101
|
Pan LL, Deng YY, Wang R, Wu C, Li J, Niu W, Yang Q, Bhatia M, Gudmundsson GH, Agerberth B, Diana J, Sun J. Lactose Induces Phenotypic and Functional Changes of Neutrophils and Macrophages to Alleviate Acute Pancreatitis in Mice. Front Immunol 2018; 9:751. [PMID: 29719535 PMCID: PMC5913286 DOI: 10.3389/fimmu.2018.00751] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 03/26/2018] [Indexed: 12/12/2022] Open
Abstract
Acute pancreatitis (AP) is one common clinical acute abdominal disease, for which specific pharmacological or nutritional therapies remain elusive. Lactose, a macronutrient and an inducer of host innate immune responses, possesses immune modulatory functions. The current study aimed to investigate potential modulatory effects of lactose and the interplay between the nutrient and pancreatic immunity during experimentally induced AP in mice. We found that either prophylactic or therapeutic treatment of lactose time-dependently reduced the severity of AP, as evidenced by reduced pancreatic edema, serum amylase levels, and pancreatic myeloperoxidase activities, as well as by histological examination of pancreatic damage. Overall, lactose promoted a regulatory cytokine milieu in the pancreas and reduced infiltration of inflammatory neutrophils and macrophages. On acinar cells, lactose was able to suppress caerulein-induced inflammatory signaling pathways and to suppress chemoattractant tumor necrosis factor (TNF)-α and monocyte chemotactic protein-1 production. Additionally, lactose acted on pancreas-infiltrated macrophages, increasing interleukin-10 and decreasing tumor necrosis factor alpha production. Notably, lactose treatment reversed AP-associated infiltration of activated neutrophils. Last, the effect of lactose on neutrophil infiltration was mimicked by a galectin-3 antagonist, suggesting a potential endogenous target of lactose. Together, the current study demonstrates an immune regulatory effect of lactose to alleviate AP and suggests its potential as a convenient, value-added therapeutic macronutrient to control AP, and lower the risk of its systemic complications.
Collapse
Affiliation(s)
- Li-Long Pan
- School of Medicine, Jiangnan University, Wuxi, China
| | - Yuan-Yuan Deng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- Nutrition and Immunology Laboratory, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Ruxing Wang
- School of Medicine, Jiangnan University, Wuxi, China
- Wuxi People’s Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Chengfei Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- Nutrition and Immunology Laboratory, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jiahong Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- Nutrition and Immunology Laboratory, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Wenying Niu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- Nutrition and Immunology Laboratory, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Qin Yang
- School of Medicine, Jiangnan University, Wuxi, China
| | - Madhav Bhatia
- Inflammation Research Group, Department of Pathology, University of Otago, Christchurch, New Zealand
| | | | - Birgitta Agerberth
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Julien Diana
- Institut National de la Santé et de la Recherche Médicale (INSERM), Unité 1151, Institute Necker-Enfants Malades (INEM), Centre National de la Recherche Scienctifique, Unité 8253, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Jia Sun
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- Nutrition and Immunology Laboratory, School of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
102
|
Sepsis Induces a Dysregulated Neutrophil Phenotype That Is Associated with Increased Mortality. Mediators Inflamm 2018; 2018:4065362. [PMID: 29849488 PMCID: PMC5925119 DOI: 10.1155/2018/4065362] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 01/29/2018] [Indexed: 01/18/2023] Open
Abstract
Background Neutrophil dysfunction in sepsis has been implicated in the pathogenesis of multiorgan failure; however, the role of neutrophil extracellular traps (NETs) remains uncertain. We aimed to determine the sequential changes in ex vivo NETosis and its relationship with mortality in patients with sepsis and severe sepsis. Methods This was a prospective observational cohort study enrolling 21 healthy age-matched controls and 39 sepsis and 60 severe sepsis patients from acute admissions to two UK hospitals. Patients had sequential bloods for the ex vivo assessment of NETosis in response to phorbol-myristate acetate (PMA) using a fluorometric technique and chemotaxis using time-lapse video microscopy. Continuous data was tested for normality, with appropriate parametric and nonparametric tests, whilst categorical data was analysed using a chi-squared test. Correlations were performed using Spearman's rho. Results Ex vivo NETosis was reduced in patients with severe sepsis, compared to patients with sepsis and controls (p = 0.002). PMA NETosis from patients with septic shock was reduced further (p < 0.001) compared to controls. The degree of metabolic acidosis correlated with reduced NETosis (p < 0.001), and this was replicated when neutrophils from healthy donors were incubated in acidotic media. Reduced NETosis at baseline was associated with an increased 30-day (p = 0.002) and 90-day mortality (p = 0.014) in sepsis patients. These findings were accompanied by defects in neutrophil migration and delayed apoptosis. Resolution of sepsis was not associated with the return to baseline levels of NETosis or migration. Conclusions Sepsis induces significant changes in neutrophil function with the degree of dysfunction corresponding to the severity of the septic insult which persists beyond physiological recovery from sepsis. The changes induced lead to the failure to effectively contain and eliminate the invading pathogens and contribute to sepsis-induced immunosuppression. For the first time, we demonstrate that reduced ex vivo NETosis is associated with poorer outcomes from sepsis.
Collapse
|
103
|
Lefrançais E, Mallavia B, Zhuo H, Calfee CS, Looney MR. Maladaptive role of neutrophil extracellular traps in pathogen-induced lung injury. JCI Insight 2018; 3:98178. [PMID: 29415887 DOI: 10.1172/jci.insight.98178] [Citation(s) in RCA: 336] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 12/28/2017] [Indexed: 12/20/2022] Open
Abstract
Neutrophils dominate the early immune response in pathogen-induced acute lung injury, but efforts to harness their responses have not led to therapeutic advancements. Neutrophil extracellular traps (NETs) have been proposed as an innate defense mechanism responsible for pathogen clearance, but there are concerns that NETs may induce collateral damage to host tissues. Here, we detected NETs in abundance in mouse models of severe bacterial pneumonia/acute lung injury and in human subjects with acute respiratory distress syndrome (ARDS) from pneumonia or sepsis. Decreasing NETs reduced lung injury and improved survival after DNase I treatment or with partial protein arginine deiminase 4 deficiency (PAD4+/-). Complete PAD4 deficiency (PAD4-/-) reduced NETs and lung injury but was counterbalanced by increased bacterial load and inflammation. Importantly, we discovered that the lipoxin pathway could be a potent modulator of NET formation, and that mice deficient in the lipoxin receptor (Fpr2-/-) produced excess NETs leading to increased lung injury and mortality. Lastly, we observed in humans that increased plasma NETs were associated with ARDS severity and mortality, and lower plasma DNase I levels were associated with the development of sepsis-induced ARDS. We conclude that a critical balance of NETs is necessary to prevent lung injury and to maintain microbial control, which has important therapeutic implications.
Collapse
Affiliation(s)
| | | | | | | | - Mark R Looney
- Department of Medicine and.,Department of Laboratory Medicine, UCSF, San Francisco, California, USA
| |
Collapse
|
104
|
Affiliation(s)
- Claudia Dos Santos
- 1 Interdepartmental Division of Critical Care Medicine and.,2 Division of Respirology, Department of Medicine, St. Michael's Hospital, Toronto, Ontario, Canada.,3 Li Ka Shing Knowledge Institute, Toronto, Ontario, Canada
| | - Leo Heunks
- 4 Department of Intensive Care, VU University Medical Centre, Amsterdam, the Netherlands
| | - Hannah Wunsch
- 1 Interdepartmental Division of Critical Care Medicine and.,6 Department of Anesthesiology, University of Toronto, Toronto, Ontario, Canada.,5 Department of Critical Care Medicine, Sunnybrook Hospital, Toronto, Ontario, Canada; and.,7 Sunnybrook Research Institute, Toronto, Ontario, Canada
| |
Collapse
|
105
|
Sapey E, Patel JM, Greenwood HL, Walton GM, Hazeldine J, Sadhra C, Parekh D, Dancer RCA, Nightingale P, Lord JM, Thickett DR. Pulmonary Infections in the Elderly Lead to Impaired Neutrophil Targeting, Which Is Improved by Simvastatin. Am J Respir Crit Care Med 2017; 196:1325-1336. [PMID: 28657793 PMCID: PMC5694832 DOI: 10.1164/rccm.201704-0814oc] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 06/27/2017] [Indexed: 01/08/2023] Open
Abstract
RATIONALE Dysregulated neutrophil functions with age and sepsis are described. Statins are associated with improved infection survival in some observational studies, but trials in critically ill patients have not shown benefit. Statins also alter neutrophil responses in vitro. OBJECTIVES To assess neutrophil migratory accuracy with age during respiratory infections and determine if and how a statin intervention could alter these blunted responses. METHODS The migratory accuracy of blood neutrophils from young (aged <35 yr) and old (aged >60 yr) patients in health and during a lower respiratory tract infection, community-acquired pneumonia, and pneumonia associated with sepsis was assessed with and without simvastatin. In vitro results were confirmed in a double-blind randomized clinical trial in healthy elders. Cell adhesion markers were assessed. MEASUREMENTS AND MAIN RESULTS In vitro neutrophil migratory accuracy in the elderly deteriorated as the severity of the infectious pulmonary insult increased, without recovery at 6 weeks. Simvastatin rescued neutrophil migration with age and during mild to moderate infection, at high dose in older adults, but not during more severe sepsis. Confirming in vitro results, high-dose (80-mg) simvastatin improved neutrophil migratory accuracy without impeding other neutrophil functions in a double-blind randomized clinical trial in healthy elders. Simvastatin modified surface adhesion molecule expression and activity, facilitating accurate migration in the elderly. CONCLUSIONS Infections in older adults are associated with prolonged, impaired neutrophil migration, potentially contributing to poor outcomes. Statins improve neutrophil migration in vivo in health and in vitro in milder infective events, but not in severe sepsis, supporting their potential utility as an early intervention during pulmonary infections. Clinical trial registered with www.clinicaltrialsregister.eu (2011-002082-38).
Collapse
Affiliation(s)
- Elizabeth Sapey
- Institute of Inflammation and Ageing, University of Birmingham, Edgbaston, United Kingdom; and
| | - Jaimin M. Patel
- Institute of Inflammation and Ageing, University of Birmingham, Edgbaston, United Kingdom; and
| | - Hannah L. Greenwood
- Institute of Inflammation and Ageing, University of Birmingham, Edgbaston, United Kingdom; and
| | - Georgia M. Walton
- Institute of Inflammation and Ageing, University of Birmingham, Edgbaston, United Kingdom; and
| | - Jon Hazeldine
- Institute of Inflammation and Ageing, University of Birmingham, Edgbaston, United Kingdom; and
| | - Charendeep Sadhra
- Institute of Inflammation and Ageing, University of Birmingham, Edgbaston, United Kingdom; and
| | - Dhruv Parekh
- Institute of Inflammation and Ageing, University of Birmingham, Edgbaston, United Kingdom; and
| | - Rachel C. A. Dancer
- Institute of Inflammation and Ageing, University of Birmingham, Edgbaston, United Kingdom; and
| | - Peter Nightingale
- Medical Statistics, University Hospital Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - Janet M. Lord
- Institute of Inflammation and Ageing, University of Birmingham, Edgbaston, United Kingdom; and
| | - David R. Thickett
- Institute of Inflammation and Ageing, University of Birmingham, Edgbaston, United Kingdom; and
| |
Collapse
|
106
|
Reilly JP, Christie JD, Meyer NJ. Fifty Years of Research in ARDS. Genomic Contributions and Opportunities. Am J Respir Crit Care Med 2017; 196:1113-1121. [PMID: 28481621 PMCID: PMC5694838 DOI: 10.1164/rccm.201702-0405cp] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 05/05/2017] [Indexed: 02/06/2023] Open
Abstract
Clinical factors alone poorly explain acute respiratory distress syndrome (ARDS) risk and ARDS outcome. In the search for individual factors that may influence ARDS risk, the past 20 years have witnessed the identification of numerous genes and genetic variants that are associated with ARDS. The field of ARDS genomics has cycled from candidate gene association studies to bias-free approaches that identify new candidates, and increasing effort is made to understand the functional consequences that may underlie significant associations. More recently, methodologies of causal inference are being applied to maximize the information gained from genetic associations. Although challenges of sample size, both recognized and unrecognized phenotypic heterogeneity, and the paucity of early ARDS lung tissue limit some applications of the rapidly evolving field of genomic investigation, ongoing genetic research offers unique contributions to elucidating ARDS pathogenesis and the paradigm of precision ARDS medicine.
Collapse
Affiliation(s)
- John P. Reilly
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pennsylvania Perelman School of Medicine
- Center for Translational Lung Biology, and
| | - Jason D. Christie
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pennsylvania Perelman School of Medicine
- Center for Translational Lung Biology, and
- Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Nuala J. Meyer
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pennsylvania Perelman School of Medicine
- Center for Translational Lung Biology, and
| |
Collapse
|
107
|
Beneficial effects of Red Light-Emitting Diode treatment in experimental model of acute lung injury induced by sepsis. Sci Rep 2017; 7:12670. [PMID: 28978926 PMCID: PMC5627274 DOI: 10.1038/s41598-017-13117-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 09/19/2017] [Indexed: 11/18/2022] Open
Abstract
Sepsis is a severe disease with a high mortality index and it is responsible for the development of acute lung injury (ALI). We evaluated the effects of light-emitting diode (LED) on ALI induced by sepsis. Balb-c mice were injected with lipopolysaccharide or saline and then irradiated or not with red LED on their tracheas and lungs for 150 s, 2 and 6 h after LPS injections. The parameters were investigated 24 h after the LPS injections. Red LED treatment reduced neutrophil influx and the levels of interleukins 1β, 17 A and, tumor necrosis factor-α; in addition to enhanced levels of interferon γ in the bronchoalveolar fluid. Moreover, red LED treatment enhanced the RNAm levels of IL-10 and IFN-γ. It also partially reduced the elevated oxidative burst and enhanced apoptosis, but it did not alter the translocation of nuclear factor κB, the expression of toll-like receptor 4 (TLR4), as well as, oedema or mucus production in their lung tissues. Together, our data has shown the beneficial effects of short treatment with LED on ALI that are caused by gram negative bacterial infections. It is suggested that LED applications are an inexpensive and non-invasive additional treatment for sepsis.
Collapse
|
108
|
He Y, Wu C, Li J, Li H, Sun Z, Zhang H, de Vos P, Pan LL, Sun J. Inulin-Type Fructans Modulates Pancreatic-Gut Innate Immune Responses and Gut Barrier Integrity during Experimental Acute Pancreatitis in a Chain Length-Dependent Manner. Front Immunol 2017; 8:1209. [PMID: 29018453 PMCID: PMC5622924 DOI: 10.3389/fimmu.2017.01209] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 09/12/2017] [Indexed: 12/11/2022] Open
Abstract
Acute pancreatitis (AP) is a common abdominal inflammatory disorder and one of the leading causes of hospital admission for gastrointestinal disorders. No specific pharmacological or nutritional therapy is available but highly needed. Inulin-type fructans (ITFs) are capable of modifying gut immune and barrier homeostasis in a chemistry-dependent manner and hence potentially applicable for managing AP, but their efficacy in AP has not been demonstrated yet. The current study aimed to examine and compare modulatory effects of ITFs with different degrees of fermentability on pancreatic-gut immunity and barrier function during experimentally induced AP in mice. BALB/c mice were fed short (I)- or long (IV)-chain ITFs supplemented diets for up to 3 days before AP induction by caerulein. Attenuating effects on AP development were stronger with ITF IV than with ITF I. We found that long-chain ITF IV attenuated the severity of AP, as evidenced by reduced serum amylase levels, lipase levels, pancreatic myeloperoxidase activity, pancreatic edema, and histological examination demonstrating reduced pancreatic damage. Short-chain ITF I demonstrated only partial protective effects. Both ITF IV and ITF I modulated AP-associated systemic cytokine levels. ITF IV but not ITF I restored AP-associated intestinal barrier dysfunction by upregulating colonic tight junction modulatory proteins, antimicrobial peptides, and improved general colonic histology. Additionally, differential modulatory effects of ITF IV and ITF I were observed on pancreatic and gut immunity: ITF IV supplementation prevented innate immune cell infiltration in the pancreas and colon and tissue cytokine production. Similar effects were only observed in the gut with ITF I and not in the pancreas. Lastly, ITF IV but not ITF I downregulated AP-triggered upregulation of IL-1 receptor-associated kinase 4 (IRAK-4) and phosphor-c-Jun N-terminal kinase (p-JNK), and a net decrease of phosphor-nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) p65 (p-NF-κB p65) nuclear translocation and activation in the pancreas. Our findings demonstrate a clear chain length-dependent effect of inulin on AP. The attenuating effects are caused by modulating effects of long-chain inulin on the pancreatic-gut immunity via the pancreatic IRAK-4/p-JNK/p-NF-κBp65 signaling pathway and on prevention of disruption of the gut barrier.
Collapse
Affiliation(s)
- Yue He
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Chengfei Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jiahong Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Hongli Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Zhenghua Sun
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Paul de Vos
- Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Li-Long Pan
- School of Medicine, Jiangnan University, Wuxi, China
| | - Jia Sun
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Medicine, Jiangnan University, Wuxi, China
| |
Collapse
|
109
|
Khan MA, Palaniyar N. Transcriptional firing helps to drive NETosis. Sci Rep 2017; 7:41749. [PMID: 28176807 PMCID: PMC5296899 DOI: 10.1038/srep41749] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 12/28/2016] [Indexed: 12/20/2022] Open
Abstract
Neutrophils are short-lived innate immune cells. These cells respond quickly to stimuli, and die within minutes to hours; the relevance of DNA transcription in dying neutrophils remains an enigma for several decades. Here we show that the transcriptional activity reflects the degree of DNA decondensation occurring in both NADPH oxidase 2 (Nox)-dependent and Nox-independent neutrophil extracellular trap (NET) formation or NETosis. Transcriptomics analyses show that transcription starts at multiple loci in all chromosomes earlier in the rapid Nox-independent NETosis (induced by calcium ionophore A23187) than Nox-dependent NETosis (induced by PMA). NETosis-specific kinase cascades differentially activate transcription of different sets of genes. Inhibitors of transcription, but not translation, suppress both types of NETosis. In particular, promoter melting step is important to drive NETosis (induced by PMA, E. coli LPS, A23187, Streptomyces conglobatus ionomycin). Extensive citrullination of histones in multiple loci occurs only during calcium-mediated NETosis, suggesting that citrullination of histone contributes to the rapid DNA decondensation seen in Nox-independent NETosis. Furthermore, blocking transcription suppresses both types of NETosis, without affecting the reactive oxygen species production that is necessary for antimicrobial functions. Therefore, we assign a new function for transcription in neutrophils: Transcriptional firing, regulated by NETosis-specific kinases, helps to drive NETosis.
Collapse
Affiliation(s)
- Meraj A Khan
- Innate Immunity Research Lab, Physiology and Experimental Medicine, PGCRL, The Hospital for Sick Children Research Institute, 686 Bay St, Toronto M5G 0A4, Canada.,Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Nades Palaniyar
- Innate Immunity Research Lab, Physiology and Experimental Medicine, PGCRL, The Hospital for Sick Children Research Institute, 686 Bay St, Toronto M5G 0A4, Canada.,Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, Canada.,Institute of Medical Sciences, Faculty of Medicine, University of Toronto, Toronto, Canada
| |
Collapse
|
110
|
Dorward DA, Felton JM, Robb CT, Craven T, Kipari T, Walsh TS, Haslett C, Kefala K, Rossi AG, Lucas CD. The cyclin-dependent kinase inhibitor AT7519 accelerates neutrophil apoptosis in sepsis-related acute respiratory distress syndrome. Thorax 2016; 72:182-185. [PMID: 27965411 PMCID: PMC5284332 DOI: 10.1136/thoraxjnl-2016-209229] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Revised: 09/13/2016] [Accepted: 09/21/2016] [Indexed: 02/04/2023]
Abstract
Acute respiratory distress syndrome (ARDS) is a neutrophil-dominant disorder with no effective pharmacological therapies. While the cyclin-dependent kinase inhibitor AT7519 induces neutrophil apoptosis to promote inflammation resolution in preclinical models of lung inflammation, its potential efficacy in ARDS has not been examined. Untreated peripheral blood sepsis-related ARDS neutrophils demonstrated prolonged survival after 20 hours in vitro culture. AT7519 was able to override this phenotype to induce apoptosis in ARDS neutrophils with reduced expression of the pro-survival protein Mcl-1. We demonstrate the first pharmacological compound to induce neutrophil apoptosis in sepsis-related ARDS, highlighting cyclin-dependent kinase inhibitors as potential novel therapeutic agents.
Collapse
Affiliation(s)
- David A Dorward
- The MRC Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Jennifer M Felton
- The MRC Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Calum T Robb
- The MRC Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Thomas Craven
- The MRC Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Tiina Kipari
- The MRC Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Timothy S Walsh
- The MRC Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK.,Department of Critical Care, Anaesthesia and Pain Medicine, Royal Infirmary of Edinburgh, Edinburgh, UK
| | - Christopher Haslett
- The MRC Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Kallirroi Kefala
- Department of Critical Care, Anaesthesia and Pain Medicine, Royal Infirmary of Edinburgh, Edinburgh, UK
| | - Adriano G Rossi
- The MRC Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Christopher D Lucas
- The MRC Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
111
|
Reiss LK, Uhlig S. Toward the Molecular Signature of Acute Respiratory Distress Syndrome. Am J Respir Crit Care Med 2016; 194:922-924. [DOI: 10.1164/rccm.201604-0797ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Lucy Kathleen Reiss
- Institute of Pharmacology and ToxicologyRWTH Aachen UniversityAachen, Germany
| | - Stefan Uhlig
- Institute of Pharmacology and ToxicologyRWTH Aachen UniversityAachen, Germany
| |
Collapse
|