of Biomedical Engineering, University of Rochester, Rochester, New York 14620, USA
| | - Emily A. Loose
- Department of Biology, University of Rochester, Rochester, New York 14620, USA
| | - Gabriel A. Ramirez
- Department of Biomedical Engineering, University of Rochester, Rochester, New York 14620, USA
| | - Jingxuan Ren
- Department of Biomedical Engineering, University of Rochester, Rochester, New York 14620, USA
| | - Joseph B. Majeski
- Department of Biomedical Engineering, University of Rochester, Rochester, New York 14620, USA
| | - Kenneth Abramson
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Turgut Durduran
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels (Barcelona), 08860, Spain
- Instituciò Catalana de Recerca i Estudis Avançats (ICREA), Castelldefels (Barcelona), 08015, Spain
| | - David R. Busch
- Department of Anesthesiology and Pain Management, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Regine Choe
- Department of Biomedical Engineering, University of Rochester, Rochester, New York 14620, USA
- Department of Electrical and Computer Engineering, University of Rochester, Rochester, New York 14620, USA
| |
Collapse
|
112
|
Montgomery D, Brown C, Hogue CW, Brady K, Nakano M, Nomura Y, Antunes A, Addison PS. Real-Time Intraoperative Determination and Reporting of Cerebral Autoregulation State Using Near-Infrared Spectroscopy. Anesth Analg 2020; 131:1520-1528. [PMID: 33079875 PMCID: PMC7319873 DOI: 10.1213/ane.0000000000004614] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/26/2019] [Indexed: 01/17/2023]
Abstract
BACKGROUND Cerebral blood flow (CBF) is maintained over a range of blood pressures through cerebral autoregulation (CA). Blood pressure outside the range of CA, or impaired autoregulation, is associated with adverse patient outcomes. Regional oxygen saturation (rSO2) derived from near-infrared spectroscopy (NIRS) can be used as a surrogate CBF for determining CA, but existing methods require a long period of time to calculate CA metrics. We have developed a novel method to determine CA using cotrending of mean arterial pressure (MAP) with rSO2that aims to provide an indication of CA state within 1 minute. We sought to determine the performance of the cotrending method by comparing its CA metrics to data derived from transcranial Doppler (TCD) methods. METHODS Retrospective data collected from 69 patients undergoing cardiac surgery with cardiopulmonary bypass were used to develop a reference lower limit of CA. TCD-MAP data were plotted to determine the reference lower limit of CA. The investigated method to evaluate CA state is based on the assessment of the instantaneous cotrending relationship between MAP and rSO2 signals. The lower limit of autoregulation (LLA) from the cotrending method was compared to the manual reference derived from TCD. Reliability of the cotrending method was assessed as uptime (defined as the percentage of time that the state of autoregulation could be measured) and time to first post. RESULTS The proposed method demonstrated minimal mean bias (0.22 mmHg) when compared to the TCD reference. The corresponding limits of agreement were found to be 10.79 mmHg (95% confidence interval [CI], 10.09-11.49) and -10.35 mmHg (95% CI, -9.65 to -11.05). Mean uptime was 99.40% (95% CI, 99.34-99.46) and the mean time to first post was 63 seconds (95% CI, 58-71). CONCLUSIONS The reported cotrending method rapidly provides metrics associated with CA state for patients undergoing cardiac surgery. A major strength of the proposed method is its near real-time feedback on patient CA state, thus allowing for prompt corrective action to be taken by the clinician.
Collapse
Affiliation(s)
- Dean Montgomery
- From the Medtronic Respiratory & Monitoring Solutions, Edinburgh, United Kingdom
| | - Charles Brown
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Charles W. Hogue
- Department of Anesthesiology, Northwestern University Feinberg, School of Medicine, Chicago, Illinois
| | - Ken Brady
- Department of Anesthesiology, Northwestern University Feinberg, School of Medicine, Chicago, Illinois
- Cardiac Anesthesia, Ann & Robert Lurie Children’s Hospital, Chicago, Illinois
| | - Mitsunori Nakano
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Yohei Nomura
- Department of Cardiovascular Surgery, Saitama Medical Center, Jichi Medical University, Saitama, Japan
| | - Andre Antunes
- From the Medtronic Respiratory & Monitoring Solutions, Edinburgh, United Kingdom
| | - Paul S. Addison
- From the Medtronic Respiratory & Monitoring Solutions, Edinburgh, United Kingdom
| |
Collapse
|
113
|
Continuous Monitoring of Cerebral Autoregulation in Children Supported by Extracorporeal Membrane Oxygenation: A Pilot Study. Neurocrit Care 2020; 34:935-945. [PMID: 33029743 DOI: 10.1007/s12028-020-01111-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 09/09/2020] [Indexed: 10/23/2022]
Abstract
OBJECTIVE Cerebral autoregulation (CA) impairment may pose a risk factor for neurological complications among children supported by extracorporeal membrane oxygenation (ECMO). Our first objective was to investigate the feasibility of CA continuous monitoring during ECMO treatment and to describe its evolution over time. The second objective was to analyze the association between CA impairment and neurological outcome. DESIGN Observational prospective study. PATIENTS AND SETTING Twenty-nine children treated with veno-arterial or veno-venous ECMO in the PICU of Nantes University Hospital, France, and the PICU of the IRCCS Giannina Gaslini Institute in Genoa, Italy. MEASUREMENTS A correlation coefficient between the variations of regional cerebral oxygen saturation and the variations of mean arterial blood pressure (MAP) was calculated as an index of CA (cerebral oxygenation reactivity index, COx). A COx > 0.3 was considered as indicative of autoregulation impairment. COx-MAP plots were investigated allowing determining optimal MAP (MAPopt) and limits of autoregulation: lower (LLA) and upper (ULA). Neurological outcome was assessed by the onset of an acute neurological event (ANE) after ECMO start. RESULTS We included 29 children (median age 84 days, weight 4.8 kg). MAPopt, LLA, and ULA were detected in 90.8% (84.3-93.3) of monitoring time. Mean COx was significantly higher during day 1 of ECMO compared to day 2 [0.1 (0.02-0.15) vs. 0.01 (- 0.05 to 0.1), p = 0.002]. Twelve children experienced ANE (34.5%). The mean COx and the percentage of time spent with a COx > 0.3 were significantly higher among ANE+ compared to ANE- patients [0.09 (0.01-0.23) vs. 0.04 (- 0.02 to 0.06), p = 0.04 and 33.3% (24.8-62.1) vs. 20.8% (17.3-23.7) p = 0.001]. ANE+ patients spent significantly more time with MAP below LLA [17.2% (6.5-32.9) vs. 5.6% (3.6-9.9), p = 0.02] and above ULA [13% (5.3-38.4) vs. 4.2% (2.7-7.4), p = 0.004], respectively. CONCLUSION CA assessment is feasible in pediatric ECMO. The first 24 h following ECMO represents the most critical period regarding CA. Impaired autoregulation is significantly more severe among patients who experience ANE.
Collapse
|
114
|
Zugni N, Guadrini L, Rasulo F. Noninvasive neuromonitoring in the operating room and its role in the prevention of delirium. Best Pract Res Clin Anaesthesiol 2020; 35:191-206. [PMID: 34030804 DOI: 10.1016/j.bpa.2020.09.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 09/20/2020] [Accepted: 09/25/2020] [Indexed: 01/16/2023]
Abstract
Delirium is a frequent and serious complication after surgery. It has a variable incidence between 20% and 40% with the highest incidence in elderly people undergoing major or cardiac surgery. The development of postoperative delirium (POD) is associated with increased hospital stay lengths, morbidity, the need for home care, and mortality. Studies have appeared in the last decade that evaluate the use of noninvasive monitoring to prevent its development. The evaluation of the depth of anesthesia with processed EEG allows to avoid awareness and burst suppression events. The cessation of brain activity is associated with the development of delirium. Another noninvasive monitoring technique is NIRS for cerebral tissue hypoxia detection by measuring regional oxygen saturation. The reduction of this parameter does not seem to be associated with the development of POD but with postoperative cognitive dysfunction. There are few studies in the literature and with conflicting results on the use of the pupillometer and transcranial Doppler in predicting the development of postoperative delirium.
Collapse
Affiliation(s)
- Nicola Zugni
- Division of Anesthesiology, Intensive Care, and Emergency Medicine, University of Brescia at Spedali Civili Hospital, Brescia, Italy.
| | - Lucrezia Guadrini
- Division of Anesthesiology, Intensive Care, and Emergency Medicine, University of Brescia at Spedali Civili Hospital, Brescia, Italy.
| | - Frank Rasulo
- Division of Anesthesiology, Intensive Care, and Emergency Medicine, University of Brescia at Spedali Civili Hospital, Brescia, Italy; Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, Division of Anesthesiology, Intensive Care and Emergency Medicine, University of Brescia at Spedali Civili Hospital, Brescia, Italy.
| |
Collapse
|
115
|
Near-Infrared Spectroscopy to Assess Cerebral Autoregulation and Optimal Mean Arterial Pressure in Patients With Hypoxic-Ischemic Brain Injury: A Prospective Multicenter Feasibility Study. Crit Care Explor 2020; 2:e0217. [PMID: 33063026 PMCID: PMC7523861 DOI: 10.1097/cce.0000000000000217] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Supplemental Digital Content is available in the text. We provide preliminary multicenter data to suggest that recruitment and collection of physiologic data necessary to quantify cerebral autoregulation and individualized blood pressure targets are feasible in postcardiac arrest patients. We evaluated the feasibility of a multicenter protocol to enroll patients across centers, as well as collect continuous recording (≥ 80% of monitoring time) of regional cerebral oxygenation and mean arterial pressure, which is required to quantify cerebral autoregulation, using the cerebral oximetry index, and individualized optimal mean arterial pressure thresholds. Additionally, we conducted an exploratory analysis to assess if an increased percentage of monitoring time where mean arterial pressure was greater than or equal to 5 mm Hg below optimal mean arterial pressure, percentage of monitoring time with dysfunctional cerebral autoregulation (i.e., cerebral oximetry index ≥ 0.3), and time to return of spontaneous circulation were associated with an unfavorable neurologic outcome (i.e., 6-mo Cerebral Performance Category score ≥ 3).
Collapse
|
116
|
Van Laere D, Meeus M, Beirnaert C, Sonck V, Laukens K, Mahieu L, Mulder A. Machine Learning to Support Hemodynamic Intervention in the Neonatal Intensive Care Unit. Clin Perinatol 2020; 47:435-448. [PMID: 32713443 DOI: 10.1016/j.clp.2020.05.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Hemodynamic support in neonatal intensive care is directed at maintaining cardiovascular wellbeing. At present, monitoring of vital signs plays an essential role in augmenting care in a reactive manner. By applying machine learning techniques, a model can be trained to learn patterns in time series data, allowing the detection of adverse outcomes before they become clinically apparent. In this review we provide an overview of the different machine learning techniques that have been used to develop models in hemodynamic care for newborn infants. We focus on their potential benefits, research pitfalls, and challenges related to their implementation in clinical care.
Collapse
Affiliation(s)
- David Van Laere
- Department of Neonatal Intensive Care, University Hospital Antwerp, Wilrijkstraat 10, Edegem BE-2650, Belgium; Laboratory of Pediatrics, Department of Life Sciences, University of Antwerp, Prinsstraat 13, Antwerpen 2000, Belgium.
| | - Marisse Meeus
- Department of Neonatal Intensive Care, University Hospital Antwerp, Wilrijkstraat 10, Edegem BE-2650, Belgium; Laboratory of Pediatrics, Department of Life Sciences, University of Antwerp, Prinsstraat 13, Antwerpen 2000, Belgium
| | - Charlie Beirnaert
- Adrem Data Lab, Department of Mathematics and Computer Science, University of Antwerp, Middelheimlaan 1, Antwerpen 2020, Belgium
| | - Victor Sonck
- ML6, Esplanade Oscar Van De Voorde 1, Ghent 9000, Belgium
| | - Kris Laukens
- Adrem Data Lab, Department of Mathematics and Computer Science, University of Antwerp, Middelheimlaan 1, Antwerpen 2020, Belgium
| | - Ludo Mahieu
- Department of Neonatal Intensive Care, University Hospital Antwerp, Wilrijkstraat 10, Edegem BE-2650, Belgium; Laboratory of Pediatrics, Department of Life Sciences, University of Antwerp, Prinsstraat 13, Antwerpen 2000, Belgium
| | - Antonius Mulder
- Department of Neonatal Intensive Care, University Hospital Antwerp, Wilrijkstraat 10, Edegem BE-2650, Belgium; Laboratory of Pediatrics, Department of Life Sciences, University of Antwerp, Prinsstraat 13, Antwerpen 2000, Belgium
| |
Collapse
|
117
|
Ferlini L, Su F, Creteur J, Taccone FS, Gaspard N. Cerebral autoregulation and neurovascular coupling are progressively impaired during septic shock: an experimental study. Intensive Care Med Exp 2020; 8:44. [PMID: 32797301 PMCID: PMC7426896 DOI: 10.1186/s40635-020-00332-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 07/21/2020] [Indexed: 12/14/2022] Open
Abstract
Background Alteration of the mechanisms of cerebral blood flow (CBF) regulation might contribute to the pathophysiology of sepsis-associated encephalopathy (SAE). However, previous clinical studies on dynamic cerebral autoregulation (dCA) in sepsis had several cofounders. Furthermore, little is known on the potential impairment of neurovascular coupling (NVC) in sepsis. The aim of our study was to determine the presence and time course of dCA and NVC alterations in a clinically relevant animal model and their potential impact on the development of SAE. Methods Thirty-six anesthetized, mechanically ventilated female sheep were randomized to sham procedures (sham, n = 15), sepsis (n = 14), or septic shock (n = 7). Blood pressure, CBF, and electrocorticography were continuously recorded. Pearson’s correlation coefficient Lxa and transfer function analysis were used to estimate dCA. NVC was assessed by the analysis of CBF variations induced by cortical gamma activity (Eγ) peaks and by the magnitude-squared coherence (MSC) between the spontaneous fluctuations of CBF and Eγ. Cortical function was estimated by the alpha-delta ratio. Wilcoxon signed rank and rank sum tests, Friedman tests, and RMANOVA test were used as appropriate. Results Sepsis and sham animals did not differ neither in dCA nor in NVC parameters. A significant impairment of dCA occurred only after septic shock (Lxa, p = 0.03, TFA gain p = 0.03, phase p = 0.01). Similarly, NVC was altered during septic shock, as indicated by a lower MSC in the frequency band 0.03–0.06 Hz (p < 0.001). dCA and NVC impairments were associated with cortical dysfunction (reduction in the alpha-delta ratio (p = 0.03)). Conclusions A progressive loss of dCA and NVC occurs during septic shock and is associated with cortical dysfunction. These findings indicate that the alteration of mechanisms controlling cortical perfusion plays a late role in the pathophysiology of SAE and suggest that alterations of CBF regulation mechanisms in less severe phases of sepsis reported in clinical studies might be due to patients’ comorbidities or other confounders. Furthermore, a mean arterial pressure targeting therapy aiming to optimize dCA might not be sufficient to prevent neuronal dysfunction in sepsis since it would not improve NVC.
Collapse
Affiliation(s)
- Lorenzo Ferlini
- Department of Neurology, Erasme Hospital, Université Libre de Bruxelles, Route de Lennik 808, 1070, Bruxelles, Belgium.
| | - Fuhong Su
- Department of Intensive Care, Erasme Hospital, Université Libre de Bruxelles, Bruxelles, Belgium
| | - Jacques Creteur
- Department of Intensive Care, Erasme Hospital, Université Libre de Bruxelles, Bruxelles, Belgium
| | - Fabio Silvio Taccone
- Department of Intensive Care, Erasme Hospital, Université Libre de Bruxelles, Bruxelles, Belgium
| | - Nicolas Gaspard
- Department of Neurology, Erasme Hospital, Université Libre de Bruxelles, Route de Lennik 808, 1070, Bruxelles, Belgium
| |
Collapse
|
118
|
Optimizing Mean Arterial Pressure in Acutely Comatose Patients Using Cerebral Autoregulation Multimodal Monitoring With Near-Infrared Spectroscopy. Crit Care Med 2020; 47:1409-1415. [PMID: 31356469 DOI: 10.1097/ccm.0000000000003908] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES This study investigated whether comatose patients with greater duration and magnitude of clinically observed mean arterial pressure outside optimal mean arterial blood pressure have worse outcomes than those with mean arterial blood pressure closer to optimal mean arterial blood pressure calculated by bedside multimodal cerebral autoregulation monitoring using near-infrared spectroscopy. DESIGN Prospective observational study. SETTING Neurocritical Care Unit of the Johns Hopkins Hospital. SUBJECTS Acutely comatose patients secondary to brain injury. INTERVENTIONS None. MEASUREMENTS AND MAIN RESULTS The cerebral oximetry index was continuously monitored with near-infrared spectroscopy for up to 3 days. Optimal mean arterial blood pressure was defined as that mean arterial blood pressure at the lowest cerebral oximetry index (nadir index) for each 24-hour period of monitoring. Kaplan-Meier analysis and proportional hazard regression models were used to determine if survival at 3 months was associated with a shorter duration of mean arterial blood pressure outside optimal mean arterial blood pressure and the absolute difference between clinically observed mean arterial blood pressure and optimal mean arterial blood pressure. A total 91 comatose patients were enrolled in the study. The most common etiology was intracerebral hemorrhage. Optimal mean arterial blood pressure could be calculated in 89 patients (97%), and the median optimal mean arterial blood pressure was 89.7 mm Hg (84.6-100 mm Hg). In multivariate proportional hazard analysis, duration outside optimal mean arterial blood pressure of greater than 80% of monitoring time (adjusted hazard ratio, 2.13; 95% CI, 1.04-4.41; p = 0.04) and absolute difference between clinically observed mean arterial blood pressure and optimal mean arterial blood pressure of more than 10 mm Hg (adjusted hazard ratio, 2.44; 95% CI, 1.21-4.92; p = 0.013) were independently associated with mortality at 3 months, after adjusting for brain herniation, admission Glasgow Coma Scale, duration on vasopressors and midline shift at septum. CONCLUSIONS Comatose neurocritically ill adults with an absolute difference between clinically observed mean arterial blood pressure and optimal mean arterial blood pressure greater than 10 mm Hg and duration outside optimal mean arterial blood pressure greater than 80% had increased mortality at 3 months. Noninvasive near-infrared spectroscopy-based bedside calculation of optimal mean arterial blood pressure is feasible and might be a promising tool for cerebral autoregulation oriented-therapy in neurocritical care patients.
Collapse
|
119
|
|
120
|
|
121
|
Abstract
PURPOSE OF REVIEW Despite restoration of adequate systemic blood flow in patients with shock, single organs may remain hypoperfused. In this review, we summarize the results of a literature research on methods to monitor single organ perfusion in shock. We focused on methods to measure heart, brain, kidney, and/or visceral organ perfusion. Furthermore, only methods that can be used in real-time and at the bedside were included. RECENT FINDINGS We identified studies on physical examination techniques, electrocardiography, echocardiography, contrast-enhanced ultrasound, near-infrared spectroscopy, and Doppler sonography to assess single organ perfusion. SUMMARY Physical examination techniques have a reasonable negative predictive value to exclude single organ hypoperfusion but are nonspecific to detect it. Technical methods to indirectly measure myocardial perfusion include ECG and echocardiography. Contrast-enhanced ultrasound can quantify myocardial perfusion but has so far only been used to detect regional myocardial hypoperfusion. Near-infrared spectroscopy and transcranial Doppler sonography can be used to assess cerebral perfusion and determine autoregulation thresholds of the brain. Both Doppler and contrast-enhanced ultrasound techniques are novel methods to evaluate renal and visceral organ perfusion. A key limitation of most techniques is the inability to determine adequacy of organ blood flow to meet the organs' metabolic demands.
Collapse
|
122
|
Kurita T, Kawashima S, Morita K, Nakajima Y. Spinal cord autoregulation using near-infrared spectroscopy under normal, hypovolemic, and post-fluid resuscitation conditions in a swine model: a comparison with cerebral autoregulation. J Intensive Care 2020; 8:27. [PMID: 32318269 PMCID: PMC7158138 DOI: 10.1186/s40560-020-00443-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 03/31/2020] [Indexed: 11/17/2022] Open
Abstract
Background Few studies have investigated spinal cord autoregulation using near-infrared spectroscopy (NIRS). Here, we assessed spinal cord autoregulation under normal, hypovolemic, and post-fluid resuscitation conditions compared with cerebral autoregulation. Methods Ten pigs (36.1 ± 1.1 kg) were anesthetized with 2.5% isoflurane, before phenylephrine administration at 0.5, 1, 2, and 5 μg kg−1 min−1 in a stepwise fashion at 10-min intervals (baseline), followed by similar administration of sodium nitroprusside (SNP). Hypovolemia was induced by a 600-ml bleed (25% estimated total blood volume). Only phenylephrine was readministered (same protocol). Hypovolemia was reversed by infusing 600 ml hydroxyethyl starch, before readministering phenylephrine and SNP. The relationships between mean arterial pressure (MAP) and cerebral, thoracic, and lumbar spinal cord tissue oxygenation indices (TOIs) were evaluated. Results Thoracic and lumbar spinal cord TOIs were approximately 15% and 10% lower, respectively, than the cerebral TOI at similar MAPs. The average relationship between MAP and each TOI showed an autoregulatory pattern, but negative correlations were observed in the cerebral TOI during phenylephrine infusion. A 600-ml bleed lowered each relationship < 5% and subsequent fluid resuscitation did not change the relationship. Individual oxygenation responses to blood pressure indicated that the spinal cord is more pressure-passive than the cerebrum. Paradoxical responses (an inverse relationship of tissue oxygenation to MAP) were observed particularly in cerebrum during phenylephrine infusion and were rare in the spinal cord. Conclusions Spinal cord autoregulation is less robust than cerebral autoregulation and more pressure-dependent. Similar to cerebral oxygenation, spinal cord oxygenation is volume-tolerant but is more sensitive to hypotension.
Collapse
Affiliation(s)
- Tadayoshi Kurita
- Department of Anesthesiology and Intensive Care, Hamamatsu University School of Medicine, 1-20-1 Handayama, Hamamatsu, 431-3192 Japan
| | - Shingo Kawashima
- Department of Anesthesiology and Intensive Care, Hamamatsu University School of Medicine, 1-20-1 Handayama, Hamamatsu, 431-3192 Japan
| | - Koji Morita
- Department of Anesthesiology and Intensive Care, Hamamatsu University School of Medicine, 1-20-1 Handayama, Hamamatsu, 431-3192 Japan
| | - Yoshiki Nakajima
- Department of Anesthesiology and Intensive Care, Hamamatsu University School of Medicine, 1-20-1 Handayama, Hamamatsu, 431-3192 Japan
| |
Collapse
|
123
|
Hoiland RL, Sekhon MS, Cardim D, Wood MD, Gooderham P, Foster D, Griesdale DE. Lack of agreement between optimal mean arterial pressure determination using pressure reactivity index versus cerebral oximetry index in hypoxic ischemic brain injury after cardiac arrest. Resuscitation 2020; 152:184-191. [PMID: 32229218 DOI: 10.1016/j.resuscitation.2020.03.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 03/13/2020] [Accepted: 03/21/2020] [Indexed: 12/26/2022]
Abstract
INTRODUCTION Invasive monitoring of cerebral autoregulation using the pressure reactivity index (PRx) allows for the determination of optimal mean arterial pressure (MAPOPT) in hypoxic ischemic brain injury (HIBI) patients following cardiac arrest. However, the utility of non-invasive surrogates to determine MAPOPT has not been addressed. We aimed to determine the agreement between PRx-derived MAPOPT versus MAPOPT determined by the near-infrared spectroscopy (NIRS) based cerebral oximetry index (COx). METHODS Ten HIBI patients were enrolled. PRx-derived MAPOPT, lower (LLA) and upper limits of autoregulation (ULA) were compared against COx-derived MAPOPT, LLA and ULA. Multimodal neuromonitoring included mean arterial pressure, intracranial pressure, brain tissue oxygenation, jugular venous oxygen saturation, and NIRS-derived regional cerebral oxygen saturation. RESULTS Repeated measures Bland-Altman plots demonstrated limited agreement between MAPOPT derived from COx and PRx (mean bias: 1.4 mmHg; upper limit of agreement: 25.9 mmHg; lower limit of agreement: -23.0 mmHg). Similarly, there was limited agreement between the absolute values of PRx and COx. Mean bias was 0.26 and the upper and lower limits of agreement were 1.05 and -0.53, respectively. Systematic bias was apparent, whereby at low PRx values COx overestimated PRx and at high PRx values, COx underestimated PRx. COx was limited in its ability to determine impaired autoregulation defined by PRx (receiver operator characteristic area under the curve was 0.488). CONCLUSION Collectively, we demonstrate that COx-based determination of MAPOPT lacks agreement with MAPOPT derived from PRx. Further research must be done to evaluate the physiologic and clinical efficacy of PRx derived MAPOPT in HIBI.
Collapse
Affiliation(s)
- Ryan L Hoiland
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, BC, Canada; Centre for Heart, Lung, & Vascular Health, School of Health and Exercise Sciences, University of British Columbia-Okanagan, Kelowna, BC, Canada
| | - Mypinder S Sekhon
- Division of Critical Care Medicine, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Danilo Cardim
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, BC, Canada
| | - Michael D Wood
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, BC, Canada
| | - Peter Gooderham
- Division of Neurosurgery, Department of Surgery, Vancouver General Hospital, West 12th Avenue, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| | - Denise Foster
- Division of Critical Care Medicine, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Donald E Griesdale
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, BC, Canada; Division of Critical Care Medicine, Department of Medicine, University of British Columbia, Vancouver, BC, Canada; Centre for Clinical Epidemiology and Evaluation, Vancouver Coastal Health Research Institute, Vancouver, BC, Canada.
| |
Collapse
|
124
|
Cerebral venous volume changes and pressure autoregulation in critically ill infants. J Perinatol 2020; 40:806-811. [PMID: 32157219 PMCID: PMC7224055 DOI: 10.1038/s41372-020-0626-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 02/04/2020] [Accepted: 02/11/2020] [Indexed: 01/20/2023]
Abstract
OBJECTIVE To determine whether ventilator-related fluctuations in cerebral blood volume (CBV) are associated with cerebral pressure passivity. STUDY DESIGN In a prospective study of newborns undergoing positive-pressure ventilation, we calculated coherence between continuous mean arterial pressure (MAP) and cerebral near-infrared spectroscopy hemoglobin difference (HbD). Significant HbD-MAP coherence indicated cerebral pressure passivity. CBV changes were measured as the spectral power of total hemoglobin (SHbT) at the ventilator frequency. A regression model tested whether SHbT predicts cerebral pressure passivity and/or death/brain injury, controlling for birth gestational age and other factors. RESULTS We studied 68 subjects with prematurity (n = 19), congenital heart disease (n = 11), and hypoxic-ischemic encephalopathy (n = 38). SHbT, sedative use, and pCO2 were positively associated, and circulating hemoglobin negatively associated, with cerebral pressure passivity (p < 0.001), which was positively associated with brain injury (p < 0.001). CONCLUSION In sick newborns, ventilator-related CBV fluctuations may predispose to cerebral pressure passivity, which may predispose to an adverse neonatal outcome.
Collapse
|
125
|
Cimatti AG, Martini S, Galletti S, Vitali F, Aceti A, Frabboni G, Faldella G, Corvaglia L. Cerebral Oxygenation and Autoregulation in Very Preterm Infants Developing IVH During the Transitional Period: A Pilot Study. Front Pediatr 2020; 8:381. [PMID: 32760685 PMCID: PMC7373744 DOI: 10.3389/fped.2020.00381] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 06/04/2020] [Indexed: 12/22/2022] Open
Abstract
Background: The transitional period, defined as the first 72 h after preterm birth, is often characterized by a significant hemodynamic instability, which represents an important risk factor for such neurological complications of prematurity as intraventricular hemorrhage (IVH). The impairment of cerebral autoregulation plays a key role in the pathogenesis of IVH, whose incidence is highest during the transitional period. This pilot study aimed to evaluate whether patterns of cerebral autoregulation and oxygenation differ in relation to IVH development in very preterm infants during the transitional period. Methods: Infants <32 weeks' gestation were enrolled within 12 h from birth. A simultaneous monitoring of cerebral oxygenation (CrSO2) by near-infrared spectroscopy and of heart rate and peripheral oxygen saturation by pulse oximetry was performed over the first 72 h. Cerebral fractional oxygen extraction (cFTOE) and tissue oxygenation-heart rate reactivity index (TOHRx), which represents a marker of cerebrovascular reactivity, were calculated. Daily cranial and cardiac ultrasound scans were performed, in order to assess the hemodynamic status and to detect a possible IVH onset. CrSO2 and cFTOE, clustered on 6-hour epochs, were compared between infants who developed IVH during the study period and those who did not. A between-group comparison of TOHRx before and after IVH detection was also performed. Results: Twenty preterm infants with a median gestational age of 27 weeks (interquartile range, IQR: 25-30 weeks) and median birth weight of 895 g (IQR: 822-1208 g) were enrolled. Of these, 8 developed IVH. The median age at IVH detection was 40 h (IQR: 30-48 h). Pre-IVH TOHRx was significantly higher compared to matched control periods (p <0.001). CrSO2 was significantly lower from 12 to 30 h and from 42 h onwards in cases compared to controls; however, a temporary CrSO2 rise preceded IVH detection. Similarly, cFTOE was significantly higher in IVH infants from 12 to 30 h and from 48 to 72 h, with a transient decrease between the two periods. Conclusions: In preterm infants during the transitional period, the development of IVH is preceded by transient changes in cerebral oxygenation and oxygen extraction which, in turn, may underlie an early impairment of cerebral autoregulation. Larger studies are needed to confirm these preliminary findings.
Collapse
Affiliation(s)
- Anna Giulia Cimatti
- Neonatal Intensive Care Unit, S. Orsola-Malpighi University Hospital, Bologna, Italy
| | - Silvia Martini
- Neonatal Intensive Care Unit, S. Orsola-Malpighi University Hospital, Bologna, Italy.,Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Silvia Galletti
- Neonatal Intensive Care Unit, S. Orsola-Malpighi University Hospital, Bologna, Italy.,Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Francesca Vitali
- Neonatal Intensive Care Unit, S. Orsola-Malpighi University Hospital, Bologna, Italy
| | - Arianna Aceti
- Neonatal Intensive Care Unit, S. Orsola-Malpighi University Hospital, Bologna, Italy.,Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Giulia Frabboni
- Neonatal Intensive Care Unit, S. Orsola-Malpighi University Hospital, Bologna, Italy
| | - Giacomo Faldella
- Neonatal Intensive Care Unit, S. Orsola-Malpighi University Hospital, Bologna, Italy.,Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Luigi Corvaglia
- Neonatal Intensive Care Unit, S. Orsola-Malpighi University Hospital, Bologna, Italy.,Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| |
Collapse
|
126
|
Elting JWJ, Tas J, Aries MJ, Czosnyka M, Maurits NM. Dynamic cerebral autoregulation estimates derived from near infrared spectroscopy and transcranial Doppler are similar after correction for transit time and blood flow and blood volume oscillations. J Cereb Blood Flow Metab 2020; 40:135-149. [PMID: 30353763 PMCID: PMC6927073 DOI: 10.1177/0271678x18806107] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
We analysed mean arterial blood pressure, cerebral blood flow velocity, oxygenated haemoglobin and deoxygenated haemoglobin signals to estimate dynamic cerebral autoregulation. We compared macrovascular (mean arterial blood pressure-cerebral blood flow velocity) and microvascular (oxygenated haemoglobin-deoxygenated haemoglobin) dynamic cerebral autoregulation estimates during three different conditions: rest, mild hypocapnia and hypercapnia. Microvascular dynamic cerebral autoregulation estimates were created by introducing the constant time lag plus constant phase shift model, which enables correction for transit time, blood flow and blood volume oscillations (TT-BF/BV correction). After TT-BF/BV correction, a significant agreement between mean arterial blood pressure-cerebral blood flow velocity and oxygenated haemoglobin-deoxygenated haemoglobin phase differences in the low frequency band was found during rest (left: intraclass correlation=0.6, median phase difference 29.5° vs. 30.7°, right: intraclass correlation=0.56, median phase difference 32.6° vs. 39.8°) and mild hypocapnia (left: intraclass correlation=0.73, median phase difference 48.6° vs. 43.3°, right: intraclass correlation=0.70, median phase difference 52.1° vs. 61.8°). During hypercapnia, the mean transit time decreased and blood volume oscillations became much more prominent, except for very low frequencies. The transit time related to blood flow oscillations was remarkably stable during all conditions. We conclude that non-invasive microvascular dynamic cerebral autoregulation estimates are similar to macrovascular dynamic cerebral autoregulation estimates, after TT-BF/BV correction is applied. These findings may increase the feasibility of non-invasive continuous autoregulation monitoring and guided therapy in clinical situations.
Collapse
Affiliation(s)
- Jan Willem J Elting
- Department of Neurology, University Medical Center Groningen, Groningen, The Netherlands
| | - Jeanette Tas
- Department of Neurology, University Medical Center Groningen, Groningen, The Netherlands
| | - Marcel Jh Aries
- Department of Intensive Care, Maastricht University Medical Center, Maastricht, The Netherlands.,Brain Physics Group, Department of Clinical Neurosciences, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - Marek Czosnyka
- Brain Physics Group, Department of Clinical Neurosciences, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK.,Institute of Electronic Systems, Warsaw University of Technology, Warsaw, Poland
| | - Natasha M Maurits
- Department of Neurology, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
127
|
Mori M, Mullan CW, Geirsson A. Cerebral Autoregulation-Targeted Mean Arterial Pressure. JAMA Surg 2020; 155:93-94. [PMID: 31596438 DOI: 10.1001/jamasurg.2019.3793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Makoto Mori
- Section of Cardiac Surgery, Yale University School of Medicine, New Haven, Connecticut
| | - Clancy W Mullan
- Section of Cardiac Surgery, Yale University School of Medicine, New Haven, Connecticut
| | - Arnar Geirsson
- Section of Cardiac Surgery, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
128
|
Sakurai A, Ihara S, Tagami R, Yamaguchi J, Sugita A, Kuwana T, Sawada N, Hori S, Taniguch T, Kinoshita K. Parameters Influencing Brain Oxygen Measurement by Regional Oxygen Saturation in Postcardiac Arrest Patients with Targeted Temperature Management. Ther Hypothermia Temp Manag 2019; 10:71-75. [PMID: 31825272 PMCID: PMC7044773 DOI: 10.1089/ther.2019.0032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
In several studies, regional cerebral oxygen saturation (rSO2) has been measured in patients with postcardiac arrest syndrome (PCAS) to analyze the brain's metabolic status. However, the significance of rSO2 in PCAS patients remains unclear. In the present study, we investigated the relationship between rSO2 and physiological parameters. Comatose survivors of out-of-hospital PCAS with targeted temperature management (TTM) at 34°C for 24 hours were included. All patients were monitored for their rSO2 and additional parameters (arterial oxygen saturation [SaO2], hemoglobin [Hb], mean arterial pressure [MAP], arterial carbon dioxide pressure [PaCO2], and body temperature]) measured at the start of monitoring and 24 and 48 hours after return of spontaneous circulation (ROSC). Patients were divided into favorable and unfavorable groups, and the correlation between rSO2 and these physiological parameters was evaluated by multiple regression analysis. Forty-nine patients were included in the study, with 15 in the favorable group and 34 in the unfavorable group. There was no significant difference in the rSO2 value between the two groups at any time point. The multiple regression analysis of the favorable group revealed a moderate correlation between rSO2 and SaO2, Hb, and PaCO2 only at 24 hours (coefficients: 0.482, 0.422, and 0.531, respectively), whereas that of the unfavorable group revealed moderate correlations between rSO2 and Hb values at all time points, PaCO2 at 24 hours and MAP at 24 and 48 hours. rSO2 was moderately correlated to MAP in unfavorable patients. To optimize brain oxygen metabolic balance for PCAS patients with TTM measuring rSO2, we suggest total evaluation of each parameters of SaO2, Hb, MAP, and PaCO2.
Collapse
Affiliation(s)
- Atsushi Sakurai
- Division of Emergency and Critical Care Medicine, Department of Acute Medicine, Nihon University School of Medicine, Tokyo, Japan
- Address correspondence to: Atsushi Sakurai, MD, PhD, Division of Emergency and Critical Care Medicine, Department of Acute Medicine, Nihon University School of Medicine, 30-1 Oyaguchikamimachi Itabashi-ku, Tokyo 173-8610, Japan
| | - Shingo Ihara
- Division of Emergency and Critical Care Medicine, Department of Acute Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Rumi Tagami
- Division of Emergency and Critical Care Medicine, Department of Acute Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Junko Yamaguchi
- Division of Emergency and Critical Care Medicine, Department of Acute Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Atsunori Sugita
- Division of Emergency and Critical Care Medicine, Department of Acute Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Tsukasa Kuwana
- Division of Emergency and Critical Care Medicine, Department of Acute Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Nami Sawada
- Division of Emergency and Critical Care Medicine, Department of Acute Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Satoshi Hori
- Division of Emergency and Critical Care Medicine, Department of Acute Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Tetsuya Taniguch
- Department of Mathematics, Nihon University School of Medicine, Tokyo, Japan
| | - Kosaku Kinoshita
- Division of Emergency and Critical Care Medicine, Department of Acute Medicine, Nihon University School of Medicine, Tokyo, Japan
| |
Collapse
|
129
|
Lee KF, Wood MD, Maslove DM, Muscedere JG, Boyd JG. Dysfunctional cerebral autoregulation is associated with delirium in critically ill adults. J Cereb Blood Flow Metab 2019; 39:2512-2520. [PMID: 30295556 PMCID: PMC6893984 DOI: 10.1177/0271678x18803081] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Delirium is common during critical illness and is associated with morbidity and mortality, but its pathophysiology is unknown. We tested whether dysfunctional cerebral autoregulation (CA) contributes to the development of delirium. Adult patients (n = 40) with respiratory failure and/or shock were prospectively enrolled. Continuous recordings of regional cerebral oxygen saturation (rSO2) were obtained by near-infrared spectroscopy (NIRS) during the first 72 h of intensive care unit (ICU) admission. CA function was estimated by the cerebral oximetry index (COx), which is the time-varying correlation between rSO2 and mean arterial pressure (MAP). Delirium was assessed daily. The median ICU stay was seven days (IQR 4-13). Twenty-four patients (60%) screened positive for delirium on at least one day during their stay. Taking positive COx values to reflect periods of CA dysfunction, we found that the cumulative duration of CA dysfunction during the first one to three days in the ICU was significantly associated with the subsequent development of delirium. Additionally, we assessed two alternative methods for estimating optimal MAP targets in individual patients. In summary, early disturbances in CA may contribute to delirium, and NIRS-derived rSO2 may be used to identify individual perfusion targets in critically ill patients.
Collapse
Affiliation(s)
- Kevin Fh Lee
- School of Medicine, Queen's University, Kingston, ON, Canada
| | - Michael D Wood
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada
| | - David M Maslove
- Department of Critical Care Medicine, Queen's University, Kingston, ON, Canada.,Department of Medicine, Queen's University, Kingston, ON, Canada
| | - John G Muscedere
- Department of Critical Care Medicine, Queen's University, Kingston, ON, Canada
| | - J Gordon Boyd
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada.,Department of Critical Care Medicine, Queen's University, Kingston, ON, Canada.,Department of Medicine, Queen's University, Kingston, ON, Canada
| |
Collapse
|
130
|
Katayama N, Odagiri K, Hakamata A, Inui N, Yamauchi K, Watanabe H. Transient Laterality of Cerebral Oxygenation Changes in Response to Head-of-Bed Manipulation in Acute Ischemic Stroke. J Clin Med 2019; 8:jcm8101739. [PMID: 31635109 PMCID: PMC6833081 DOI: 10.3390/jcm8101739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/13/2019] [Accepted: 10/18/2019] [Indexed: 11/16/2022] Open
Abstract
Background: Cerebral oxygenation monitoring provides important information for optimizing individualized management in patients with acute ischemic stroke (AIS). Although changes in cerebral oxygenation are known to occur in response to head-of-bed (HOB) elevation within 72 h after onset, changes in cerebral oxygenation during stroke recovery are unclear. We compared changes in total- (tHb), oxygenated- (HbO2), and deoxygenated-hemoglobin (deoxyHb) concentrations in response to HOB manipulation between the timeframes within 72 h and 7–10 days after AIS onset. Methods: We measured forehead ΔtHb, ΔHbO2, and ΔdeoxyHb in response to HOB elevation (30°) within 72 h (first measurement) and 7–10 days (second measurement) after AIS onset using time-resolved near-infrared spectroscopy. Results: We enrolled 30 participants (mean age 72.8 ± 11.3 years; 13 women) with a first AIS. There were no significant differences in ΔtHb, ΔHbO2, or ΔdeoxyHb measurements on the infarct or contra-infarct side. At the first measurement, ΔtHb, ΔHbO2, and ΔdeoxyHb measured on the contra-infarct side did not correlate with those measured on the infarct side: ΔtHb (r = 0.114, p = 0.539); ΔHbO2 (r = 0.143, p = 0.440); ΔdeoxyHb (r = 0.227, p = 0.221). Notably, at the second measurement, correlation coefficients of ΔtHb and ΔHbO2 between the contra-infarct and infarct sides were statistically significant: ΔtHb (r = 0.491, p = 0.008); ΔHbO2 (r = 0.479, p = 0.010); ΔdeoxyHb (r = 0.358, p = 0.054). Conclusion: Although changes in cerebral oxygenation in response to HOB elevation had a laterality difference between hemispheres within 72 h of AIS onset, the difference had decreased, at least partially, 7–10 days after AIS onset.
Collapse
Affiliation(s)
- Naoki Katayama
- Department of Clinical Pharmacology and Therapeutics, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, 431-3192 Hamamatsu, Japan.
- Department of Rehabilitation Medicine, Seirei Mikatahara General Hospital, 3453 Mikatahara-cho, Kita-ku, 433-8558 Hamamatsu, Japan.
| | - Keiichi Odagiri
- Department of Clinical Pharmacology and Therapeutics, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, 431-3192 Hamamatsu, Japan.
| | - Akio Hakamata
- Department of Clinical Pharmacology and Therapeutics, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, 431-3192 Hamamatsu, Japan.
| | - Naoki Inui
- Department of Clinical Pharmacology and Therapeutics, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, 431-3192 Hamamatsu, Japan.
| | - Katsuya Yamauchi
- Department of Rehabilitation Medicine, Hamamatsu University Hospital, 1-20-1 Handayama, Higashi-ku, 431-3192 Hamamatsu, Japan.
| | - Hiroshi Watanabe
- Department of Clinical Pharmacology and Therapeutics, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, 431-3192 Hamamatsu, Japan.
| |
Collapse
|
131
|
Aneman A, Laurikalla J, Pham P, Wilkman E, Jakkula P, Reinikainen M, Toppila J, Skrifvars MB. Cerebrovascular autoregulation following cardiac arrest: Protocol for a post hoc analysis of the randomised COMACARE pilot trial. Acta Anaesthesiol Scand 2019; 63:1272-1277. [PMID: 31282566 DOI: 10.1111/aas.13435] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 06/18/2019] [Indexed: 12/23/2022]
Abstract
BACKGROUND Approximately two-thirds of the mortality following out of hospital cardiac arrest is related to devastating neurological injury. Previous small cohort studies have reported an impaired cerebrovascular autoregulation following cardiac arrest, but no studies have assessed the impact of differences in oxygen and carbon dioxide tensions in addition to mean arterial pressure management. METHODS This is a protocol and statistical analysis plan to assess the correlation between changes in cerebral tissue oxygenation and arterial pressure as measure of cerebrovascular autoregulation, the tissue oxygenation index, in patients following out of hospital cardiac arrest and in healthy volunteers. The COMACARE study included 120 comatose survivors of out of hospital cardiac arrest admitted to ICU and managed with low-normal or high-normal targets for mean arterial pressure, arterial oxygen and carbon dioxide partial pressures. In addition, 102 healthy volunteers have been investigated as a reference group for the tissue oxygenation index. In both cohorts, the cerebral tissue oxygenation was measured by near infrared spectroscopy. CONCLUSIONS Cerebrovascular autoregulation is critical to maintain homoeostatic brain perfusion. This study of changes in autoregulation following out of hospital cardiac arrest over the first 48 hours, as compared to data from healthy volunteers, will generate important physiological information that may guide the rationale and design of interventional studies.
Collapse
Affiliation(s)
- Anders Aneman
- Intensive Care Unit Liverpool Hospital, South Western Sydney Local Health District Liverpool BC New South Wales Australia
- Faculty of Medicine The University of New South Wales Sydney New South Wales Australia
- Faculty of Medicine and Health Sciences Macquarie University Sydney New South Wales Australia
| | - Johanna Laurikalla
- Department of Anaesthesiology, Intensive Care and Pain Medicine University of Helsinki and Helsinki University Hospital Helsinki Finland
| | - Paul Pham
- Intensive Care Unit John Hunter Hospital NewcastleNew South Wales Australia
| | - Erika Wilkman
- Department of Anaesthesiology, Intensive Care and Pain Medicine University of Helsinki and Helsinki University Hospital Helsinki Finland
| | - Pekka Jakkula
- Department of Anaesthesiology, Intensive Care and Pain Medicine University of Helsinki and Helsinki University Hospital Helsinki Finland
| | - Matti Reinikainen
- Department NSW of Anaesthesiology and Intensive Care University of Eastern Finland and Kuopio University Hospital Kuopio Finland
| | - Jussi Toppila
- Clinical Neurophysiology HUS Medical Imaging Center, University of Helsinki and Helsinki University Hospital Helsinki Finland
| | - Markus B Skrifvars
- Department of Emergency Care and Services University of Helsinki and Helsinki University Hospital Helsinki Finland
| |
Collapse
|
132
|
Determining the Upper and Lower Limits of Cerebral Autoregulation With Cerebral Oximetry Autoregulation Curves: A Case Series. Crit Care Med 2019; 46:e473-e477. [PMID: 29419556 DOI: 10.1097/ccm.0000000000003012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Critical care guidelines recommend a single target value for mean arterial blood pressure in critically ill patients. However, growing evidence regarding cerebral autoregulation challenges this concept and supports individualizing mean arterial blood pressure targets to prevent brain and kidney hypo- or hyperperfusion. Regional cerebral oxygen saturation derived from near-infrared spectroscopy is an acceptable surrogate for cerebral blood flow and has been validated to measure cerebral autoregulation. This study suggests a novel mechanism to construct autoregulation curves based on near-infrared spectroscopy-measured cerebral oximetry. DESIGN Case-series study. SETTING Neurocritical care unit in a tertiary medical center. PATIENTS Patients with acute neurologic injury and Glasgow coma scale score less than or equal to 8. MEASUREMENTS AND MAIN RESULTS Autoregulation curves were plotted using the fractional-polynomial model in Stata after multimodal continuous monitoring of regional cerebral oxygen saturation and mean arterial blood pressure. Individualized autoregulation curves of seven patients exhibited varying upper and lower limits of autoregulation and provided useful clinical information on the autoregulation trend (curves moving to the right or left during the acute coma period). The median lower and upper limits of autoregulation were 86.5 mm Hg (interquartile range, 74-93.5) and 93.5 mm Hg (interquartile range, 83-99), respectively. CONCLUSIONS This case-series study showed feasibility of delineating real trends of the cerebral autoregulation plateau and direct visualization of the cerebral autoregulation curve after at least 24 hours of recording without manipulation of mean arterial blood pressure by external stimuli. The integration of multimodal monitoring at the bedside with cerebral oximetry provides a noninvasive method to delineate daily individual cerebral autoregulation curves.
Collapse
|
133
|
Zaleski KL, Kussman BD. Near-Infrared Spectroscopy in Pediatric Congenital Heart Disease. J Cardiothorac Vasc Anesth 2019; 34:489-500. [PMID: 31582201 DOI: 10.1053/j.jvca.2019.08.048] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 08/07/2019] [Accepted: 08/27/2019] [Indexed: 12/13/2022]
Abstract
Near-infrared spectroscopy (NIRS) is widely used to monitor tissue oxygenation in the pediatric cardiac surgical population. Clinicians who use NIRS must understand the underlying measurement principles in order to interpret and use this monitoring modality appropriately. The aims of this narrative review are to provide a brief overview of NIRS technology, discuss the normative and critical values of cerebral and somatic tissue oxygen saturation and the interpretation of these values, present the clinical studies (and their limitations) of NIRS as a perioperative monitoring modality in the pediatric congenital heart disease population, and introduce the emerging and future applications of NIRS.
Collapse
Affiliation(s)
- Katherine L Zaleski
- Department of Anesthesiology, Perioperative, and Critical Care Medicine, Division of Cardiac Anesthesia, Boston Children's Hospital, Boston, MA.
| | - Barry D Kussman
- Department of Anesthesiology, Perioperative, and Critical Care Medicine, Division of Cardiac Anesthesia, Boston Children's Hospital, Boston, MA
| |
Collapse
|
134
|
Hoffman SB, Cheng YJ, Magder LS, Shet N, Viscardi RM. Cerebral autoregulation in premature infants during the first 96 hours of life and relationship to adverse outcomes. Arch Dis Child Fetal Neonatal Ed 2019; 104:F473-F479. [PMID: 30385514 DOI: 10.1136/archdischild-2018-315725] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 09/26/2018] [Accepted: 10/05/2018] [Indexed: 11/04/2022]
Abstract
OBJECTIVE To test the hypothesis that impaired cerebral autoregulation (ICA) increases the susceptibility of premature infants to adverse outcomes, we determined the relationship of ICA and cerebral reactivity (CR) measured in the first 96 hours of life to the outcome of grade 3 or 4 intraventricular haemorrhage (IVH) and/or death within 1 month. SETTING Single-centre level IV neonatal intensive care unit. PATIENTS Neonates 24-29 weeks' gestation less than 12 hours old with invasive blood pressure monitoring. DESIGN Cerebral saturations and mean arterial blood pressure were recorded every 30 s for 96 hours. For each 10 min epoch, the correlation coefficient (r) was calculated for mean arterial blood pressure versus cerebral saturations. The epoch was considered to have ICA if r>0.5 and CR if r<0. RESULTS Sixty-one subjects were included. During the first 96 hours, ICA occurred 17.6% and CR occurred 41% of recorded time. In those without adverse outcomes, ICA decreased and CR increased by postnatal day (p<0.05). Adjusted for birth weight and gestational age, those with IVH and those who died spent more time with ICA and less time with CR (p<0.05) over the entire recording period. Those with IVH had 1.5-fold increase in time with ICA on day 2 (p=0.021), and decrease in time with CR on day 3 (p=0.036). Compared with survivors, non-survivors spent more time with ICA on days 3 and 4 (p<0.005), and less with CR on day 3 (p=0.032). CONCLUSION ICA and CR vary by postnatal day and these patterns are associated with adverse outcomes.
Collapse
Affiliation(s)
- Suma B Hoffman
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Yun-Ju Cheng
- Department of Mathematics and Statistics, University of Maryland Baltimore County, Baltimore, Maryland, USA
| | - Laurence S Magder
- Department of Epidemiology and Preventive Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Narendra Shet
- Department of Diagnostic Imaging and Radiology, Children's National Health System, Michigan Avenue NW, Washington, DC, USA
| | - Rose M Viscardi
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
135
|
Cohen E, Baerts W, Caicedo Dorado A, Naulaers G, van Bel F, Lemmers PMA. Cerebrovascular autoregulation in preterm fetal growth restricted neonates. Arch Dis Child Fetal Neonatal Ed 2019; 104:F467-F472. [PMID: 30355781 DOI: 10.1136/archdischild-2017-313712] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 09/12/2018] [Accepted: 09/22/2018] [Indexed: 12/13/2022]
Abstract
OBJECTIVE To investigate the effect of fetal growth restriction (FGR) on cerebrovascular autoregulation in preterm neonates during the first 3 days of life. DESIGN Case-control study. SETTING Neonatal intensive care unit of the Wilhelmina Children's Hospital, The Netherlands. PATIENTS 57 FGR (birth weight <10th percentile) and 57 appropriate for gestational age (AGA) (birth weight 20th-80th percentiles) preterm neonates, matched for gender, gestational age, respiratory and blood pressure support. METHODS The correlation between continuously measured mean arterial blood pressure and regional cerebral oxygen saturation was calculated to generate the cerebral oximetry index (COx). Mean COx was calculated for each patient for each postnatal day. The percentage of time with impaired autoregulation (COx>0.5) was also calculated. RESULTS FGR neonates had higher mean COx values than their AGA peers on day 2 (0.15 (95% CI 0.11 to 0.18) vs 0.09 (95% CI 0.06 to 0.13), p=0.029) and day 3 (0.17 (95% CI 0.13 to 0.20) vs 0.09 (95% CI 0.06 to 0.12), p=0.003) of life. FGR neonates spent more time with impaired autoregulation (COx value >0.5) than controls on postnatal day 2 (19% (95% CI 16% to 22%) vs 14% (95% CI 12% to 17%), p=0.035) and day 3 (20% (95% CI 17% to 24%) vs 15% (95% CI 12% to 18%), p=0.016). CONCLUSION FGR preterm neonates more frequently display impaired cerebrovascular autoregulation compared with AGA peers on days 2 and 3 of life which may predispose them to brain injury. Further studies are required to investigate whether this impairment persists beyond the first few days of life and whether this impairment is linked to poor neurodevelopmental outcome.
Collapse
Affiliation(s)
- Emily Cohen
- Department of Neonatology, Wilhelmina Children's Hospital/University Medical Centre Utrecht, Utrecht, The Netherlands.,The Ritchie Centre, Hudson Institute of Medical Research and Department of Paediatrics, Monash University, Melbourne, Victoria, Australia
| | - Willem Baerts
- Department of Neonatology, Wilhelmina Children's Hospital/University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Alexander Caicedo Dorado
- Department of Applied Mathematics and Computer Science, Faculty of Natural Sciences and Mathematics, Universidad del Rosario, Bogota, Colombia
| | - Gunnar Naulaers
- Department of Neonatology, University Hospital Leuven, Leuven, Belgium
| | - Frank van Bel
- Department of Neonatology, Wilhelmina Children's Hospital/University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Petra M A Lemmers
- Department of Neonatology, Wilhelmina Children's Hospital/University Medical Centre Utrecht, Utrecht, The Netherlands
| |
Collapse
|
136
|
Baker WB, Balu R, He L, Kavuri VC, Busch DR, Amendolia O, Quattrone F, Frangos S, Maloney-Wilensky E, Abramson K, Mahanna Gabrielli E, Yodh AG, Andrew Kofke W. Continuous non-invasive optical monitoring of cerebral blood flow and oxidative metabolism after acute brain injury. J Cereb Blood Flow Metab 2019; 39:1469-1485. [PMID: 31088234 PMCID: PMC6681541 DOI: 10.1177/0271678x19846657] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Rapid detection of ischemic conditions at the bedside can improve treatment of acute brain injury. In this observational study of 11 critically ill brain-injured adults, we employed a monitoring approach that interleaves time-resolved near-infrared spectroscopy (TR-NIRS) measurements of cerebral oxygen saturation and oxygen extraction fraction (OEF) with diffuse correlation spectroscopy (DCS) measurement of cerebral blood flow (CBF). Using this approach, we demonstrate the clinical promise of non-invasive, continuous optical monitoring of changes in CBF and cerebral metabolic rate of oxygen (CMRO2). In addition, the optical CBF and CMRO2 measures were compared to invasive brain tissue oxygen tension (PbtO2), thermal diffusion flowmetry CBF, and cerebral microdialysis measures obtained concurrently. The optical CBF and CMRO2 information successfully distinguished between ischemic, hypermetabolic, and hyperemic conditions that arose spontaneously during patient care. Moreover, CBF monitoring during pressor-induced changes of mean arterial blood pressure enabled assessment of cerebral autoregulation. In total, the findings suggest that this hybrid non-invasive neurometabolic optical monitor (NNOM) can facilitate clinical detection of adverse physiological changes in brain injured patients that are otherwise difficult to measure with conventional bedside monitoring techniques.
Collapse
Affiliation(s)
- Wesley B Baker
- 1 Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA, USA.,2 Division of Neurology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Ramani Balu
- 3 Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | - Lian He
- 4 Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA, USA
| | - Venkaiah C Kavuri
- 4 Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA, USA
| | - David R Busch
- 4 Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA, USA.,5 Department of Anesthesiology & Pain Management and Neurology & Neurotherapeutics, University of Texas Southwestern, Dallas, TX, USA
| | - Olivia Amendolia
- 6 Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Francis Quattrone
- 6 Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Suzanne Frangos
- 6 Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Kenneth Abramson
- 4 Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Arjun G Yodh
- 4 Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA, USA
| | - W Andrew Kofke
- 1 Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
137
|
Changes in hemodynamics, cerebral oxygenation and cerebrovascular reactivity during the early transitional circulation in preterm infants. Pediatr Res 2019; 86:247-253. [PMID: 31029059 DOI: 10.1038/s41390-019-0410-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 04/16/2019] [Indexed: 11/08/2022]
Abstract
BACKGROUND Changes in systemic and cerebral hemodynamics in preterm infants during early transitional circulation are complex and may differ between infants with or without intraventricular hemorrhage (IVH). METHOD In total, 43 infants born at median (range) 25 + 5 (23 + 3-31) had continuous near-infrared spectroscopy (NIRS) monitoring of tissue oxygenation index (TOI) and cerebrovascular reactivity within the first 48 h of life. Measurements of left and right cardiac outputs (LVO, RVO) and patent ductus arteriosus (PDA) were collected at 6, 12, 24, and 48 h of life. RESULTS LVO increased within the first 48 h in the IVH (P = 0.007) and no-IVH (P < 0.001) groups. The pattern of change in LVO and RVO was not different between these two groups. TOI was lower in the IVH (P < 0.001) group. A positive correlation between TOI and LVO (P = 0.003) and a negative correlation between the tissue oxygen reactivity index (TOx) and LVO (P = 0.04) were observed at 24 h of life in the IVH group. PDA diameter was not different between IVH groups at any time interval. CONCLUSION Cerebral oxygenation was lower and cerebrovascular reactivity was passive to systemic blood flow at 24 h in infants who developed an IVH.
Collapse
|
138
|
Assessment of cerebral and renal autoregulation using near-infrared spectroscopy under normal, hypovolaemic and postfluid resuscitation conditions in a swine model. Eur J Anaesthesiol 2019; 36:531-540. [DOI: 10.1097/eja.0000000000001021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
139
|
The Burden of Brain Hypoxia and Optimal Mean Arterial Pressure in Patients With Hypoxic Ischemic Brain Injury After Cardiac Arrest*. Crit Care Med 2019; 47:960-969. [DOI: 10.1097/ccm.0000000000003745] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
140
|
Cerebral Blood Flow and Blood Pressure: Dependent or Codependent? Crit Care Med 2019; 47:1007-1009. [PMID: 31205085 DOI: 10.1097/ccm.0000000000003784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
141
|
Govindan RB, Brady KM, Massaro AN, Perin J, Jennings JM, DuPlessis AJ, Koehler RC, Lee JK. Comparison of Frequency- and Time-Domain Autoregulation and Vasoreactivity Indices in a Piglet Model of Hypoxia-Ischemia and Hypothermia. Dev Neurosci 2019; 40:1-13. [PMID: 31048593 PMCID: PMC6824917 DOI: 10.1159/000499425] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 03/06/2019] [Indexed: 12/22/2022] Open
Abstract
INTRODUCTION The optimal method to detect impairments in cerebrovascular pressure autoregulation in neonates with hypoxic-ischemic encephalopathy (HIE) is unclear. Improving autoregulation monitoring methods would significantly advance neonatal neurocritical care. METHODS We tested several mathematical algorithms from the frequency and time domains in a piglet model of HIE, hypothermia, and hypotension. We used laser Doppler flowmetry and induced hypotension to delineate the gold standard lower limit of autoregulation (LLA). Receiver operating characteristics curve analyses were used to determine which indices could distinguish blood pressure above the LLA from that below the LLA in each piglet. RESULTS Phase calculation in the frequency band with maximum coherence, as well as the correlation between mean arterial pressure (MAP) and near-infrared spectroscopy relative total tissue hemoglobin (HbT) or regional oxygen saturation (rSO2), accurately discriminated functional from dysfunctional autoregulation. Neither hypoxia-ischemia nor hypothermia affected the accuracy of these indices. Coherence alone and gain had low diagnostic value relative to phase and correlation. CONCLUSION Our findings indicate that phase shift is the most accurate component of autoregulation monitoring in the developing brain, and it can be measured using correlation or by calculating phase when coherence is maximal. Phase and correlation autoregulation indices from MAP and rSO2 and vasoreactivity indices from MAP and HbT are accurate metrics that are suitable for clinical HIE studies.
Collapse
Affiliation(s)
- Rathinaswamy B Govindan
- Fetal Medicine Institute, Children's National Health System, Washington, District of Columbia, USA
- The George Washington University School of Medicine, Washington, District of Columbia, USA
| | - Ken M Brady
- Department of Anesthesiology, Baylor College of Medicine and Texas Children's Hospital, Houston, Texas, USA
| | - An N Massaro
- Fetal Medicine Institute, Children's National Health System, Washington, District of Columbia, USA
- The George Washington University School of Medicine, Washington, District of Columbia, USA
- Neonatology, Children's National Health System, Washington, District of Columbia, USA
| | - Jamie Perin
- Center for Child and Community Health Research, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jacky M Jennings
- Center for Child and Community Health Research, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Adre J DuPlessis
- Fetal Medicine Institute, Children's National Health System, Washington, District of Columbia, USA
- The George Washington University School of Medicine, Washington, District of Columbia, USA
| | - Raymond C Koehler
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jennifer K Lee
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA,
| |
Collapse
|
142
|
Huvanandana J, Thamrin C, Hinder M, McEwan A, Tracy MB. The effect of caffeine loading on cerebral autoregulation in preterm infants. Acta Paediatr 2019; 108:436-442. [PMID: 30403427 DOI: 10.1111/apa.14636] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 10/26/2018] [Accepted: 11/01/2018] [Indexed: 11/30/2022]
Abstract
AIM To evaluate cerebral autoregulation changes in preterm infants receiving a loading dose of caffeine base. METHODS In a cohort of 30 preterm infants, we extracted measures of cerebral autoregulation using time and frequency domain techniques to determine the correlation between mean arterial pressure (MAP) and tissue oxygenation index (TOI) signals. These measures included the cerebral oximetry index (COx), cross-correlation and coherence measures, and were extracted prior to caffeine loading and in the 2 hours following administration of 10 mg/kg caffeine base. RESULTS We observed acute reductions in time domain correlation measures, including the cerebral oximetry index (linear mixed model coefficient -0.093, standard error 0.04; p = 0.028) and the detrended cross-correlation coefficient (ρ5 coefficient -0.13, standard error 0.055; p = 0.025). These reductions suggested an acute improvement in cerebral autoregulation. Features from detrended cross-correlation analysis also showed greater discriminative value than other methods in identifying changes prior to and following caffeine administration. CONCLUSION We observed a reduced correlation between MAP and TOI from near-infrared spectroscopy following caffeine administration. These findings suggest an acute enhanced capacity for cerebral autoregulation following a loading dose of caffeine in preterm infants, contributing to our understanding of the physiological impact of caffeine therapy.
Collapse
Affiliation(s)
- Jacqueline Huvanandana
- School of Electrical and Information Engineering University of Sydney Sydney NSW Australia
- Woolcock Institute of Medical Research University of Sydney Sydney NSW Australia
| | - Cindy Thamrin
- Woolcock Institute of Medical Research University of Sydney Sydney NSW Australia
| | - Murray Hinder
- School of Electrical and Information Engineering University of Sydney Sydney NSW Australia
- Westmead Hospital Sydney NSW Australia
| | - Alistair McEwan
- School of Electrical and Information Engineering University of Sydney Sydney NSW Australia
- Cerebral Palsy Alliance Sydney NSW Australia
| | - Mark B. Tracy
- Westmead Hospital Sydney NSW Australia
- School of Paediatrics and Child Health University of Sydney Sydney NSW Australia
| |
Collapse
|
143
|
Rosenblatt K, Walker KA, Goodson C, Olson E, Maher D, Brown CH, Nyquist P. Cerebral Autoregulation-Guided Optimal Blood Pressure in Sepsis-Associated Encephalopathy: A Case Series. J Intensive Care Med 2019; 35:1453-1464. [PMID: 30760173 PMCID: PMC6692246 DOI: 10.1177/0885066619828293] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Impaired cerebral autoregulation and cerebral hypoperfusion may play a critical role in the high morbidity and mortality in patients with sepsis-associated encephalopathy (SAE). Bedside assessment of cerebral autoregulation may help individualize hemodynamic targets that optimize brain perfusion. We hypothesize that near-infrared spectroscopy (NIRS)-derived cerebral oximetry can identify blood pressure ranges that enhance autoregulation in patients with SAE and that disturbances in autoregulation are associated with severity of encephalopathy. METHODS Adult patients with acute encephalopathy directly attributable to sepsis were followed using NIRS-based multimodal monitoring for 12 consecutive hours. We used the correlation in time between regional cerebral oxygen saturation and mean arterial pressure (MAP) to determine the cerebral oximetry index (COx) as a measure of cerebral autoregulation. Autoregulation curves were constructed for each patient with averaged COx values sorted by MAP in 3 sequential 4-hour periods; the optimal pressure (MAPOPT), defined as the MAP associated with most robust autoregulation (lowest COx), was identified in each period. Severity of encephalopathy was measured with Glasgow coma scale (GCS). RESULTS Six patients with extracranial sepsis met the stringent criteria specified, including no pharmacological sedation or neurologic premorbidity. Optimal MAP was identified in all patients and ranged from 55 to 115 mmHg. Additionally, MAPOPT varied within individual patients over time during monitoring. Disturbed autoregulation, based on COx, was associated with worse neurologic status (GCS < 13) both with and without controlling for age and severity of sepsis (adjusted odds ratio [OR]: 2.11; 95% confidence interval [CI]: 1.77-2.52; P < .001; OR: 2.97; 95% CI: 1.63-5.43; P < .001). CONCLUSIONS In this high-fidelity group of patients with SAE, continuous, NIRS-based monitoring can identify blood pressure ranges that improve autoregulation. This is important given the association between cerebral autoregulatory function and severity of encephalopathy. Individualizing blood pressure goals using bedside autoregulation monitoring may better preserve cerebral perfusion in SAE than current practice.
Collapse
Affiliation(s)
- Kathryn Rosenblatt
- Department of Anesthesiology and Critical Care Medicine, 1466Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Neurology, 1466Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Keenan A Walker
- Department of Neurology, 1466Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Carrie Goodson
- Department of Pulmonary and Critical Care, 1466Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Elsa Olson
- Department of Anesthesiology and Critical Care Medicine, 1466Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Dermot Maher
- Department of Anesthesiology and Critical Care Medicine, 1466Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Charles H Brown
- Department of Anesthesiology and Critical Care Medicine, 1466Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Paul Nyquist
- Department of Anesthesiology and Critical Care Medicine, 1466Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Neurology, 1466Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
144
|
Noninvasive Monitoring of Dynamic Cerebrovascular Autoregulation and 'Optimal Blood Pressure' in Normal Adult Subjects. Neurocrit Care 2019; 30:201-206. [PMID: 30191449 DOI: 10.1007/s12028-018-0600-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Cerebrovascular autoregulation can be continuously monitored from slow fluctuations of arterial blood pressure (ABP) and regional cerebral oxygen saturation (rSO2). The purpose of this study was to evaluate the index of dynamic cerebrovascular autoregulation (TOx) and the associated 'optimal' ABP in normal adult healthy subjects. METHODS Twenty-eight healthy volunteers were studied. TOx was calculated as the moving correlation coefficient between spontaneous fluctuations of ABP and rSO2. ABP was measured with the Finometer photoplethysmograph. The ABP with optimal autoregulation (ABPOPT) was also determined as the ABP level with the lowest associated TOx (opt-TOx). RESULTS Average rSO2 and TOx was 72.3 ± 2.9% and 0.05 ± 0.18, respectively. Two subjects had impaired autoregulation with a TOx > 0.3. The opt-TOx was - 0.1 ± 0.26. ABPOPT was 87.0 ± 16.7 mmHg. The difference between ABP and ABPOPT was - 0.3 ± 7.5 mmHg. In total, 44% of subjects had a deviation of ABP from ABPOPT exceeding 5 mmHg. ABPOPT ranged from 57 to 117 mmHg. CONCLUSIONS TOx in healthy volunteers on average displays intact autoregulation and ABP close to ABPOPT. However, some subjects have possible autoregulatory dysfunction or a significant deviation of ABP from ABPOPT, which may confer a susceptibility to neurological injury.
Collapse
|
145
|
Vesoulis ZA, Liao SM, Mathur AM. Late failure of cerebral autoregulation in hypoxic-ischemic encephalopathy is associated with brain injury: a pilot study. Physiol Meas 2018; 39:125004. [PMID: 30270845 PMCID: PMC6289666 DOI: 10.1088/1361-6579/aae54d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
BACKGROUND Post-resuscitation reperfusion following hypoxic-ischemia (HIE) is associated with secondary brain injury in neonates. OBJECTIVE To quantify the association between perfusion exceeding autoregulatory limits and brain injury. APPROACH Continuous mean arterial blood pressure (MABP) and cerebral near-infrared spectroscopy (NIRS) data were prospectively collected from infants with HIE. Cerebral oximetry index (COx) was calculated as a moving correlation coefficient between MABP and NIRS. Upper and lower limits of autoregulation were identified by transition from negative to positive correlation. The proportion of time MABP above (hyperperfusion) and below (hypoperfusion) autoregulatory limits was calculated during therapeutic hypothermia (days 1-3). MAIN RESULTS Sixteen infants were included; injury was noted in 7/16. There was no significance in hyperperfusion burden between injured and uninjured infants during day one (7% versus 10%, p = 0.88) or two (4% versus 2%, p = 0.88), but there was a marked increase for injured infants on day three (54% versus 14%, p = 0.02). There was a corollary decrease in hypoperfusion for injured versus uninjured infants on day 3 (6% versus 24%, p = 0.05). SIGNIFICANCE HIE infants with brain injury have a late failure of cerebral autoregulation, manifested as a hyperperfusion burden, suggesting pathologic events are active on day 3 of hypothermia. This finding may help to identify infants which might need additional neuroprotection.
Collapse
Affiliation(s)
- Zachary A. Vesoulis
- Division of Newborn Medicine, Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Steve M. Liao
- Division of Newborn Medicine, Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Amit M. Mathur
- Division of Newborn Medicine, Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
146
|
Pegylated Bovine Carboxyhemoglobin (SANGUINATE) in a Jehovah's Witness Undergoing Liver Transplant: A Case Report. Transplant Proc 2018; 50:4012-4014. [DOI: 10.1016/j.transproceed.2018.09.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 09/05/2018] [Indexed: 10/28/2022]
|
147
|
da Costa CS, Czosnyka M, Smielewski P, Austin T. Optimal Mean Arterial Blood Pressure in Extremely Preterm Infants within the First 24 Hours of Life. J Pediatr 2018; 203:242-248. [PMID: 30243537 DOI: 10.1016/j.jpeds.2018.07.096] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 07/17/2018] [Accepted: 07/27/2018] [Indexed: 10/28/2022]
Abstract
OBJECTIVE To define levels of mean arterial blood pressure (MABP) where cerebrovascular reactivity is strongest (MABPOPT) during the early transitional circulation in extremely preterm infants and to investigate the association between deviations above and below MABPOPT with intraventricular hemorrhage (IVH) and mortality. STUDY DESIGN A total of 44 infants born at a median gestational age 25 (23-27) weeks with indwelling arterial catheter were studied at a median 5.5 (3.1-12.6) hours within the first 24 hours of life. Cerebrovascular reactivity (tissue oxygenation heart rate reactivity index) was estimated by the moving correlation coefficient between heart rate and near-infrared spectroscopy tissue oxygenation index. MABPOPT was defined as the MABP where tissue oxygenation heart rate reactivity index reaches minimum value. Deviations below or above MABPOPT values were calculated along with MABPOPT values during retrospective data analysis. RESULTS MABPOPT was detected in all infants. The mean (SD) MABPOPT was 31.3 (±4.7) mm Hg. MABPOPT increased with increasing gestational age, R = 0.424; P = .004. Deviations below MABPOPT were greater in the IVH group (mean 2.7 mm Hg; 95% CI 2.0-3.5) compared with no-IVH (mean 1.7 mm Hg; 1.1-2.2), P = .006. In infants who died, the deviation below MABPOPT was greater (mean 3.3; 95% CI 1.9-4.8) compared with those who survived (mean 1.9 mm Hg; 95% CI 1.4-2.3), P = .015. CONCLUSIONS Defining optimal MABP based on the strength of cerebrovascular reactivity within the first 24 hours of life is feasible and can provide an individualized approach to the care of extremely preterm infants. Deviations below MABPOPT were significantly associated with IVH and death.
Collapse
Affiliation(s)
- Cristine Sortica da Costa
- Neonatal Unit, The Rosie Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom.
| | - Marek Czosnyka
- Brain Physics Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom; Institute of Electronic Systems, Warsaw University of Technology, Warsaw, Poland
| | - Peter Smielewski
- Brain Physics Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
| | - Topun Austin
- Neonatal Unit, The Rosie Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| |
Collapse
|
148
|
Rhee CJ, da Costa CS, Austin T, Brady KM, Czosnyka M, Lee JK. Neonatal cerebrovascular autoregulation. Pediatr Res 2018; 84:602-610. [PMID: 30196311 PMCID: PMC6422675 DOI: 10.1038/s41390-018-0141-6] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 06/04/2018] [Accepted: 07/27/2018] [Indexed: 12/12/2022]
Abstract
Cerebrovascular pressure autoregulation is the physiologic mechanism that holds cerebral blood flow (CBF) relatively constant across changes in cerebral perfusion pressure (CPP). Cerebral vasoreactivity refers to the vasoconstriction and vasodilation that occur during fluctuations in arterial blood pressure (ABP) to maintain autoregulation. These are vital protective mechanisms of the brain. Impairments in pressure autoregulation increase the risk of brain injury and persistent neurologic disability. Autoregulation may be impaired during various neonatal disease states including prematurity, hypoxic-ischemic encephalopathy (HIE), intraventricular hemorrhage, congenital cardiac disease, and infants requiring extracorporeal membrane oxygenation (ECMO). Because infants are exquisitely sensitive to changes in cerebral blood flow (CBF), both hypoperfusion and hyperperfusion can cause significant neurologic injury. We will review neonatal pressure autoregulation and autoregulation monitoring techniques with a focus on brain protection. Current clinical therapies have failed to fully prevent permanent brain injuries in neonates. Adjuvant treatments that support and optimize autoregulation may improve neurologic outcomes.
Collapse
Affiliation(s)
- Christopher J. Rhee
- Baylor College of Medicine, Texas Children’s Hospital, Department of Pediatrics, Section of Neonatology, Houston, TX, USA
| | | | - Topun Austin
- Neonatal Unit, Rosie Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Ken M. Brady
- Baylor College of Medicine, Texas Children’s Hospital, Department of Pediatrics, Critical Care Medicine and Anesthesiology, Houston, TX, USA
| | - Marek Czosnyka
- Department of Academic Neurosurgery, Addenbrooke’s Hospital, University of Cambridge, Cambridge, UK
| | - Jennifer K. Lee
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
149
|
Govindan RB, Massaro AN, du Plessis A. Ensuring signal quality of cerebral near infrared spectroscopy during continuous longterm monitoring. J Neurosci Methods 2018; 309:147-152. [PMID: 30189283 PMCID: PMC6323003 DOI: 10.1016/j.jneumeth.2018.09.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 08/18/2018] [Accepted: 09/02/2018] [Indexed: 10/28/2022]
Abstract
BACKGROUND Near infrared spectroscopy (NIRS) derived hemoglobin difference (HbD: oxygenated [HbO2] - reduced hemoglobin [Hb]) and total hemoglobin (HbT: HbO2+Hb) have been used as surrogate measures of cerebral blood flow and volume, respectively. Statistically, a lack of HbD-blood pressure (BP) or negative HbT-BP association is regarded as a state of intact cerebral pressure autoregulation (CPA). In contrast, a co-variation of HbD/HbT and systemic blood pressure (BP) in the same direction is thought of as a failure of CPA. If the quality of one (NIRS/BP) or both signals is compromised, the reliability of the results may be adversely affected. In this work, we develop an analytic approach to assess the quality of the NIRS signals. NEW METHOD Given that cardiac pulses cause hemodynamic changes that are transmitted through the peripheral vasculature, cerebral NIRS signals should exhibit cyclical changes at the pulse frequency. Therefore, we propose that an association between HbD/HbT and electrocardiogram (EKG) signals would be an indicator of NIRS quality. We demonstrate the application of this approach with data collected from six newborns undergoing therapeutic hypothermia for neonatal encephalopathy. RESULTS We observed an intermittent lack of association between NIRS signals and EKG data over the course of several hours of continuous records, indicating a loss in the strength in NIRS signals. COMPARISON WITH EXISTING METHOD Existing CPA characterization suffers from Type-II error which the current preprocessing approach can mitigate. CONCLUSIONS The proposed approach will allow for real-time assessment of NIRS signal quality that is essential for accurate CPA monitoring.
Collapse
Affiliation(s)
- R B Govindan
- Division of Fetal and Transitional Medicine, Children's National Health System, 111 Michigan Ave, NW, Washington, DC', 20010, USA.
| | - A N Massaro
- Division of Fetal and Transitional Medicine, Children's National Health System, 111 Michigan Ave, NW, Washington, DC', 20010, USA; Division of Neonatology, Children's National Health System, 111 Michigan Ave, NW, Washington, DC, 20010, USA
| | - Adre du Plessis
- Division of Fetal and Transitional Medicine, Children's National Health System, 111 Michigan Ave, NW, Washington, DC', 20010, USA
| |
Collapse
|
150
|
Lewis C, Parulkar SD, Bebawy J, Sherwani S, Hogue CW. Cerebral Neuromonitoring During Cardiac Surgery: A Critical Appraisal With an Emphasis on Near-Infrared Spectroscopy. J Cardiothorac Vasc Anesth 2018; 32:2313-2322. [DOI: 10.1053/j.jvca.2018.03.032] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Indexed: 11/11/2022]
|