101
|
Methylphenidate does not enhance visual working memory but benefits motivation in macaque monkeys. Neuropharmacology 2016; 109:223-235. [DOI: 10.1016/j.neuropharm.2016.06.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 06/14/2016] [Accepted: 06/17/2016] [Indexed: 02/04/2023]
|
102
|
Rombold F, Wingenfeld K, Renneberg B, Hellmann-Regen J, Otte C, Roepke S. Influence of the noradrenergic system on the formation of intrusive memories in women: an experimental approach with a trauma film paradigm. Psychol Med 2016; 46:2523-2534. [PMID: 27335220 DOI: 10.1017/s0033291716001379] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
BACKGROUND Intrusive memories of traumatic events are a core feature of post-traumatic stress disorder but little is known about the neurobiological formation of intrusions. The aim of this study was to determine whether the activity of the noradrenergic system during an intrusion-inducing stressor would influence subsequent intrusive memories. METHOD We conducted an experimental, double-blind, placebo-controlled study in 118 healthy women. Participants received a single dose of either 10 mg yohimbine, stimulating noradrenergic activity, or 0.15 mg clonidine, inhibiting noradrenergic activity, or placebo. Subsequently, they watched an established trauma film which induced intrusions. The number of consecutive intrusions resulting from the trauma film, the vividness of the intrusions, and the degree of distress evoked by the intrusions were assessed during the following 4 days. Salivary cortisol and α-amylase were collected before and after the trauma film. RESULTS A significant time × treatment interaction for the number of intrusions and the vividness of intrusions indicated a different time course of intrusions depending on treatment. Post-hoc tests revealed a delayed decrease of intrusions and a delayed decrease of intrusion vividness after the trauma film in the yohimbine group compared with the clonidine and placebo groups. Furthermore, after yohimbine administration, a significant increase in salivary cortisol levels was observed during the trauma film. CONCLUSIONS Our findings indicate that pharmacological activation of the noradrenergic system during an emotionally negative event makes an impact on consecutive intrusive memories and their vividness in healthy women. The noradrenergic system seems to be involved in the formation of intrusive memories.
Collapse
Affiliation(s)
- F Rombold
- Department of Psychiatry and Psychotherapy,Charité - Universitätsmedizin Berlin,Campus Benjamin Franklin,Berlin,Germany
| | - K Wingenfeld
- Department of Psychiatry and Psychotherapy,Charité - Universitätsmedizin Berlin,Campus Benjamin Franklin,Berlin,Germany
| | - B Renneberg
- Department of Psychology,Freie Universitaet Berlin,Berlin,Germany
| | - J Hellmann-Regen
- Department of Psychiatry and Psychotherapy,Charité - Universitätsmedizin Berlin,Campus Benjamin Franklin,Berlin,Germany
| | - C Otte
- Department of Psychiatry and Psychotherapy,Charité - Universitätsmedizin Berlin,Campus Benjamin Franklin,Berlin,Germany
| | - S Roepke
- Department of Psychiatry and Psychotherapy,Charité - Universitätsmedizin Berlin,Campus Benjamin Franklin,Berlin,Germany
| |
Collapse
|
103
|
Coradazzi M, Gulino R, Fieramosca F, Falzacappa LV, Riggi M, Leanza G. Selective noradrenaline depletion impairs working memory and hippocampal neurogenesis. Neurobiol Aging 2016; 48:93-102. [PMID: 27644078 DOI: 10.1016/j.neurobiolaging.2016.08.012] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Revised: 08/05/2016] [Accepted: 08/13/2016] [Indexed: 12/25/2022]
Abstract
Noradrenergic neurons in the locus coeruleus play a role in learning and memory, and their loss is an early event in Alzheimer's disease pathogenesis. Moreover, noradrenaline may sustain hippocampal neurogenesis; however, whether are these events related is still unknown. Four to five weeks following the selective immunotoxic ablation of locus coeruleus neurons, young adult rats underwent reference and working memory tests, followed by postmortem quantitative morphological analyses to assess the extent of the lesion, as well as the effects on proliferation and/or survival of neural progenitors in the hippocampus. When tested in the Water Maze task, lesioned animals exhibited no reference memory deficit, whereas working memory abilities were seen significantly impaired, as compared with intact or sham-lesioned controls. Stereological analyses confirmed a dramatic noradrenergic neuron loss associated to reduced proliferation, but not survival or differentiation, of 5-bromo-2'deoxyuridine-positive progenitors in the dentate gyrus. Thus, ascending noradrenergic afferents may be involved in more complex aspects of cognitive performance (i.e., working memory) possibly via newly generated progenitors in the hippocampus.
Collapse
Affiliation(s)
- Marino Coradazzi
- B.R.A.I.N. Laboratory for Neurogenesis and Repair, Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Rosario Gulino
- Department of Biomedical and Biotechnological Sciences, Physiology Section, University of Catania, Catania, Italy
| | - Francesco Fieramosca
- B.R.A.I.N. Laboratory for Neurogenesis and Repair, Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Lucia Verga Falzacappa
- B.R.A.I.N. Laboratory for Neurogenesis and Repair, Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Margherita Riggi
- B.R.A.I.N. Laboratory for Neurogenesis and Repair, Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Giampiero Leanza
- B.R.A.I.N. Laboratory for Neurogenesis and Repair, Department of Life Sciences, University of Trieste, Trieste, Italy.
| |
Collapse
|
104
|
Yu RL, Tan CH, Lu YC, Wu RM. Aldehyde dehydrogenase 2 is associated with cognitive functions in patients with Parkinson's disease. Sci Rep 2016; 6:30424. [PMID: 27453488 PMCID: PMC4958972 DOI: 10.1038/srep30424] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 07/01/2016] [Indexed: 11/16/2022] Open
Abstract
Neurotransmitter degradation has been proposed to cause the accumulation of neurotoxic metabolites. The metabolism of these metabolites involves aldehyde dehydrogenase 2 (ALDH2). The Asian-specific single nucleotide polymorphism rs671 causes reduced enzyme activity. This study aims to explore whether Parkinson's disease (PD) patients with reduced ALDH2 activity owing to the rs671 polymorphism are at risk for neuropsychological impairments. A total of 139 PD patients were recruited. Each participant was assessed for medical characteristics and their ALDH2 genotype. The Mini-Mental State Examination (MMSE), the Clinical Dementia Rating Scale and the Frontal Behavioral Inventory were used to measure neuropsychological functions. We found that the MMSE scores were significantly lower in patients with inactive ALDH2 (U = 1873.5, p = 0.02). The presence of cognitive impairments was significantly more frequent in the inactive ALDH2 group (46.0%) than in the active ALDH2 group (26.3%) (χ(2) = 5.886, p = 0.01). The inactive group showed significant deterioration in hobbies and exhibited more severe "disorganization" and "hyper-sexuality" behaviours. The additive effects of the allele on the development of cognitive impairments in PD patients may be an important finding that provides further insight into the pathogenic mechanism of cognitive dysfunction in PD.
Collapse
Affiliation(s)
- Rwei-Ling Yu
- Institute of Behavioral Medicine, National Cheng Kung University, College of Medicine, Tainan, Taiwan
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chun-Hsiang Tan
- Department of Neurology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ying-Che Lu
- Ph.D. Program in Translational Medicine, National Taiwan University and Academia Sinica, Taipei, Taiwan
| | - Ruey-Meei Wu
- Department of Neurology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
105
|
Bär KJ, de la Cruz F, Schumann A, Koehler S, Sauer H, Critchley H, Wagner G. Functional connectivity and network analysis of midbrain and brainstem nuclei. Neuroimage 2016; 134:53-63. [PMID: 27046112 DOI: 10.1016/j.neuroimage.2016.03.071] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 03/22/2016] [Accepted: 03/26/2016] [Indexed: 12/23/2022] Open
|
106
|
Daulatzai MA. Dysfunctional Sensory Modalities, Locus Coeruleus, and Basal Forebrain: Early Determinants that Promote Neuropathogenesis of Cognitive and Memory Decline and Alzheimer’s Disease. Neurotox Res 2016; 30:295-337. [DOI: 10.1007/s12640-016-9643-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 06/08/2016] [Accepted: 06/10/2016] [Indexed: 12/22/2022]
|
107
|
Beck SM, Ruge H, Schindler C, Burkart M, Miller R, Kirschbaum C, Goschke T. Effects of Ginkgo biloba extract EGb 761® on cognitive control functions, mental activity of the prefrontal cortex and stress reactivity in elderly adults with subjective memory impairment - a randomized double-blind placebo-controlled trial. Hum Psychopharmacol 2016; 31:227-42. [PMID: 27147264 PMCID: PMC5084772 DOI: 10.1002/hup.2534] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 02/24/2016] [Accepted: 03/10/2016] [Indexed: 02/05/2023]
Abstract
OBJECTIVE Cognitive control as well as stress reactivity is assumed to depend on prefrontal dopamine and decline with age. Because Ginkgo biloba extract EGb761 increases prefrontal dopamine in animals, we assessed its effects on cognitive functions related to prefrontal dopamine. METHODS Effects of 240-mg EGb761 daily on task-set-switching, response-inhibition, delayed response, prospective-memory, task-related fMRI-BOLD-signals and the Trier Social Stress-Test were explored in a randomized, placebo-controlled, double-blind pilot-trial in 61 elderly volunteers with subjective memory impairment. RESULTS Baseline-FMRI-data showed BOLD-responses in regions commonly activated by the specific tasks. Task-switch-costs decreased with EGb761 compared to placebo (ANOVA-interaction: Group × Time × Switch-Costs p = 0.018, multiple tests uncorrected), indicating improved cognitive flexibility. Go-NoGo-task reaction-times corrected for error-rates indicated a trend for improved response inhibition. No treatment effects were found for the delayed response and prospective-memory tasks and fMRI-data. A non-significant trend indicated a potentially accelerated endocrine stress-recovery. EGb761 was safe and well tolerated. CONCLUSION We observed indications for improved cognitive flexibility without changes in brain activation, suggesting increased processing efficiency with EGb761. Together with a trend for improved response inhibition results are compatible with mild enhancement of prefrontal dopamine. These conclusions on potential beneficial effect of EGb761 on prefrontal dopaminergic functions should be confirmed by direct measurements. © 2016 The Authors. Human Psychopharmacology: Clinical and Experimental published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Stefanie M. Beck
- Department of PsychologyTechnische Universität DresdenDresdenGermany,Neuroimaging CentreTechnische Universität DresdenDresdenGermany
| | - Hannes Ruge
- Department of PsychologyTechnische Universität DresdenDresdenGermany,Neuroimaging CentreTechnische Universität DresdenDresdenGermany
| | - Christoph Schindler
- Institute for Clinical Pharmacology, Faculty of Medicine Carl Gustav CarusTechnische Universität DresdenDresdenGermany,Clinical Research Center Hannover & Institute for Clinical PharmacologyHannover Medical SchoolHannoverGermany
| | | | - Robert Miller
- Department of PsychologyTechnische Universität DresdenDresdenGermany
| | | | - Thomas Goschke
- Department of PsychologyTechnische Universität DresdenDresdenGermany,Neuroimaging CentreTechnische Universität DresdenDresdenGermany
| |
Collapse
|
108
|
Trofimova I, Robbins TW. Temperament and arousal systems: A new synthesis of differential psychology and functional neurochemistry. Neurosci Biobehav Rev 2016; 64:382-402. [PMID: 26969100 DOI: 10.1016/j.neubiorev.2016.03.008] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2015] [Revised: 11/15/2015] [Accepted: 03/05/2016] [Indexed: 10/22/2022]
Abstract
This paper critically reviews the unidimensional construct of General Arousal as utilised by models of temperament in differential psychology for example, to underlie 'Extraversion'. Evidence suggests that specialization within monoamine neurotransmitter systems contrasts with the attribution of a "general arousal" of the Ascending Reticular Activating System. Experimental findings show specialized roles of noradrenaline, dopamine, and serotonin systems in hypothetically mediating three complementary forms of arousal that are similar to three functional blocks described in classical models of behaviour within kinesiology, clinical neuropsychology, psychophysiology and temperament research. In spite of functional diversity of monoamine receptors, we suggest that their functionality can be classified using three universal aspects of actions related to expansion, to selection-integration and to maintenance of chosen behavioural alternatives. Monoamine systems also differentially regulate analytic vs. routine aspects of activities at cortical and striatal neural levels. A convergence between main temperament models in terms of traits related to described functional aspects of behavioural arousal also supports the idea of differentiation between these aspects analysed here in a functional perspective.
Collapse
Affiliation(s)
- Irina Trofimova
- CILab, Department of Psychiatry and Behavioral Neurosciences, McMaster University, 92 Bowman St., Hamilton L8S2T6, Canada.
| | - Trevor W Robbins
- Department of Psychology and the Behavioural and Clinical Neuroscience Institute, Downing St., Cambridge CB23EB, UK.
| |
Collapse
|
109
|
López-Granero C, Ruiz-Muñoz AM, Nieto-Escámez FA, Colomina MT, Aschner M, Sánchez-Santed F. Chronic dietary chlorpyrifos causes long-term spatial memory impairment and thigmotaxic behavior. Neurotoxicology 2016; 53:85-92. [DOI: 10.1016/j.neuro.2015.12.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 12/21/2015] [Accepted: 12/21/2015] [Indexed: 01/24/2023]
|
110
|
Bellesi M, Tononi G, Cirelli C, Serra PA. Region-Specific Dissociation between Cortical Noradrenaline Levels and the Sleep/Wake Cycle. Sleep 2016; 39:143-54. [PMID: 26237776 DOI: 10.5665/sleep.5336] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 06/28/2015] [Indexed: 12/20/2022] Open
Abstract
STUDY OBJECTIVES The activity of the noradrenergic system of the locus coeruleus (LC) is high in wake and low in sleep. LC promotes arousal and EEG activation, as well as attention, working memory, and cognitive flexibility. These functions rely on prefrontal cortex and are impaired by sleep deprivation, but the extent to which LC activity changes during wake remains unclear. Moreover, it is unknown whether noradrenergic neurons can sustain elevated firing during extended wake. Recent studies show that relative to LC neurons targeting primary motor cortex (M1), those projecting to medial prefrontal cortex (mPFC) have higher spontaneous firing rates and are more excitable. These results suggest that noradrenaline (NA) levels should be higher in mPFC than M1, and that during prolonged wake LC cells targeting mPFC may fatigue more, but direct evidence is lacking. METHODS We performed in vivo microdialysis experiments in adult (9-10 weeks old) C57BL/6 mice implanted for chronic electroencephalographic recordings. Cortical NA levels were measured during spontaneous sleep and wake (n = 8 mice), and in the course of sleep deprivation (n = 6). RESULTS We found that absolute NA levels are higher in mPFC than in M1. Moreover, in both areas they decline during sleep and increase during wake, but these changes are faster in M1 than mPFC. Finally, by the end of sleep deprivation NA levels decline only in mPFC. CONCLUSIONS Locus coeruleus (LC) neurons targeting prefrontal cortex may fatigue more markedly, or earlier, than other LC cells, suggesting one of the mechanisms underlying the cognitive impairment and the increased sleep presure associated with sleep deprivation. COMMENTARY A commentary on this article appears in this issue on page 11.
Collapse
Affiliation(s)
- Michele Bellesi
- Dept. of Psychiatry, University of Wisconsin-Madison, Madison, WI
| | - Giulio Tononi
- Dept. of Psychiatry, University of Wisconsin-Madison, Madison, WI
| | - Chiara Cirelli
- Dept. of Psychiatry, University of Wisconsin-Madison, Madison, WI
| | - Pier Andrea Serra
- Dept. of Clinical and Experimental Medicine, University of Sassari, Italy
| |
Collapse
|
111
|
Parashar A, Udayabanu M. Gut microbiota regulates key modulators of social behavior. Eur Neuropsychopharmacol 2016; 26:78-91. [PMID: 26613639 DOI: 10.1016/j.euroneuro.2015.11.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 10/14/2015] [Accepted: 11/08/2015] [Indexed: 12/20/2022]
Abstract
Social behavior plays a pivotal role in the mental well-being of an individual. Continuous efforts in the past have led to advancements in the area of how the brain regulates emotion and cognition, while the understanding of human social behavior still remains eluded. A major breakthrough in understanding the etiology of neurological disorders is the recent insight on the role of the gut microbiota (GM). Human GM also referred to as the "forgotten organ" is home to 10(13-14) microorganisms, which is 10 times the number of cells present in the human body. In addition, the gut microbiome (total genome of GM) is 150 times greater as compared to the human genome. An emerging concept gaining worldwide focus and acceptance is that, this much big genome can potentially control human behavior and other biological functions. Herein we hypothesize on the basis of GM's ability to modify brain and behavior and that it can directly or indirectly control social behavior. This review focuses on the association of GM with various domains of social behavior like stress, cognition and anxiety.
Collapse
Affiliation(s)
- Arun Parashar
- Jaypee University of Information Technology, Waknaghat, Solan 173234, Himachal Pradesh, India
| | - Malairaman Udayabanu
- Jaypee University of Information Technology, Waknaghat, Solan 173234, Himachal Pradesh, India.
| |
Collapse
|
112
|
Petrowski K, Wintermann GB, Kirschbaum C, Strahler J. Salivary alpha-amylase response following repeated psychosocial stress in patients with panic disorder. J Anxiety Disord 2016; 37:54-63. [PMID: 26625098 DOI: 10.1016/j.janxdis.2015.10.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 09/30/2015] [Accepted: 10/01/2015] [Indexed: 12/22/2022]
Abstract
BACKGROUND This study examined autonomic responses (salivary alpha-amylase, sAA; heart rate, HR) to repeated psychosocial stress as a candidate mechanism linking autonomic hyper-arousal and sensitization to the occurrence of panic disorder (PD). METHODS Thirty-three patients with PD and 34 healthy controls were exposed to the Trier Social Stress Test (TSST) twice on consecutive days. RESULTS sAA changes were comparable between PD and controls on both testing days with overall decreasing sAA responses (delta) on day two. In contrast, HR delta increased on day two in both groups. This sensitization was driven by female controls while male PD showed most pronounced HR changes to the first TSST. CONCLUSIONS Overall, a general autonomic hyper-arousal in PD could not be confirmed. In contrast, sAA responses slightly habituated to repeated stress. Whether sAA findings mirror assumed habituation effects of repeated stress exposure on normalizing autonomic reactivity remains to be investigated in longitudinal studies.
Collapse
Affiliation(s)
- Katja Petrowski
- Department of Psychotherapy and Psychosomatic Medicine, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Germany.
| | - Gloria-Beatrice Wintermann
- Department of Psychotherapy and Psychosomatic Medicine, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Germany
| | - Clemens Kirschbaum
- Biological Psychology, Department of Psychology, Technische Universität Dresden, Germany
| | - Jana Strahler
- Clinical Biopsychology, Department of Psychology, Philipps-Universität Marburg, Germany
| |
Collapse
|
113
|
Sex differences in the locus coeruleus-norepinephrine system and its regulation by stress. Brain Res 2015; 1641:177-88. [PMID: 26607253 DOI: 10.1016/j.brainres.2015.11.021] [Citation(s) in RCA: 161] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 10/27/2015] [Accepted: 11/12/2015] [Indexed: 12/26/2022]
Abstract
Women are more likely than men to suffer from post-traumatic stress disorder (PTSD) and major depression. In addition to their sex bias, these disorders share stress as an etiological factor and hyperarousal as a symptom. Thus, sex differences in brain arousal systems and their regulation by stress could help explain increased vulnerability to these disorders in women. Here we review preclinical studies that have identified sex differences in the locus coeruleus (LC)-norepinephrine (NE) arousal system. First, we detail how structural sex differences in the LC can bias females towards increased arousal in response to emotional events. Second, we highlight studies demonstrating that estrogen can increase NE in LC target regions by enhancing the capacity for NE synthesis, while reducing NE degradation, potentially increasing arousal in females. Third, we review data revealing how sex differences in the stress receptor, corticotropin releasing factor 1 (CRF1), can increase LC neuronal sensitivity to CRF in females compared to males. This effect could translate into hyperarousal in women under conditions of CRF hypersecretion that occur in PTSD and depression. The implications of these sex differences for the treatment of stress-related psychiatric disorders are discussed. Moreover, the value of using information regarding biological sex differences to aid in the development of novel pharmacotherapies to better treat men and women with PTSD and depression is also highlighted. This article is part of a Special Issue entitled SI: Noradrenergic System.
Collapse
|
114
|
Janitzky K, Lippert MT, Engelhorn A, Tegtmeier J, Goldschmidt J, Heinze HJ, Ohl FW. Optogenetic silencing of locus coeruleus activity in mice impairs cognitive flexibility in an attentional set-shifting task. Front Behav Neurosci 2015; 9:286. [PMID: 26582980 PMCID: PMC4631833 DOI: 10.3389/fnbeh.2015.00286] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 10/12/2015] [Indexed: 12/30/2022] Open
Abstract
The locus coeruleus (LC) is the sole source of noradrenergic projections to the cortex and essential for attention-dependent cognitive processes. In this study we used unilateral optogenetic silencing of the LC in an attentional set-shifting task (ASST) to evaluate the influence of the LC on prefrontal cortex-dependent functions in mice. We expressed the halorhodopsin eNpHR 3.0 to reversibly silence LC activity during task performance, and found that silencing selectively impaired learning of those parts of the ASST that most strongly rely on cognitive flexibility. In particular, extra-dimensional set-shifting (EDS) and reversal learning was impaired, suggesting an involvement of the medial prefrontal cortex (mPFC) and the orbitofrontal cortex. In contrast, those parts of the task that are less dependent on cognitive flexibility, i.e., compound discrimination (CD) and the intra-dimensional shifts (IDS) were not affected. Furthermore, attentional set formation was unaffected by LC silencing. Our results therefore suggest a modulatory influence of the LC on cognitive flexibility, mediated by different frontal networks.
Collapse
Affiliation(s)
- Kathrin Janitzky
- Department of Neurology, University of Magdeburg Magdeburg, Germany ; Systems Physiology of Learning, Leibniz Institute of Neurobiology Magdeburg, Germany
| | - Michael T Lippert
- Systems Physiology of Learning, Leibniz Institute of Neurobiology Magdeburg, Germany
| | - Achim Engelhorn
- Systems Physiology of Learning, Leibniz Institute of Neurobiology Magdeburg, Germany
| | - Jennifer Tegtmeier
- Systems Physiology of Learning, Leibniz Institute of Neurobiology Magdeburg, Germany
| | - Jürgen Goldschmidt
- Systems Physiology of Learning, Leibniz Institute of Neurobiology Magdeburg, Germany ; Center for Behavioral Brain Sciences Magdeburg, Germany
| | - Hans-Jochen Heinze
- Department of Neurology, University of Magdeburg Magdeburg, Germany ; Systems Physiology of Learning, Leibniz Institute of Neurobiology Magdeburg, Germany ; Center for Behavioral Brain Sciences Magdeburg, Germany
| | - Frank W Ohl
- Systems Physiology of Learning, Leibniz Institute of Neurobiology Magdeburg, Germany ; Center for Behavioral Brain Sciences Magdeburg, Germany ; Systems Physiology, Institute of Biology, University of Magdeburg Magdeburg, Germany
| |
Collapse
|
115
|
Sensitivity of [(11)C]ORM-13070 to increased extracellular noradrenaline in the CNS - a PET study in human subjects. Psychopharmacology (Berl) 2015; 232:4169-78. [PMID: 25918111 DOI: 10.1007/s00213-015-3941-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 04/14/2015] [Indexed: 10/23/2022]
Abstract
RATIONALE No validated methods have been available for studying brain noradrenergic neurotransmission in vivo in humans. Positron emission tomography (PET) radiotracers are widely used in clinical drug development targeted to brain receptors and can also in some cases be employed to monitor extracellular (synaptic) neurotransmitter concentrations. OBJECTIVES The objective of this study is to test the sensitivity of [(11)C]ORM-13070 uptake to increased concentrations of extracellular (synaptic) noradrenaline in the human brain. METHODS Eight subjects underwent a control PET scan with [(11)C]ORM-13070, a subtype-selective α2C-adrenoceptor antagonist radioligand, and two PET scans after two different noradrenaline challenges, i.e. during ketamine infusion and after a dose of atomoxetine combined with cold stimulation. Tracer uptake in the caudate nucleus and putamen was described with AUC values in scan time windows of 10-20 and 5-30 min post injection and quantified with the ratio method. Voxel-based analysis was performed with average bound per free (B/F) ratio images. RESULTS Both noradrenaline challenges were consistently associated with 10-20 % (p < 0.05) reductions in tracer uptake in the dorsal striatum, as determined with region-of-interest-based analysis. Voxel-based analysis revealed significant reductions in B/F ratios in the dorsal striatum, in the brain stem and in several cortical areas. Reductions of 24 and 23 % were detected in the peak putamen clusters with ketamine and atomoxetine + cold, respectively. CONCLUSION Direct experimental support was gained for the suitability of [(11)C]ORM-13070 for imaging of brain noradrenergic neurotransmission.
Collapse
|
116
|
Brzosko Z, Schultz W, Paulsen O. Retroactive modulation of spike timing-dependent plasticity by dopamine. eLife 2015; 4. [PMID: 26516682 PMCID: PMC4626806 DOI: 10.7554/elife.09685] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 09/20/2015] [Indexed: 02/05/2023] Open
Abstract
Most reinforcement learning models assume that the reward signal arrives after the activity that led to the reward, placing constraints on the possible underlying cellular mechanisms. Here we show that dopamine, a positive reinforcement signal, can retroactively convert hippocampal timing-dependent synaptic depression into potentiation. This effect requires functional NMDA receptors and is mediated in part through the activation of the cAMP/PKA cascade. Collectively, our results support the idea that reward-related signaling can act on a pre-established synaptic eligibility trace, thereby associating specific experiences with behaviorally distant, rewarding outcomes. This finding identifies a biologically plausible mechanism for solving the 'distal reward problem'.
Collapse
Affiliation(s)
- Zuzanna Brzosko
- Department of Physiology, Development and Neuroscience, Physiological Laboratory, University of Cambridge, Cambridge, United Kingdom
| | - Wolfram Schultz
- Department of Physiology, Development and Neuroscience, Physiological Laboratory, University of Cambridge, Cambridge, United Kingdom
| | - Ole Paulsen
- Department of Physiology, Development and Neuroscience, Physiological Laboratory, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
117
|
Singh C, Oikonomou G, Prober DA. Norepinephrine is required to promote wakefulness and for hypocretin-induced arousal in zebrafish. eLife 2015; 4:e07000. [PMID: 26374985 PMCID: PMC4606453 DOI: 10.7554/elife.07000] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 09/14/2015] [Indexed: 12/12/2022] Open
Abstract
Pharmacological studies in mammals suggest that norepinephrine (NE) plays an important role in promoting arousal. However, the role of endogenous NE is unclear, with contradicting reports concerning the sleep phenotypes of mice lacking NE due to mutation of dopamine β-hydroxylase (dbh). To investigate NE function in an alternative vertebrate model, we generated dbh mutant zebrafish. In contrast to mice, these animals exhibit dramatically increased sleep. Surprisingly, despite an increase in sleep, dbh mutant zebrafish have a reduced arousal threshold. These phenotypes are also observed in zebrafish treated with small molecules that inhibit NE signaling, suggesting that they are caused by the lack of NE. Using genetic overexpression of hypocretin (Hcrt) and optogenetic activation of hcrt-expressing neurons, we also find that NE is important for Hcrt-induced arousal. These results establish a role for endogenous NE in promoting arousal and indicate that NE is a critical downstream effector of Hcrt neurons. DOI:http://dx.doi.org/10.7554/eLife.07000.001 Although the neural circuits that regulate sleep and wakefulness have yet to be fully identified, the importance of at least two brain regions is well established. These are the hypothalamus, a structure deep within the brain that controls a number of basic activities including hunger, thirst and sleep; and the brainstem, which connects the brain with the spinal cord. Specific neurons within the hypothalamus and brainstem regulate the sleep–wake cycle by signaling to one another using chemicals called neurotransmitters and neuropeptides. Throughout the day, some hypothalamic neurons release a neuropeptide called hypocretin, which helps maintain wakefulness. Hypocretin acts on neurons within the brainstem and causes them to release other neurotransmitters that promote wakefulness. However, the identity of these molecules is unclear. One candidate is norepinephrine. Drugs that enhance the effects of norepinephrine increase wakefulness, whereas those that block norepinephrine signaling promote sleep. Despite this, mice that have been genetically modified to lack the enzyme that produces norepinephrine exhibit relatively normal sleep. This may be because in mammals, norepinephrine also has important roles outside the brain, thus complicating the effects of this genetic modification on behavior. Alternatively, while zebrafish that lack norepinephrine are healthy, mice containing this modification die early in development. Treating these mice with a specific drug allows them to survive, but might affect their behavior. To clarify the role of norepinephrine and its interaction with hypocretin, Singh, Oikonomou and Prober created a new animal model by genetically modifying zebrafish. In contrast to mice, zebrafish that were unable to make norepinephrine slept more than normal fish, although they were also lighter sleepers and were more prone to being startled. A genetic modification that increases hypocretin signaling induces insomnia; Singh, Oikonomou and Prober found that this occurs only in animals with normal levels of norepinephrine. Thus, these experiments indicate that hypocretin does indeed promote wakefulness though norepinephrine. The work of Singh, Oikonomou and Prober has clarified the role of norepinephrine in regulating the sleep–wake cycle. These findings could help in the development of drugs that target the neurons that make hypocretin, which may improve treatments for sleep disorders. DOI:http://dx.doi.org/10.7554/eLife.07000.002
Collapse
Affiliation(s)
- Chanpreet Singh
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Grigorios Oikonomou
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - David A Prober
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| |
Collapse
|
118
|
Zack M, Boileau I, Payer D, Chugani B, Lobo DS, Houle S, Wilson AA, Warsh JJ, Kish SJ. Differential cardiovascular and hypothalamic pituitary response to amphetamine in male pathological gamblers versus healthy controls. J Psychopharmacol 2015; 29:971-82. [PMID: 26152320 DOI: 10.1177/0269881115592338] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cardiovascular and hypothalamic pituitary axis (HPA) disturbances have been observed in individuals who are pathological gamblers (PGs). These may partly derive from chronic exposure to gambling. Response to amphetamine (AMPH) may reveal such disturbances while controlling for differential conditioned responses to gambling in PGs vs healthy controls (HCs). This study assessed heart rate (HR), systolic blood pressure (SBP) and diastolic blood pressure (DBP) and plasma cortisol following oral AMPH (0.4 mg/kg) in male PGs (n=12) and HCs (n=11) who underwent a positron emission tomography (PET) scan. The Stop Signal Task enabled assessment of the link between physiological and behavioral dysregulation. Trait moderating effects were explored. The responses of PGs to AMPH differed from those of HCs on every index. PGs displayed persistent elevation in DBP and concomitant reduction in HR (i.e. baroreflex) compared to HCs beyond 90 min post-dose. PGs displayed deficits in cortisol compared to HCs that were partially reversed by AMPH. Impairment on the Stop Signal Task correlated positively with HR in controls, but negatively with HR in PGs, suggesting that strong initial and compensatory cardiac responses to a stimulant may each predict disinhibition. Extraversion predicted greater disinhibition in PGs. Noradrenergic disturbances may contribute to sensitized responses to stimulant challenge and disinhibition in PGs.
Collapse
Affiliation(s)
- Martin Zack
- Centre for Addiction and Mental Health, Toronto, ON, Canada
| | | | - Doris Payer
- Centre for Addiction and Mental Health, Toronto, ON, Canada
| | | | - Daniela S Lobo
- Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Sylvain Houle
- Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Alan A Wilson
- Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Jerry J Warsh
- Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Stephen J Kish
- Centre for Addiction and Mental Health, Toronto, ON, Canada
| |
Collapse
|
119
|
Brown JT, Bishop JR. Atomoxetine pharmacogenetics: associations with pharmacokinetics, treatment response and tolerability. Pharmacogenomics 2015; 16:1513-20. [PMID: 26314574 DOI: 10.2217/pgs.15.93] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Atomoxetine is indicated for the treatment of attention deficit hyperactivity disorder and is predominantly metabolized by the CYP2D6 enzyme. Differences in pharmacokinetic parameters as well as clinical treatment outcomes across CYP2D6 genotype groups have resulted in dosing recommendations within the product label, but clinical studies supporting the use of genotype guided dosing are currently lacking. Furthermore, pharmacokinetic and clinical studies have primarily focused on extensive as compared with poor metabolizers, with little information known about other metabolizer categories as well as genes involved in the pharmacodynamics of atomoxetine. This review describes the pharmacogenetic associations with atomoxetine pharmacokinetics, treatment response and tolerability with considerations for the clinical utility of this information.
Collapse
Affiliation(s)
- Jacob T Brown
- Department of Pharmacy Practice & Pharmaceutical Sciences, College of Pharmacy, University of Minnesota, Duluth, MN 55802, USA
| | - Jeffrey R Bishop
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
120
|
O'Dell TJ, Connor SA, Guglietta R, Nguyen PV. β-Adrenergic receptor signaling and modulation of long-term potentiation in the mammalian hippocampus. ACTA ACUST UNITED AC 2015; 22:461-71. [PMID: 26286656 PMCID: PMC4561407 DOI: 10.1101/lm.031088.113] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 06/02/2015] [Indexed: 02/06/2023]
Abstract
Encoding new information in the brain requires changes in synaptic strength. Neuromodulatory transmitters can facilitate synaptic plasticity by modifying the actions and expression of specific signaling cascades, transmitter receptors and their associated signaling complexes, genes, and effector proteins. One critical neuromodulator in the mammalian brain is norepinephrine (NE), which regulates multiple brain functions such as attention, perception, arousal, sleep, learning, and memory. The mammalian hippocampus receives noradrenergic innervation and hippocampal neurons express β-adrenergic receptors, which are known to play important roles in gating the induction of long-lasting forms of synaptic potentiation. These forms of long-term potentiation (LTP) are believed to importantly contribute to long-term storage of spatial and contextual memories in the brain. In this review, we highlight the contributions of noradrenergic signaling in general and β-adrenergic receptors in particular, toward modulating hippocampal LTP. We focus on the roles of NE and β-adrenergic receptors in altering the efficacies of specific signaling molecules such as NMDA and AMPA receptors, protein phosphatases, and translation initiation factors. Also, the roles of β-adrenergic receptors in regulating synaptic "tagging" and "capture" of LTP within synaptic networks of the hippocampus are reviewed. Understanding the molecular and cellular bases of noradrenergic signaling will enrich our grasp of how the brain makes new, enduring memories, and may shed light on credible strategies for improving mental health through treatment of specific disorders linked to perturbed memory processing and dysfunctional noradrenergic synaptic transmission.
Collapse
Affiliation(s)
- Thomas J O'Dell
- Department of Physiology, David Geffen School of Medicine and Integrative Center for Learning and Memory, Brain Research Institute, University of California, Los Angeles, Los Angeles, California 90095, USA
| | - Steven A Connor
- Department of Physiology, University of Alberta School of Medicine, Edmonton, Alberta T6G 2H7, Canada
| | - Ryan Guglietta
- Interdepartmental Ph.D. Program for Neuroscience, University of California, Los Angeles, Los Angeles, California 90095, USA
| | - Peter V Nguyen
- Department of Physiology, University of Alberta School of Medicine, Edmonton, Alberta T6G 2H7, Canada Department of Psychiatry, University of Alberta School of Medicine, Edmonton, Alberta T6G 2H7, Canada Department of Neuroscience & Mental Health Institute, University of Alberta School of Medicine, Edmonton, Alberta T6G 2H7, Canada
| |
Collapse
|
121
|
Norepinephrine ignites local hotspots of neuronal excitation: How arousal amplifies selectivity in perception and memory. Behav Brain Sci 2015; 39:e200. [PMID: 26126507 DOI: 10.1017/s0140525x15000667] [Citation(s) in RCA: 361] [Impact Index Per Article: 36.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Emotional arousal enhances perception and memory of high-priority information but impairs processing of other information. Here, we propose that, under arousal, local glutamate levels signal the current strength of a representation and interact with norepinephrine (NE) to enhance high priority representations and out-compete or suppress lower priority representations. In our "glutamate amplifies noradrenergic effects" (GANE) model, high glutamate at the site of prioritized representations increases local NE release from the locus coeruleus (LC) to generate "NE hotspots." At these NE hotspots, local glutamate and NE release are mutually enhancing and amplify activation of prioritized representations. In contrast, arousal-induced LC activity inhibits less active representations via two mechanisms: 1) Where there are hotspots, lateral inhibition is amplified; 2) Where no hotspots emerge, NE levels are only high enough to activate low-threshold inhibitory adrenoreceptors. Thus, LC activation promotes a few hotspots of excitation in the context of widespread suppression, enhancing high priority representations while suppressing the rest. Hotspots also help synchronize oscillations across neural ensembles transmitting high-priority information. Furthermore, brain structures that detect stimulus priority interact with phasic NE release to preferentially route such information through large-scale functional brain networks. A surge of NE before, during, or after encoding enhances synaptic plasticity at NE hotspots, triggering local protein synthesis processes that enhance selective memory consolidation. Together, these noradrenergic mechanisms promote selective attention and memory under arousal. GANE not only reconciles apparently contradictory findings in the emotion-cognition literature but also extends previous influential theories of LC neuromodulation by proposing specific mechanisms for how LC-NE activity increases neural gain.
Collapse
|
122
|
Yuan L, Tian Y, Zhang F, Ma H, Chen X, Dai F, Wang K. Decision-Making in Patients with Hyperthyroidism: A Neuropsychological Study. PLoS One 2015; 10:e0129773. [PMID: 26090955 PMCID: PMC4474662 DOI: 10.1371/journal.pone.0129773] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 05/13/2015] [Indexed: 02/08/2023] Open
Abstract
Introduction Cognitive and behavioral impairments are common in patients with abnormal thyroid function; these impairments cause a reduction in their quality of life. The current study investigates the decision making performance in patients with hyperthyroidism to explore the possible mechanism of their cognitive and behavioral impairments. Methods Thirty-eight patients with hyperthyroidism and forty healthy control subjects were recruited to perform the Iowa Gambling Task (IGT), which assessed decision making under ambiguous conditions. Results Patients with hyperthyroidism had a higher score on the Zung Self-Rating Anxiety Scale (Z-SAS), and exhibited poorer executive function and IGT performance than did healthy control subjects. The patients preferred to choose decks with a high immediate reward, despite a higher future punishment, and were not capable of effectively using feedback information from previous choices. No clinical characteristics were associated with the total net score of the IGT in the current study. Conclusions Patients with hyperthyroidism had decision-making impairment under ambiguous conditions. The deficits may result from frontal cortex and limbic system metabolic disorders and dopamine dysfunction.
Collapse
Affiliation(s)
- Lili Yuan
- Department of Neurology, First Hospital of Anhui Medical University, Hefei, Anhui Province, PR China
| | - Yanghua Tian
- Department of Neurology, First Hospital of Anhui Medical University, Hefei, Anhui Province, PR China
| | - Fangfang Zhang
- Department of Neurology, First Hospital of Anhui Medical University, Hefei, Anhui Province, PR China
| | - Huijuan Ma
- Department of Neurology, First Hospital of Anhui Medical University, Hefei, Anhui Province, PR China
| | - Xingui Chen
- Department of Neurology, First Hospital of Anhui Medical University, Hefei, Anhui Province, PR China
| | - Fang Dai
- Department of Endocrinology, First Hospital of Anhui Medical University, Hefei, Anhui Province, PR China
- * E-mail: (FD); (KW)
| | - Kai Wang
- Department of Neurology, First Hospital of Anhui Medical University, Hefei, Anhui Province, PR China
- * E-mail: (FD); (KW)
| |
Collapse
|
123
|
Gannon M, Che P, Chen Y, Jiao K, Roberson ED, Wang Q. Noradrenergic dysfunction in Alzheimer's disease. Front Neurosci 2015; 9:220. [PMID: 26136654 PMCID: PMC4469831 DOI: 10.3389/fnins.2015.00220] [Citation(s) in RCA: 125] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 06/02/2015] [Indexed: 12/27/2022] Open
Abstract
The brain noradrenergic system supplies the neurotransmitter norepinephrine throughout the brain via widespread efferent projections, and plays a pivotal role in modulating cognitive activities in the cortex. Profound noradrenergic degeneration in Alzheimer's disease (AD) patients has been observed for decades, with recent research suggesting that the locus coeruleus (where noradrenergic neurons are mainly located) is a predominant site where AD-related pathology begins. Mounting evidence indicates that the loss of noradrenergic innervation greatly exacerbates AD pathogenesis and progression, although the precise roles of noradrenergic components in AD pathogenesis remain unclear. The aim of this review is to summarize current findings on noradrenergic dysfunction in AD, as well as to point out deficiencies in our knowledge where more research is needed.
Collapse
Affiliation(s)
- Mary Gannon
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham Birmingham, AL, USA
| | - Pulin Che
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham Birmingham, AL, USA
| | - Yunjia Chen
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham Birmingham, AL, USA
| | - Kai Jiao
- Department of Genetics, University of Alabama at Birmingham Birmingham, AL, USA
| | - Erik D Roberson
- Department of Neurology, University of Alabama at Birmingham Birmingham, AL, USA
| | - Qin Wang
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham Birmingham, AL, USA
| |
Collapse
|
124
|
Toxoplasma gondii seropositivity and cognitive functions in school-aged children. Parasitology 2015; 142:1221-7. [PMID: 25990628 DOI: 10.1017/s0031182015000505] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Toxoplasma gondii (T. gondii) infects one-third of the world population, but its association with cognitive functions in school-aged children is unclear. We examined the relationship between Toxoplasma seropositivity and neuropsychological tests scores (including math, reading, visuospatial reasoning and verbal memory) in 1755 school-aged children 12-16 years old who participated to the Third National Health and Nutrition Examination Survey, using multiple linear regressions adjusted for covariates. Toxoplasma seroprevalence was 7·7% and seropositivity to the parasite was associated with lower reading skills (regression coefficient [β] = -5·86, 95% confidence interval [CI]: -11·11, -0·61, P = 0·029) and memory capacities (β = -0·86, 95% CI: -1·58, -0·15, P = 0·017). The interaction between T. gondii seropositivity and vitamin E significantly correlated with memory scores. In subgroup analysis, Toxoplasma-associated memory impairment was worse in children with lower serum vitamin E concentrations (β = -1·61, 95% CI: -2·44, -0·77, P < 0·001) than in those with higher values (β = -0·12, 95% CI: -1·23, 0·99, P = 0·83). In conclusion, Toxoplasma seropositivity may be associated with reading and memory impairments in school-aged children. Serum vitamin E seems to modify the relationship between the parasitic infection and memory deficiency.
Collapse
|
125
|
Chen C, Takahashi T, Nakagawa S, Inoue T, Kusumi I. Reinforcement learning in depression: A review of computational research. Neurosci Biobehav Rev 2015; 55:247-67. [PMID: 25979140 DOI: 10.1016/j.neubiorev.2015.05.005] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 04/20/2015] [Accepted: 05/04/2015] [Indexed: 01/05/2023]
Abstract
Despite being considered primarily a mood disorder, major depressive disorder (MDD) is characterized by cognitive and decision making deficits. Recent research has employed computational models of reinforcement learning (RL) to address these deficits. The computational approach has the advantage in making explicit predictions about learning and behavior, specifying the process parameters of RL, differentiating between model-free and model-based RL, and the computational model-based functional magnetic resonance imaging and electroencephalography. With these merits there has been an emerging field of computational psychiatry and here we review specific studies that focused on MDD. Considerable evidence suggests that MDD is associated with impaired brain signals of reward prediction error and expected value ('wanting'), decreased reward sensitivity ('liking') and/or learning (be it model-free or model-based), etc., although the causality remains unclear. These parameters may serve as valuable intermediate phenotypes of MDD, linking general clinical symptoms to underlying molecular dysfunctions. We believe future computational research at clinical, systems, and cellular/molecular/genetic levels will propel us toward a better understanding of the disease.
Collapse
Affiliation(s)
- Chong Chen
- Department of Psychiatry, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan.
| | - Taiki Takahashi
- Department of Behavioral Science/Center for Experimental Research in Social Sciences, Hokkaido University, Sapporo 060-0810, Japan
| | - Shin Nakagawa
- Department of Psychiatry, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
| | - Takeshi Inoue
- Department of Psychiatry, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
| | - Ichiro Kusumi
- Department of Psychiatry, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
| |
Collapse
|
126
|
Luo Y, Zhou J, Li M, Wu P, Hu Z, Ni L, Jin Y, Chen J, Wang F. Reversal of aging-related emotional memory deficits by norepinephrine via regulating the stability of surface AMPA receptors. Aging Cell 2015; 14:170-9. [PMID: 25564942 PMCID: PMC4364829 DOI: 10.1111/acel.12282] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/24/2014] [Indexed: 12/19/2022] Open
Abstract
Aging-related emotional memory deficit is a well-known complication in Alzheimer's disease and normal aging. However, little is known about its molecular mechanism. To address this issue, we examined the role of norepinephrine (NE) and its relevant drug desipramine in the regulation of hippocampal long-term potentiation (LTP), surface expression of AMPA receptor, and associative fear memory in rats. We found that there was a defective regulation of NE content and AMPA receptor trafficking during fear conditioning, which were accompanied by impaired emotional memory and LTP in aged rats. Furthermore, we also found that the exogenous upregulation of NE ameliorated the impairment of LTP and emotional memory via enhancing AMPA receptor trafficking in aged rats, and the downregulation of NE impaired LTP in adult rats. Finally, acute treatment with NE or desipramine rescued the impaired emotional memory in aged rats. These results imply a pivotal role for NE in synaptic plasticity and associative fear memory in aging rats and suggest that desipramine is a potential candidate for treating aging-related emotional memory deficit.
Collapse
Affiliation(s)
- Yi Luo
- Department of Pharmacology School of Basic Medicine Tongji Medical College Huazhong University of Science and Technology Wuhan 430030 China
| | - Jun Zhou
- Department of Pharmacology School of Basic Medicine Tongji Medical College Huazhong University of Science and Technology Wuhan 430030 China
| | - Ming‐Xing Li
- Department of Pharmacology School of Basic Medicine Tongji Medical College Huazhong University of Science and Technology Wuhan 430030 China
| | - Peng‐Fei Wu
- Department of Pharmacology School of Basic Medicine Tongji Medical College Huazhong University of Science and Technology Wuhan 430030 China
- Key Laboratory of Neurological Diseases (HUST) Ministry of Education of China Wuhan 430030 China
- The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province Wuhan 430030 China
| | - Zhuang‐Li Hu
- Department of Pharmacology School of Basic Medicine Tongji Medical College Huazhong University of Science and Technology Wuhan 430030 China
- Key Laboratory of Neurological Diseases (HUST) Ministry of Education of China Wuhan 430030 China
- The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province Wuhan 430030 China
| | - Lan Ni
- Department of Pharmacology School of Basic Medicine Tongji Medical College Huazhong University of Science and Technology Wuhan 430030 China
- Key Laboratory of Neurological Diseases (HUST) Ministry of Education of China Wuhan 430030 China
- The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province Wuhan 430030 China
| | - You Jin
- Department of Pharmacology School of Basic Medicine Tongji Medical College Huazhong University of Science and Technology Wuhan 430030 China
- Key Laboratory of Neurological Diseases (HUST) Ministry of Education of China Wuhan 430030 China
- The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province Wuhan 430030 China
| | - Jian‐Guo Chen
- Department of Pharmacology School of Basic Medicine Tongji Medical College Huazhong University of Science and Technology Wuhan 430030 China
- Key Laboratory of Neurological Diseases (HUST) Ministry of Education of China Wuhan 430030 China
- The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province Wuhan 430030 China
- The Institute of Brain Research Huazhong University of Science and Technology Wuhan 430030 China
| | - Fang Wang
- Department of Pharmacology School of Basic Medicine Tongji Medical College Huazhong University of Science and Technology Wuhan 430030 China
- Key Laboratory of Neurological Diseases (HUST) Ministry of Education of China Wuhan 430030 China
- The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province Wuhan 430030 China
- The Institute of Brain Research Huazhong University of Science and Technology Wuhan 430030 China
| |
Collapse
|
127
|
Lissek S, Glaubitz B, Güntürkün O, Tegenthoff M. Noradrenergic stimulation modulates activation of extinction-related brain regions and enhances contextual extinction learning without affecting renewal. Front Behav Neurosci 2015; 9:34. [PMID: 25745389 PMCID: PMC4333811 DOI: 10.3389/fnbeh.2015.00034] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 02/01/2015] [Indexed: 01/20/2023] Open
Abstract
Renewal in extinction learning describes the recovery of an extinguished response if the extinction context differs from the context present during acquisition and recall. Attention may have a role in contextual modulation of behavior and contribute to the renewal effect, while noradrenaline (NA) is involved in attentional processing. In this functional magnetic resonance imaging (fMRI) study we investigated the role of the noradrenergic system for behavioral and brain activation correlates of contextual extinction and renewal, with a particular focus upon hippocampus and ventromedial prefrontal cortex (PFC), which have crucial roles in processing of renewal. Healthy human volunteers received a single dose of the NA reuptake inhibitor atomoxetine prior to extinction learning. During extinction of previously acquired cue-outcome associations, cues were presented in a novel context (ABA) or in the acquisition context (AAA). In recall, all cues were again presented in the acquisition context. Atomoxetine participants (ATO) showed significantly faster extinction compared to placebo (PLAC). However, atomoxetine did not affect renewal. Hippocampal activation was higher in ATO during extinction and recall, as was ventromedial PFC activation, except for ABA recall. Moreover, ATO showed stronger recruitment of insula, anterior cingulate, and dorsolateral/orbitofrontal PFC. Across groups, cingulate, hippocampus and vmPFC activity during ABA extinction correlated with recall performance, suggesting high relevance of these regions for processing the renewal effect. In summary, the noradrenergic system appears to be involved in the modification of established associations during extinction learning and thus has a role in behavioral flexibility. The assignment of an association to a context and the subsequent decision on an adequate response, however, presumably operate largely independently of noradrenergic mechanisms.
Collapse
Affiliation(s)
- Silke Lissek
- Department of Neurology, BG University Hospital Bergmannsheil, Ruhr-University Bochum Bochum, Germany
| | - Benjamin Glaubitz
- Department of Neurology, BG University Hospital Bergmannsheil, Ruhr-University Bochum Bochum, Germany
| | - Onur Güntürkün
- Faculty of Psychology, Department of Biopsychology, Institute of Cognitive Neuroscience, Ruhr-University Bochum Bochum, Germany
| | - Martin Tegenthoff
- Department of Neurology, BG University Hospital Bergmannsheil, Ruhr-University Bochum Bochum, Germany
| |
Collapse
|
128
|
Smith JAM, Patil DL, Daniels OT, Ding YS, Gallezot JD, Henry S, Kim KHS, Kshirsagar S, Martin WJ, Obedencio GP, Stangeland E, Tsuruda PR, Williams W, Carson RE, Patil ST, Patil ST. Preclinical to clinical translation of CNS transporter occupancy of TD-9855, a novel norepinephrine and serotonin reuptake inhibitor. Int J Neuropsychopharmacol 2015; 18:pyu027. [PMID: 25522383 PMCID: PMC4368888 DOI: 10.1093/ijnp/pyu027] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Monoamine reuptake inhibitors exhibit unique clinical profiles that reflect distinct engagement of the central nervous system (CNS) transporters. METHODS We used a translational strategy, including rodent pharmacokinetic/pharmacodynamic modeling and positron emission tomography (PET) imaging in humans, to establish the transporter profile of TD-9855, a novel norepinephrine and serotonin reuptake inhibitor. RESULTS TD-9855 was a potent inhibitor of norepinephrine (NE) and serotonin 5-HT uptake in vitro with an inhibitory selectivity of 4- to 10-fold for NE at human and rat transporters. TD-9855 engaged norepinephrine transporters (NET) and serotonin transporters (SERT) in rat spinal cord, with a plasma EC50 of 11.7 ng/mL and 50.8 ng/mL, respectively, consistent with modest selectivity for NET in vivo. Accounting for species differences in protein binding, the projected human NET and SERT plasma EC50 values were 5.5 ng/mL and 23.9 ng/mL, respectively. A single-dose, open-label PET study (4-20mg TD-9855, oral) was conducted in eight healthy males using the radiotracers [(11)C]-3-amino-4- [2-[(di(methyl)amino)methyl]phenyl]sulfanylbenzonitrile for SERT and [(11)C]-(S,S)-methylreboxetine for NET. The long pharmacokinetic half-life (30-40 h) of TD-9855 allowed for sequential assessment of SERT and NET occupancy in the same subject. The plasma EC50 for NET was estimated to be 1.21 ng/mL, and at doses of greater than 4 mg the projected steady-state NET occupancy is high (>75%). After a single oral dose of 20mg, SERT occupancy was 25 (±8)% at a plasma level of 6.35 ng/mL. CONCLUSIONS These data establish the CNS penetration and transporter profile of TD-9855 and inform the selection of potential doses for future clinical evaluation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - S T Patil
- Theravance Biopharma US, Inc., San Francisco, CA (Drs Smith, Bourdet, Daniels, Kim, Kshirsagar, Martin, Obedencio, Stangeland, Tsururda, Williams, and Patil); Yale School of Medicine, New Haven, CT (Drs Ding, Gallezot, Henry, Williams, and Carson)
| |
Collapse
|
129
|
de Rover M, Brown SBRE, Band GP, Giltay EJ, van Noorden MS, van der Wee NJA, Nieuwenhuis S. Beta receptor-mediated modulation of the oddball P3 but not error-related ERP components in humans. Psychopharmacology (Berl) 2015; 232:3161-72. [PMID: 26138780 PMCID: PMC4534504 DOI: 10.1007/s00213-015-3966-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 05/11/2015] [Indexed: 11/25/2022]
Abstract
RATIONALE The P3 is a ubiquitous component of stimulus-driven neural activity that can be observed in scalp electrophysiological recordings. Multiple lines of evidence suggest an important role for the noradrenergic system in the generation of the P3. However, pharmacological studies of the P3 using noradrenergic manipulations have so far been limited to agents that affect α2-receptor signaling. OBJECTIVES The present study investigated whether β-adrenergic receptors are involved in the generation of the P3 and the error positivity (Pe), a component of the event-related potential that is elicited by errors and that bears many similarities to the P3. METHODS We used a double-blind, placebo-controlled, crossover design in which we examined in human participants (N = 16) the effect of a single dose of propranolol (80 mg) on the amplitudes of the P3 observed in visual and auditory oddball tasks and the Pe observed in a flanker task. RESULTS We found that P3s to auditory stimuli were increased in amplitude following treatment with propranolol. Propranolol also modulated the P3 to visual stimuli, but in a direction dependent on participants' level of trait anxiety: In participants with lower trait anxiety, propranolol resulted in a (non-significant) decrease in P3 amplitudes; in participants with higher trait anxiety, propranolol significantly enhanced P3 amplitude. Propranolol did not modulate the amplitude of the Pe or behavioral measures of conflict/error-related performance adjustments. CONCLUSIONS These results provide the first evidence for involvement of β-adrenergic receptors in P3 generation. We speculate that propranolol affected the P3 through actions at β2-receptors in the locus coeruleus.
Collapse
Affiliation(s)
- Mischa de Rover
- Clinical Psychology Unit, Institute of Psychology, Leiden University, Wassenaarseweg 52, 2333 AK, Leiden, The Netherlands,
| | - Stephen B. R. E. Brown
- Leiden Institute for Brain and Cognition (LIBC), Leiden University, Leiden, The Netherlands ,Cognitive Psychology Unit, Institute of Psychology, Leiden University, Leiden, The Netherlands
| | - Guido P. Band
- Leiden Institute for Brain and Cognition (LIBC), Leiden University, Leiden, The Netherlands ,Cognitive Psychology Unit, Institute of Psychology, Leiden University, Leiden, The Netherlands
| | - Erik J. Giltay
- Department of Psychiatry, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Nic J. A. van der Wee
- Leiden Institute for Brain and Cognition (LIBC), Leiden University, Leiden, The Netherlands ,Department of Psychiatry, Leiden University Medical Center, Leiden, The Netherlands
| | - Sander Nieuwenhuis
- Leiden Institute for Brain and Cognition (LIBC), Leiden University, Leiden, The Netherlands ,Cognitive Psychology Unit, Institute of Psychology, Leiden University, Leiden, The Netherlands
| |
Collapse
|
130
|
Albares M, Thobois S, Favre E, Broussolle E, Polo G, Domenech P, Boulinguez P, Ballanger B. Interaction of Noradrenergic Pharmacological Manipulation and Subthalamic Stimulation on Movement Initiation Control in Parkinson's Disease. Brain Stimul 2015; 8:27-35. [DOI: 10.1016/j.brs.2014.09.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 08/11/2014] [Accepted: 09/04/2014] [Indexed: 02/06/2023] Open
|
131
|
von der Gablentz J, Tempelmann C, Münte TF, Heldmann M. Performance monitoring and behavioral adaptation during task switching: an fMRI study. Neuroscience 2014; 285:227-35. [PMID: 25446349 DOI: 10.1016/j.neuroscience.2014.11.024] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 09/16/2014] [Accepted: 11/13/2014] [Indexed: 10/24/2022]
Abstract
Despite significant advances, the neural correlates and neurochemical mechanisms involved in performance monitoring and behavioral adaptation are still a matter for debate. Here, we used a modified Eriksen-Flanker task in a magnetic resonance imaging (MRI) study that required the participants to derive the correct stimulus-response association based on a feedback given after each flanker stimulus. Participants had to continuously monitor and adapt their performance as the stimulus-response association switched after a jittered time interval without notice. After every switch an increase of reaction times was observed. At the neural level, the feedback indicating the need to switch was associated with activation of the precuneus, the cingulate cortex, the insula and a brainstem region tentatively identified as the locus coeruleus. This brainstem system appears to interact with this cortical network and seems to be essential for performance monitoring and behavioral adaptation. In contrast, the cerebellum crus and prefrontal areas are activated during error feedback processing. Furthermore we found activations of the hippocampus and parahippocampal gyrus bilaterally after a correct feedback in learnable stimulus-response associations. These results highlight the contribution of brainstem nuclei to performance adaptation.
Collapse
Affiliation(s)
- J von der Gablentz
- Department of Neurology, University of Lübeck, Ratzeburger Allee 160, D-23538 Lübeck, Germany.
| | - C Tempelmann
- Department of Neurology, Otto-von-Guericke University, Leipziger Strasse 44, D-39120 Magdeburg, Germany
| | - T F Münte
- Department of Neurology, University of Lübeck, Ratzeburger Allee 160, D-23538 Lübeck, Germany
| | - M Heldmann
- Department of Neurology, University of Lübeck, Ratzeburger Allee 160, D-23538 Lübeck, Germany
| |
Collapse
|
132
|
Grant JE, Chamberlain SR. Impulsive action and impulsive choice across substance and behavioral addictions: cause or consequence? Addict Behav 2014; 39:1632-1639. [PMID: 24864028 DOI: 10.1016/j.addbeh.2014.04.022] [Citation(s) in RCA: 147] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2013] [Revised: 01/02/2014] [Accepted: 04/28/2014] [Indexed: 11/28/2022]
Abstract
Substance use disorders are prevalent and debilitating. Certain behavioral syndromes ('behavioral addictions') characterized by repetitive habits, such as gambling disorder, stealing, shopping, and compulsive internet use, may share clinical, co-morbid, and neurobiological parallels with substance addictions. This review considers overlap between substance and behavioral addictions with a particular focus on impulsive action (inability to inhibit motor responses), and impulsive choice (preference for immediate smaller rewards to the detriment of long-term outcomes). We find that acute consumption of drugs with abuse potential is capable of modulating impulsive choice and action, although magnitude and direction of effect appear contingent on baseline function. Many lines of evidence, including findings from meta-analyses, show an association between chronic drug use and elevated impulsive choice and action. In some instances, elevated impulsive choice and action have been found to predate the development of substance use disorders, perhaps signifying their candidacy as objective vulnerability markers. Research in behavioral addictions is preliminary, and has mostly focused on impulsive action, finding this to be elevated versus controls, similar to that seen in chronic substance use disorders. Only a handful of imaging studies has explored the neural correlates of impulsive action and choice across these disorders. Key areas for future research are highlighted along with potential implications in terms of neurobiological models and treatment. In particular, future work should further explore whether the cognitive deficits identified are state or trait in nature: i.e. are evident before addiction perhaps signaling risk; or are a consequence of repetitive engagement in habitual behavior; and effects of novel agents known to modulate these cognitive abilities on various addictive disorders.
Collapse
Affiliation(s)
- Jon E Grant
- University of Chicago, Pritzker School of Medicine, 5841 South Maryland Ave., Chicago, IL 60637, USA.
| | - Samuel R Chamberlain
- Department of Psychiatry, University of Cambridge, UK; MRC/Wellcome Trust Behavioural and Clinical Neurosciences Institute, UK; Cambridge & Peterborough NHS Foundation Trust, Cambridge, UK
| |
Collapse
|
133
|
Impaired flexibility in decision making in rats after administration of the pharmacological stressor yohimbine. Psychopharmacology (Berl) 2014; 231:3941-52. [PMID: 24647923 PMCID: PMC4345043 DOI: 10.1007/s00213-014-3529-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 03/02/2014] [Indexed: 10/25/2022]
Abstract
RATIONALE Stress-induced disruption of decision making has been hypothesized to contribute to drug-seeking behaviors and addiction. Noradrenergic signaling plays a central role in mediating stress responses. However, the effects of acute stress on decision making, and the role of noradrenergic signaling in regulating these effects, have not been well characterized. OBJECTIVE To characterize changes in decision making caused by acute pharmacological stress, the effects of yohimbine (an α2-adrenergic antagonist) were examined in a delay discounting task. Noradrenergic contributions to decision making were further characterized by examining the effects of propranolol (a β antagonist), prazosin (an α1 antagonist), and guanfacine (an α2 agonist). METHODS Sprague-Dawley rats were administered drugs prior to performance on a delay discounting task, in which the delay preceding the large reward increased within each session (ascending delays). To dissociate drug-induced changes in delay sensitivity from behavioral inflexibility, drug effects were subsequently tested in a modified version of the discounting task, in which the delay preceding the large reward decreased within each session (descending delays). RESULTS Yohimbine increased choice of the large reward when tested with ascending delays but decreased choice of the same large reward when tested with descending delays, suggesting that drug effects could be attributed to perseverative choice of the lever preferred at the beginning of the session. Propranolol increased choice of the large reward when tested with ascending delays. Prazosin and guanfacine had no effect on reward choice. CONCLUSIONS The stress-like effects of yohimbine administration may impair decision making by causing inflexible, perseverative behavior.
Collapse
|
134
|
Li Y, Li F, He N, Guo L, Huang X, Lui S, Gong Q. Neural hyperactivity related to working memory in drug-naive boys with attention deficit hyperactivity disorder. Prog Neuropsychopharmacol Biol Psychiatry 2014; 53:116-122. [PMID: 24704944 DOI: 10.1016/j.pnpbp.2014.03.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 03/20/2014] [Accepted: 03/25/2014] [Indexed: 02/05/2023]
Abstract
BACKGROUND Impaired working memory is thought to be a core feature of attention deficit hyperactivity disorder (ADHD). Previous imaging studies investigating working memory in ADHD have used tasks involving different cognitive resources and ignoring the categorical judgments about objects that are essential parts of performance in visual working memory tasks, thus complicating the interpretation of their findings. In the present study, we explored differential neural activation in children and adolescents with ADHD and in healthy controls using functional magnetic resonance imaging (fMRI) with the categorical n-back task (CN-BT), which maximized demands for executive reasoning while holding memory demands constant. METHODS A total of 33 drug-naive, right-handed male ADHD without comorbidity (mean age 9.9±2.4 years) and 27 right-handed, healthy male controls (mean age 10.9±2.7 years) were recruited in the present study. Event-related fMRI was used to study differences in brain activity during the CN-BT between the two groups. RESULTS The two groups did not differ in their accuracy in the CN-BT, although the ADHD patients showed significantly shorter reaction times to correct responses than did the controls. During the CN-BT, both ADHD patients and controls showed significant positive and negative activations by the correct responses, mainly in the sensory-motor pathways and the striato-cerebellum circuit. Additionally, the ADHD patients showed significantly higher activation in the bilateral globus pallidus and the right hippocampus compared with the controls. There was also a positive correlation between hyperactivation of the left globus pallidus and the reaction time to correct responses in ADHD. CONCLUSIONS In contrast to controls, ADHD patients showed neural hyperactivation in the striatum and mediotemporal areas during a working memory task involving categorization. Hyperfunction in these areas might be the pathophysiological foundation of ADHD, related to the deficits of working memory and the impulsive symptoms.
Collapse
Affiliation(s)
- Yuanyuan Li
- Department of Psychiatry, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
| | - Fei Li
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
| | - Ning He
- Department of Psychiatry, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
| | - Lanting Guo
- Department of Psychiatry, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China.
| | - Xiaoqi Huang
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
| | - Su Lui
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
| |
Collapse
|
135
|
Kehagia AA, Housden CR, Regenthal R, Barker RA, Müller U, Rowe J, Sahakian BJ, Robbins TW. Targeting impulsivity in Parkinson's disease using atomoxetine. ACTA ACUST UNITED AC 2014; 137:1986-97. [PMID: 24893708 PMCID: PMC4065022 DOI: 10.1093/brain/awu117] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Noradrenergic dysfunction may play a significant role in cognition in Parkinson's disease due to the early degeneration of the locus coeruleus. Converging evidence from patient and animal studies points to the role of noradrenaline in dopaminergically insensitive aspects of the parkinsonian dysexecutive syndrome, yet the direct effects of noradrenergic enhancement have not to date been addressed. Our aim was to directly investigate these, focusing on impulsivity during response inhibition and decision making. To this end, we administered 40 mg atomoxetine, a selective noradrenaline re-uptake inhibitor to 25 patients with Parkinson's disease (12 female /13 male; 64.4 ± 6.9 years old) in a double blind, randomized, placebo controlled design. Patients completed an extensive battery of neuropsychological tests addressing response inhibition, decision-making, attention, planning and verbal short term memory. Atomoxetine improved stopping accuracy on the Stop Signal Task [F(1,19) = 4.51, P = 0.047] and reduced reflection impulsivity [F(1,9) = 7.86, P = 0.02] and risk taking [F(1,9) = 9.2, P = 0.01] in the context of gambling. The drug also conferred effects on performance as a function of its measured blood plasma concentration: it reduced reflection impulsivity during information sampling [adjusted R(2) = 0.23, F(1,16) = 5.83, P = 0.03] and improved problem solving on the One Touch Stockings of Cambridge [adjusted R(2) = 0.29, F(1,17) = 8.34, P = 0.01]. It also enhanced target sensitivity during sustained attention [F(1,9) = 5.33, P = 0.046]. The results of this exploratory study represent the basis of specific predictions in future investigations on the effects of atomoxetine in Parkinson's disease and support the hypothesis that targeting noradrenergic dysfunction may represent a new parallel avenue of therapy in some of the cognitive and behavioural deficits seen in the disorder.
Collapse
Affiliation(s)
- Angie A Kehagia
- 1 Department of Neuroimaging, Institute of Psychiatry, King's College London, London SE5 8AF, UK
| | - Charlotte R Housden
- 2 Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK3 Cambridge Cognition Limited, Cambridge, UK4 Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Ralf Regenthal
- 5 Division of Clinical Pharmacology, Rudolf-Boehm-Institute of Pharmacology and Toxicology, University of Leipzig, Germany
| | - Roger A Barker
- 6 Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Ulrich Müller
- 2 Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK4 Department of Psychiatry, University of Cambridge, Cambridge, UK7 Adult ADHD Service, Cambridgeshire and Peterborough NHS Foundation Trust, UK
| | - James Rowe
- 2 Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK6 Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK8 MRC Cognition and Brain Sciences Unit, Cambridge, UK
| | - Barbara J Sahakian
- 2 Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK4 Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Trevor W Robbins
- 2 Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK9 Department of Psychology, University of Cambridge, Cambridge, UK
| |
Collapse
|
136
|
Stanis JJ, Andersen SL. Reducing substance use during adolescence: a translational framework for prevention. Psychopharmacology (Berl) 2014; 231:1437-53. [PMID: 24464527 PMCID: PMC3969413 DOI: 10.1007/s00213-013-3393-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 11/30/2013] [Indexed: 11/30/2022]
Abstract
RATIONALE Most substance use is initiated during adolescence when substantial development of relevant brain circuitry is still rapidly maturing. Developmental differences in reward processing, behavioral flexibility, and self-regulation lead to changes in resilience or vulnerability to drugs of abuse depending on exposure to risk factors. Intervention and prevention approaches to reducing addiction in teens may be able to capitalize on malleable brain systems in a predictable manner. OBJECTIVE This review will highlight what is known about how factors that increase vulnerability to addiction, including developmental stage, exposure to early life adversity (ranging from abuse, neglect, and bullying), drug exposure, and genetic predisposition, impact the development of relevant systems. RESULTS AND CONCLUSIONS Appropriate, early intervention may restore the normal course of an abnormal trajectory and reduce the likelihood of developing a substance use disorder (SUD) later in life. A considerable amount is known about the functional neuroanatomy and/or pharmacology of risky behaviors based on clinical and preclinical studies, but relatively little has been directly translated to reduce their impact on addiction in high-risk children or teenagers. An opportunity exists to effectively intervene before adolescence when substance use is likely to emerge.
Collapse
Affiliation(s)
- Jessica J Stanis
- Laboratory of Developmental Neuropharmacology, McLean Hospital and Department of Psychiatry, Harvard Medical School, Mailstop 333, 115 Mill Street, Belmont, MA, 02478, USA
| | | |
Collapse
|
137
|
Fitzgerald PJ. Is elevated norepinephrine an etiological factor in some cases of schizophrenia? Psychiatry Res 2014; 215:497-504. [PMID: 24485408 DOI: 10.1016/j.psychres.2014.01.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Revised: 01/06/2014] [Accepted: 01/09/2014] [Indexed: 01/22/2023]
Abstract
A number of hypotheses have been put forth regarding the etiology of schizophrenia, including the dopamine hypothesis, NMDA receptor hypofunction hypothesis, and others. A lesser known theory is that elevated noradrenergic signaling plays a causative role in the disease. This paper briefly re-examines the merits of this hypothesis, including as it relates to some recently published studies. Several lines of evidence are investigated, including: endogenous level studies of norepinephrine (NE); modulation of the disease by noradrenergic drugs; association of the disease with bipolar disorder and hypertension, since these latter two conditions may involve elevated NE transmission; and effects of psychological stress on the disease, since stress can produce elevated release of NE. For many of these lines of evidence, their relationship with prepulse inhibition of startle is examined. A number of these studies support the hypothesis, and several suggest that elevated NE signaling plays a particularly prominent role in the paranoid subtype of schizophrenia. If the hypothesis is correct for some persons, conventional pharmaceutical treatment options, such as use of atypical antipsychotics (which may themselves modulate noradrenergic signaling), may be improved if selective NE transmission modulating agents are added to or even substituted for these conventional drugs.
Collapse
Affiliation(s)
- Paul J Fitzgerald
- Department of Psychology, Texas A&M University, College Station, Room 3200 ILSB, TX 77843-4235, USA.
| |
Collapse
|
138
|
Abstract
Obsessive-compulsive disorder (OCD) and related conditions (trichotillomania, pathological skin-picking, pathological nail-biting) are common and disabling. Current treatment approaches fail to help a significant proportion of patients. Multiple tiers of evidence link these conditions with underlying dysregulation of particular cortico-subcortical circuitry and monoamine systems, which represent targets for treatment. Animal models designed to capture aspects of these conditions are critical for several reasons. First, they help in furthering our understanding of neuroanatomical and neurochemical underpinnings of the obsessive-compulsive (OC) spectrum. Second, they help to account for the brain mechanisms by which existing treatments (pharmacotherapy, psychotherapy, deep brain stimulation) exert their beneficial effects on patients. Third, they inform the search for novel treatments. This article provides a critique of key animal models for selected OC spectrum disorders, beginning with initial work relating to anxiety, but moving on to recent developments in domains of genetic, pharmacological, cognitive, and ethological models. We find that there is a burgeoning literature in these areas with important ramifications, which are considered, along with salient future lines of research.
Collapse
|
139
|
Kuffel A, Eikelmann S, Terfehr K, Mau G, Kuehl LK, Otte C, Löwe B, Spitzer C, Wingenfeld K. Noradrenergic blockade and memory in patients with major depression and healthy participants. Psychoneuroendocrinology 2014; 40:86-90. [PMID: 24485479 DOI: 10.1016/j.psyneuen.2013.11.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 11/01/2013] [Accepted: 11/02/2013] [Indexed: 01/19/2023]
Abstract
OBJECTIVE Patients with major depressive disorder (MDD) often suffer from impaired declarative, episodic and working memory. Further, MDD is associated with alterations in the noradrenergic system. There is evidence that presynaptic α2 receptors that inhibit release of noradrenaline are upregulated in MDD. Results from our recent study demonstrated that increasing noradrenergic activity by blocking the α2 receptor with yohimbine leads to stronger memory consolidation in MDD patients. In the current study, we further examined the role of noradrenaline on memory in MDD by administering clonidine that activates presynaptic α2 receptors and thereby globally suppresses the noradrenergic output. METHODS In a placebo-controlled, within-subject crossover design, 20 patients with MDD and 20 healthy controls received either 0.15 mg of clonidine or placebo orally before memory testing. A word list paradigm (memory consolidation), an autobiographical memory test (retrieval) and a working memory test were applied. Salivary alpha-amylase and blood pressure were measured. RESULTS Across groups, clonidine decreased blood pressure and alpha-amylase. Clonidine impaired memory consolidation (word list learning) in depressed patients and controls. Memory retrieval and working memory were not affected by clonidine. CONCLUSIONS Reducing noradrenergic activity had a specific effect on memory consolidation in patients with MDD and healthy controls. The underlying mechanisms need further scrutiny.
Collapse
Affiliation(s)
- Anja Kuffel
- Department of Psychosomatic Medicine and Psychotherapy, University Medical Center Hamburg-Eppendorf & Schön Klinik Hamburg-Eilbek, Hamburg, Germany
| | - Sarah Eikelmann
- Department of Psychosomatic Medicine and Psychotherapy, University Medical Center Hamburg-Eppendorf & Schön Klinik Hamburg-Eilbek, Hamburg, Germany
| | - Kirsten Terfehr
- Department of Psychosomatic Medicine and Psychotherapy, University Medical Center Hamburg-Eppendorf & Schön Klinik Hamburg-Eilbek, Hamburg, Germany
| | - Gunnar Mau
- Department of Marketing, University of Siegen, Siegen, Germany
| | - Linn K Kuehl
- Department of Psychiatry, Charité University Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Christian Otte
- Department of Psychiatry, Charité University Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Bernd Löwe
- Department of Psychosomatic Medicine and Psychotherapy, University Medical Center Hamburg-Eppendorf & Schön Klinik Hamburg-Eilbek, Hamburg, Germany
| | | | - Katja Wingenfeld
- Department of Psychiatry, Charité University Berlin, Campus Benjamin Franklin, Berlin, Germany.
| |
Collapse
|
140
|
Fineberg NA, Chamberlain SR, Goudriaan AE, Stein DJ, Vanderschuren LJ, Gillan CM, Shekar S, Gorwood PA, Voon V, Morein-Zamir S, Denys D, Sahakian BJ, Moeller FG, Robbins TW, Potenza MN. New developments in human neurocognition: clinical, genetic, and brain imaging correlates of impulsivity and compulsivity. CNS Spectr 2014; 19:69-89. [PMID: 24512640 PMCID: PMC4113335 DOI: 10.1017/s1092852913000801] [Citation(s) in RCA: 302] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Impulsivity and compulsivity represent useful conceptualizations that involve dissociable cognitive functions, which are mediated by neuroanatomically and neurochemically distinct components of cortico-subcortical circuitry. The constructs were historically viewed as diametrically opposed, with impulsivity being associated with risk-seeking and compulsivity with harm-avoidance. However, they are increasingly recognized to be linked by shared neuropsychological mechanisms involving dysfunctional inhibition of thoughts and behaviors. In this article, we selectively review new developments in the investigation of the neurocognition of impulsivity and compulsivity in humans, in order to advance our understanding of the pathophysiology of impulsive, compulsive, and addictive disorders and indicate new directions for research.
Collapse
Affiliation(s)
- Naomi A. Fineberg
- Hertfordshire Partnership NHS University Foundation Trust, Queen Elizabeth II Hospital, Howlands, Welwyn Garden City, Hertfordshire, UK
- University of Hertfordshire, School of Postgraduate Medicine, College Lane, Hatfield, Hertfordshire, UK
- Cambridge University, School of Clinical Medicine, Addenbrooke’s Hospital, Cambridge, UK
| | - Samuel R. Chamberlain
- Cambridge University, School of Clinical Medicine, Addenbrooke’s Hospital, Cambridge, UK
- Cambridge and Peterborough NHS Foundation Trust (CPFT), Cambridge, UK
| | - Anna E. Goudriaan
- Department of Psychiatry, Amsterdam Institute for Addiction Research, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
- Arkin Mental Health, Amsterdam, The Netherlands
| | - Dan J. Stein
- Department of Psychiatry, University of Cape Town, S. Africa
| | - Louk J.M.J. Vanderschuren
- Dept. of Animals in Science and Society, Division of Behavioural Neuroscience, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
- Rudolf Magnus Institute of Neuroscience, Dept. of Neuroscience and Pharmacology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Claire M. Gillan
- Behavioural and Clinical Neuroscience Institute (BCNI), University of Cambridge, Cambridge, UK
- Department of Psychology, University of Cambridge, Cambridge, UK
| | - Sameer Shekar
- Hertfordshire Partnership NHS University Foundation Trust, Queen Elizabeth II Hospital, Howlands, Welwyn Garden City, Hertfordshire, UK
| | - Philip A.P.M. Gorwood
- INSERM UMR894 (Centre of Psychiatry and Neuroscience), 2ter rue d’Alesia, Paris, FRANCE
- Sainte-Anne hospital, CMME (University Paris Descartes), 100 rue de la Santé, Paris, FRANCE
| | - Valerie Voon
- Behavioural and Clinical Neuroscience Institute (BCNI), University of Cambridge, Cambridge, UK
- Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Sharon Morein-Zamir
- Behavioural and Clinical Neuroscience Institute (BCNI), University of Cambridge, Cambridge, UK
- Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Damiaan Denys
- Department of Psychiatry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- The Netherlands Institute for Neuroscience, an institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - Barbara J. Sahakian
- Cambridge University, School of Clinical Medicine, Addenbrooke’s Hospital, Cambridge, UK
- Behavioural and Clinical Neuroscience Institute (BCNI), University of Cambridge, Cambridge, UK
| | - F. Gerard Moeller
- Departments of Psychiatry and Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Trevor W. Robbins
- Behavioural and Clinical Neuroscience Institute (BCNI), University of Cambridge, Cambridge, UK
- Department of Psychology, University of Cambridge, Cambridge, UK
| | - Marc N. Potenza
- Departments of Psychiatry, Child Study and Neurobiology, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
141
|
Becker B, Androsch L, Jahn RT, Alich T, Striepens N, Markett S, Maier W, Hurlemann R. Inferior frontal gyrus preserves working memory and emotional learning under conditions of impaired noradrenergic signaling. Front Behav Neurosci 2013; 7:197. [PMID: 24381546 PMCID: PMC3865517 DOI: 10.3389/fnbeh.2013.00197] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Accepted: 11/23/2013] [Indexed: 12/29/2022] Open
Abstract
Compensation has been widely applied to explain neuroimaging findings in neuropsychiatric patients. Functional compensation is often invoked when patients display equal performance and increased neural activity in comparison to healthy controls. According to the compensatory hypothesis increased activity allows the brain to maintain cognitive performance despite underlying neuropathological changes. Due to methodological and pathology-related issues, however, the functional relevance of the increased activity and the specific brain regions involved in the compensatory response remain unclear. An experimental approach that allows a transient induction of compensatory responses in the healthy brain could help to overcome these issues. To this end we used the non-selective beta-blocker propranolol to pharmacologically induce sub-optimal noradrenergic signaling in healthy participants. In two independent functional MRI (fMRI) experiments participants received either placebo or propranolol before they underwent a cognitive challenge (Experiment 1: working memory; Experiment 2: emotional learning: Pavlovian fear conditioning). In Experiment 1 propranolol had no effects on working memory performance, but evoked stronger activity in the left inferior frontal gyrus (IFG). In Experiment 2 propranolol produced no effects on emotional memory formation, but evoked stronger activity in the right IFG. The present finding that sub-optimal beta-adrenergic signaling did not disrupt performance and concomitantly increased IFG activity is consistent with, and extends, current perspectives on functional compensation. Together, our findings suggest that under conditions of impaired noradrenergic signaling, heightened activity in brain regions located within the cognitive control network, particularly the IFG, may reflect compensatory operations subserving the maintenance of behavioral performance.
Collapse
Affiliation(s)
- Benjamin Becker
- Department of Psychiatry and Psychotherapy, University of Bonn Bonn, Germany
| | - Lucas Androsch
- Department of Psychiatry and Psychotherapy, University of Bonn Bonn, Germany
| | - Ralph T Jahn
- Department of Psychiatry and Psychotherapy, University of Bonn Bonn, Germany
| | - Therese Alich
- Department of Psychiatry and Psychotherapy, University of Bonn Bonn, Germany
| | - Nadine Striepens
- Department of Psychiatry and Psychotherapy, University of Bonn Bonn, Germany
| | | | - Wolfgang Maier
- Department of Psychiatry and Psychotherapy, University of Bonn Bonn, Germany ; German Center for Neurodegenerative Diseases (DZNE) Bonn, Germany
| | - René Hurlemann
- Department of Psychiatry and Psychotherapy, University of Bonn Bonn, Germany
| |
Collapse
|
142
|
Pamphlett R. Uptake of environmental toxicants by the locus ceruleus: a potential trigger for neurodegenerative, demyelinating and psychiatric disorders. Med Hypotheses 2013; 82:97-104. [PMID: 24315447 DOI: 10.1016/j.mehy.2013.11.016] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 11/05/2013] [Accepted: 11/14/2013] [Indexed: 12/12/2022]
Abstract
BACKGROUND Damage to the locus ceruleus, with a subsequent decrease of CNS noradrenaline, occurs in a wide range of neurodegenerative, demyelinating and psychiatric disorders. The cause of the initial locus ceruleus damage remains unknown. Recently, inorganic mercury was found to enter human locus ceruleus neurons selectively. This has led to the formulation of a new hypothesis as to the cause of these disorders. HYPOTHESIS Toxicants enter locus ceruleus neurons selectively, aided by the extensive exposure these neurons have to CNS capillaries, as well as by stressors that upregulate locus ceruleus activity. The resulting noradrenaline dysfunction affects a wide range of CNS cells and can trigger a number of neurodegenerative (Alzheimer's, Parkinson's and motor neuron disease), demyelinating (multiple sclerosis), and psychiatric (major depression and bipolar disorder) conditions. CONCLUSIONS This hypothesis proposes that environmental toxicants entering the locus ceruleus can give rise to a variety of CNS disorders. Proposals are made for experiments to gain further evidence for this hypothesis. If it is shown that toxicants in the locus ceruleus are responsible for these conditions, attempts can be made to prevent the toxicant exposures or to remove the toxicants from the nervous system.
Collapse
Affiliation(s)
- Roger Pamphlett
- The Stacey Motor Neuron Disease Laboratory, Department of Pathology, Sydney Medical School, The University of Sydney, Australia.
| |
Collapse
|