101
|
London D, Elhasid R, Baron S. Determination of reference intervals for neutrophil granular enzymes is affected by cell isolation techniques. J Immunol Methods 2022; 510:113346. [PMID: 36049559 DOI: 10.1016/j.jim.2022.113346] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 07/28/2022] [Accepted: 08/26/2022] [Indexed: 12/31/2022]
Abstract
OBJECTIVES Neutrophils and their granular enzymes such as neutrophil elastase (NE) and myeloperoxidase (MPO) play important roles in inflammatory diseases, and might be utilized as biomarkers for disease severity and progression. The aim of this study was to determine reference intervals for NE and MPO activity in healthy volunteers comparing two methods of neutrophil isolation. METHODS Neutrophils were isolated using ficoll density gradient centrifugation or immunomagnetic negative selection in two separate volunteers' cohorts. Subsequently, cells were lysed and incubated with chromogens for NE and MPO activity measurements, then measured with a microplate reader at 415 or 450 nm respectively. RESULTS The enzymatic activity of NE and MPO depended on the neutrophil isolation technique. Both enzymatic activities were significantly higher (P < 0.001) after isolating neutrophils with ficoll density gradient centrifugation than using the immunomagnetic negative selection. CONCLUSIONS We demonstrated that neutrophil isolation is an important factor that influences the outcome of enzymatic activity measurements. Techniques based on immunomagnetic negative selection are favorable, specifically for investigations related to NE and MPO activity. When using NE and MPO activity measurements in clinical practice, care must be taken to interpret the data depending on the applied cell isolation technique.
Collapse
Affiliation(s)
- Devora London
- Pediatric Hemato-Oncology Research Laboratory, Tel Aviv Medical Center, Tel Aviv, Israel; Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ronit Elhasid
- Pediatric Hemato-Oncology Research Laboratory, Tel Aviv Medical Center, Tel Aviv, Israel; Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel; Department of Pediatric Hemato-Oncology, Tel Aviv Medical Center, Tel Aviv, Israel
| | - Szilvia Baron
- Pediatric Hemato-Oncology Research Laboratory, Tel Aviv Medical Center, Tel Aviv, Israel; Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
102
|
Hill DB, Button B, Rubinstein M, Boucher RC. Physiology and pathophysiology of human airway mucus. Physiol Rev 2022; 102:1757-1836. [PMID: 35001665 PMCID: PMC9665957 DOI: 10.1152/physrev.00004.2021] [Citation(s) in RCA: 133] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 12/13/2021] [Accepted: 12/19/2021] [Indexed: 01/27/2023] Open
Abstract
The mucus clearance system is the dominant mechanical host defense system of the human lung. Mucus is cleared from the lung by cilia and airflow, including both two-phase gas-liquid pumping and cough-dependent mechanisms, and mucus transport rates are heavily dependent on mucus concentration. Importantly, mucus transport rates are accurately predicted by the gel-on-brush model of the mucociliary apparatus from the relative osmotic moduli of the mucus and periciliary-glycocalyceal (PCL-G) layers. The fluid available to hydrate mucus is generated by transepithelial fluid transport. Feedback interactions between mucus concentrations and cilia beating, via purinergic signaling, coordinate Na+ absorptive vs Cl- secretory rates to maintain mucus hydration in health. In disease, mucus becomes hyperconcentrated (dehydrated). Multiple mechanisms derange the ion transport pathways that normally hydrate mucus in muco-obstructive lung diseases, e.g., cystic fibrosis (CF), chronic obstructive pulmonary disease (COPD), non-CF bronchiectasis (NCFB), and primary ciliary dyskinesia (PCD). A key step in muco-obstructive disease pathogenesis is the osmotic compression of the mucus layer onto the airway surface with the formation of adherent mucus plaques and plugs, particularly in distal airways. Mucus plaques create locally hypoxic conditions and produce airflow obstruction, inflammation, infection, and, ultimately, airway wall damage. Therapies to clear adherent mucus with hydrating and mucolytic agents are rational, and strategies to develop these agents are reviewed.
Collapse
Affiliation(s)
- David B Hill
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Joint Department of Biomedical Engineering, The University of North Carolina and North Carolina State University, Chapel Hill, North Carolina
| | - Brian Button
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Michael Rubinstein
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Department of Mechanical Engineering and Materials Science, Biomedical Engineering, Physics, and Chemistry, Duke University, Durham, North Carolina
| | - Richard C Boucher
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
103
|
Peripheral Neutrophil-to-Lymphocyte Ratio in Bronchiectasis: A Marker of Disease Severity. Biomolecules 2022; 12:biom12101399. [PMID: 36291608 PMCID: PMC9599714 DOI: 10.3390/biom12101399] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/22/2022] [Accepted: 09/28/2022] [Indexed: 11/17/2022] Open
Abstract
Most patients with bronchiectasis have a predominantly neutrophilic inflammatory profile, although other cells such as lymphocytes (as controllers of bronchial inflammation) and eosinophils also play a significant pathophysiological role. Easy-to-interpret blood biomarkers with a discriminative capacity for severity or prognosis are needed. The objective of this study was to assess whether the peripheral neutrophil-to-lymphocyte ratio (NLR) is associated with different outcomes of severity in bronchiectasis. A total of 1369 patients with bronchiectasis from the Spanish Registry of Bronchiectasis were included. To compare groups, the sample was divided into increasing quartiles of NLR ratio. Correlations between quantitative variables were established using Pearson's P test. A simple linear regression (with the value of exacerbations as a quantitative variable) was used to determine the independent relationship between the number and severity of exacerbations and the NLR ratio. The area under the curve (AUC)-ROC was used to determine the predictive capacity of the NLR for severe bronchiectasis, according to the different multidimensional scores. Mean age: 69 (15) years (66.3% of women). The mean NLR was 2.92 (2.03). A higher NLR was associated with more severe bronchiectasis (with an especially significant discriminative power for severe forms) according to the commonly used scores (FACED, E-FACED and BSI), as well as with poorer quality of life (SGRQ), more comorbidities (Charlson index), infection by pathogenic microorganisms, and greater application of treatment. Furthermore, the NLR correlated better with severity scores than other parameters of systemic inflammation. Finally, it was an independent predictor of the incident number and severity of exacerbations. In conclusion, the NLR is an inexpensive and easy-to-measure marker of systemic inflammation for determining severity and predicting exacerbations (especially the most severe) in patients with bronchiectasis.
Collapse
|
104
|
Ferguson TEG, Reihill JA, Martin SL, Walker B. Novel inhibitors and activity-based probes targeting serine proteases. Front Chem 2022; 10:1006618. [PMID: 36247662 PMCID: PMC9555310 DOI: 10.3389/fchem.2022.1006618] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 08/18/2022] [Indexed: 11/13/2022] Open
Abstract
Serine proteases play varied and manifold roles in important biological, physiological, and pathological processes. These include viral, bacterial, and parasitic infection, allergic sensitization, tumor invasion, and metastasis. The use of activity-based profiling has been foundational in pinpointing the precise roles of serine proteases across this myriad of processes. A broad range of serine protease-targeted activity-based probe (ABP) chemotypes have been developed and we have recently introduced biotinylated and "clickable" peptides containing P1 N-alkyl glycine arginine N-hydroxy succinimidyl (NHS) carbamates as ABPs for detection/profiling of trypsin-like serine proteases. This present study provides synthetic details for the preparation of additional examples of this ABP chemotype, which function as potent irreversible inhibitors of their respective target serine protease. We describe their use for the activity-based profiling of a broad range of serine proteases including trypsin, the trypsin-like protease plasmin, chymotrypsin, cathepsin G, and neutrophil elastase (NE), including the profiling of the latter protease in clinical samples obtained from patients with cystic fibrosis.
Collapse
Affiliation(s)
| | | | | | - Brian Walker
- Biomolecular Sciences Research Group, School of Pharmacy, Queen’s University Belfast, Belfast, United Kingdom
| |
Collapse
|
105
|
Ramsey KA, Schultz A. Monitoring disease progression in childhood bronchiectasis. Front Pediatr 2022; 10:1010016. [PMID: 36186641 PMCID: PMC9523123 DOI: 10.3389/fped.2022.1010016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 08/29/2022] [Indexed: 11/24/2022] Open
Abstract
Bronchiectasis (not related to cystic fibrosis) is a chronic lung disease caused by a range of etiologies but characterized by abnormal airway dilatation, recurrent respiratory symptoms, impaired quality of life and reduced life expectancy. Patients typically experience episodes of chronic wet cough and recurrent pulmonary exacerbations requiring hospitalization. Early diagnosis and management of childhood bronchiectasis are essential to prevent respiratory decline, optimize quality of life, minimize pulmonary exacerbations, and potentially reverse bronchial disease. Disease monitoring potentially allows for (1) the early detection of acute exacerbations, facilitating timely intervention, (2) tracking the rate of disease progression for prognostic purposes, and (3) quantifying the response to therapies. This narrative review article will discuss methods for monitoring disease progression in children with bronchiectasis, including lung imaging, respiratory function, patient-reported outcomes, respiratory exacerbations, sputum biomarkers, and nutritional outcomes.
Collapse
Affiliation(s)
- Kathryn A. Ramsey
- Wal-yan Respiratory Research Centre, Telethon Kids Institute, University of Western Australia, Perth, WA, Australia
| | - André Schultz
- Wal-yan Respiratory Research Centre, Telethon Kids Institute, University of Western Australia, Perth, WA, Australia
- Respiratory Medicine, Perth Children's Hospital, Perth, WA, Australia
| |
Collapse
|
106
|
An optimized method of extracting and quantifying active Neutrophil serine proteases from human whole blood cells. PLoS One 2022; 17:e0272575. [PMID: 36044421 PMCID: PMC9432755 DOI: 10.1371/journal.pone.0272575] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 07/21/2022] [Indexed: 11/19/2022] Open
Abstract
Purpose
Neutrophil serine proteases (NSPs) are implicated in numerous inflammatory diseases. Thus, a robust methodology to monitor and quantify NSPs is important to study disease progression and evaluate the effect of pharmacological interventions. A comparison of the various methods used to extract NSPs from neutrophil granulocytes has not been published, providing the impetus to conduct this method optimization and comparison study.
Methods
Two NSP recovery methodologies were evaluated on samples from five human donors: zymosan stimulation and cell pellet extraction. For the zymosan stimulation method, 1 mL donor blood was added to zymosan and samples were incubated at 37°C for 30 min while shaking. Samples were then centrifuged, and the plasma was collected for quantitation of NSP activity. For the cell pellet extraction procedure, 2 mL whole blood samples were centrifuged into white blood cell pellets following red blood cell lysis. To each pellet, three sequential lysis steps were performed using either 0.05% Nonidet P-40 Substitute (NP40) or 0.02% Triton X-100 lysis buffers under agitation followed by centrifugation. NSP activities were quantified using an exogenous peptide substrate specific to each of the three NSPs being analyzed: neutrophil elastase, cathepsin G, and proteinase 3.
Results and discussion
The zymosan stimulation method resulted in lower recovery of active NSPs and was unable to stimulate significant release of active cathepsin G. In contrast, the NP40 pellet extraction method showed consistent inter-donor NSP release with greater recoveries of active NSPs than the Triton method or the zymosan stimulation method. Overall, the pellet extraction procedure provided 13.3-fold greater recovery of active neutrophil elastase, 283-fold greater recovery of active cathepsin G, and 2.9-fold greater recovery of active proteinase 3 than the zymosan method.
Conclusion
The NP40 cell pellet extraction method resulted in greater extraction of active NSPs compared to the other methods investigated here, which may allow for a more accurate and complete biomarker profile when evaluating human clinical samples.
Collapse
|
107
|
Huang JTJ, Cant E, Keir HR, Barton AK, Kuzmanova E, Shuttleworth M, Pollock J, Finch S, Polverino E, Bottier M, Dicker AJ, Shoemark A, Chalmers JD. Endotyping Chronic Obstructive Pulmonary Disease, Bronchiectasis, and the "Chronic Obstructive Pulmonary Disease-Bronchiectasis Association". Am J Respir Crit Care Med 2022; 206:417-426. [PMID: 35436182 DOI: 10.1164/rccm.202108-1943oc] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Rationale: Bronchiectasis and chronic obstructive pulmonary disease (COPD) are two disease entities with overlapped clinical features, and codiagnosis frequently occurs (termed the "COPD-bronchiectasis association"). Objectives: To investigate the sputum microbiome and proteome in patients with bronchiectasis, COPD, and the COPD-bronchiectasis association with the aim of identifying endotypes that may inform treatment. Methods: Sputum microbiome and protein profiling were carried out using 16S rRNA amplicon sequencing and a label-free proteomics workflow, respectively, in a cohort comprising patients with COPD (n = 43), bronchiectasis (n = 30), and the COPD-bronchiectasis association (n = 48). Results were validated in an independent cohort of 91 patients (n = 28-31 each group) using targeted measurements of inflammatory markers, mucins, and bacterial culture. Measurements and Main Results: Principal component analysis of sputum microbiome and protein profiles showed a partial separation between the COPD and the "COPD-bronchiectasis association" group. Further analyses revealed that patients with the "COPD-bronchiectasis association" had a higher abundance of proteobacteria, higher expression of mucin-5AC and proteins from the "neutrophil degranulation" pathway compared to those with COPD. In contrast, patients with COPD had an elevated expression of mucin-5B and several peptidase inhibitors, higher abundance of common commensal taxa, and a greater microbiome diversity. The profiles of "COPD-bronchiectasis association" and bronchiectasis groups were largely overlapping. Five endotypes were proposed with differential inflammatory, mucin, and microbiological features. The key features related to the "COPD-bronchiectasis association" were validated in an independent cohort. Conclusions: Neutrophilic inflammation, differential mucin expression, and Gram-negative infection are dominant traits in patients with the "COPD-bronchiectasis association."
Collapse
Affiliation(s)
| | - Erin Cant
- Division of Molecular and Clinical Medicine, School of Medicine, University of Dundee, Dundee, United Kingdom; and
| | - Holly R Keir
- Division of Molecular and Clinical Medicine, School of Medicine, University of Dundee, Dundee, United Kingdom; and
| | | | | | - Morven Shuttleworth
- Division of Molecular and Clinical Medicine, School of Medicine, University of Dundee, Dundee, United Kingdom; and
| | - Jennifer Pollock
- Division of Molecular and Clinical Medicine, School of Medicine, University of Dundee, Dundee, United Kingdom; and
| | - Simon Finch
- Division of Molecular and Clinical Medicine, School of Medicine, University of Dundee, Dundee, United Kingdom; and
| | - Eva Polverino
- Pneumology Department, Hospital Universitari Vall d'Hebron, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Mathieu Bottier
- Division of Molecular and Clinical Medicine, School of Medicine, University of Dundee, Dundee, United Kingdom; and
| | | | - Amelia Shoemark
- Division of Molecular and Clinical Medicine, School of Medicine, University of Dundee, Dundee, United Kingdom; and
| | - James D Chalmers
- Division of Molecular and Clinical Medicine, School of Medicine, University of Dundee, Dundee, United Kingdom; and
| |
Collapse
|
108
|
Marzec JM, Nadadur SS. Inflammation resolution in environmental pulmonary health and morbidity. Toxicol Appl Pharmacol 2022; 449:116070. [PMID: 35618031 PMCID: PMC9872158 DOI: 10.1016/j.taap.2022.116070] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 05/04/2022] [Accepted: 05/14/2022] [Indexed: 02/07/2023]
Abstract
Inflammation and resolution are dynamic processes comprised of inflammatory activation and neutrophil influx, followed by mediator catabolism and efferocytosis. These critical pathways ensure a return to homeostasis and promote repair. Over the past decade research has shown that diverse mediators play a role in the active process of resolution. Specialized pro-resolving mediators (SPMs), biosynthesized from fatty acids, are released during inflammation to facilitate resolution and are deficient in a variety of lung disorders. Failed resolution results in remodeling and cellular deposition through pro-fibrotic myofibroblast expansion that irreversibly narrows the airways and worsens lung function. Recent studies indicate environmental exposures may perturb and deregulate critical resolution pathways. Environmental xenobiotics induce lung inflammation and generate reactive metabolites that promote oxidative stress, injuring the respiratory mucosa and impairing gas-exchange. This warrants recognition of xenobiotic associated molecular patterns (XAMPs) as new signals in the field of inflammation biology, as many environmental chemicals generate free radicals capable of initiating the inflammatory response. Recent studies suggest that unresolved, persistent inflammation impacts both resolution pathways and endogenous regulatory mediators, compromising lung function, which over time can progress to chronic lung disease. Chronic ozone (O3) exposure overwhelms successful resolution, and in susceptible individuals promotes asthma onset. The industrial contaminant cadmium (Cd) bioaccumulates in the lung to impair resolution, and recurrent inflammation can result in chronic obstructive pulmonary disease (COPD). Persistent particulate matter (PM) exposure increases systemic cardiopulmonary inflammation, which reduces lung function and can exacerbate asthma, COPD, and idiopathic pulmonary fibrosis (IPF). While recurrent inflammation underlies environmentally induced pulmonary morbidity and may drive the disease process, our understanding of inflammation resolution in this context is limited. This review aims to explore inflammation resolution biology and its role in chronic environmental lung disease(s).
Collapse
Affiliation(s)
- Jacqui M Marzec
- National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Srikanth S Nadadur
- National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
109
|
|
110
|
Chalmers JD, Usansky H, Rubino CM, Teper A, Fernandez C, Zou J, Mange KC. Pharmacokinetic/Pharmacodynamic Evaluation of the Dipeptidyl Peptidase 1 Inhibitor Brensocatib for Non-cystic Fibrosis Bronchiectasis. Clin Pharmacokinet 2022; 61:1457-1469. [PMID: 35976570 PMCID: PMC9553789 DOI: 10.1007/s40262-022-01147-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/26/2022] [Indexed: 11/05/2022]
Abstract
Background and Objective Brensocatib is an investigational, first-in-class, selective, and reversible dipeptidyl peptidase 1 inhibitor that blocks activation of neutrophil serine proteases (NSPs). The NSPs neutrophil elastase, cathepsin G, and proteinase 3 are believed to be central to the pathogenesis of several chronic inflammatory diseases, including bronchiectasis. In a phase II study, oral brensocatib 10 mg and 25 mg reduced sputum neutrophil elastase activity and prolonged the time to pulmonary exacerbation in patients with non-cystic fibrosis bronchiectasis (NCFBE). A population pharmacokinetic (PPK) model was developed to characterize brensocatib exposure, determine potential relationships between brensocatib exposure and efficacy and safety measures, and inform dose selection in clinical studies. Methods Pharmacokinetic (PK) data pooled from a phase I study of once-daily brensocatib (10, 25, and 40 mg) in healthy adults and a phase II study of once-daily brensocatib (10 mg and 25 mg) in adults with NCFBE were used to develop a PPK model and to evaluate potential covariate effects on brensocatib pharmacokinetics. PK–efficacy relationships for sputum neutrophil elastase below the level of quantification (BLQ) and reduction in pulmonary exacerbation and PK–safety relationships for adverse events of special interest (AESIs; periodontal disease, hyperkeratosis, and infections other than pulmonary infections) were evaluated based on model-predicted brensocatib exposure. A total of 1284 steady-state brensocatib concentrations from 225 individuals were included in the PPK data set; 241 patients with NCFBE from the phase II study were included in the pharmacodynamic (PD) population for the PK/PD analyses. Results The PPK model that best described the observed data consisted of two distributional compartments and linear clearance. Two significant covariates were found: age on volume of distribution and renal function on apparent oral clearance. PK–efficacy analysis revealed a threshold brensocatib exposure (area under the concentration–time curve) effect for attaining sputum neutrophil elastase BLQ and a strong relationship between sputum neutrophil elastase BLQ and reduction in pulmonary exacerbations. A PK–safety evaluation showed no noticeable trends between brensocatib exposure and the incidence of AESIs. Based on the predicted likelihood of clinical outcomes for sputum neutrophil elastase BLQ and pulmonary exacerbations, brensocatib doses of 10 mg and 25 mg once daily were selected for a phase III clinical trial in patients with NCFBE (ClinicalTrials.gov identifier: NCT04594369). Conclusions PPK results revealed that age and renal function have a moderate effect on brensocatib exposure. However, this finding does not warrant dose adjustments based on age or in those with mild or moderate renal impairment. The PK/PD evaluation demonstrated the clinically meaningful relationship between suppression of neutrophil elastase activity and reduction in exacerbations in brensocatib-treated patients with NCFBE, supporting further development of brensocatib for bronchiectasis. Supplementary Information The online version contains supplementary material available at 10.1007/s40262-022-01147-w.
Collapse
Affiliation(s)
- James D Chalmers
- Division of Molecular and Clinical Medicine, Ninewells Hospital and Medical School, Dundee, DD1 9SY, UK.
| | | | | | | | | | - Jun Zou
- Insmed Incorporated, Bridgewater, NJ, USA
| | | |
Collapse
|
111
|
Lee SJ, Jeong JH, Heo M, Ju S, Yoo JW, Jeong YY, Lee JD. Serum Fibrinogen as a Biomarker for Disease Severity and Exacerbation in Patients with Non-Cystic Fibrosis Bronchiectasis. J Clin Med 2022; 11:jcm11143948. [PMID: 35887712 PMCID: PMC9319061 DOI: 10.3390/jcm11143948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/28/2022] [Accepted: 07/01/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Serum biomarkers associated with severe non-cystic fibrosis (CF) bronchiectasis are currently lacking. We assessed the association of serum fibrinogen, adiponectin, and angiopoietin-2 levels with the severity and exacerbation of bronchiectasis. Methods: Serum levels of fibrinogen, adiponectin, and angiopoietin-2 were measured and compared in patients with stable non-CF bronchiectasis (n = 61) and healthy controls (n = 16). The correlations between the three biomarkers and the bronchiectasis severity index (BSI) or FACED scores were assessed. Univariate and multivariate linear regression analyses were performed to identify variables independently associated with BSI and FACED scores in patients with bronchiectasis. Additionally, the exacerbation-free survival was compared between groups of patients with high and low fibrinogen levels, while the predictors of exacerbation were analyzed using Cox proportional hazards regression. Results: Patients with non-CF bronchiectasis carried higher fibrinogen (3.00 ± 2.31 vs. 1.52 ± 0.74 µg/mL; p = 0.016) and adiponectin (12.3 ± 5.07 vs. 9.17 ± 5.30 µg/mL; p = 0.031) levels compared with healthy controls. The serum level of angiopoietin-2 was comparable between the two groups (1.49 ± 0.96 vs. 1.21 ± 0.79 ng/mL, p = 0.277). Correlations of adiponectin and angiopoietin-2 with BSI and FACED scores were not significant. However, there were significant correlations between fibrinogen and both BSI (r = 0.428) and FACED scores (r = 0.484). Multivariate linear regression analysis revealed that fibrinogen level was an independent variable associated with both BSI and FACED scores. A total of 31 (50.8%) out of 61 patients experienced exacerbation during the follow-up period of 25.4 months. Exacerbation-free survival was significantly longer in patients with low fibrinogen levels than in those with high fibrinogen (log-rank test, p = 0.034). High fibrinogen levels and Pseudomonas colonization were independent risk factors for future exacerbation (HR 2.308; p = 0.03 and HR 2.555; p = 0.02, respectively). Conclusions: Serum fibrinogen, but not adiponectin or angiopoietin-2, is a potential biomarker closely associated with the severity and exacerbation of non-CF bronchiectasis.
Collapse
|
112
|
Zhang Y, Clarke A, Regan KH, Campbell K, Donaldson S, Crowe J, Rossi AG, Hill AT. Isolated IgG2 deficiency is an independent risk factor for exacerbations in bronchiectasis. QJM 2022; 115:292-297. [PMID: 33970283 PMCID: PMC9086763 DOI: 10.1093/qjmed/hcab129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/26/2021] [Accepted: 05/06/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Immunoglobulin G (IgG) subclass 2 deficiency is the most frequent IgG subclass deficiency identified in patients with bronchiectasis, but its clinical significance is not known. AIM To analyse if bronchiectasis patients with isolated IgG2 deficiency at risk of recurrent exacerbations and/or hospitalization? Do patients with IgG2 deficiency have worse disease progression? DESIGN AND METHODS This is a retrospective study (2015-20) exploring independent risk factors for recurrent exacerbations (3 or more per year) and/or hospitalization with bronchiectasis exacerbations using multivariable models using binary logistic regression. There was no patient with IgG deficiency, IgG 1, 3 or 4 deficiency, or IgA or IgM deficiency included. In this model, the authors included: serum IgG2 level; lung function; body mass index; MRC breathlessness scale; age; sex; number of bronchiectatic lobes; bacterial colonization; comorbidities; and the use of long-term immunosuppressant drugs or antibiotics for more than 28 days. Analysing 2-year longitudinal data, one-way ANOVA and Mann-Whitney U-test were used to compare bronchiectasis severity between patients with different IgG2 levels. RESULTS Serum IgG2 levels (<2.68 g/l, 2.68-3.53 g/l and 3.54-4.45 g/l); hospital admission in the preceding 2 years; bacterial colonization with potentially pathogenic organisms and asthma were independent predictors for three or more bronchiectasis exacerbations. Those with low IgG2 levels (<2.68 g/l and 2.68-3.53 g/l), had worsening progression of their bronchiectasis, using the Bronchiectasis Severity Index, over 1 year compared with those who were IgG2 replete (>4.45 g/l) (P = 0.003, 0.013). CONCLUSION Reduced IgG2 levels were an independent predictor for bronchiectasis exacerbations and have increased disease progression.
Collapse
Affiliation(s)
- Y Zhang
- The Centre for Inflammation Research at the University of Edinburgh, Queen’s Medical Research Institute, Edinburgh BioQuarter, Edinburgh EH16 4TJ, UK
| | - A Clarke
- The Centre for Inflammation Research at the University of Edinburgh, Queen’s Medical Research Institute, Edinburgh BioQuarter, Edinburgh EH16 4TJ, UK
- Department of Respiratory Medicine, Royal Infirmary of Edinburgh, Edinburgh EH16 4SA, UK
| | - K H Regan
- The Centre for Inflammation Research at the University of Edinburgh, Queen’s Medical Research Institute, Edinburgh BioQuarter, Edinburgh EH16 4TJ, UK
- Department of Respiratory Medicine, Royal Infirmary of Edinburgh, Edinburgh EH16 4SA, UK
| | - K Campbell
- Department of Respiratory Medicine, Royal Infirmary of Edinburgh, Edinburgh EH16 4SA, UK
| | - S Donaldson
- The Centre for Inflammation Research at the University of Edinburgh, Queen’s Medical Research Institute, Edinburgh BioQuarter, Edinburgh EH16 4TJ, UK
- Department of Respiratory Medicine, Royal Infirmary of Edinburgh, Edinburgh EH16 4SA, UK
| | - J Crowe
- Department of Respiratory Medicine, Royal Infirmary of Edinburgh, Edinburgh EH16 4SA, UK
| | - A G Rossi
- The Centre for Inflammation Research at the University of Edinburgh, Queen’s Medical Research Institute, Edinburgh BioQuarter, Edinburgh EH16 4TJ, UK
| | - A T Hill
- Address correspondence to Prof A.T. Hill, Department of Respiratory Medicine, Royal Infirmary of Edinburgh, Edinburgh EH16 4SA, UK.
| |
Collapse
|
113
|
Ali HA, Fouda EM, Salem MA, Abdelwahad MA, Radwan HH. Sputum neutrophil elastase and its relation to pediatric bronchiectasis severity: A cross‐sectional study. Health Sci Rep 2022; 5:e581. [PMID: 35509417 PMCID: PMC9059204 DOI: 10.1002/hsr2.581] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 02/28/2022] [Accepted: 03/01/2022] [Indexed: 11/25/2022] Open
Abstract
Background and Aims Sputum neutrophil elastase (NE) is a marker of neutrophilic airway inflammation in bronchiectasis. Yet, not much is known about its role in pediatric bronchiectasis severity. This study aimed to assess the sputum NE value as a biomarker of clinical and radiological severity in pediatric bronchiectasis. Methods This was a cross‐sectional study assessing sputum NE in a total of 50 bronchiectasis patients under the age of 18 years—30 patients with cystic fibrosis (CF) and 20 patients with non‐CF bronchiectasis were included. Bronchiectasis severity was assessed using Shwachman–Kulczycki (SK) score, CF‐ABLE score, and CF risk of disease progression score, among CF patients, and bronchiectasis severity index (BSI) and FACED criteria among non‐CF bronchiectasis patients, associations between sputum NE and bronchiectasis severity were assessed in both patient groups. Results Sputum NE was directly correlated with C‐reactive protein (r = 0.914, p < 0.001), (r = 0.786, p < 0.001), frequency of exacerbations (r = 0.852, p < 0.001) (r = 0.858, p < 0.001), exacerbations severity (r = 0.735, p = 0.002), (r = 0.907, p < 0.001), and the number of hospital admissions (r = 0.813, p < 0.001), (r = 0.612, p =0.004) in the last year among CF, and non‐CF bronchiectasis patients, respectively. Additional linear correlations were found between sputum NE, CF risk of disease progression score (p < 0.001), CF‐ABLE score (p < 0.001), and lower forced expiratory volume 1% of predicted (p = 0.017; ρ = −0.8) among CF patients. Moreover, sputum NE was positively correlated with the neutrophil count (p = 0.018), and BSI severity score (p = 0.039; ρ = 0.465) among non‐CF bronchiectasis patients. Conclusions Sputum NE may be considered a good biomarker of bronchiectasis severity in both CF and non‐CF bronchiectasis patients, as confirmed by the exacerbations rate, CF risk of disease progression, and BSI scores.
Collapse
Affiliation(s)
- Heba A. Ali
- Department of Pediatrics, Pulmonology Division, Faculty of Medicine Ain Shams University Children's Hospital Cairo Egypt
| | - Eman M. Fouda
- Department of Pediatrics, Pulmonology Division, Faculty of Medicine Ain Shams University Children's Hospital Cairo Egypt
| | - Mona A. Salem
- Department of Radiology Ain Shams University Hospital Cairo Egypt
| | | | | |
Collapse
|
114
|
Shoemark A, Shteinberg M, De Soyza A, Haworth CS, Richardson H, Gao Y, Perea L, Dicker AJ, Goeminne PC, Cant E, Polverino E, Altenburg J, Keir HR, Loebinger MR, Blasi F, Welte T, Sibila O, Aliberti S, Chalmers JD. Characterization of Eosinophilic Bronchiectasis: A European Multicohort Study. Am J Respir Crit Care Med 2022; 205:894-902. [PMID: 35050830 DOI: 10.1164/rccm.202108-1889oc] [Citation(s) in RCA: 109] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Rationale: Bronchiectasis is classically considered a neutrophilic disorder, but eosinophilic subtypes have recently been described. Objectives: To use multiple datasets available through the European Multicentre Bronchiectasis Audit and Research Collaboration to characterize eosinophilic bronchiectasis as a clinical entity focusing on the impact of eosinophils on bronchiectasis exacerbations. Methods: Patients were included from five countries to examine the relationships between blood eosinophil counts and clinical phenotypes after excluding coexisting asthma. 16S rRNA sequencing was used to examine relationships between eosinophil counts and the sputum microbiome. A post hoc analysis of the PROMIS (Inhaled Promixin in the Treatment of Non-Cystic Fibrosis Bronchiectasis) phase 2 trial was used to examine the impact of blood eosinophil counts on exacerbations in patients with Pseudomonas aeruginosa infection. Measurements and Main Results: A relationship between sputum and blood eosinophil counts was demonstrated in two cohorts. In analysis of 1,007 patients from five countries, 22.6% of patients had blood eosinophil counts of ⩾300 cells/μl. Counts of <100 cells/μl were associated with higher bronchiectasis severity and increased mortality. There was no clear relationship with exacerbations. Blood eosinophil counts of ⩾300 cells/μl were associated with both Streptococcus- and Pseudomonas-dominated microbiome profiles. To investigate the relationship of eosinophil counts with exacerbations after controlling for the confounding effects of infection, 144 patients were studied in a clinical trial after treatment with antipseudomonal antibiotics. Compared with patients with blood eosinophil counts of <100 cells/μl (reference), elevated eosinophil counts of 100-299 cells/μl (hazard ratio, 2.38; 95% confidence interval, 1.33-4.25; P = 0.003) and ⩾300 cells/μl (hazard ratio, 3.99; 95% confidence interval, 2.20-7.85; P < 0.0001) were associated with shorter time to exacerbation. Conclusions: Eosinophilic bronchiectasis affects approximately 20% of patients. After accounting for infection status, raised blood eosinophil counts are associated with shortened time to exacerbation.
Collapse
Affiliation(s)
- Amelia Shoemark
- Division of Molecular and Clinical Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, United Kingdom.,Royal Brompton Hospital and Imperial College London, London, United Kingdom
| | - Michal Shteinberg
- Pulmonology Institute and Cystic Fibrosis Center, Carmel Medical Center, Haifa, Israel
| | - Anthony De Soyza
- Population and Health Sciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom.,National Institute for Health Research Biomedical Research Centre for Ageing, Freeman Hospital, Newcastle, United Kingdom
| | - Charles S Haworth
- Cambridge Centre for Lung Infection, Royal Papworth Hospital, Cambridge, United Kingdom.,Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Hollian Richardson
- Division of Molecular and Clinical Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, United Kingdom
| | - Yonghua Gao
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lidia Perea
- Hospital Clinic of Barcelona, University of Barcelona, Centro de Investigación Biomédica en Red Enfermedades Respiratorias, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Alison J Dicker
- Division of Molecular and Clinical Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, United Kingdom
| | - Pieter C Goeminne
- Department of Respiratory Disease, AZ Nikolaas, Sint-Niklaas, Belgium
| | - Erin Cant
- Division of Molecular and Clinical Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, United Kingdom
| | - Eva Polverino
- Pneumology Department, Hospital Universitari Vall d'Hebron, Barcelona, Spain.,Thorax Institute, Institute of Biomedical Research August Pi i Sunyer, University of Barcelona, Barcelona, Spain
| | - Josje Altenburg
- Department of Respiratory Medicine, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - Holly R Keir
- Division of Molecular and Clinical Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, United Kingdom
| | | | - Francesco Blasi
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Internal Medicine Department, Respiratory Unit and Cystic Fibrosis Adult Center, Milan, Italy.,Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Tobias Welte
- Department of Pulmonary Medicine and Infectious Diseases, Hannover University School of Medicine, Hannover, Germany
| | - Oriol Sibila
- Hospital Clinic of Barcelona, University of Barcelona, Centro de Investigación Biomédica en Red Enfermedades Respiratorias, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Stefano Aliberti
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy.,Respiratory Unit, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - James D Chalmers
- Division of Molecular and Clinical Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, United Kingdom
| |
Collapse
|
115
|
Meldrum OW, Belchamber KB, Chichirelo-Konstantynovych KD, Horton KL, Konstantynovych TV, Long MB, McDonnell MJ, Perea L, Garcia-Basteiro AL, Loebinger MR, Duarte R, Keir HR. ERS International Congress 2021: highlights from the Respiratory Infections Assembly. ERJ Open Res 2022; 8:00642-2021. [PMID: 35615420 PMCID: PMC9124871 DOI: 10.1183/23120541.00642-2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/12/2022] [Indexed: 12/15/2022] Open
Abstract
The European Respiratory Society International Congress 2021 took place virtually for the second year running due to the coronavirus pandemic. The Congress programme featured more than 400 sessions and 3000 abstract presentations, covering the entire field of respiratory science and medicine. In this article, early career members of the Respiratory Infections Assembly summarise a selection of sessions across a broad range of topics, including presentations on bronchiectasis, non-tuberculosis mycobacteria, tuberculosis, cystic fibrosis and COVID-19.
Collapse
Affiliation(s)
- Oliver W. Meldrum
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | | | | | - Katie L. Horton
- Primary Ciliary Dyskinesia Centre, NIHR Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK
- Academic Unit of Clinical and Experimental Medicine, University of Southampton Faculty of Medicine, Southampton, UK
| | | | - Merete B. Long
- Division of Molecular and Clinical Medicine, Medical School, University of Dundee, Dundee, UK
| | - Melissa J. McDonnell
- Galway University Hospitals and National University of Ireland (NUIG), Galway, Ireland
| | | | - Alberto L. Garcia-Basteiro
- ISGlobal, Hospital Clínic – Universitat de Barcelona, Barcelona, Spain
- Centro de Investigação em Saude de Manhiça, Maputo, Mozambique
| | - Michael R. Loebinger
- Host Defence Unit, Royal Brompton Hospital, London, UK
- National Heart and Lung Institute, Imperial College, London, UK
| | - Raquel Duarte
- Pulmonology Unit, Centro Hospitalar de Vila Nova de Gaia/Espinho EPE, Vila Nova de Gaia, Portugal
- Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
- Instituto de Saúde Pública da Universidade do Porto, Porto, Portugal
| | - Holly R. Keir
- Division of Molecular and Clinical Medicine, Medical School, University of Dundee, Dundee, UK
| |
Collapse
|
116
|
Keir HR, Chalmers JD. Neutrophil extracellular traps in chronic lung disease: implications for pathogenesis and therapy. Eur Respir Rev 2022; 31:31/163/210241. [PMID: 35197267 PMCID: PMC9488971 DOI: 10.1183/16000617.0241-2021] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/28/2021] [Indexed: 12/20/2022] Open
Abstract
Neutrophilic inflammation has a key role in the pathophysiology of multiple chronic lung diseases. The formation of neutrophil extracellular traps (NETs) has emerged as a key mechanism of disease in neutrophilic lung diseases including asthma, COPD, cystic fibrosis and, most recently, bronchiectasis. NETs are large, web-like structures composed of DNA and anti-microbial proteins that are able to bind pathogens, prevent microbial dissemination and degrade bacterial virulence factors. The release of excess concentrations of proteases, antimicrobial proteins, DNA and histones, however, also leads to tissue damage, impaired mucociliary clearance, impaired bacterial killing and increased inflammation. A number of studies have linked airway NET formation with greater disease severity, increased exacerbations and overall worse disease outcomes across the spectrum of airway diseases. Treating neutrophilic inflammation has been challenging in chronic lung disease because of the delicate balance between reducing inflammation and increasing the risk of infections through immunosuppression. Novel approaches to suppressing NET formation or the associated inflammation are in development and represent an important therapeutic target. This review will discuss the relationship between NETs and the pathophysiology of cystic fibrosis, asthma, COPD and bronchiectasis, and explore the current and future development of NET-targeting therapies. NETs contribute to the pathophysiology of chronic lung disease. Immunomodulating therapies that may reduce inflammatory mediators and NET formation, without compromising bacterial clearance, offer a new treatment path for patients. https://bit.ly/3fyJC6I
Collapse
Affiliation(s)
- Holly R Keir
- Division of Molecular and Clinical Medicine, Ninewells Hospital and Medical School, Dundee, UK
| | - James D Chalmers
- Division of Molecular and Clinical Medicine, Ninewells Hospital and Medical School, Dundee, UK
| |
Collapse
|
117
|
The Effect of CFTR Modulators on Airway Infection in Cystic Fibrosis. Int J Mol Sci 2022; 23:ijms23073513. [PMID: 35408875 PMCID: PMC8998472 DOI: 10.3390/ijms23073513] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 02/08/2023] Open
Abstract
The advent of Cystic fibrosis transmembrane receptor (CFTR) modulators in 2012 was a critical event in the history of cystic fibrosis (CF) treatment. Unlike traditional therapies that target downstream effects of CFTR dysfunction, CFTR modulators aim to correct the underlying defect at the protein level. These genotype-specific therapies are now available for an increasing number of CF patients, transforming the way we view the condition from a life-limiting disease to one that can be effectively managed. Several studies have demonstrated the vast improvement CFTR modulators have on normalization of sweat chloride, CFTR function, clinical endpoints, and frequency of pulmonary exacerbation. However, their impact on other aspects of the disease, such as pathogenic burden and airway infection, remain under explored. Frequent airway infections as a result of increased susceptibility and impaired innate immune response are a serious problem within CF, often leading to accelerated decline in lung function and disease progression. Current evidence suggests that CFTR modulators are unable to eradicate pathogenic organisms in those with already established lung disease. However, this may not be the case for those with relatively low levels of disease progression and conserved microbial diversity, such as young patients. Furthermore, it remains unknown whether the restorative effects exerted by CFTR modulators extend to immune cells, such as phagocytes, which have the potential to modulate the response of people with CF (pwCF) to infection. Throughout this review, we look at the potential impact of CFTR modulators on airway infection in CF and their ability to shape impaired pulmonary defences to pathogens.
Collapse
|
118
|
|
119
|
|
120
|
|
121
|
García-Río F, Alcázar-Navarrete B, Castillo-Villegas D, Cilloniz C, García-Ortega A, Leiro-Fernández V, Lojo-Rodriguez I, Padilla-Galo A, Quezada-Loaiza CA, Rodriguez-Portal JA, Sánchez-de-la-Torre M, Sibila O, Martínez-García MA. [Translated article] Biological Biomarkers in Respiratory Diseases. ARCHIVOS DE BRONCONEUMOLOGÍA 2022. [DOI: 10.1016/j.arbres.2022.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
122
|
Spencer S, Donovan T, Chalmers JD, Mathioudakis AG, McDonnell MJ, Tsang A, Leadbetter P. Intermittent prophylactic antibiotics for bronchiectasis. Cochrane Database Syst Rev 2022; 1:CD013254. [PMID: 34985761 PMCID: PMC8729825 DOI: 10.1002/14651858.cd013254.pub2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BACKGROUND Bronchiectasis is a common but under-diagnosed chronic disorder characterised by permanent dilation of the airways arising from a cycle of recurrent infection and inflammation. Symptoms including chronic, persistent cough and productive phlegm are a significant burden for people with bronchiectasis, and the main aim of treatment is to reduce exacerbation frequency and improve quality of life. Prophylactic antibiotic therapy aims to break this infection cycle and is recommended by clinical guidelines for adults with three or more exacerbations a year, based on limited evidence. It is important to weigh the evidence for bacterial suppression against the prevention of antibiotic resistance and further evidence is required on the safety and efficacy of different regimens of intermittently administered antibiotic treatments for people with bronchiectasis. OBJECTIVES To evaluate the safety and efficacy of intermittent prophylactic antibiotics in the treatment of adults and children with bronchiectasis. SEARCH METHODS We identified trials from the Cochrane Airways Trials Register, which contains studies identified through multiple electronic searches and handsearches of other sources. We also searched trial registries and reference lists of primary studies. We conducted searches on 6 September 2021, with no restriction on language of publication. SELECTION CRITERIA We included randomised controlled trials (RCTs) of at least three months' duration comparing an intermittent regime of prophylactic antibiotics with placebo, usual care or an alternate intermittent regimen. Intermittent prophylactic administration was defined as repeated courses of antibiotics with on-treatment and off-treatment intervals of at least 14 days' duration. We included adults and children with a clinical diagnosis of bronchiectasis confirmed by high resolution computed tomography (HRCT), plain film chest radiograph, or bronchography and a documented history of recurrent chest infections. We excluded studies where participants received high dose antibiotics immediately prior to enrolment or those with a diagnosis of cystic fibrosis, allergic bronchopulmonary aspergillosis (ABPA), primary ciliary dyskinesia, hypogammaglobulinaemia, sarcoidosis, or a primary diagnosis of COPD. Our primary outcomes were exacerbation frequency and serious adverse events. We did not exclude studies on the basis of review outcomes. DATA COLLECTION AND ANALYSIS We analysed dichotomous data as odds ratios (ORs) or relative risk (RRs) and continuous data as mean differences (MDs) or standardised mean differences (SMDs). We used standard methodological procedures expected by Cochrane. We conducted GRADE assessments for the following primary outcomes: exacerbation frequency; serious adverse events and secondary outcomes: antibiotic resistance; hospital admissions; health-related quality of life. MAIN RESULTS We included eight RCTs, with interventions ranging from 16 to 48 weeks, involving 2180 adults. All evaluated one of three types of antibiotics over two to six cycles of 28 days on/off treatment: aminoglycosides, ß-lactams or fluoroquinolones. Two studies also included 12 cycles of 14 days on/off treatment with fluoroquinolones. Participants had a mean age of 63.6 years, 65% were women and approximately 85% Caucasian. Baseline FEV1 ranged from 55.5% to 62.6% predicted. None of the studies included children. Generally, there was a low risk of bias in the included studies. Antibiotic versus placebo: cycle of 14 days on/off. Ciprofloxacin reduced the frequency of exacerbations compared to placebo (RR 0.75, 95% CI 0.61 to 0.93; I2 = 65%; 2 studies, 469 participants; moderate-certainty evidence), with eight people (95% CI 6 to 28) needed to treat for an additional beneficial outcome. The intervention increased the risk of antibiotic resistance more than twofold (OR 2.14, 95% CI 1.36 to 3.35; I2 = 0%; 2 studies, 624 participants; high-certainty evidence). Serious adverse events, lung function (FEV1), health-related quality of life, and adverse effects did not differ between groups. Antibiotic versus placebo: cycle of 28 days on/off. Antibiotics did not reduce overall exacerbation frequency (RR 0.92, 95% CI 0.82 to 1.02; I2 = 0%; 8 studies, 1695 participants; high-certainty evidence) but there were fewer severe exacerbations (OR 0.59, 95% CI 0.37 to 0.93; I2 = 54%; 3 studies, 624 participants), though this should be interpreted with caution due to low event rates. The risk of antibiotic resistance was more than twofold higher based on a pooled analysis (OR 2.20, 95% CI 1.42 to 3.42; I2 = 0%; 3 studies, 685 participants; high-certainty evidence) and consistent with unpooled data from four further studies. Serious adverse events, time to first exacerbation, duration of exacerbation, respiratory-related hospital admissions, lung function, health-related quality of life and adverse effects did not differ between study groups. Antibiotic versus usual care. We did not find any studies that compared intermittent antibiotic regimens with usual care. Cycle of 14 days on/off versus cycle of 28 days on/off. Exacerbation frequency did not differ between the two treatment regimens (RR 1.02, 95% CI 0.84 to 1.24; I2 = 71%; 2 studies, 625 participants; moderate-certainty evidence) However, inconsistencies in the results from the two trials in this comparison indicate that the apparent aggregated similarities may not be reliable. There was no evidence of a difference in antibiotic resistance between groups (OR 1.00, 95% CI 0.68 to 1.48; I2 = 60%; 2 studies, 624 participants; moderate-certainty evidence). Serious adverse events, adverse effects, lung function and health-related quality of life did not differ between the two antibiotic regimens. AUTHORS' CONCLUSIONS Overall, in adults who have frequent chest infections, long-term antibiotics given at 14-day on/off intervals slightly reduces the frequency of those infections and increases antibiotic resistance. Intermittent antibiotic regimens result in little to no difference in serious adverse events. The impact of intermittent antibiotic therapy on children with bronchiectasis is unknown due to an absence of evidence, and further research is needed to establish the potential risks and benefits.
Collapse
Affiliation(s)
- Sally Spencer
- Health Research Institute, Faculty of Health, Social Care & Medicine, Edge Hill University, Ormskirk, UK
| | - Tim Donovan
- Medical Sciences, Institute of Health, University of Cumbria, Lancaster, UK
| | - James D Chalmers
- University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
| | - Alexander G Mathioudakis
- Division of Infection, Immunity and Respiratory Medicine, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Melissa J McDonnell
- Department of Respiratory Medicine, Galway University Hospital, Galway, Ireland
| | - Anthony Tsang
- Edge Hill University, Ormskirk, UK
- Department of Nursing, Faculty of Health, Social and Psychology, Manchester Metropolitan University, Manchester, UK
| | - Peter Leadbetter
- Medical School, Faculty of Health, Social Care and Medicine, Edge Hill University, Ormskirk, UK
| |
Collapse
|
123
|
Garcia-Rio F, Alcázar B, Castillo D, Cilloniz C, García-Ortega A, Leiro-Fernández V, Lojo-Rodriguez I, Padilla A, Quezada CA, Rodriguez-Portal JA, Sánchez-de-la-Torre M, Sibila O, Martinez-Garcia MA. Biomarcadores biológicos en las enfermedades respiratorias. Arch Bronconeumol 2022; 58:323-333. [DOI: 10.1016/j.arbres.2022.01.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/11/2022] [Accepted: 01/11/2022] [Indexed: 11/26/2022]
|
124
|
Augmentation therapy with human alpha-1-proteinase inhibitor reduces exacerbations in patient with bronchiectasis and alpha-1-antitrypsin deficiency. Respir Med Case Rep 2022; 39:101740. [PMID: 36161236 PMCID: PMC9489489 DOI: 10.1016/j.rmcr.2022.101740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 09/08/2022] [Accepted: 09/13/2022] [Indexed: 11/24/2022] Open
|
125
|
Raj S, McCafferty D, Lubrasky G, Johnston S, Skillen KL, McLaughlin J. Point-of-Care Monitoring of Respiratory Diseases Using Lateral Flow Assay and CMOS Camera Reader. IEEE JOURNAL OF TRANSLATIONAL ENGINEERING IN HEALTH AND MEDICINE 2022; 10:2800208. [PMID: 35992371 PMCID: PMC9384958 DOI: 10.1109/jtehm.2022.3193575] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 06/24/2022] [Accepted: 07/14/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Shasidran Raj
- Connected Health Innovation Centre, NIBEC, Ulster University, Belfast, U.K
| | | | - Gennady Lubrasky
- Connected Health Innovation Centre, NIBEC, Ulster University, Belfast, U.K
| | | | - Kerry-Louise Skillen
- Eastern Corridor Medical Engineering Centre, NIBEC, Ulster University, Belfast, U.K
| | - James McLaughlin
- Connected Health Innovation Centre, NIBEC, Ulster University, Belfast, U.K
| |
Collapse
|
126
|
Terranova L, Risé P, Gramegna A, Pinna C, Agostoni C, Syrén ML, Turolo S, Marchisio P, Amati F, Aliberti S, Sala A, Blasi F. Pro-resolving and pro-inflammatory fatty acid-derived mediators in sputum of stable state bronchiectasis patients. Respir Res 2022; 23:363. [PMID: 36539829 PMCID: PMC9764713 DOI: 10.1186/s12931-022-02301-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Bronchiectasis is characterized by neutrophilic inflammation and frequent exacerbations often associated with infections. Lipid mediators play critical roles in the inflammatory response, and the balance between anti-inflammatory and pro-inflammatory mediators could drive to chronic inflammation. The aim of this study was to evaluate the metabolites of docosahexaenoic acid and arachidonic acid in sputum of adults with bronchiectasis defining their associations with clinical data, bacterial load and neutrophil elastase. METHODS An observational, cross-sectional study was conducted at the bronchiectasis program of the Policlinico Hospital in Milan, Italy, where patients were enrolled. Active neutrophil elastase was measured by enzyme-linked immunosorbent assay, pro-resolving and pro-inflammatory fatty acid-derived mediators were evaluated by mass spectrometry and respiratory pathogens were assessed by real-time PCR. Analysis were performed on sputum collected during stable state and clinical data were also collected. RESULTS Levels of pro-inflammatory mediators derived from arachidonic acid metabolism showed association with neutrophil elastase, were proportional to Pseudomonas aeruginosa identifications and were linked with radiological gravity index, while the concentrations of pro-resolution mediators derived from docosahexaenoic acid were associated with a better health status, highlighted by the inverse correlation with radiological gravity index, bacterial infections and sputum volume production. CONCLUSION Pro-inflammatory mediators derived from FA metabolisms are associated with severity of bronchiectasis while DHA-derived metabolites are inversely associated with severity of the disease, which may be used for personized treatment of bronchiectasis.
Collapse
Affiliation(s)
- Leonardo Terranova
- grid.414818.00000 0004 1757 8749Internal Medicine Department, Respiratory Unit and Adult Cystic Fibrosis Center, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122 Milan, Italy
| | - Patrizia Risé
- grid.4708.b0000 0004 1757 2822Department of Pharmaceutical Sciences-DISFARM, University of Milan, 20122 Milan, Italy
| | - Andrea Gramegna
- grid.414818.00000 0004 1757 8749Internal Medicine Department, Respiratory Unit and Adult Cystic Fibrosis Center, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122 Milan, Italy ,grid.4708.b0000 0004 1757 2822Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy
| | - Christian Pinna
- grid.4708.b0000 0004 1757 2822Department of Pharmaceutical Sciences-DISFARM, University of Milan, 20122 Milan, Italy
| | - Carlo Agostoni
- grid.414818.00000 0004 1757 8749Pediatric Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy ,grid.4708.b0000 0004 1757 2822Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
| | - Marie-Louise Syrén
- grid.4708.b0000 0004 1757 2822Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
| | - Stefano Turolo
- grid.414818.00000 0004 1757 8749Pediatric Nephrology, Dialysis and Transplant Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Paola Marchisio
- grid.4708.b0000 0004 1757 2822Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy ,grid.414818.00000 0004 1757 8749Pediatric Highly Intensive Care Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Francesco Amati
- grid.452490.eDepartment of Biomedical Sciences, Humanitas University, 20072 Pieve Emanuele, Italy ,grid.417728.f0000 0004 1756 8807Respiratory Unit, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy
| | - Stefano Aliberti
- grid.452490.eDepartment of Biomedical Sciences, Humanitas University, 20072 Pieve Emanuele, Italy ,grid.417728.f0000 0004 1756 8807Respiratory Unit, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy
| | - Angelo Sala
- grid.4708.b0000 0004 1757 2822Department of Pharmaceutical Sciences-DISFARM, University of Milan, 20122 Milan, Italy
| | - Francesco Blasi
- grid.414818.00000 0004 1757 8749Internal Medicine Department, Respiratory Unit and Adult Cystic Fibrosis Center, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122 Milan, Italy ,grid.4708.b0000 0004 1757 2822Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy
| |
Collapse
|
127
|
Good W, Jeon G, Zeng I, Storey L, Qiao H, Jones S, Mooney S, Jayaram L, Holland D, Wong C. Sputum procalcitonin: a potential biomarker in stable bronchiectasis. ERJ Open Res 2021; 7:00285-2021. [PMID: 34708111 PMCID: PMC8542939 DOI: 10.1183/23120541.00285-2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 07/09/2021] [Indexed: 11/30/2022] Open
Abstract
Sputum procalcitonin is elevated in exacerbations of bronchiectasis. The primary aim of this study was to investigate whether sputum procalcitonin levels are higher in patients with stable bronchiectasis than in healthy controls. We also assessed differences in procalcitonin levels in spontaneously expectorated and induced sputum samples and their repeatability 1 week later. Participants included were aged over 18 years and either had radiologically confirmed bronchiectasis or were healthy controls. Patients with bronchiectasis were clinically stable for at least 6 weeks and had spontaneous and induced sputum collected at visit 1 and again 7 days later. Only induced sputum samples were collected from healthy controls during visit 1. Sputum procalcitonin concentrations in sputum were measured. In total, 30 patients with bronchiectasis and 15 healthy controls were enrolled in this observational study. In the pooled data from visit 1 and 2, the geometric mean procalcitonin level in induced sputum was significantly higher in the bronchiectasis group than in the healthy control group (1.5 ng·mL−1, 95% CI 1.0–2.1 ng·mL−1versus 0.4 ng·mL−1, 95% CI 0.2–0.9 ng·mL−1; mean ratio 3.6, 95% CI 1.5–8.6; p=0.006). Mean procalcitonin level was higher in spontaneous sputum than in induced sputum at visit 1 (1.8 ng·mL−1, 95% CI 1.2–2.7 ng·mL−1versus 1.1 ng·mL−1, 95% CI 0.7–1.8 ng·mL−1) and visit 2 (1.5 ng·mL−1, 95% CI 1.0–2.5 ng·mL−1versus 1.2 ng·mL−1, 95% CI 0.8–1.6 ng·mL−1; p=0.001). Repeating spontaneous and induced sputum procalcitonin levels 1 week later produced similar concentrations (p=0.29, intraclass correlation coefficient (ICC)=0.76 and p=0.72, ICC=0.70, respectively). Sputum procalcitonin is increased in patients with stable bronchiectasis and has potential as a biomarker of airway inflammation and infection in bronchiectasis. Sputum procalcitonin levels are higher in patients with stable bronchiectasis than in healthy controls. Sputum procalcitonin has the potential to be a biomarker of airway inflammation and infection in bronchiectasis.https://bit.ly/3ivn7R9
Collapse
Affiliation(s)
- William Good
- Dept of Medicine, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand.,Dept of Respiratory Medicine, Middlemore Hospital, Counties Manukau District Health Board, Otahuhu, Auckland, New Zealand
| | - Gene Jeon
- Dept of Respiratory Medicine, Middlemore Hospital, Counties Manukau District Health Board, Otahuhu, Auckland, New Zealand
| | - Irene Zeng
- Dept of Mental Health and Addiction, Middlemore Hospital, Counties Manukau District Health Board, Otahuhu, Auckland, New Zealand
| | - Louanne Storey
- Dept of Microbiology, Middlemore Hospital, Counties Manukau District Health Board, Otahuhu, Auckland, New Zealand
| | - Helen Qiao
- Dept of Microbiology, Middlemore Hospital, Counties Manukau District Health Board, Otahuhu, Auckland, New Zealand
| | - Stuart Jones
- Dept of Medicine, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand.,Dept of Respiratory Medicine, Middlemore Hospital, Counties Manukau District Health Board, Otahuhu, Auckland, New Zealand
| | - Sarah Mooney
- Dept of Respiratory Medicine, Middlemore Hospital, Counties Manukau District Health Board, Otahuhu, Auckland, New Zealand
| | - Lata Jayaram
- Dept of Respiratory Medicine, Western Health, Melbourne, VIC, Australia.,Melbourne Medical School, The University of Melbourne, Melbourne, VIC, Australia
| | - David Holland
- Dept of Infectious Diseases, Middlemore Hospital, Counties Manukau District Health Board, Otahuhu, Auckland, New Zealand
| | - Conroy Wong
- Dept of Medicine, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand.,Dept of Respiratory Medicine, Middlemore Hospital, Counties Manukau District Health Board, Otahuhu, Auckland, New Zealand
| |
Collapse
|
128
|
Sibila O, Laserna E, Shoemark A, Perea L, Bilton D, Crichton ML, De Soyza A, Boersma WG, Altenburg J, Chalmers JD. Heterogeneity of treatment response in bronchiectasis clinical trials. Eur Respir J 2021; 59:13993003.00777-2021. [PMID: 34675045 DOI: 10.1183/13993003.00777-2021] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 09/15/2021] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Recent randomised clinical trials (RCTs) in Bronchiectasis have failed to reach their primary endpoints, suggesting a need to reassess how we measure treatment response. Exacerbations, quality of life (QOL) and lung function are the most common endpoints evaluated in bronchiectasis clinical trials. We aimed to determine the relationship between responses in terms of reduced exacerbations, improved symptoms and lung function in bronchiectasis. METHODS We evaluated treatment response in 3 RCTs that evaluated mucoactive therapy (inhaled Mannitol), an oral anti-inflammatory/antibiotic (Azithromycin) and an inhaled antibiotic (Aztreonam). Treatment response was defined by absence of exacerbations during follow-up, an improvement of QOL above the minimum clinically important difference (MCID) and an improvement in FEV1 of ≥100 mL from baseline. MEASUREMENTS AND MAIN RESULTS Cumulatively the three trials included 984 patients. Changes in FEV1, QOL and exacerbations were heterogeneous in all trials analysed. Improvements in QOL were not correlated to changes in FEV1 in the azithromycin and aztreonam trials (r=-0.17, p=0.1 and r=0.04, p=0.4) and weakly correlated in the mannitol trial (r=0.22, p<0.0001). An important placebo effect was observed in all trials, especially regarding improvements in QOL. Clinical meaningful lung function improvements were rare across all trials evaluated, suggesting that FEV1 is not a responsive measure in bronchiectasis. CONCLUSIONS Improvements in lung function, symptoms and exacerbation frequency are dissociated in bronchiectasis. FEV1 is poorly responsive and poorly correlated with other key outcome measures. Clinical parameters are poorly predictive of treatment response suggesting the need to develop biomarkers to identify responders.
Collapse
Affiliation(s)
- Oriol Sibila
- Respiratory Department, Hospital Clinic, IDIBAPS, CIBERES, Barcelona, Spain
| | - Elena Laserna
- Hospital Comarcal de Mollet, Mollet del Vallés, Spain
| | - Amelia Shoemark
- Scottish Centre for Respiratory Medicine, University of Dundee, Dundee, UK
| | - Lidia Perea
- Respiratory Department, Hospital Clinic, IDIBAPS, CIBERES, Barcelona, Spain
| | - Diana Bilton
- Department of Respiratory Medicine, Royal Brompton Hospital, London, UK
| | - Megan L Crichton
- Scottish Centre for Respiratory Medicine, University of Dundee, Dundee, UK
| | - Anthony De Soyza
- Freeman Hospital Newcastle and University of Newcastle, Newcastle, UK
| | - Wim G Boersma
- Department of Pulmonary Diseases, Northwest Hospital Group, Alkmaar, Netherlands
| | | | - James D Chalmers
- Scottish Centre for Respiratory Medicine, University of Dundee, Dundee, UK
| |
Collapse
|
129
|
Al Ojaimi Y, Blin T, Lamamy J, Gracia M, Pitiot A, Denevault-Sabourin C, Joubert N, Pouget JP, Gouilleux-Gruart V, Heuzé-Vourc'h N, Lanznaster D, Poty S, Sécher T. Therapeutic antibodies - natural and pathological barriers and strategies to overcome them. Pharmacol Ther 2021; 233:108022. [PMID: 34687769 PMCID: PMC8527648 DOI: 10.1016/j.pharmthera.2021.108022] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 02/06/2023]
Abstract
Antibody-based therapeutics have become a major class of therapeutics with over 120 recombinant antibodies approved or under review in the EU or US. This therapeutic class has experienced a remarkable expansion with an expected acceleration in 2021-2022 due to the extraordinary global response to SARS-CoV2 pandemic and the public disclosure of over a hundred anti-SARS-CoV2 antibodies. Mainly delivered intravenously, alternative delivery routes have emerged to improve antibody therapeutic index and patient comfort. A major hurdle for antibody delivery and efficacy as well as the development of alternative administration routes, is to understand the different natural and pathological barriers that antibodies face as soon as they enter the body up to the moment they bind to their target antigen. In this review, we discuss the well-known and more under-investigated extracellular and cellular barriers faced by antibodies. We also discuss some of the strategies developed in the recent years to overcome these barriers and increase antibody delivery to its site of action. A better understanding of the biological barriers that antibodies have to face will allow the optimization of antibody delivery near its target. This opens the way to the development of improved therapy with less systemic side effects and increased patients' adherence to the treatment.
Collapse
Affiliation(s)
- Yara Al Ojaimi
- UMR 1253, iBrain, Inserm, 37000 Tours, France; University of Tours, 37000 Tours, France
| | - Timothée Blin
- University of Tours, 37000 Tours, France; UMR 1100, CEPR, Inserm, 37000 Tours, France
| | - Juliette Lamamy
- University of Tours, 37000 Tours, France; GICC, EA7501, 37000 Tours, France
| | - Matthieu Gracia
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Inserm U1194, Université de Montpellier, Institut Régional du Cancer de Montpellier (ICM), Montpellier F-34298, France
| | - Aubin Pitiot
- University of Tours, 37000 Tours, France; UMR 1100, CEPR, Inserm, 37000 Tours, France
| | | | - Nicolas Joubert
- University of Tours, 37000 Tours, France; GICC, EA7501, 37000 Tours, France
| | - Jean-Pierre Pouget
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Inserm U1194, Université de Montpellier, Institut Régional du Cancer de Montpellier (ICM), Montpellier F-34298, France
| | | | | | - Débora Lanznaster
- UMR 1253, iBrain, Inserm, 37000 Tours, France; University of Tours, 37000 Tours, France
| | - Sophie Poty
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Inserm U1194, Université de Montpellier, Institut Régional du Cancer de Montpellier (ICM), Montpellier F-34298, France
| | - Thomas Sécher
- University of Tours, 37000 Tours, France; UMR 1100, CEPR, Inserm, 37000 Tours, France
| |
Collapse
|
130
|
Méndez R, Feced L, Alcaraz-Serrano V, González-Jiménez P, Bouzas L, Alonso R, Martínez-Dolz L, Hervás D, Fernández-Barat L, Torres A, Menéndez R. Cardiovascular Events during and after Bronchiectasis Exacerbations and Long-Term Mortality. Chest 2021; 161:629-636. [PMID: 34656526 DOI: 10.1016/j.chest.2021.10.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 10/04/2021] [Accepted: 10/05/2021] [Indexed: 10/20/2022] Open
Abstract
BACKGROUND Population-based and retrospective studies have shown that risk for cardiovascular events such as arrythmias, ischemic episodes or heart failure, increase during and after bronchiectasis exacerbations. RESEARCH QUESTION What are the risk factors for cardiovascular events (CVE) during and after bronchiectasis exacerbations and its impact on mortality? STUDY DESIGN AND METHODS This was a post-hoc retrospective analysis of a prospective observational study of 250 patients with bronchiectasis at two tertiary care hospitals. Only the first exacerbation was considered for each patient, collecting demographic, comorbidity, and severity data. The main outcomes were the appearance of CVE and mortality. Risk factors for CVE were analyzed using a semi-competing risks model. RESULTS During a median follow-up of 35 months, 74 (29.6%) patients had a CVE and 93 (37.2%) died. Semi-competing risks analysis indicated that age, arterial hypertension, chronic obstructive pulmonary disease, and potentially the severe exacerbations significantly increased the risk for developing CVE. Compared to patients without CVE, those with CVE had higher mortality. INTERPRETATION Demographic factors and comorbidities are risk factors for the development of CVE after an acute exacerbation of bronchiectasis. The appearance of CVE worsens long-term prognosis.
Collapse
Affiliation(s)
- Raúl Méndez
- Pneumology Department. La Fe University and Polytechnic Hospital. Valencia, Spain; Respiratory Infections Research Group. Health Research Institute La Fe. Valencia, Spain.
| | - Laura Feced
- Pneumology Department. La Fe University and Polytechnic Hospital. Valencia, Spain; Respiratory Infections Research Group. Health Research Institute La Fe. Valencia, Spain; University of Valencia. Valencia, Spain
| | - Victoria Alcaraz-Serrano
- Pneumology Department. University Hospital Clínic of Barcelona. August Pi i Sunyer Biomedical Research Institute (IDIBAPS). Barcelona, Spain; Center for Biomedical Research Network in Respiratory Diseases (CIBERES). Madrid, Spain
| | - Paula González-Jiménez
- Pneumology Department. La Fe University and Polytechnic Hospital. Valencia, Spain; Respiratory Infections Research Group. Health Research Institute La Fe. Valencia, Spain; University of Valencia. Valencia, Spain
| | - Leyre Bouzas
- Pneumology Department. La Fe University and Polytechnic Hospital. Valencia, Spain; Respiratory Infections Research Group. Health Research Institute La Fe. Valencia, Spain
| | - Ricardo Alonso
- Laboratory Department. La Fe University and Polytechnic Hospital. Valencia, Spain
| | - Luis Martínez-Dolz
- Cardiology Department. La Fe University and Polytechnic Hospital. Health Research Institute La Fe. Valencia, Spain; Center for Biomedical Research Network in Cardiovascular Diseases (CIBERCV). Madrid, Spain
| | - David Hervás
- Data Science, Biostatistics & Bioinformatics. Health Research Institute La Fe. Valencia, Spain; Department of Applied Statistics and Operational Research and Quality. Universitat Politècnica de València. Valencia, Spain
| | - Laia Fernández-Barat
- Pneumology Department. University Hospital Clínic of Barcelona. August Pi i Sunyer Biomedical Research Institute (IDIBAPS). Barcelona, Spain; Center for Biomedical Research Network in Respiratory Diseases (CIBERES). Madrid, Spain
| | - Antoni Torres
- Pneumology Department. University Hospital Clínic of Barcelona. August Pi i Sunyer Biomedical Research Institute (IDIBAPS). Barcelona, Spain; Center for Biomedical Research Network in Respiratory Diseases (CIBERES). Madrid, Spain
| | - Rosario Menéndez
- Pneumology Department. La Fe University and Polytechnic Hospital. Valencia, Spain; Respiratory Infections Research Group. Health Research Institute La Fe. Valencia, Spain; University of Valencia. Valencia, Spain; Center for Biomedical Research Network in Respiratory Diseases (CIBERES). Madrid, Spain
| |
Collapse
|
131
|
The Lung Microbiome during Health and Disease. Int J Mol Sci 2021; 22:ijms221910872. [PMID: 34639212 PMCID: PMC8509400 DOI: 10.3390/ijms221910872] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/24/2021] [Accepted: 09/28/2021] [Indexed: 12/24/2022] Open
Abstract
Healthy human lungs have traditionally been considered to be a sterile organ. However, culture-independent molecular techniques have reported that large numbers of microbes coexist in the lung and airways. The lungs harbor diverse microbial composition that are undetected by previous approaches. Many studies have found significant differences in microbial composition between during health and respiratory disease. The lung microbiome is likely to not only influence susceptibility or causes of diseases but be affected by disease activities or responses to treatment. Although lung microbiome research has some limitations from study design to reporting, it can add further dimensionality to host-microbe interactions. Moreover, there is a possibility that extending understanding to the lung microbiome with new multiple omics approaches would be useful for developing both diagnostic and prognostic biomarkers for respiratory diseases in clinical settings.
Collapse
|
132
|
Fazleen A, Wilkinson T. The emerging role of proteases in α 1-antitrypsin deficiency and beyond. ERJ Open Res 2021; 7:00494-2021. [PMID: 34820446 PMCID: PMC8607071 DOI: 10.1183/23120541.00494-2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 09/09/2021] [Indexed: 12/16/2022] Open
Abstract
α1-Antitrypsin deficiency (AATD) has been historically under-recognised and under-diagnosed; recently it has begun to receive greater interest in terms of attempts at deeper elucidation of pathology and treatment options. However, the concept of disease phenotypes within AATD (emphysema, chronic bronchitis, bronchiectasis or a combination of phenotypes) has not been proposed or studied. Of the three neutrophil serine proteases, neutrophil elastase was historically believed to be the sole contributor to disease pathology in AATD. Recently, Proteinase-3 has been increasingly studied as an equal, if not greater, contributor to the disease process. Cathepsin G, however, has not been extensively evaluated in this area. Matrix metalloproteinases have also been mentioned in the pathogenesis of AATD but have not been widely explored. This article considers the available evidence for differential protease activity in patients with AATD, including the contribution to distinct phenotypes of the disease. Owing to limited literature in this area, extrapolations from studies of other chronic lung diseases with similar phenotypes, including COPD and bronchiectasis, have been made. We consider a new framework of understanding defined by protease-driven endotypes of disease which may lead to new opportunities for precision medicine.
Collapse
Affiliation(s)
- Aishath Fazleen
- University Hospital Southampton NHS Foundation Trust, Southampton, UK
- Faculty of Medicine, University of Southampton, Southampton, UK
| | - Tom Wilkinson
- University Hospital Southampton NHS Foundation Trust, Southampton, UK
- Faculty of Medicine, University of Southampton, Southampton, UK
| |
Collapse
|
133
|
Juthong S, Panyarath P. Efficacy of Roflumilast in Bronchiectasis Patients with Frequent Exacerbations: A Double-Blinded, Randomized, Placebo-Controlled Pilot Clinical Trial. Tuberc Respir Dis (Seoul) 2021; 85:67-73. [PMID: 34343424 PMCID: PMC8743631 DOI: 10.4046/trd.2021.0051] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 08/01/2021] [Indexed: 11/24/2022] Open
Abstract
Background Bronchiectasis patients with neutrophilic airway inflammation develop symptoms of chronic cough, sputum production, and recurrent exacerbations. Roflumilast has anti-inflammatory actions via decreased neutrophilic airway inflammation. The effectiveness of roflumilast to reduce bronchiectasis exacerbation has never been evaluated. Methods We conducted a double-blind, randomized, placebo-controlled trial. The primary objective was to assess the effect of roflumilast compared with placebo to reduce exacerbation rates in bronchiectasis patients. The secondary objectives were the changes in FEV1 and SGRQ. Bronchiectasis patients older than 18 years and had two exacerbations during the previous 12 months were randomly assigned to receive either 500 g of roflumilast or placebo once daily for 6 months in a 1:1 ratio. Results Forty bronchiectasis patients who experienced exacerbations were screened. Thirty patients completed the study after 6 months of treatment: roflumilast group (n=15) and placebo group (n=15). The rates of exacerbations were 0.57 and 0.59 per patient in the roflumilast and placebo groups, respectively. Pre-bronchodilator FEV1 increased by 0.07 liter from baseline in the roflumilast group and decreased by 0.015 liter in the placebo group but the difference was not significant. No significant differences were observed in the change of SGRQ scores between the roflumilast and placebo groups. Roflumilast had significant side effects including loss of appetite and headache. Conclusions Roflumilast did not significantly affect the rate of exacerbations and quality of life. However, FEV1 tended to improve in the roflumilast group compared with the placebo group.
Collapse
Affiliation(s)
- Siwasak Juthong
- Department of Internal Medicine, Faculty of Internal Medicine, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Pattaraporn Panyarath
- Department of Internal Medicine, Faculty of Internal Medicine, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| |
Collapse
|
134
|
Huckriede J, Anderberg SB, Morales A, de Vries F, Hultström M, Bergqvist A, Ortiz-Pérez JT, Sels JW, Wichapong K, Lipcsey M, van de Poll M, Larsson A, Luther T, Reutelingsperger C, de Frutos PG, Frithiof R, Nicolaes GAF. Evolution of NETosis markers and DAMPs have prognostic value in critically ill COVID-19 patients. Sci Rep 2021; 11:15701. [PMID: 34344929 PMCID: PMC8333321 DOI: 10.1038/s41598-021-95209-x] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 07/13/2021] [Indexed: 12/22/2022] Open
Abstract
Coronavirus disease 19 (COVID-19) presents with disease severities of varying degree. In its most severe form, infection may lead to respiratory failure and multi-organ dysfunction. Here we study the levels and evolution of the damage associated molecular patterns (DAMPS) cell free DNA (cfDNA), extracellular histone H3 (H3) and neutrophil elastase (NE), and the immune modulators GAS6 and AXL in relation to clinical parameters, ICU scoring systems and mortality in patients (n = 100) with severe COVID-19. cfDNA, H3, NE, GAS6 and AXL were increased in COVID-19 patients compared to controls. These measures associated with occurrence of clinical events and intensive care unit acquired weakness (ICUAW). cfDNA and GAS6 decreased in time in patients surviving to 30 days post ICU admission. A decrease of 27.2 ng/mL cfDNA during ICU stay associated with patient survival, whereas levels of GAS6 decreasing more than 4.0 ng/mL associated with survival. The presence of H3 in plasma was a common feature of COVID-19 patients, detected in 38% of the patients at ICU admission. NETosis markers cfDNA, H3 and NE correlated well with parameters of tissue damage and neutrophil counts. Furthermore, cfDNA correlated with lowest p/f ratio and a lowering in cfDNA was observed in patients with ventilator-free days.
Collapse
Affiliation(s)
- Joram Huckriede
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, P.O. Box 616, 6200 MD, Maastricht, the Netherlands
| | - Sara Bülow Anderberg
- Department of Surgical Sciences, Section for Anaesthesia & Intensive Care, Uppsala University, Uppsala, Sweden
| | - Albert Morales
- Department of Cell Death and Proliferation, IIBB-CSIC, IDIBAPS, and BCLC, CIBEREHD, Barcelona, Spain
| | - Femke de Vries
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, P.O. Box 616, 6200 MD, Maastricht, the Netherlands
| | - Michael Hultström
- Department of Surgical Sciences, Section for Anaesthesia & Intensive Care, Uppsala University, Uppsala, Sweden
- Department of Medical Cell Biology, Integrative Physiology, Uppsala University, Uppsala, Sweden
| | - Anders Bergqvist
- Department of Medical Sciences, Clinical Microbiology, Uppsala University, Uppsala, Sweden
| | - José T Ortiz-Pérez
- Cardiology Department, Hospital Clinic Barcelona and CIBERCV, Barcelona, Spain
| | - Jan Willem Sels
- Department of Intensive Care Medicine, Maastricht University Medical Centre MUMC+), Maastricht, the Netherlands
- Department of Cardiology, Maastricht University Medical Centre, MUMC+), Maastricht, the Netherlands
| | - Kanin Wichapong
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, P.O. Box 616, 6200 MD, Maastricht, the Netherlands
| | - Miklos Lipcsey
- Department of Surgical Sciences, Section for Anaesthesia & Intensive Care, Uppsala University, Uppsala, Sweden
- Hedenstierna Laboratory, Anaesthesiology and Intensive Care Medicine, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Marcel van de Poll
- Department of Intensive Care Medicine, Maastricht University Medical Centre MUMC+), Maastricht, the Netherlands
- Department of Surgery, Maastricht University Medical Centre (MUMC+), School for Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, the Netherlands
| | - Anders Larsson
- Department of Medical Sciences, Clinical Chemistry, Uppsala University, Uppsala, Sweden
| | - Tomas Luther
- Department of Surgical Sciences, Section for Anaesthesia & Intensive Care, Uppsala University, Uppsala, Sweden
| | - Chris Reutelingsperger
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, P.O. Box 616, 6200 MD, Maastricht, the Netherlands
| | - Pablo Garcia de Frutos
- Department of Cell Death and Proliferation, IIBB-CSIC, IDIBAPS and CIBERCV, Barcelona, Spain
| | - Robert Frithiof
- Department of Surgical Sciences, Section for Anaesthesia & Intensive Care, Uppsala University, Uppsala, Sweden
| | - Gerry A F Nicolaes
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, P.O. Box 616, 6200 MD, Maastricht, the Netherlands.
| |
Collapse
|
135
|
Voynow JA, Shinbashi M. Neutrophil Elastase and Chronic Lung Disease. Biomolecules 2021; 11:biom11081065. [PMID: 34439732 PMCID: PMC8394930 DOI: 10.3390/biom11081065] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/08/2021] [Accepted: 07/13/2021] [Indexed: 12/24/2022] Open
Abstract
Neutrophil elastase (NE) is a major inflammatory protease released by neutrophils and is present in the airways of patients with cystic fibrosis (CF), chronic obstructive pulmonary disease, non-CF bronchiectasis, and bronchopulmonary dysplasia. Although NE facilitates leukocyte transmigration to the site of infection and is required for clearance of Gram-negative bacteria, it also activates inflammation when released into the airway milieu in chronic inflammatory airway diseases. NE exposure induces airway remodeling with increased mucin expression and secretion and impaired ciliary motility. NE interrupts epithelial repair by promoting cellular apoptosis and senescence and it activates inflammation directly by increasing cytokine expression and release, and indirectly by triggering extracellular trap release and exosome release, which magnify protease activity and inflammation in the airway. NE inhibits innate immune function by digesting opsonins and opsonin receptors, degrading innate immune proteins such as lactoferrin, and inhibiting macrophage phagocytosis. Importantly, NE-directed therapies have not yet been effective in preventing the pathologic sequelae of NE exposure, but new therapies are being developed that offer both direct antiprotease activity and multifunctional anti-inflammatory properties.
Collapse
Affiliation(s)
- Judith A. Voynow
- Division of Pediatric Pulmonology, Children’s Hospital of Richmond at Virginia Commonwealth University, Richmond, VA 23298, USA
- Correspondence:
| | - Meagan Shinbashi
- School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA;
| |
Collapse
|
136
|
Perl S, Shteinberg M. Bronchiectasis Exacerbations: Definitions, Causes, and Acute Management. Semin Respir Crit Care Med 2021; 42:595-605. [PMID: 34261183 DOI: 10.1055/s-0041-1730944] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Pulmonary exacerbations (PExs) are events in the course of bronchiectasis which are defined as an increase in disease symptoms lasting a period of a few days. It is established that the tendency toward having PEx is stable throughout the course of the disease. Certain conditions were found to be associated with an increased risk of developing a PEx. Among these are chronic airway infection with Pseudomonas aeruginosa or Aspergillus species, concomitant airway diseases (asthma, chronic obstructive pulmonary disease, and chronic rhinosinusitis), genetic factors such as primary ciliary dyskinesia, and nutritional factors. The immediate events underlying the onset of a PEx are less clearly determined. Although acute changes in bacterial airway composition have been the paradigm for decades, recent microbiome-focused research has not uniformly established such acute changes at the onset of PEx. Other acute changes such as air pollution, viral infection, and changes in bacterial metabolic activity have also been implicated as causes of a PEx. Despite these gaps in our knowledge of the biology of PEx, antimicrobial therapy directed against the identified pathogens in sputum is currently the recommended therapeutic strategy. Various long-term therapies, including antimicrobial and anti-inflammatory strategies, have been proven effective in reducing the frequency of PEx, leading to a recommendation for the use of these strategies in people with frequent PEx.
Collapse
Affiliation(s)
- Sivan Perl
- Pulmonology Institute, Shamir Medical Center, Tel Aviv, Israel
| | - Michal Shteinberg
- Pulmonology Institute and CF Center, Carmel Medical Center, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
137
|
Fernández-Barat L, Alcaraz-Serrano V, Amaro R, Torres A. Pseudomonas aeruginosa in Bronchiectasis. Semin Respir Crit Care Med 2021; 42:587-594. [PMID: 34261182 DOI: 10.1055/s-0041-1730921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Pseudomonas aeruginosa (PA) in patients with bronchiectasis (BE) is associated with a poor outcome and quality of life, and its presence is considered a marker of disease severity. This opportunistic pathogen is known for its ability to produce biofilms on biotic or abiotic surfaces and to survive environmental stress exerted by antimicrobials, inflammation, and nutrient or oxygen depletion. The presence of PA biofilms has been linked to chronic respiratory infection in cystic fibrosis but not in BE. There is considerable inconsistency in the reported infection/eradication rates of PA and chronic PA. In addition, inadequate antimicrobial treatment may potentiate the progression from intermittent to chronic infection and also the emergence of antibiotic resistance. A better comprehension of the pathophysiology of PA infections and its implications for BE is urgently needed. This can drive improvements in diagnostic accuracy, can move us toward a new consensus definition of chronic infection, can better define the follow-up of patients at risk of PA, and can achieve more successful eradication rates. In addition, the new technological advances regarding molecular diagnostics, -omics, and biomarkers require us to reconsider our traditional concepts.
Collapse
Affiliation(s)
- Laia Fernández-Barat
- Cellex Laboratory, CibeRes (Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, 06/06/0028), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,School of Medicine, University of Barcelona, Barcelona, Spain.,Department of Pneumology, Respiratory Institute, Hospital Clinic of Barcelona, Spain
| | - Victoria Alcaraz-Serrano
- Cellex Laboratory, CibeRes (Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, 06/06/0028), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,School of Medicine, University of Barcelona, Barcelona, Spain.,Department of Pneumology, Respiratory Institute, Hospital Clinic of Barcelona, Spain
| | - Rosanel Amaro
- Cellex Laboratory, CibeRes (Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, 06/06/0028), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,School of Medicine, University of Barcelona, Barcelona, Spain.,Department of Pneumology, Respiratory Institute, Hospital Clinic of Barcelona, Spain
| | - Antoni Torres
- Cellex Laboratory, CibeRes (Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, 06/06/0028), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,School of Medicine, University of Barcelona, Barcelona, Spain.,Department of Pneumology, Respiratory Institute, Hospital Clinic of Barcelona, Spain
| |
Collapse
|
138
|
Abstract
Bronchiectasis is a complex, heterogeneous disorder defined by both a radiological abnormality of permanent bronchial dilatation and a clinical syndrome. There are multiple underlying causes including severe infections, mycobacterial disease, autoimmune conditions, hypersensitivity disorders, and genetic conditions. The pathophysiology of disease is understood in terms of interdependent concepts of chronic infection, inflammation, impaired mucociliary clearance, and structural lung damage. Neutrophilic inflammation is characteristic of the disease, with elevated levels of harmful proteases such as neutrophil elastase associated with worse outcomes. Recent data show that neutrophil extracellular trap formation may be the key mechanism leading to protease release and severe bronchiectasis. Despite the dominant of neutrophilic disease, eosinophilic subtypes are recognized and may require specific treatments. Neutrophilic inflammation is associated with elevated bacterial loads and chronic infection with organisms such as Pseudomonas aeruginosa. Loss of diversity of the normal lung microbiota and dominance of proteobacteria such as Pseudomonas and Haemophilus are features of severe bronchiectasis and link to poor outcomes. Ciliary dysfunction is also a key feature, exemplified by the rare genetic syndrome of primary ciliary dyskinesia. Mucus symptoms arise through goblet cell hyperplasia and metaplasia and reduced ciliary function through dyskinesia and loss of ciliated cells. The contribution of chronic inflammation, infection, and mucus obstruction leads to progressive structural lung damage. The heterogeneity of the disease is the most challenging aspect of management. An understanding of the pathophysiology of disease and their biomarkers can help to guide personalized medicine approaches utilizing the concept of "treatable traits."
Collapse
Affiliation(s)
- Holly R Keir
- Scottish Centre for Respiratory Research, University of Dundee, Dundee, United Kingdom
| | - James D Chalmers
- Scottish Centre for Respiratory Research, University of Dundee, Dundee, United Kingdom
| |
Collapse
|
139
|
Jaggi TK, Ter SK, Mac Aogáin M, Chotirmall SH. Aspergillus-Associated Endophenotypes in Bronchiectasis. Semin Respir Crit Care Med 2021; 42:556-566. [PMID: 34261180 DOI: 10.1055/s-0041-1730947] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Bronchiectasis is a chronic condition of global relevance resulting in permanent and irreversible structural airway damage. Bacterial infection in bronchiectasis is well studied; however, recent molecular studies identify fungi as important pathogens, either independently or in association with bacteria. Aspergillus species are established fungal pathogens in cystic fibrosis and their role is now increasingly being recognized in noncystic fibrosis bronchiectasis. While the healthy airway is constantly exposed to ubiquitously present Aspergillus conidia in the environment, anatomically damaged airways appear more prone to colonization and subsequent infection by this fungal group. Aspergilli possess diverse immunopathological mechanistic capabilities and when coupled with innate immune defects in a susceptible host, such as that observed in bronchiectasis, it may promote a range of clinical manifestations including sensitization, allergic bronchopulmonary aspergillosis, Aspergillus bronchitis, and/or invasive aspergillosis. How such clinical states influence "endophenotypes" in bronchiectasis is therefore of importance, as each Aspergillus-associated disease state has overlapping features with bronchiectasis itself, and can evolve, depending on underlying host immunity from one type into another. Concurrent Aspergillus infection complicates the clinical course and exacerbations in bronchiectasis and therefore dedicated research to better understand the Aspergillus-host interaction in the bronchiectasis airway is now warranted.
Collapse
Affiliation(s)
- Tavleen Kaur Jaggi
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Soo Kai Ter
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Micheál Mac Aogáin
- Biochemical Genetics Laboratory, Department of Biochemistry, St. James's Hospital, Dublin, Ireland.,Clinical Biochemistry Unit, School of Medicine, Trinity College Dublin, Ireland
| | - Sanjay H Chotirmall
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
140
|
Muñoz Castro G, Balañá Corberó A. Airway Clearance and Mucoactive Therapies. Semin Respir Crit Care Med 2021; 42:616-622. [PMID: 34261185 DOI: 10.1055/s-0041-1730922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The respiratory system is constantly exposed to external pathogens but has different and effective defense systems. The pathophysiology of bronchiectasis affects the defense system considerably in that alterations occur in the airway that reduce its effectiveness in mucociliary clearance and the greater presence of mucins leads to the accumulation of more adherent and viscous mucus. One of the pillars of treatment of this disease should be improvement of mucociliary clearance and a decrease in the adherence and viscosity of the mucus. To this end, the mobilization of secretions must be increased through effective respiratory physiotherapy techniques, which can be manual and/or instrumental. The properties of mucus can be modified to improve its mobilization through the use of a mucoactive agent. Despite the increase in the number and quality of studies, the evidence for these treatments remains scarce, although their application is recommended in all guidelines.
Collapse
Affiliation(s)
- Gerard Muñoz Castro
- Department of Pneumology, Dr. Josep Trueta University Hospital, Girona, Spain.,Bronchiectasis Group, Girona Biomedical Research Institute, Girona, Spain.,Department of Physical Therapy, EUSES & ENTI, University of Girona and University of Barcelona, Barcelona, Spain
| | - Ana Balañá Corberó
- Department of Pneumology, Hospital del Mar-Parc de Salut Mar, Barcelona, Spain.,Myogenesis, Inflammation and Muscle Function-IMIM, Barcelona, Spain.,Department of Physical Therapy, EUIFN Blanquerna URL Barcelona, Barcelona, Spain
| |
Collapse
|
141
|
T2-High Endotype and Response to Biological Treatments in Patients with Bronchiectasis. Biomedicines 2021; 9:biomedicines9070772. [PMID: 34356836 PMCID: PMC8301446 DOI: 10.3390/biomedicines9070772] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/28/2021] [Accepted: 06/29/2021] [Indexed: 12/29/2022] Open
Abstract
Although bronchiectasis pathophysiology has been historically understood around the presence of airway neutrophilic inflammation, recent experiences are consistent with the identification of a type 2 inflammation (T2) high endotype in bronchiectasis. In order to evaluate prevalence and clinical characteristics of bronchiectasis patients with a T2-high endotype and explore their response to biologicals, two studies were carried out. In a cross-sectional study, bronchiectasis adults without asthma underwent clinical, radiological, and microbiological assessment, along with blood eosinophils and oral fractional exhaled nitric oxide (FeNO) evaluation, during stable state. Prevalence and characteristics of patients with a T2- high endotype (defined by the presence of either eosinophils blood count ≥300 cells·µL−1 or oral FeNO ≥ 25 dpp) were reported. A case series of severe asthmatic patients with concomitant bronchiectasis treated with either mepolizumab or benralizumab was evaluated, and patients’ clinical data pre- and post-treatment were analyzed up to 2 years of follow up. Among bronchiectasis patients without asthma enrolled in the cross-sectional study, a T2-high endotype was present in 31% of them. These patients exhibited a more severe disease, high dyspnea severity, low respiratory function, and high impact on quality of life. Among the five patients with severe eosinophilic asthma and concomitant bronchiectasis included in the series, treatment with either mepolizumab or benralizumab significantly reduced the exacerbation rate with an effect that persists for up to 2 years of follow up. If validated across different settings, our data suggest the need to design randomized controlled trials on biological treatments targeting the T2-high endotype in bronchiectasis patients.
Collapse
|
142
|
AbdulWahab A, Allangawi M, Thomas M, Bettahi I, Sivaraman SK, Jerobin J, Chandra P, Ramanjaneya M, Abou-Samra AB. Sputum and Plasma Neutrophil Elastase in Stable Adult Patients With Cystic Fibrosis in Relation to Chronic Pseudomonas Aeruginosa Colonization. Cureus 2021; 13:e15948. [PMID: 34221778 PMCID: PMC8238017 DOI: 10.7759/cureus.15948] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Background and purpose Neutrophil elastase (NE) has been implicated in the pathogenesis of airway inflammation in cystic fibrosis (CF) patients and it impairs defenses against Pseudomonas aeruginosa (PA) infection or colonization. Sputum NE may act as a biomarker of neutrophilic inflammation in CF patients. This study aimed to determine sputum and plasma total NE levels in clinically stable adult CF patients and control subjects, and their correlation to PA colonization and lung functions. Methods This is a cross-sectional study. Total NE was measured on spontaneously expectorated sputum and plasma obtained from 21 CF patients, aged 18-40 years, during routine visits to the adult CF clinic. This was compared to plasma obtained from 22 matching healthy controls. The levels of NE were measured by the magnetic bead-based multiplex assay. Results Sputum and plasma NE levels had a significant positive correlation (Pearson r=0.533, P=0.013) with PA colonization. Sixteen CF patients (76.2%) were chronically colonized with PA. Both median sputum and plasma NE were found to be higher in CF patients with PA as compared with non-PA patients, even though this difference was statistically insignificant. Sputum and plasma NE levels did not correlate with the percentage predicted forced expiratory volume in one second (FEV1), the forced vital capacity (FVC), and FEV1/FVC and no association with PA. Conclusion The findings suggest that clinically stable adult CF patients colonized with PA may have higher NE levels in both plasma and sputum as compared to non-PA CF patients and probably total NE does not influence lung functions.
Collapse
Affiliation(s)
| | | | | | - Ilham Bettahi
- Qatar Metabolic Institute, Interim Translational Research Institute, Academic Health System, Hamad General Hospital, Doha, QAT
| | - Siveen K Sivaraman
- Interim Translational Research Institute, Academic Health System, Hamad General Hospital, Doha, QAT
| | - Jayakumar Jerobin
- Qatar Metabolic Institute, Interim Translational Research Institute, Academic Health System, Hamad General Hospital, Doha, QAT
| | - Prem Chandra
- Medical Research Center, Hamad Medical Hospital, Doha, QAT
| | - Manjunath Ramanjaneya
- Qatar Metabolic Institute, Interim Translational Research Institute, Academic Health System, Hamad General Hospital, Doha, QAT
| | | |
Collapse
|
143
|
Maselli DJ, Yen A, Wang W, Okajima Y, Dolliver WR, Mercugliano C, Anzueto A, Restrepo MI, Aksamit TR, Basavaraj A, Aliberti S, Young KA, Kinney GL, Wells JM, San José Estépar R, Lynch DA, Diaz AA. Small Airway Disease and Emphysema Are Associated with Future Exacerbations in Smokers with CT-derived Bronchiectasis and COPD: Results from the COPDGene Cohort. Radiology 2021; 300:706-714. [PMID: 34156303 DOI: 10.1148/radiol.2021204052] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Background Chronic obstructive pulmonary disease (COPD) and bronchiectasis can overlap and share pathologic features, such as small airway disease (SAD). Whether the presence of SAD and emphysema in smokers with CT-derived bronchiectasis is associated with exacerbations is unknown. Purpose To assess whether SAD and emphysema in smokers with CT-derived bronchiectasis are associated with future exacerbations. Materials and Methods SAD and emphysema were quantified using the parametric response map method in former and current heavy smokers with and without bronchiectasis at CT from the COPDGene Study (from July 2009 to July 2018). Exacerbations were prospectively assessed through biannual follow-up. An exacerbation was defined as an increase in or new onset of respiratory symptoms treated with antibiotics and/or corticosteroids. Severe exacerbations were defined as those that required hospitalization. The association of a high burden of SAD (≥15.6%) and high burden of emphysema (≥5%) at CT with exacerbations was assessed with generalized linear mixed models. Results Of 737 participants, 387 (median age, 64 years [interquartile range, 58-71 years]; 223 women) had CT-derived bronchiectasis. During a 9-year follow-up, after adjustment for age, sex, race, body mass index, current smoking status, pack-years, exacerbations before study entry, forced expiratory volume in 1 second, or FEV1, and bronchiectasis severity CT score, high burden of SAD and high burden of emphysema were associated with a higher number of exacerbations per year (relative risk [RR], 1.89 [95% CI: 1.54, 2.33] and 1.37 [95% CI: 1.13, 1.66], respectively; P ≤ .001 for both). Results were comparable among participants with bronchiectasis meeting criteria for COPD (n = 197) (RR, 1.67 [95% CI: 1.23, 2.27] for high burden of SAD and 1.51 [95% CI: 1.20, 1.91] for high burden of emphysema; P ≤ .001 for both). Conclusion In smokers with CT-derived bronchiectasis and chronic obstructive pulmonary disease, structural damage to lung parenchyma and small airways was associated with a higher number of exacerbations per year. Clinical trial registration no. NCT00608764 © RSNA, 2021.
Collapse
Affiliation(s)
- Diego Jose Maselli
- From the Division of Pulmonary Diseases and Critical Care, the University of Texas Health Science Center at San Antonio, San Antonio, Tex (D.J.M., A.A., M.I.R.); Department of Radiology, University of California, San Diego, Calif (A.Y.); Division of Sleep Medicine and Circadian Disorders (W.W.), Division of Pulmonary and Critical Care Medicine, Department of Medicine (W.R.D., A.A.D.), and Department of Radiology (R.S.J.E.), Brigham and Women's Hospital, Harvard Medical School, 75 Francis St, Boston, MA 02115; Department of Radiology, St. Luke's International Hospital, Chuo-ku, Tokyo, Japan (Y.O.); Quinnipiac University School of Medicine, Hamden, Conn (C.M.); South Texas Veterans Health Care System, San Antonio, Tex (A.A., M.I.R.); Pulmonary Disease and Critical Care Medicine, Mayo Clinic, Rochester, Minn (T.R.A.); Division of Pulmonary, Critical Care & Sleep Medicine, New York University School of Medicine, New York, NY (A.B.); Department of Pathophysiology and Transplantation, University of Milan Internal Medicine, and Respiratory Unit and Cystic Fibrosis Adult Center, Milan, Italy (S.A.); Department of Epidemiology, Colorado School of Public Health, University of Colorado, Aurora, Colo (K.A.Y., G.L.K.); Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, Ala (J.M.W.); and Department of Radiology, National Jewish Health, Denver, Colo (D.A.L.)
| | - Andrew Yen
- From the Division of Pulmonary Diseases and Critical Care, the University of Texas Health Science Center at San Antonio, San Antonio, Tex (D.J.M., A.A., M.I.R.); Department of Radiology, University of California, San Diego, Calif (A.Y.); Division of Sleep Medicine and Circadian Disorders (W.W.), Division of Pulmonary and Critical Care Medicine, Department of Medicine (W.R.D., A.A.D.), and Department of Radiology (R.S.J.E.), Brigham and Women's Hospital, Harvard Medical School, 75 Francis St, Boston, MA 02115; Department of Radiology, St. Luke's International Hospital, Chuo-ku, Tokyo, Japan (Y.O.); Quinnipiac University School of Medicine, Hamden, Conn (C.M.); South Texas Veterans Health Care System, San Antonio, Tex (A.A., M.I.R.); Pulmonary Disease and Critical Care Medicine, Mayo Clinic, Rochester, Minn (T.R.A.); Division of Pulmonary, Critical Care & Sleep Medicine, New York University School of Medicine, New York, NY (A.B.); Department of Pathophysiology and Transplantation, University of Milan Internal Medicine, and Respiratory Unit and Cystic Fibrosis Adult Center, Milan, Italy (S.A.); Department of Epidemiology, Colorado School of Public Health, University of Colorado, Aurora, Colo (K.A.Y., G.L.K.); Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, Ala (J.M.W.); and Department of Radiology, National Jewish Health, Denver, Colo (D.A.L.)
| | - Wei Wang
- From the Division of Pulmonary Diseases and Critical Care, the University of Texas Health Science Center at San Antonio, San Antonio, Tex (D.J.M., A.A., M.I.R.); Department of Radiology, University of California, San Diego, Calif (A.Y.); Division of Sleep Medicine and Circadian Disorders (W.W.), Division of Pulmonary and Critical Care Medicine, Department of Medicine (W.R.D., A.A.D.), and Department of Radiology (R.S.J.E.), Brigham and Women's Hospital, Harvard Medical School, 75 Francis St, Boston, MA 02115; Department of Radiology, St. Luke's International Hospital, Chuo-ku, Tokyo, Japan (Y.O.); Quinnipiac University School of Medicine, Hamden, Conn (C.M.); South Texas Veterans Health Care System, San Antonio, Tex (A.A., M.I.R.); Pulmonary Disease and Critical Care Medicine, Mayo Clinic, Rochester, Minn (T.R.A.); Division of Pulmonary, Critical Care & Sleep Medicine, New York University School of Medicine, New York, NY (A.B.); Department of Pathophysiology and Transplantation, University of Milan Internal Medicine, and Respiratory Unit and Cystic Fibrosis Adult Center, Milan, Italy (S.A.); Department of Epidemiology, Colorado School of Public Health, University of Colorado, Aurora, Colo (K.A.Y., G.L.K.); Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, Ala (J.M.W.); and Department of Radiology, National Jewish Health, Denver, Colo (D.A.L.)
| | - Yuka Okajima
- From the Division of Pulmonary Diseases and Critical Care, the University of Texas Health Science Center at San Antonio, San Antonio, Tex (D.J.M., A.A., M.I.R.); Department of Radiology, University of California, San Diego, Calif (A.Y.); Division of Sleep Medicine and Circadian Disorders (W.W.), Division of Pulmonary and Critical Care Medicine, Department of Medicine (W.R.D., A.A.D.), and Department of Radiology (R.S.J.E.), Brigham and Women's Hospital, Harvard Medical School, 75 Francis St, Boston, MA 02115; Department of Radiology, St. Luke's International Hospital, Chuo-ku, Tokyo, Japan (Y.O.); Quinnipiac University School of Medicine, Hamden, Conn (C.M.); South Texas Veterans Health Care System, San Antonio, Tex (A.A., M.I.R.); Pulmonary Disease and Critical Care Medicine, Mayo Clinic, Rochester, Minn (T.R.A.); Division of Pulmonary, Critical Care & Sleep Medicine, New York University School of Medicine, New York, NY (A.B.); Department of Pathophysiology and Transplantation, University of Milan Internal Medicine, and Respiratory Unit and Cystic Fibrosis Adult Center, Milan, Italy (S.A.); Department of Epidemiology, Colorado School of Public Health, University of Colorado, Aurora, Colo (K.A.Y., G.L.K.); Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, Ala (J.M.W.); and Department of Radiology, National Jewish Health, Denver, Colo (D.A.L.)
| | - Wojciech R Dolliver
- From the Division of Pulmonary Diseases and Critical Care, the University of Texas Health Science Center at San Antonio, San Antonio, Tex (D.J.M., A.A., M.I.R.); Department of Radiology, University of California, San Diego, Calif (A.Y.); Division of Sleep Medicine and Circadian Disorders (W.W.), Division of Pulmonary and Critical Care Medicine, Department of Medicine (W.R.D., A.A.D.), and Department of Radiology (R.S.J.E.), Brigham and Women's Hospital, Harvard Medical School, 75 Francis St, Boston, MA 02115; Department of Radiology, St. Luke's International Hospital, Chuo-ku, Tokyo, Japan (Y.O.); Quinnipiac University School of Medicine, Hamden, Conn (C.M.); South Texas Veterans Health Care System, San Antonio, Tex (A.A., M.I.R.); Pulmonary Disease and Critical Care Medicine, Mayo Clinic, Rochester, Minn (T.R.A.); Division of Pulmonary, Critical Care & Sleep Medicine, New York University School of Medicine, New York, NY (A.B.); Department of Pathophysiology and Transplantation, University of Milan Internal Medicine, and Respiratory Unit and Cystic Fibrosis Adult Center, Milan, Italy (S.A.); Department of Epidemiology, Colorado School of Public Health, University of Colorado, Aurora, Colo (K.A.Y., G.L.K.); Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, Ala (J.M.W.); and Department of Radiology, National Jewish Health, Denver, Colo (D.A.L.)
| | - Christina Mercugliano
- From the Division of Pulmonary Diseases and Critical Care, the University of Texas Health Science Center at San Antonio, San Antonio, Tex (D.J.M., A.A., M.I.R.); Department of Radiology, University of California, San Diego, Calif (A.Y.); Division of Sleep Medicine and Circadian Disorders (W.W.), Division of Pulmonary and Critical Care Medicine, Department of Medicine (W.R.D., A.A.D.), and Department of Radiology (R.S.J.E.), Brigham and Women's Hospital, Harvard Medical School, 75 Francis St, Boston, MA 02115; Department of Radiology, St. Luke's International Hospital, Chuo-ku, Tokyo, Japan (Y.O.); Quinnipiac University School of Medicine, Hamden, Conn (C.M.); South Texas Veterans Health Care System, San Antonio, Tex (A.A., M.I.R.); Pulmonary Disease and Critical Care Medicine, Mayo Clinic, Rochester, Minn (T.R.A.); Division of Pulmonary, Critical Care & Sleep Medicine, New York University School of Medicine, New York, NY (A.B.); Department of Pathophysiology and Transplantation, University of Milan Internal Medicine, and Respiratory Unit and Cystic Fibrosis Adult Center, Milan, Italy (S.A.); Department of Epidemiology, Colorado School of Public Health, University of Colorado, Aurora, Colo (K.A.Y., G.L.K.); Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, Ala (J.M.W.); and Department of Radiology, National Jewish Health, Denver, Colo (D.A.L.)
| | - Antonio Anzueto
- From the Division of Pulmonary Diseases and Critical Care, the University of Texas Health Science Center at San Antonio, San Antonio, Tex (D.J.M., A.A., M.I.R.); Department of Radiology, University of California, San Diego, Calif (A.Y.); Division of Sleep Medicine and Circadian Disorders (W.W.), Division of Pulmonary and Critical Care Medicine, Department of Medicine (W.R.D., A.A.D.), and Department of Radiology (R.S.J.E.), Brigham and Women's Hospital, Harvard Medical School, 75 Francis St, Boston, MA 02115; Department of Radiology, St. Luke's International Hospital, Chuo-ku, Tokyo, Japan (Y.O.); Quinnipiac University School of Medicine, Hamden, Conn (C.M.); South Texas Veterans Health Care System, San Antonio, Tex (A.A., M.I.R.); Pulmonary Disease and Critical Care Medicine, Mayo Clinic, Rochester, Minn (T.R.A.); Division of Pulmonary, Critical Care & Sleep Medicine, New York University School of Medicine, New York, NY (A.B.); Department of Pathophysiology and Transplantation, University of Milan Internal Medicine, and Respiratory Unit and Cystic Fibrosis Adult Center, Milan, Italy (S.A.); Department of Epidemiology, Colorado School of Public Health, University of Colorado, Aurora, Colo (K.A.Y., G.L.K.); Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, Ala (J.M.W.); and Department of Radiology, National Jewish Health, Denver, Colo (D.A.L.)
| | - Marcos I Restrepo
- From the Division of Pulmonary Diseases and Critical Care, the University of Texas Health Science Center at San Antonio, San Antonio, Tex (D.J.M., A.A., M.I.R.); Department of Radiology, University of California, San Diego, Calif (A.Y.); Division of Sleep Medicine and Circadian Disorders (W.W.), Division of Pulmonary and Critical Care Medicine, Department of Medicine (W.R.D., A.A.D.), and Department of Radiology (R.S.J.E.), Brigham and Women's Hospital, Harvard Medical School, 75 Francis St, Boston, MA 02115; Department of Radiology, St. Luke's International Hospital, Chuo-ku, Tokyo, Japan (Y.O.); Quinnipiac University School of Medicine, Hamden, Conn (C.M.); South Texas Veterans Health Care System, San Antonio, Tex (A.A., M.I.R.); Pulmonary Disease and Critical Care Medicine, Mayo Clinic, Rochester, Minn (T.R.A.); Division of Pulmonary, Critical Care & Sleep Medicine, New York University School of Medicine, New York, NY (A.B.); Department of Pathophysiology and Transplantation, University of Milan Internal Medicine, and Respiratory Unit and Cystic Fibrosis Adult Center, Milan, Italy (S.A.); Department of Epidemiology, Colorado School of Public Health, University of Colorado, Aurora, Colo (K.A.Y., G.L.K.); Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, Ala (J.M.W.); and Department of Radiology, National Jewish Health, Denver, Colo (D.A.L.)
| | - Timothy R Aksamit
- From the Division of Pulmonary Diseases and Critical Care, the University of Texas Health Science Center at San Antonio, San Antonio, Tex (D.J.M., A.A., M.I.R.); Department of Radiology, University of California, San Diego, Calif (A.Y.); Division of Sleep Medicine and Circadian Disorders (W.W.), Division of Pulmonary and Critical Care Medicine, Department of Medicine (W.R.D., A.A.D.), and Department of Radiology (R.S.J.E.), Brigham and Women's Hospital, Harvard Medical School, 75 Francis St, Boston, MA 02115; Department of Radiology, St. Luke's International Hospital, Chuo-ku, Tokyo, Japan (Y.O.); Quinnipiac University School of Medicine, Hamden, Conn (C.M.); South Texas Veterans Health Care System, San Antonio, Tex (A.A., M.I.R.); Pulmonary Disease and Critical Care Medicine, Mayo Clinic, Rochester, Minn (T.R.A.); Division of Pulmonary, Critical Care & Sleep Medicine, New York University School of Medicine, New York, NY (A.B.); Department of Pathophysiology and Transplantation, University of Milan Internal Medicine, and Respiratory Unit and Cystic Fibrosis Adult Center, Milan, Italy (S.A.); Department of Epidemiology, Colorado School of Public Health, University of Colorado, Aurora, Colo (K.A.Y., G.L.K.); Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, Ala (J.M.W.); and Department of Radiology, National Jewish Health, Denver, Colo (D.A.L.)
| | - Ashwin Basavaraj
- From the Division of Pulmonary Diseases and Critical Care, the University of Texas Health Science Center at San Antonio, San Antonio, Tex (D.J.M., A.A., M.I.R.); Department of Radiology, University of California, San Diego, Calif (A.Y.); Division of Sleep Medicine and Circadian Disorders (W.W.), Division of Pulmonary and Critical Care Medicine, Department of Medicine (W.R.D., A.A.D.), and Department of Radiology (R.S.J.E.), Brigham and Women's Hospital, Harvard Medical School, 75 Francis St, Boston, MA 02115; Department of Radiology, St. Luke's International Hospital, Chuo-ku, Tokyo, Japan (Y.O.); Quinnipiac University School of Medicine, Hamden, Conn (C.M.); South Texas Veterans Health Care System, San Antonio, Tex (A.A., M.I.R.); Pulmonary Disease and Critical Care Medicine, Mayo Clinic, Rochester, Minn (T.R.A.); Division of Pulmonary, Critical Care & Sleep Medicine, New York University School of Medicine, New York, NY (A.B.); Department of Pathophysiology and Transplantation, University of Milan Internal Medicine, and Respiratory Unit and Cystic Fibrosis Adult Center, Milan, Italy (S.A.); Department of Epidemiology, Colorado School of Public Health, University of Colorado, Aurora, Colo (K.A.Y., G.L.K.); Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, Ala (J.M.W.); and Department of Radiology, National Jewish Health, Denver, Colo (D.A.L.)
| | - Stefano Aliberti
- From the Division of Pulmonary Diseases and Critical Care, the University of Texas Health Science Center at San Antonio, San Antonio, Tex (D.J.M., A.A., M.I.R.); Department of Radiology, University of California, San Diego, Calif (A.Y.); Division of Sleep Medicine and Circadian Disorders (W.W.), Division of Pulmonary and Critical Care Medicine, Department of Medicine (W.R.D., A.A.D.), and Department of Radiology (R.S.J.E.), Brigham and Women's Hospital, Harvard Medical School, 75 Francis St, Boston, MA 02115; Department of Radiology, St. Luke's International Hospital, Chuo-ku, Tokyo, Japan (Y.O.); Quinnipiac University School of Medicine, Hamden, Conn (C.M.); South Texas Veterans Health Care System, San Antonio, Tex (A.A., M.I.R.); Pulmonary Disease and Critical Care Medicine, Mayo Clinic, Rochester, Minn (T.R.A.); Division of Pulmonary, Critical Care & Sleep Medicine, New York University School of Medicine, New York, NY (A.B.); Department of Pathophysiology and Transplantation, University of Milan Internal Medicine, and Respiratory Unit and Cystic Fibrosis Adult Center, Milan, Italy (S.A.); Department of Epidemiology, Colorado School of Public Health, University of Colorado, Aurora, Colo (K.A.Y., G.L.K.); Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, Ala (J.M.W.); and Department of Radiology, National Jewish Health, Denver, Colo (D.A.L.)
| | - Kendra A Young
- From the Division of Pulmonary Diseases and Critical Care, the University of Texas Health Science Center at San Antonio, San Antonio, Tex (D.J.M., A.A., M.I.R.); Department of Radiology, University of California, San Diego, Calif (A.Y.); Division of Sleep Medicine and Circadian Disorders (W.W.), Division of Pulmonary and Critical Care Medicine, Department of Medicine (W.R.D., A.A.D.), and Department of Radiology (R.S.J.E.), Brigham and Women's Hospital, Harvard Medical School, 75 Francis St, Boston, MA 02115; Department of Radiology, St. Luke's International Hospital, Chuo-ku, Tokyo, Japan (Y.O.); Quinnipiac University School of Medicine, Hamden, Conn (C.M.); South Texas Veterans Health Care System, San Antonio, Tex (A.A., M.I.R.); Pulmonary Disease and Critical Care Medicine, Mayo Clinic, Rochester, Minn (T.R.A.); Division of Pulmonary, Critical Care & Sleep Medicine, New York University School of Medicine, New York, NY (A.B.); Department of Pathophysiology and Transplantation, University of Milan Internal Medicine, and Respiratory Unit and Cystic Fibrosis Adult Center, Milan, Italy (S.A.); Department of Epidemiology, Colorado School of Public Health, University of Colorado, Aurora, Colo (K.A.Y., G.L.K.); Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, Ala (J.M.W.); and Department of Radiology, National Jewish Health, Denver, Colo (D.A.L.)
| | - Gregory L Kinney
- From the Division of Pulmonary Diseases and Critical Care, the University of Texas Health Science Center at San Antonio, San Antonio, Tex (D.J.M., A.A., M.I.R.); Department of Radiology, University of California, San Diego, Calif (A.Y.); Division of Sleep Medicine and Circadian Disorders (W.W.), Division of Pulmonary and Critical Care Medicine, Department of Medicine (W.R.D., A.A.D.), and Department of Radiology (R.S.J.E.), Brigham and Women's Hospital, Harvard Medical School, 75 Francis St, Boston, MA 02115; Department of Radiology, St. Luke's International Hospital, Chuo-ku, Tokyo, Japan (Y.O.); Quinnipiac University School of Medicine, Hamden, Conn (C.M.); South Texas Veterans Health Care System, San Antonio, Tex (A.A., M.I.R.); Pulmonary Disease and Critical Care Medicine, Mayo Clinic, Rochester, Minn (T.R.A.); Division of Pulmonary, Critical Care & Sleep Medicine, New York University School of Medicine, New York, NY (A.B.); Department of Pathophysiology and Transplantation, University of Milan Internal Medicine, and Respiratory Unit and Cystic Fibrosis Adult Center, Milan, Italy (S.A.); Department of Epidemiology, Colorado School of Public Health, University of Colorado, Aurora, Colo (K.A.Y., G.L.K.); Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, Ala (J.M.W.); and Department of Radiology, National Jewish Health, Denver, Colo (D.A.L.)
| | - J Michael Wells
- From the Division of Pulmonary Diseases and Critical Care, the University of Texas Health Science Center at San Antonio, San Antonio, Tex (D.J.M., A.A., M.I.R.); Department of Radiology, University of California, San Diego, Calif (A.Y.); Division of Sleep Medicine and Circadian Disorders (W.W.), Division of Pulmonary and Critical Care Medicine, Department of Medicine (W.R.D., A.A.D.), and Department of Radiology (R.S.J.E.), Brigham and Women's Hospital, Harvard Medical School, 75 Francis St, Boston, MA 02115; Department of Radiology, St. Luke's International Hospital, Chuo-ku, Tokyo, Japan (Y.O.); Quinnipiac University School of Medicine, Hamden, Conn (C.M.); South Texas Veterans Health Care System, San Antonio, Tex (A.A., M.I.R.); Pulmonary Disease and Critical Care Medicine, Mayo Clinic, Rochester, Minn (T.R.A.); Division of Pulmonary, Critical Care & Sleep Medicine, New York University School of Medicine, New York, NY (A.B.); Department of Pathophysiology and Transplantation, University of Milan Internal Medicine, and Respiratory Unit and Cystic Fibrosis Adult Center, Milan, Italy (S.A.); Department of Epidemiology, Colorado School of Public Health, University of Colorado, Aurora, Colo (K.A.Y., G.L.K.); Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, Ala (J.M.W.); and Department of Radiology, National Jewish Health, Denver, Colo (D.A.L.)
| | - Raúl San José Estépar
- From the Division of Pulmonary Diseases and Critical Care, the University of Texas Health Science Center at San Antonio, San Antonio, Tex (D.J.M., A.A., M.I.R.); Department of Radiology, University of California, San Diego, Calif (A.Y.); Division of Sleep Medicine and Circadian Disorders (W.W.), Division of Pulmonary and Critical Care Medicine, Department of Medicine (W.R.D., A.A.D.), and Department of Radiology (R.S.J.E.), Brigham and Women's Hospital, Harvard Medical School, 75 Francis St, Boston, MA 02115; Department of Radiology, St. Luke's International Hospital, Chuo-ku, Tokyo, Japan (Y.O.); Quinnipiac University School of Medicine, Hamden, Conn (C.M.); South Texas Veterans Health Care System, San Antonio, Tex (A.A., M.I.R.); Pulmonary Disease and Critical Care Medicine, Mayo Clinic, Rochester, Minn (T.R.A.); Division of Pulmonary, Critical Care & Sleep Medicine, New York University School of Medicine, New York, NY (A.B.); Department of Pathophysiology and Transplantation, University of Milan Internal Medicine, and Respiratory Unit and Cystic Fibrosis Adult Center, Milan, Italy (S.A.); Department of Epidemiology, Colorado School of Public Health, University of Colorado, Aurora, Colo (K.A.Y., G.L.K.); Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, Ala (J.M.W.); and Department of Radiology, National Jewish Health, Denver, Colo (D.A.L.)
| | - David A Lynch
- From the Division of Pulmonary Diseases and Critical Care, the University of Texas Health Science Center at San Antonio, San Antonio, Tex (D.J.M., A.A., M.I.R.); Department of Radiology, University of California, San Diego, Calif (A.Y.); Division of Sleep Medicine and Circadian Disorders (W.W.), Division of Pulmonary and Critical Care Medicine, Department of Medicine (W.R.D., A.A.D.), and Department of Radiology (R.S.J.E.), Brigham and Women's Hospital, Harvard Medical School, 75 Francis St, Boston, MA 02115; Department of Radiology, St. Luke's International Hospital, Chuo-ku, Tokyo, Japan (Y.O.); Quinnipiac University School of Medicine, Hamden, Conn (C.M.); South Texas Veterans Health Care System, San Antonio, Tex (A.A., M.I.R.); Pulmonary Disease and Critical Care Medicine, Mayo Clinic, Rochester, Minn (T.R.A.); Division of Pulmonary, Critical Care & Sleep Medicine, New York University School of Medicine, New York, NY (A.B.); Department of Pathophysiology and Transplantation, University of Milan Internal Medicine, and Respiratory Unit and Cystic Fibrosis Adult Center, Milan, Italy (S.A.); Department of Epidemiology, Colorado School of Public Health, University of Colorado, Aurora, Colo (K.A.Y., G.L.K.); Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, Ala (J.M.W.); and Department of Radiology, National Jewish Health, Denver, Colo (D.A.L.)
| | - Alejandro A Diaz
- From the Division of Pulmonary Diseases and Critical Care, the University of Texas Health Science Center at San Antonio, San Antonio, Tex (D.J.M., A.A., M.I.R.); Department of Radiology, University of California, San Diego, Calif (A.Y.); Division of Sleep Medicine and Circadian Disorders (W.W.), Division of Pulmonary and Critical Care Medicine, Department of Medicine (W.R.D., A.A.D.), and Department of Radiology (R.S.J.E.), Brigham and Women's Hospital, Harvard Medical School, 75 Francis St, Boston, MA 02115; Department of Radiology, St. Luke's International Hospital, Chuo-ku, Tokyo, Japan (Y.O.); Quinnipiac University School of Medicine, Hamden, Conn (C.M.); South Texas Veterans Health Care System, San Antonio, Tex (A.A., M.I.R.); Pulmonary Disease and Critical Care Medicine, Mayo Clinic, Rochester, Minn (T.R.A.); Division of Pulmonary, Critical Care & Sleep Medicine, New York University School of Medicine, New York, NY (A.B.); Department of Pathophysiology and Transplantation, University of Milan Internal Medicine, and Respiratory Unit and Cystic Fibrosis Adult Center, Milan, Italy (S.A.); Department of Epidemiology, Colorado School of Public Health, University of Colorado, Aurora, Colo (K.A.Y., G.L.K.); Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, Ala (J.M.W.); and Department of Radiology, National Jewish Health, Denver, Colo (D.A.L.)
| |
Collapse
|
144
|
Jeong JH, Heo M, Kim EJ, Hah YS, Heo IR, Kim TH, Kim HC, Ju S, Yoo JW, Jeong YY, Lee JD, Lee SJ. Serum hepatocyte growth factor as a predictor of disease severity and future exacerbations in patients with non-cystic fibrosis bronchiectasis. Respir Med 2021; 185:106505. [PMID: 34139579 DOI: 10.1016/j.rmed.2021.106505] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/02/2021] [Accepted: 06/06/2021] [Indexed: 01/02/2023]
Abstract
BACKGROUND Serum biomarkers associated with the severity of non-cystic fibrosis (CF) bronchiectasis are insufficient. This study determined the association of serum hepatocyte growth factor (HGF), osteopontin, and pentraxin-3 levels with disease severity and exacerbation in patients with non-CF bronchiectasis. METHODS Serum levels of HGF, osteopontin, and pentraxin-3 were measured in patients with clinically stable non-CF bronchiectasis (n = 61). The correlation between the biomarkers and bronchiectasis severity index (BSI) and FACED score was assessed using univariate and multivariate linear regression analyses. Predictive variables associated with exacerbation were analyzed using a Cox proportional hazards model and the time to first exacerbation in high and low HGF groups during the observation period was compared using Kaplan-Meier survival curves. RESULTS The BSI showed significant correlation with HGF (r = 0.423; p = 0.001) and pentraxin-3 (r = 0.316; p = 0.013). The FACED score was significantly correlated with HGF (r = 0.406; p = 0.001). Univariate and multivariate linear regression analysis revealed that serum level of HGF was independently associated with both scoring systems. The high HGF group showed a significantly shorter time to first exacerbation (Log-rank test, p = 0.014). Multivariate Cox proportional hazards regression analysis revealed that high serum HGF level and colonization with non-pseudomonas organisms were independent predictors of future exacerbations (HR 2.364; p = 0.024 and HR 2.438; p = 0.020, respectively). CONCLUSION Serum level of HGF is a potential biomarker that is closely associated with disease severity and future risk of exacerbations in patients with non-CF bronchiectasis.
Collapse
Affiliation(s)
- Jong Hwan Jeong
- Division of Pulmonology and Allergy, Department of Internal Medicine, Gyeongsang National University Hospital, Gyeongsang National University School of Medicine, Jinju, South Korea
| | - Manbong Heo
- Division of Pulmonology and Allergy, Department of Internal Medicine, Gyeongsang National University Hospital, Gyeongsang National University School of Medicine, Jinju, South Korea
| | - Eun Ji Kim
- Biomedical Research Institute, Gyeongsang National University Hospital, Gyeongsang National University Hospital 79 Gangnam-ro, Jinju, 660-702, Republic of Korea
| | - Young-Sool Hah
- Biomedical Research Institute, Gyeongsang National University Hospital, Gyeongsang National University Hospital 79 Gangnam-ro, Jinju, 660-702, Republic of Korea
| | - I Re Heo
- Division of Pulmonology and Allergy, Department of Internal Medicine, Gyeongsang National University School of Medicine and Gyeongsang National University Changwon Hospital, Changwon, 51472, South Korea
| | - Tae Hoon Kim
- Division of Pulmonology and Allergy, Department of Internal Medicine, Gyeongsang National University School of Medicine and Gyeongsang National University Changwon Hospital, Changwon, 51472, South Korea
| | - Ho Cheol Kim
- Division of Pulmonology and Allergy, Department of Internal Medicine, Gyeongsang National University School of Medicine and Gyeongsang National University Changwon Hospital, Changwon, 51472, South Korea
| | - Sunmi Ju
- Division of Pulmonology and Allergy, Department of Internal Medicine, Gyeongsang National University Hospital, Gyeongsang National University School of Medicine, Jinju, South Korea
| | - Jung Wan Yoo
- Division of Pulmonology and Allergy, Department of Internal Medicine, Gyeongsang National University Hospital, Gyeongsang National University School of Medicine, Jinju, South Korea
| | - Yi Yeong Jeong
- Division of Pulmonology and Allergy, Department of Internal Medicine, Gyeongsang National University Hospital, Gyeongsang National University School of Medicine, Jinju, South Korea
| | - Jong Deog Lee
- Division of Pulmonology and Allergy, Department of Internal Medicine, Gyeongsang National University Hospital, Gyeongsang National University School of Medicine, Jinju, South Korea.
| | - Seung Jun Lee
- Division of Pulmonology and Allergy, Department of Internal Medicine, Gyeongsang National University Hospital, Gyeongsang National University School of Medicine, Jinju, South Korea.
| |
Collapse
|
145
|
Al-Harbi A, Al-Ghamdi M, Abdulrahman A, Khan M, Al-Rajhi S, Al-Jahdali H. Prognostic utility of various multidimensional grading scales among Saudi patients with bronchiectasis. Respir Med Res 2021; 80:100843. [PMID: 34174526 DOI: 10.1016/j.resmer.2021.100843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 05/10/2021] [Accepted: 05/29/2021] [Indexed: 10/21/2022]
Abstract
INTRODUCTION A number of multidimensional scoring systems, including the Bronchiectasis Severity Index (BSI), the FACED score, and the Exacerbation-FACED (Exa-FACED, a derivative of FACED), have been proposed and validated to assess the severity and prognosis in patients with bronchiectasis. Although these metrics have been validated through large multicenter efforts in Europe and Latin America, there have been no attempts at external validation in other populations. OJECTIVES The aim of this study was to validate specific multidimensional grading scales (BSI, FACED, and Exa-FACED) in predicting mortality, future exacerbations, and hospitalizations among Saudi patients with bronchiectasis. METHODS A prospective observational cohort study was conducted at a tertiary care centre. The three multidimensional grading scales (BSI, FACED, and Exa-FACED) were calculated for each patient. Future frequent acute exacerbations (≥2/year) and severe acute exacerbations leading to hospitalization were recorded for 1 year, and all-cause mortality was monitored for up to 5 years. RESULTS A total of 301 patients with bronchiectasis (mean age of 60±17 years and 66% female) were include. All Grading scales performed well in predicting 5-year survival. Area under the curve (AUC) values for BSI (0.86, 95% CI: 0.82-0.90), FACED (0.81, 95% CI: 0.76-0.85), and Ex-FACED (0.83, 95% CI: 0.78-0.87). The BSI (AUC=0.98, 95% CI: 0.96-0.99) performed better than FACED scoring (AUC=0.77, 95% CI: 0.71-0.81; P<0.0001) in predicting hospitalization. Exa-FACED scoring (AUC=0.84, 95% CI: 0.80-0.88) improved upon FACED scores in predicting hospitalization. The BSI (AUC=0.95, 95% CI: 0.91-0.97) fared significantly better than FACED scoring (AUC=0.76, 95% CI: 0.70-0.80; p<0.0001) in predicting frequent acute exacerbations (≥2/year). Again, Exa-FACED scoring (AUC=0.85, 95% CI: 0.81-0.89) improved upon FACED scores in predicting frequent acute exacerbations (≥2/year). CONCLUSIONS All scoring systems performed adequately in 5-year mortality projections. Although Exa-FACED scoring improved upon FACED scores in predicting forthcoming frequent acute exacerbations and hospitalization, the BSI outperformed both in this regard.
Collapse
Affiliation(s)
- Abdullah Al-Harbi
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia; Department of Medicine, Pulmonary Division, Ministry of National Guard-Health Affairs, Riyadh, Saudi Arabia; King Abdullah International Medical Research Center, Riyadh, Saudi Arabia.
| | - Majed Al-Ghamdi
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia; Department of Medicine, Pulmonary Division, Ministry of National Guard-Health Affairs, Riyadh, Saudi Arabia; King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Abdelmonim Abdulrahman
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia; Department of Medicine, Pulmonary Division, Ministry of National Guard-Health Affairs, Riyadh, Saudi Arabia; King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Mohammad Khan
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia; Department of Medicine, Pulmonary Division, Ministry of National Guard-Health Affairs, Riyadh, Saudi Arabia; King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Sulaiman Al-Rajhi
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia; King Abdullah International Medical Research Center, Riyadh, Saudi Arabia; Department of Medical Imaging, Ministry of National Guard-Health Affairs, Riyadh, Saudi Arabia
| | - Hamdan Al-Jahdali
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia; Department of Medicine, Pulmonary Division, Ministry of National Guard-Health Affairs, Riyadh, Saudi Arabia; King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| |
Collapse
|
146
|
Oriano M, Amati F, Gramegna A, De Soyza A, Mantero M, Sibila O, Chotirmall SH, Voza A, Marchisio P, Blasi F, Aliberti S. Protease-Antiprotease Imbalance in Bronchiectasis. Int J Mol Sci 2021; 22:5996. [PMID: 34206113 PMCID: PMC8199509 DOI: 10.3390/ijms22115996] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/27/2021] [Accepted: 05/29/2021] [Indexed: 12/12/2022] Open
Abstract
Airway inflammation plays a central role in bronchiectasis. Protease-antiprotease balance is crucial in bronchiectasis pathophysiology and increased presence of unopposed proteases activity may contribute to bronchiectasis onset and progression. Proteases' over-reactivity and antiprotease deficiency may have a role in increasing inflammation in bronchiectasis airways and may lead to extracellular matrix degradation and tissue damage. Imbalances in serine proteases and matrix-metallo proteinases (MMPs) have been associated to bronchiectasis. Active neutrophil elastase has been associated with disease severity and poor long-term outcomes in this disease. Moreover, high levels of MMPs have been associated with radiological and disease severity. Finally, severe deficiency of α1-antitrypsin (AAT), as PiSZ and PiZZ (proteinase inhibitor SZ and ZZ) phenotype, have been associated with bronchiectasis development. Several treatments are under study to reduce protease activity in lungs. Molecules to inhibit neutrophil elastase activity have been developed in both oral or inhaled form, along with compounds inhibiting dipeptydil-peptidase 1, enzyme responsible for the activation of serine proteases. Finally, supplementation with AAT is in use for patients with severe deficiency. The identification of different targets of therapy within the protease-antiprotease balance contributes to a precision medicine approach in bronchiectasis and eventually interrupts and disrupts the vicious vortex which characterizes the disease.
Collapse
Affiliation(s)
- Martina Oriano
- Respiratory Unit and Cystic Fibrosis Adult Center, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (M.O.); (F.A.); (A.G.); (M.M.); (P.M.); (F.B.)
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, 20122 Milan, Italy
| | - Francesco Amati
- Respiratory Unit and Cystic Fibrosis Adult Center, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (M.O.); (F.A.); (A.G.); (M.M.); (P.M.); (F.B.)
| | - Andrea Gramegna
- Respiratory Unit and Cystic Fibrosis Adult Center, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (M.O.); (F.A.); (A.G.); (M.M.); (P.M.); (F.B.)
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, 20122 Milan, Italy
| | - Anthony De Soyza
- Population and Health Science Institute, NIHR Biomedical Research Centre for Ageing & Freeman Hospital, Newcastle University, Newcastle NE2 4HH, UK;
| | - Marco Mantero
- Respiratory Unit and Cystic Fibrosis Adult Center, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (M.O.); (F.A.); (A.G.); (M.M.); (P.M.); (F.B.)
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, 20122 Milan, Italy
| | - Oriol Sibila
- Respiratory Department, Hospital Clinic, IDIBAPS, CIBERES, 08036 Barcelona, Spain;
| | - Sanjay H. Chotirmall
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 639798, Singapore;
| | - Antonio Voza
- Emergency Department, IRCCS Humanitas Research Teaching Hospital, 20122 Milan, Italy;
| | - Paola Marchisio
- Respiratory Unit and Cystic Fibrosis Adult Center, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (M.O.); (F.A.); (A.G.); (M.M.); (P.M.); (F.B.)
- Paediatric Highly Intensive Care Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Francesco Blasi
- Respiratory Unit and Cystic Fibrosis Adult Center, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (M.O.); (F.A.); (A.G.); (M.M.); (P.M.); (F.B.)
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, 20122 Milan, Italy
| | - Stefano Aliberti
- Respiratory Unit and Cystic Fibrosis Adult Center, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (M.O.); (F.A.); (A.G.); (M.M.); (P.M.); (F.B.)
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, 20122 Milan, Italy
| |
Collapse
|
147
|
Morales-Primo AU, Becker I, Zamora-Chimal J. Neutrophil extracellular trap-associated molecules: a review on their immunophysiological and inflammatory roles. Int Rev Immunol 2021; 41:253-274. [PMID: 34036897 DOI: 10.1080/08830185.2021.1921174] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Neutrophil extracellular traps (NETs) are a defense mechanism against pathogens. They are composed of DNA and various proteins and have the ability to hinder microbial spreading and survival. However, NETs are not only related to infections but also participate in sterile inflammatory events. In addition to DNA, NETs contain histones, serine proteases, cytoskeletal proteins and antimicrobial peptides, all of which have immunomodulatory properties that can augment or decrease the inflammatory response. Extracellular localization of these molecules alerts the immune system of cellular damage, which is triggered by recognition of damage-associated molecular patterns (DAMPs) through specific pattern recognition receptors. However, not all of these molecules are DAMPs and may have other immunophysiological properties in the extracellular space. The release of NETs can lead to production of pro-inflammatory cytokines (due to TLR2/4/9 and inflammasome activation), the destruction of the extracellular matrix, activation of serine proteases and of matrix metallopeptidases (MMPs), modulation of cellular proliferation, induction of cellular migration and adhesion, promotion of thrombogenesis and angiogenesis and disruption of epithelial and endothelial permeability. Understanding the dynamics of NET-associated molecules, either individually or synergically, will help to unravel their role in inflammatory events and open novel perspectives for potential therapeutic targets. We here review molecules contained within NETS and their immunophysiological roles.
Collapse
Affiliation(s)
- Abraham U Morales-Primo
- Laboratory of Immunoparasitology, Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Hospital General de México, Mexico City, Mexico
| | - Ingeborg Becker
- Laboratory of Immunoparasitology, Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Hospital General de México, Mexico City, Mexico
| | - Jaime Zamora-Chimal
- Laboratory of Immunoparasitology, Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Hospital General de México, Mexico City, Mexico
| |
Collapse
|
148
|
Dicker AJ, Lonergan M, Keir HR, Smith AH, Pollock J, Finch S, Cassidy AJ, Huang JTJ, Chalmers JD. The sputum microbiome and clinical outcomes in patients with bronchiectasis: a prospective observational study. THE LANCET RESPIRATORY MEDICINE 2021; 9:885-896. [PMID: 33961805 DOI: 10.1016/s2213-2600(20)30557-9] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 11/07/2020] [Accepted: 11/20/2020] [Indexed: 12/28/2022]
Abstract
BACKGROUND Infection is a key component of bronchiectasis pathophysiology. Characterisation of the microbiome offers a higher degree of sensitivity and resolution than does traditional culture methods. We aimed to evaluate the role of the microbiome in determining the risk of exacerbation and long-term outcomes, including all-cause mortality, in bronchiectasis. METHODS We did a prospective observational cohort study of patients with bronchiectasis from eastern Scotland. Patients were enrolled from Sept 11, 2012, to Dec 21, 2015, and followed until Jan 8, 2019, for long-term outcomes. Patients were included if they were aged 18 years or older, and had a high-resolution CT-confirmed diagnosis of bronchiectasis and clinical symptoms consistent with the disease. Sputum samples were obtained when patients were clinically stable. Repeat sputum samples were taken at stable and exacerbation visits during follow-up. The V3-V4 region of the bacterial 16S rRNA gene was sequenced using the Illumina MiSeq platform. The dominant bacterial genus in each sample was assigned on the basis of a previously published method. Microbiome characteristics were analysed for their association with measures of clinical disease severity and long-term outcomes using PERMANOVA, random forest, and survival analyses. FINDINGS Sequencing data were obtained from the sputum samples of 281 patients with bronchiectasis who were included in the stable baseline cohort. 49 (17%) of 281 patients provided more than one sample when clinically stable and were included in the longitudinal analysis. 64 (23%) patients provided both stable and exacerbation samples. In both stable bronchiectasis and during exacerbations, a sputum microbiome dominated by Proteobacteria and Firmicutes was observed. Individual patients' microbiome profiles were relatively stable over time, during exacerbations and at disease stability. Lower microbiome diversity, measured using the Shannon-Wiener diversity index, was associated with more severe bronchiectasis defined by the bronchiectasis severity index, lower FEV1, and more severe symptoms. Random forest analysis of baseline samples identified Pseudomonas, Enterobacteriaceae, and Stenotrophomonas as being associated with severe bronchiectasis (bronchiectasis severity index ≥9) and greater lung inflammation and Pseudomonas and Enterobacteriaceae with more frequent exacerbations. Patients in whom Pseudomonas was dominant (n=35) were at increased risk of all-cause mortality (hazard ratio 3·12, 95% CI 1·33-7·36; p=0·0091) and had more frequent exacerbations (incident rate ratio 1·69, 95% CI 1·07-2·67; p=0·024) during follow-up compared with patients with other dominant genera (n=246). INTERPRETATION A reduction in microbiome diversity, particularly one associated with dominance of Pseudomonas, is associated with greater disease severity, higher frequency and severity of exacerbations, and higher risk of mortality. The microbiome might therefore identify subgroups of patients at increased risk of poor outcomes who could benefit from precision treatment strategies. Further research is required to identify the mechanisms of reduced microbiome diversity and to establish whether the microbiome can be therapeutically targeted. FUNDING British Lung Foundation and European Respiratory Society EMBARC2 consortium.
Collapse
Affiliation(s)
- Alison J Dicker
- Division of Molecular and Clinical Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Mike Lonergan
- Division of Molecular and Clinical Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Holly R Keir
- Division of Molecular and Clinical Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | | | - Jennifer Pollock
- Division of Molecular and Clinical Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Simon Finch
- Division of Molecular and Clinical Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Andrew J Cassidy
- Division of Molecular and Clinical Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Jeffrey T J Huang
- Division of Systems Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - James D Chalmers
- Division of Molecular and Clinical Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK.
| |
Collapse
|
149
|
Perea L, Cantó E, Suarez-Cuartin G, Aliberti S, Chalmers JD, Sibila O, Vidal S. A Cluster Analysis of Bronchiectasis Patients Based on the Airway Immune Profile. Chest 2021; 159:1758-1767. [PMID: 33217421 DOI: 10.1016/j.chest.2020.11.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 11/02/2020] [Accepted: 11/06/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Clinical heterogeneity in bronchiectasis remains a challenge for improving the appropriate targeting of therapies and patient management. Antimicrobial peptides (AMPs) have been linked to disease severity and phenotype. RESEARCH QUESTION Can we identify clusters of patients based on the levels of AMPs, airway inflammation, tissue remodeling, and tissue damage to establish their relationship with disease severity and clinical outcomes? STUDY DESIGN AND METHODS A prospective cohort of 128 stable patients with bronchiectasis were recruited across three centers in three different countries (Spain, Scotland, and Italy). A two-step cluster strategy was used to stratify patients according to levels of lactoferrin, lysozyme, LL-37, and secretory leukocyte protease inhibitor in sputum. Measurements of inflammation (IL-8, tumor growth factor β, and IL-6), tissue remodeling and damage (glycosaminoglycan, matrix metallopeptidase 9, neutrophil elastase, and total and bacterial DNA), and neutrophil chemotaxis were assessed. RESULTS Three clusters of patients were defined according to distinct airway profiles of AMPs. They represented groups of patients with gradually distinct airway infection and disease severity. Each cluster was associated with an airway profile of inflammation, tissue remodeling, and tissue damage. The relationships between soluble mediators also were distinct between clusters. This analysis allowed the identification of the cluster with the most deregulated local innate immune response. During follow-up, each cluster showed different risk of three or more exacerbations occurring (P = .03) and different times to first exacerbations (P = .03). INTERPRETATION Bronchiectasis patients can be stratified in different clusters according to profiles of airway AMPs, inflammation, tissue remodeling, and tissue damage. The combination of these immunologic variables shows a relationship with disease severity and future risk of exacerbations.
Collapse
Affiliation(s)
- Lídia Perea
- Department of Inflammatory Diseases, Institut de Recerca de l'Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain
| | - Elisabet Cantó
- Department of Inflammatory Diseases, Institut de Recerca de l'Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain
| | - Guillermo Suarez-Cuartin
- Respiratory Department, Hospital Universitari de Bellvitge, l'Hospitalet de Llobregat, Barcelona, Spain
| | - Stefano Aliberti
- Department of Pathophysiology and Transplantation, University of Milan, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - James D Chalmers
- Tayside Respiratory Research Group, University of Dundee, Dundee, Scotland
| | - Oriol Sibila
- Respiratory Department, Hospital Clinic, IDIBAPS, CIBERES, University of Barcelona, Barcelona, Spain
| | - Silvia Vidal
- Department of Inflammatory Diseases, Institut de Recerca de l'Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain.
| |
Collapse
|
150
|
Diaz AA, Colangelo LA, Okajima Y, Yen A, Sala MA, Dransfield MT, Tino G, Ross JC, San José Estépar R, Washko GR, Kalhan R. Association between Cardiorespiratory Fitness and Bronchiectasis at CT: A Long-term Population-based Study of Healthy Young Adults Aged 18-30 Years in the CARDIA Study. Radiology 2021; 300:190-196. [PMID: 33904771 DOI: 10.1148/radiol.2021203874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Background Protective factors against the risk of bronchiectasis are unknown. A high level of cardiorespiratory fitness is associated with a lower risk of chronic obstructive pulmonary disease. But whether fitness relates to bronchiectasis remains, to the knowledge of the authors, unknown. Purpose To examine the association between cardiorespiratory fitness and bronchiectasis. Materials and Methods This was a secondary analysis of a prospective observational study: the Coronary Artery Risk Development in Young Adults cohort (from 1985-1986 [year 0] to 2015-2016 [year 30]). During a 30-year period, healthy participants (age at enrollment 18-30 years) underwent treadmill exercise testing at year 0 and year 20 visits. Cardiorespiratory fitness was determined according to the treadmill exercise duration. The 20-year difference in cardiorespiratory fitness was used as the fitness measurement. At year 25, chest CT was performed to assess bronchiectasis and was used as the primary outcome. Multivariable logistic models were performed to determine the association between cardiorespiratory fitness changes and bronchiectasis. Results Of 2177 selected participants (at year 0: mean age, 25 years ± 4 [standard deviation]; 1224 women), 209 (9.6%) had bronchiectasis at year 25. After adjusting for age, race-sex group, study site, body mass index, pack-years smoked, history of tuberculosis, pneumonia, asthma and myocardial infarction, peak lung function, and cardiorespiratory fitness at baseline, preservation of cardiorespiratory fitness was associated with lower odds of bronchiectasis at CT at year 25 (per 1-minute-longer treadmill duration from year 0 to year 20: odds ratio [OR], 0.88; 95% CI: 0.80, 0.98; P = .02). A consistent strong association was found when cough and phlegm were included in bronchiectasis (OR, 0.72; 95% CI: 0.59, 0.87; P < .001). Conclusion In a long-term follow-up, the preservation of cardiorespiratory fitness was associated with lower odds of bronchiectasis at CT. © RSNA, 2021 Online supplemental material is available for this article. See also the editorial by Stojanovska in this issue.
Collapse
Affiliation(s)
- Alejandro A Diaz
- From the Division of Pulmonary and Critical Care Medicine (A.A.D., Y.O., G.R.W.) and Department of Radiology (J.C.R., R.S.J.E.), Brigham and Women's Hospital, Harvard Medical School, 75 Francis St, Boston, MA 02115; Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill (L.A.C., R.K.); Division of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill (M.A.S., R.K.); Department of Radiology, University of California, San Diego, San Diego, Calif (A.Y.); Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama School of Medicine, Birmingham, Ala (M.T.D.); and Department of Medicine, Penn Presbyterian Medical Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pa (G.T.)
| | - Laura A Colangelo
- From the Division of Pulmonary and Critical Care Medicine (A.A.D., Y.O., G.R.W.) and Department of Radiology (J.C.R., R.S.J.E.), Brigham and Women's Hospital, Harvard Medical School, 75 Francis St, Boston, MA 02115; Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill (L.A.C., R.K.); Division of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill (M.A.S., R.K.); Department of Radiology, University of California, San Diego, San Diego, Calif (A.Y.); Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama School of Medicine, Birmingham, Ala (M.T.D.); and Department of Medicine, Penn Presbyterian Medical Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pa (G.T.)
| | - Yuka Okajima
- From the Division of Pulmonary and Critical Care Medicine (A.A.D., Y.O., G.R.W.) and Department of Radiology (J.C.R., R.S.J.E.), Brigham and Women's Hospital, Harvard Medical School, 75 Francis St, Boston, MA 02115; Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill (L.A.C., R.K.); Division of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill (M.A.S., R.K.); Department of Radiology, University of California, San Diego, San Diego, Calif (A.Y.); Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama School of Medicine, Birmingham, Ala (M.T.D.); and Department of Medicine, Penn Presbyterian Medical Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pa (G.T.)
| | - Andrew Yen
- From the Division of Pulmonary and Critical Care Medicine (A.A.D., Y.O., G.R.W.) and Department of Radiology (J.C.R., R.S.J.E.), Brigham and Women's Hospital, Harvard Medical School, 75 Francis St, Boston, MA 02115; Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill (L.A.C., R.K.); Division of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill (M.A.S., R.K.); Department of Radiology, University of California, San Diego, San Diego, Calif (A.Y.); Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama School of Medicine, Birmingham, Ala (M.T.D.); and Department of Medicine, Penn Presbyterian Medical Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pa (G.T.)
| | - Marc A Sala
- From the Division of Pulmonary and Critical Care Medicine (A.A.D., Y.O., G.R.W.) and Department of Radiology (J.C.R., R.S.J.E.), Brigham and Women's Hospital, Harvard Medical School, 75 Francis St, Boston, MA 02115; Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill (L.A.C., R.K.); Division of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill (M.A.S., R.K.); Department of Radiology, University of California, San Diego, San Diego, Calif (A.Y.); Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama School of Medicine, Birmingham, Ala (M.T.D.); and Department of Medicine, Penn Presbyterian Medical Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pa (G.T.)
| | - Mark T Dransfield
- From the Division of Pulmonary and Critical Care Medicine (A.A.D., Y.O., G.R.W.) and Department of Radiology (J.C.R., R.S.J.E.), Brigham and Women's Hospital, Harvard Medical School, 75 Francis St, Boston, MA 02115; Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill (L.A.C., R.K.); Division of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill (M.A.S., R.K.); Department of Radiology, University of California, San Diego, San Diego, Calif (A.Y.); Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama School of Medicine, Birmingham, Ala (M.T.D.); and Department of Medicine, Penn Presbyterian Medical Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pa (G.T.)
| | - Gregory Tino
- From the Division of Pulmonary and Critical Care Medicine (A.A.D., Y.O., G.R.W.) and Department of Radiology (J.C.R., R.S.J.E.), Brigham and Women's Hospital, Harvard Medical School, 75 Francis St, Boston, MA 02115; Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill (L.A.C., R.K.); Division of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill (M.A.S., R.K.); Department of Radiology, University of California, San Diego, San Diego, Calif (A.Y.); Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama School of Medicine, Birmingham, Ala (M.T.D.); and Department of Medicine, Penn Presbyterian Medical Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pa (G.T.)
| | - James C Ross
- From the Division of Pulmonary and Critical Care Medicine (A.A.D., Y.O., G.R.W.) and Department of Radiology (J.C.R., R.S.J.E.), Brigham and Women's Hospital, Harvard Medical School, 75 Francis St, Boston, MA 02115; Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill (L.A.C., R.K.); Division of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill (M.A.S., R.K.); Department of Radiology, University of California, San Diego, San Diego, Calif (A.Y.); Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama School of Medicine, Birmingham, Ala (M.T.D.); and Department of Medicine, Penn Presbyterian Medical Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pa (G.T.)
| | - Raúl San José Estépar
- From the Division of Pulmonary and Critical Care Medicine (A.A.D., Y.O., G.R.W.) and Department of Radiology (J.C.R., R.S.J.E.), Brigham and Women's Hospital, Harvard Medical School, 75 Francis St, Boston, MA 02115; Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill (L.A.C., R.K.); Division of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill (M.A.S., R.K.); Department of Radiology, University of California, San Diego, San Diego, Calif (A.Y.); Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama School of Medicine, Birmingham, Ala (M.T.D.); and Department of Medicine, Penn Presbyterian Medical Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pa (G.T.)
| | - George R Washko
- From the Division of Pulmonary and Critical Care Medicine (A.A.D., Y.O., G.R.W.) and Department of Radiology (J.C.R., R.S.J.E.), Brigham and Women's Hospital, Harvard Medical School, 75 Francis St, Boston, MA 02115; Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill (L.A.C., R.K.); Division of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill (M.A.S., R.K.); Department of Radiology, University of California, San Diego, San Diego, Calif (A.Y.); Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama School of Medicine, Birmingham, Ala (M.T.D.); and Department of Medicine, Penn Presbyterian Medical Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pa (G.T.)
| | - Ravi Kalhan
- From the Division of Pulmonary and Critical Care Medicine (A.A.D., Y.O., G.R.W.) and Department of Radiology (J.C.R., R.S.J.E.), Brigham and Women's Hospital, Harvard Medical School, 75 Francis St, Boston, MA 02115; Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill (L.A.C., R.K.); Division of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill (M.A.S., R.K.); Department of Radiology, University of California, San Diego, San Diego, Calif (A.Y.); Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama School of Medicine, Birmingham, Ala (M.T.D.); and Department of Medicine, Penn Presbyterian Medical Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pa (G.T.)
| |
Collapse
|