101
|
Patil AS, Sable RB, Kothari RM, Nagarajan P. Genetic expression of Col-2A and Col-10A as a function of administration of IGF-1 & TGF-<i>β</i> with and without anterior mandibular repositioning appliance on the growth of mandibular condylar cartilage in young rabbit. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/ojst.2013.39a002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
102
|
Double-stranded RNA-dependent protein kinase regulates insulin-stimulated chondrogenesis in mouse clonal chondrogenic cells, ATDC-5. Cell Tissue Res 2012. [PMID: 23180319 DOI: 10.1007/s00441-012-1521-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Double-stranded RNA-dependent protein kinase (PKR) is an interferon-induced protein that has been identified and characterized as a translational inhibitor in an interferon-regulated antiviral pathway. PKR is also reported to play important roles in the regulation of cell growth and differentiation. We have previously demonstrated that PKR inactivation suppresses osteoblast calcification and osteoclast formation. However, reports concerning the roles of PKR in chondrogenesis are limited. In this study, we have demonstrated that PKR is required for the in vitro differentiation of the mouse clonal chondrogenic cell line ATDC-5. ATDC-5 cells treated with insulin differentiated into chondrocytes and produced an alcian-blue-positive cartilage matrix. The protein expression of signal transducers and activators of transcription (STAT) peaked at day 7 of differentiation, whereas the expression of SRY-box-containing gene 9 (Sox-9), which is a transcription factor for chondrocyte differentiation, increased gradually. When the cells were treated with a PKR inhibitor (2-aminopurine), the cartilage matrix formation decreased. The protein expression of STAT1 continued to increase up to day 21, whereas the expression of Sox-9 was low and did not increase. We also demonstrated that PKR was localized to a marginal region of the mandibular condyle cartilage in mouse embryos. Our findings suggest that PKR has important functions in the differentiation of chondrocytes through the modulation of STAT1 and Sox-9 expression.
Collapse
|
103
|
Patil A, Sable R, Kothari R. Genetic expression of MMP-Matrix-mettalo-proteinases (MMP-1 and MMP-13) as a function of anterior mandibular repositioning appliance on the growth of mandibular condylar cartilage with and without administration of Insulin like growth factor (IGF-1) and Transforming growth factor-B (TGF-β). Angle Orthod 2012; 82:1053-1059. [PMID: 22439767 PMCID: PMC8813132 DOI: 10.2319/122011-780.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Accepted: 02/01/2012] [Indexed: 08/07/2023] Open
Abstract
OBJECTIVE To determine if the mandibular condylar cartilage (MCC) will grow with and without mandibular anterior repositioning appliances with the administration of insulin-like growth factor (IGF-1) and transforming growth factor-β (TGF-β). MATERIALS AND METHODS Twenty-four growing New Zealand rabbits were divided into three groups: a group with saline injection in the temporomandibular joint, a group that received anterior positioning appliance, and a group that received injection of growth factors as well as mandibular repositioning appliance. Real-time reverse transcription polymerase chain reaction technique was used to study gene expression supported by histomorphometry. RESULTS Administration of growth factors along with mandibular repositioning appliances has induced 5.70-fold expression of matrix metalloproteinase-1 (MMP-1) (P < .0005) and 1.29-fold expression of MMP-13 (P < .0005). In contrast, administration of mandibular repositioning appliances only has induced 2.33-fold expression of MMP-1 (P < .0005) and 0.83-fold expression of MMP-13 (P < .0005). Histomorphometric analysis revealed increased proliferation of the condylar cartilage in the appliance and injection group as compared to the control group. CONCLUSION The administration of growth factors along with the use of mandibular advancement appliance has increased genetic expression of MMP-1 and MMP-13 supported by histomorphometric evidence indicating growth of condylar cartilage.
Collapse
Affiliation(s)
- Amol Patil
- Department of Orthodontics and Dentofacial Orthopedics, Bharati Dental College and Hospital, Pune, Maharashtra, India.
| | | | | |
Collapse
|
104
|
Progression of cartilage degradation, bone resorption and pain in rat temporomandibular joint osteoarthritis induced by injection of iodoacetate. PLoS One 2012; 7:e45036. [PMID: 22984604 PMCID: PMC3439407 DOI: 10.1371/journal.pone.0045036] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2012] [Accepted: 08/11/2012] [Indexed: 12/18/2022] Open
Abstract
Background Osteoarthritis (OA) is an important subtype of temporomandibular disorders. A simple and reproducible animal model that mimics the histopathologic changes, both in the cartilage and subchondral bone, and clinical symptoms of temporomandibular joint osteoarthritis (TMJOA) would help in our understanding of its process and underlying mechanism. Objective To explore whether injection of monosodium iodoacetate (MIA) into the upper compartment of rat TMJ could induce OA-like lesions. Methods Female rats were injected with varied doses of MIA into the upper compartment and observed for up to 12 weeks. Histologic, radiographic, behavioral, and molecular changes in the TMJ were evaluated by light and electron microscopy, MicroCT scanning, head withdrawal threshold test, real-time PCR, immunohistochemistry, and TUNEL assay. Results The intermediate zone of the disc loosened by 1 day post-MIA injection and thinned thereafter. Injection of an MIA dose of 0.5 mg or higher induced typical OA-like lesions in the TMJ within 4 weeks. Condylar destruction presented in a time-dependent manner, including chondrocyte apoptosis in the early stages, subsequent cartilage matrix disorganization and subchondral bone erosion, fibrosis, subchondral bone sclerosis, and osteophyte formation in the late stages. Nociceptive responses increased in the early stages, corresponding to severe synovitis. Furthermore, chondrocyte apoptosis and an imbalance between anabolism and catabolism of cartilage and subchondral bone might account for the condylar destruction. Conclusions Multi-level data demonstrated a reliable and convenient rat model of TMJOA could be induced by MIA injection into the upper compartment. The model might facilitate TMJOA related researches.
Collapse
|
105
|
Liu MQ, Chen HM, Yap AUJ, Fu KY. Condylar remodeling accompanying splint therapy: a cone-beam computerized tomography study of patients with temporomandibular joint disk displacement. Oral Surg Oral Med Oral Pathol Oral Radiol 2012; 114:259-65. [DOI: 10.1016/j.oooo.2012.03.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2012] [Revised: 02/27/2012] [Accepted: 03/04/2012] [Indexed: 11/28/2022]
|
106
|
Hu Y, Yang HF, Li S, Chen JZ, Luo YW, Yang C. Condyle and mandibular bone change after unilateral condylar neck fracture in growing rats. Int J Oral Maxillofac Surg 2012; 41:912-21. [DOI: 10.1016/j.ijom.2011.12.036] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Revised: 10/13/2011] [Accepted: 12/09/2011] [Indexed: 11/29/2022]
|
107
|
Liu Q, Wan Q, Yang R, Zhou H, Li Z. Effects of intermittent versus continuous parathyroid hormone administration on condylar chondrocyte proliferation and differentiation. Biochem Biophys Res Commun 2012; 424:182-8. [PMID: 22750004 DOI: 10.1016/j.bbrc.2012.06.106] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2012] [Accepted: 06/20/2012] [Indexed: 11/16/2022]
Abstract
Endochondral ossification is a complex process involving chondrogenesis and osteogenesis regulated by many hormones and growth factors. Parathyroid hormone (PTH), one of the key hormones regulating bone metabolism, promotes osteoblast differentiation and osteogenesis by intermittent administration, whereas continuous PTH administration inhibits bone formation. However, the effects of PTH on chondrocyte proliferation and differentiation are still unclear. In this study, intermittent PTH administration presented enhanced effects on condylar chondrocyte differentiation and bone formation, as demonstrated by increased mineral nodule formation and alkaline phosphatase (ALP) activity, up-regulated runt-related transcription factor 2 (RUNX2), ALP, collagen type X (COL10a1), collagen type I (COL1a1), osteocalcin (OCN), bone sialoprotein (BSP), bone morphogenetic protein 2 (BMP2) and osterix (OSX) mRNA and/or protein expression. On the contrary, continuous PTH administration promoted condylar chondrocyte proliferation and suppressed its differentiation, as demonstrated by up-regulated collagen type II (COL2a1) mRNA expression, reduced mineral nodule formation and down-regulated expression of the mRNAs and/or proteins mentioned above. Our data suggest that PTH can regulate condylar chondrocyte proliferation and differentiation, depending on the type of PTH administration. These results provide new insight into the effects of PTH on condylar chondrocytes and new evidence for using local PTH administration to cure mandibular asymmetry.
Collapse
Affiliation(s)
- Qi Liu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST), School & Hospital of Stomatology, Wuhan University, 237# Luoyu Road, Wuhan 430079, China
| | | | | | | | | |
Collapse
|
108
|
Wu M, Lin X, Gu Z, Xu T, Liu L, Zhou Y. Mandibular lateral shift induces the increased expression of TGF-β, VEGF, and Col-II in the condyle of rat temporomandibular joints. Oral Surg Oral Med Oral Pathol Oral Radiol 2012; 114:S167-73. [PMID: 23063394 DOI: 10.1016/j.oooo.2011.11.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2011] [Revised: 10/29/2011] [Accepted: 11/27/2011] [Indexed: 02/08/2023]
Abstract
OBJECTIVE The present study evaluates histologic changes to and expression of angiogenic factors in rats with mandibular functional shift (MFS). STUDY DESIGN After 1, 2, and 4 weeks of MFS, rats in the experimental and control groups were killed. Histologic micrographs of the ipsilateral condyle cartilage were obtained. The localization and expression of vascular endothelial growth factor (VEGF), transforming growth factor beta (TGF-β), and type-II collagen (Col-II) in temporomandibular joints (TMJs) were evaluated through immunohistochemical staining. RESULTS The results showed that structural changes in the condyle cartilage could be observed 2 weeks after MFS. TGF-β expression reached its peak 2 weeks post-MFS, whereas VEGF and Col-II reached their peaks 4 weeks posttreatment. CONCLUSIONS Compressive forces applied to the TMJ could enhance the expressions of VEGF, TGF-β, and Col-II, and activate angiogenesis. The proteins appear to play important roles in the remodeling of the TMJ.
Collapse
Affiliation(s)
- Mengjie Wu
- Department of Orthodontics, Hospital of Stomatology, Zhejiang University, Hangzhou, China
| | | | | | | | | | | |
Collapse
|
109
|
Chen Y, Ke J, Long X, Meng Q, Deng M, Fang W, Li J, Cai H, Chen S. Insulin-like growth factor-1 boosts the developing process of condylar hyperplasia by stimulating chondrocytes proliferation. Osteoarthritis Cartilage 2012; 20:279-87. [PMID: 22281262 DOI: 10.1016/j.joca.2011.12.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Revised: 11/30/2011] [Accepted: 12/22/2011] [Indexed: 02/02/2023]
Abstract
OBJECTIVE The etiology of Condylar hyperplasia (CH) of human temporomandibular joint (TMJ) remains largely unknown. Our previous study has demonstrated that enriched insulin-like growth factor-1(IGF-1) was expressed in the proliferation and hypertrophic layers of CH cartilage. Accordingly, this study was aimed to investigate whether IGF-1 regulates CH chondrocytes proliferation in condylar cartilage overgrowth and explore the molecular mechanism of IGF-1 involved in. METHODS Chondrocytes were isolated from 6 CH and 3 normal cartilage (NC) specimens and cultured in alginate beads or monolayer, treated with IGF-1 or specific inhibitors such as 7-[trans-3-[(azetidin-1-yl)methyl]cyclobutyl]-5-(3-benzyloxyphenyl)-7H-pyrrolo[2,3-d]pyrimidin-4-amine (NVP-AEW541), U0126, and LY294002. Thereafter, cellular proliferation capacity was evaluated by Cell Viability Analyzer (alginate beads culture) or 3-(4,5-dimethylthiazo(-2-yl)-2,5-diphenyltetrazolium bromide (MTT) (monolayer culture). Gene expression levels of IGF-1, IGF-1 receptor (IGF-1R), collagen type II, type X and those genes associated with proliferation were evaluated by realtime PCR. Protein levels of IGF-1 and IGF-1R synthesized by CH chondrocytes were accessed by enzyme-linked immunosorbent assay (ELISA) and western blotting. RESULTS CH chondrocytes enhanced cellular proliferation capacity and expressed significantly higher levels of messenger RNA (mRNA) and protein expressions of IGF-1 and IGF-1R, as compared with NC chondrocytes. Furthermore, enriched IGF-1 enhanced CH chondrocytes proliferation, up-regulated the expressions of specific genes associated with cellular proliferation and elevated the gene expression of collagen type II A1 (COL2A1). Besides, IGF-1-mediated CH chondrocytes proliferation mainly depended on the mitogen-activated protein kinase (MAPK)-ERK pathway. CONCLUSIONS IGF-1 promotes human TMJ cartilage overgrowth in the developing process of CH by enhancing chondrocytes proliferation via MAPK-ERK pathway.
Collapse
Affiliation(s)
- Y Chen
- Laboratory of Oral Biomedicine, School of Stomatology, Wuhan University, Wuhan, Hubei province, China
| | | | | | | | | | | | | | | | | |
Collapse
|
110
|
Koul R. Orthodontic Implications of Growth and Differently Enabled Mandibular Movements for the Temporomandibular Joint. Semin Orthod 2012. [DOI: 10.1053/j.sodo.2011.10.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
111
|
Mandibular condylar growth in growing rats after experimentally displaced condylar fracture with associated attachment damage and disc displacement: an observation by polychrome sequential labeling. J Oral Maxillofac Surg 2012; 70:896-901. [PMID: 22265165 DOI: 10.1016/j.joms.2011.10.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Revised: 10/17/2011] [Accepted: 10/17/2011] [Indexed: 11/23/2022]
Abstract
PURPOSE The purpose of this study was to evaluate mandibular condylar growth in growing rats after experimentally displaced condylar fracture with associated attachment damage and disc displacement by means of polychrome sequential labeling. MATERIALS AND METHODS We randomized 30 growing male Wistar rats into 3 equal groups: rats with experimentally displaced condylar fractures with associated attachment damage and disc displacement (experimental group); rats with experimentally displaced condylar fractures without associated attachment damage and disc displacement (control group); and rats that received no operative intervention (negative control group). Polychrome sequential labeling was used to establish chronologically oriented condylar growth characteristics in these rats. Three months after the operation, the specimens were obtained, fixed, dehydrated, and embedded in acrylic resin for fluorescence microscopy observation. In addition, the lateral-medial diameter (in millimeters) and mineral apposition rate (in micrometers per day) of condyles were measured and analyzed across the 3 groups. RESULTS The results showed condylar growth disturbance in the experimental group rats, presenting with no obvious and regular bone growth lines in the anamorphic condyle. However, in the control group and negative control group rats, the condylar growth was normal. Regarding the lateral-medial diameter and mineral apposition rate, there was a significant difference between the experimental group and control group, as well as between the experimental group and negative control group; however, there was no significant difference between the control group and negative control group. CONCLUSIONS The occurrence of associated attachment damage and disc displacement in condylar fractures should be considered an important factor influencing the condylar growth after fracture.
Collapse
|
112
|
Feng J, Zhao N, Zhao J, Rabie AB, Shen G. Orthopedic protraction of the maxilla may affect cranial base synchondroses indicated by increased expressions of growth factors. Orthod Craniofac Res 2012; 15:62-70. [PMID: 22264328 DOI: 10.1111/j.1601-6343.2011.01537.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
OBJECTIVES To examine the biological adaptation of cranial base synchondroses (CBS) when the maxilla was forward positioned by orthopedic force. SETTING AND SAMPLE POPULATION The Department of Orthodontics at Shanghai Jiao Tong University. 50 Sprague-Dawley rats, 4 weeks of age, were divided into experimental (n=30) and control groups (n=20). MATERIAL AND METHODS An orthopedic appliance was fitted to the cranio-maxillary complex to advance the maxilla forward. The animals in the experimental group, together with the counterparts in the control group, were sacrificed at days 1, 3, 5, 7, and 14, respectively. The whole cranial base housing both the spheno-ethmoid (SES) and spheno-occipital synchondroses (SOS) was removed for tissue processing and immunotest of Sox9, Core-binding factor α 1 (Cbfa1), and vascular endothelial growth factor (VEGF), three carefully selected growth factors that are markers of chondrogenesis in different stages and its transition to endochondral ossification. Semiquantitative analysis was also conducted by using a computerizing imaging system. RESULTS The temporal tendency of the changes in the expressions of the three growth factors featured an increase from Day 3 and onwards for Cbfa1 and VEGF, and a following decline after Day 5 for Sox9. In both SES and SOS, the expressions of the three growth factors were significantly stronger in the experimental groups than that in groups (p<0.05). CONCLUSIONS Protractive orthopedic force imposed on the maxilla provokes an enhancement of chondrogenic process in CBS.
Collapse
Affiliation(s)
- J Feng
- Department of Orthodontics, College of Stomatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | | | | | | | | |
Collapse
|
113
|
Embree M, Ono M, Kilts T, Walker D, Langguth J, Mao J, Bi Y, Barth JL, Young M. Role of subchondral bone during early-stage experimental TMJ osteoarthritis. J Dent Res 2011; 90:1331-8. [PMID: 21917603 DOI: 10.1177/0022034511421930] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Temporomandibular joint osteoarthritis (TMJ OA) is a degenerative disease that affects both cartilage and subchondral bone. We used microarray to identify changes in gene expression levels in the TMJ during early stages of the disease, using an established TMJ OA genetic mouse model deficient in 2 extracellular matrix proteins, biglycan and fibromodulin (bgn(-/0)fmod(-/-)). Differential gene expression analysis was performed with RNA extracted from 3-week-old WT and bgn(-/0)fmod(-/-) TMJs with an intact cartilage/subchondral bone interface. In total, 22 genes were differentially expressed in bgn(-/0)fmod(-/-) TMJs, including 5 genes involved in osteoclast activity/differentiation. The number of TRAP-positive cells were three-fold higher in bgn(-/0)fmod(-/-) TMJs than in WT. Quantitative RT-PCR showed up-regulation of RANKL and OPG, with a 128% increase in RANKL/OPG ratio in bgn(-/0)fmod(-/-) TMJs. Histology and immunohistochemistry revealed tissue disorganization and reduced type I collagen in bgn(-/0)fmod(-/-) TMJ subchondral bone. Early changes in gene expression and tissue defects in young bgn(-/0)fmod(-/-) TMJ subchondral bone are likely attributed to increased osteoclast activity. Analysis of these data shows that biglycan and fibromodulin are critical for TMJ subchondral bone integrity and reveal a potential role for TMJ subchondral bone turnover during the initial early stages of TMJ OA disease in this model.
Collapse
Affiliation(s)
- M Embree
- Craniofacial and Skeletal Diseases Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
114
|
Galhardo MS, Caldini EG, Battlehner CN, Toledo OMS. Age-dependent physiological changes in the histoarchitecture of the articular cartilage of the rabbit mandibular condyle: a morphological and morphometric study. Cells Tissues Organs 2011; 195:340-52. [PMID: 21893930 DOI: 10.1159/000327722] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2011] [Indexed: 11/19/2022] Open
Abstract
Mandibular condyle articular cartilage participates in condylar postnatal growth and is responsible for adaptations to anatomical and/or biomechanical alterations throughout life. In a preliminary study in rabbits, differences were observed in the thickness of the layers of articular cartilage in control animals at 5 and 6 months (generally considered adults for this purpose). This study aimed to describe sagittally sectioned condylar cartilages stained with Picrosirius-hematoxylin in rabbits at 40 days and 5, 6, 8, 13, and 18 months to determine when histological maturity is reached. At 40 days, 5 layers were seen: fibrous, proliferative, transition, maturation, and hypertrophic. Older animals (5-18 months) lacked the transition layer. Fibrous, proliferative, and hypertrophic regions were considered for morphometric analysis. The thickness of the fibrous region did not change during the analyzed period (p = 0.1899). When proliferative and hypertrophic regions and the total thickness of the cartilage were compared, a difference was detected (p < 0.001). The thickness of the proliferative region was greatest at 40 days and decreased at 5 months; however, it increased at 6 months, when it was significantly thicker than at 5, 8, 13, and 18 months. Both the hypertrophic region and the total thickness were thickest at 40 days, intermediate at 5, 6, and 8 months, and thinnest at 13 and 18 months. In summary, our data suggest a physiological period of increased cartilage growth at 6 months. Additionally, rabbits at this age should be avoided in experiments involving condylar cartilage. Finally, 13-month-old rabbits have reached histological maturity of the condylar cartilage.
Collapse
|
115
|
Chen J, Sobue T, Utreja A, Kalajzic Z, Xu M, Kilts T, Young M, Wadhwa S. Sex differences in chondrocyte maturation in the mandibular condyle from a decreased occlusal loading model. Calcif Tissue Int 2011; 89:123-9. [PMID: 21597908 PMCID: PMC3298998 DOI: 10.1007/s00223-011-9498-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Accepted: 05/01/2011] [Indexed: 11/30/2022]
Abstract
Temporomandibular joint disorders (TMDs) predominantly afflict women of childbearing age. Defects in mechanical loading-induced temporomandibular joint (TMJ) remodeling are believed to be a major etiological factor in the development of TMD. The goal of this study was to determine if there are sex differences in CD-1 and C57BL/6 mice exposed to a decreased occlusal loading TMJ remodeling model. Male and female CD-1 and C57BL/6 mice, 21 days old, were each divided into two groups. They were fed either a normal pellet diet (normal loading) or a soft diet and had their incisors trimmed out of occlusion (decreased occlusal loading) for 4 weeks. The mandibular condylar cartilage was evaluated by histology, and the subchondral bone was evaluated by micro-CT analysis. Gene expression from both was evaluated by real-time PCR analysis. In both strains and sexes of mice, decreased occlusal loading caused similar effects in the subchondral bone, decreases in bone volume and total volume compared with their normal loading controls. However, in both strains, decreased occlusal loading caused a significant decrease in the expression of collagen type II (Col2) and Sox9 only in female mice, but not in male mice, compared with their normal loading controls. Decreased occlusal loading causes decreased bone volume in both sexes and a decrease in early chondrocyte maturation exclusively in female mice.
Collapse
Affiliation(s)
- J. Chen
- Division of Orthodontics, Department of Craniofacial Sciences, School of Dental Medicine, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT06030-1725, USA
| | - T. Sobue
- Division of Orthodontics, Department of Craniofacial Sciences, School of Dental Medicine, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT06030-1725, USA
| | - A. Utreja
- Division of Orthodontics, Department of Craniofacial Sciences, School of Dental Medicine, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT06030-1725, USA
| | - Z. Kalajzic
- Division of Orthodontics, Department of Craniofacial Sciences, School of Dental Medicine, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT06030-1725, USA
| | - M. Xu
- New England Musculoskeletal Institute, School of Medicine, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - T. Kilts
- Molecular Biology of Bones and Teeth Section, Craniofacial and Skeletal Diseases Branch, NIDCR, NIH, DHHS, Bethesda, MD 20892, USA
| | - M. Young
- Molecular Biology of Bones and Teeth Section, Craniofacial and Skeletal Diseases Branch, NIDCR, NIH, DHHS, Bethesda, MD 20892, USA
| | - S. Wadhwa
- Division of Orthodontics, Department of Craniofacial Sciences, School of Dental Medicine, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT06030-1725, USA
| |
Collapse
|
116
|
Owtad P, Potres Z, Shen G, Petocz P, Darendeliler MA. A histochemical study on condylar cartilage and glenoid fossa during mandibular advancement. Angle Orthod 2011; 81:270-6. [PMID: 21208079 DOI: 10.2319/021710-99.1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVE To evaluate cellular hypertrophic activities in the mandibular condylar cartilage (MCC) and the glenoid fossa (GF) during mandibular advancement in the temporomandibular joint (TMJ) of Sprague-Dawley rats, as evidenced by fibroblast growth factor 8 (FGF8). METHODS AND MATERIALS Fifty-five female 24-day-old Sprague-Dawley rats were randomly divided into four experimental and control groups, with a mandibular advancement appliance on the experimental rats' lower incisors. The rats were euthanized on days 3, 14, 21, and 30 of the study, and their TMJ was prepared for a immunohistochemical staining procedure to detect FGF8. RESULTS FGF8 expression was significantly higher among the experimental rats (P = .002). Patterns of ascension and descension of FGF8 expression were similar in experimental and control samples. The results show an overall enhanced osteogenic transition occurring in both the MCC and the GF in experimental rats in comparison with controls. The level of cellular changes in the MCC is remarkably higher than in the GF. CONCLUSION In the MCC and the GF, cellular morphologic and hypertrophic differentiations increase significantly during mandibular advancement. It is also concluded that endochondral ossification in the MCC and intramembranous ossification in the GF occur during adaptive remodeling.
Collapse
Affiliation(s)
- Payam Owtad
- Department of Orthodontics, University of Sydney, Sydney Dental Hospital, NSW Australia
| | | | | | | | | |
Collapse
|
117
|
Kang BC, Yoon SJ, Lee JS, Al-Rawi W, Palomo JM. The Use of Cone Beam Computed Tomography for the Evaluation of Pathology, Developmental Anomalies and Traumatic Injuries Relevant to Orthodontics. Semin Orthod 2011. [DOI: 10.1053/j.sodo.2010.08.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
118
|
Bryndahl F, Warfvinge G, Eriksson L, Isberg A. Cartilage changes link retrognathic mandibular growth to TMJ disc displacement in a rabbit model. Int J Oral Maxillofac Surg 2011; 40:621-7. [PMID: 21334177 DOI: 10.1016/j.ijom.2011.01.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Revised: 12/23/2010] [Accepted: 01/17/2011] [Indexed: 11/15/2022]
Abstract
Recent experimental research demonstrated that non-reducing temporomandibular joint (TMJ) disc displacement in growing rabbits impaired mandibular growth. TMJ disc displacement is also shown to induce histological changes of the condylar cartilage. The authors hypothesized that the severity of these changes would correlate to the magnitude of mandibular growth. Bilateral non-reducing TMJ disc displacement was surgically created in 10 growing New Zealand White rabbits. Ten additional rabbits constituted a sham operated control group. Aided by tantalum implants, growth was cephalometrically determined for each mandibular side during a period equivalent to childhood and adolescence in man. At the end of the growth period, histologically classified cartilage features were correlated with the assessed ipsilateral mandibular growth. Non-reducing displacement of the TMJ disc during the growth period induced histological reactions of the condylar cartilage in the rabbit model. The severity of cartilage changes was inversely correlated to the magnitude and the direction of mandibular growth, which resulted in a retrognathic growth pattern.
Collapse
Affiliation(s)
- F Bryndahl
- Department of Odontology, Oral and Maxillofacial Radiology, Faculty of Medicine, Umeå University, Umeå, Sweden
| | | | | | | |
Collapse
|
119
|
Aarthi JJ, Darendeliler MA, Pushparaj PN. Dissecting the role of the S1P/S1PR axis in health and disease. J Dent Res 2011; 90:841-54. [PMID: 21248363 DOI: 10.1177/0022034510389178] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Sphingosine-1-phosphate (S1P) is a pleiotropic sphingophospholipid generated from the phosphorylation of sphingosine by sphingosine kinases (SPHKs). S1P has been experimentally demonstrated to modulate an array of cellular processes such as cell proliferation, cell survival, cell invasion, vascular maturation, and angiogenesis by binding with any of the five known G-protein-coupled sphingosine 1 phosphate receptors (S1P1-5) on the cell surface in an autocrine as well as a paracrine manner. Recent studies have shown that the S1P receptors (S1PRs) and SPHKs are the key targets for modulating the pathophysiological consequences of various debilitating diseases, such as cancer, sepsis, rheumatoid arthritis, ulcerative colitis, and other related illnesses. In this article, we recapitulate these novel discoveries relative to the S1P/S1PR axis, necessary for the proper maintenance of health, as well as the induction of tumorigenic, angiogenic, and inflammatory stimuli that are vital for the development of various diseases, and the novel therapeutic tools to modulate these responses in oral biology and medicine.
Collapse
Affiliation(s)
- J J Aarthi
- Department of Orthodontics, Faculty of Dentistry, The University of Sydney, Sydney, New South Wales, NSW 2010, Australia
| | | | | |
Collapse
|
120
|
Sobue T, Yeh WC, Chhibber A, Utreja A, Diaz-Doran V, Adams D, Kalajzic Z, Chen J, Wadhwa S. Murine TMJ loading causes increased proliferation and chondrocyte maturation. J Dent Res 2011; 90:512-6. [PMID: 21248355 DOI: 10.1177/0022034510390810] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The purpose of this study was to examine the effects of forced mouth opening on murine mandibular condylar head remodeling. We hypothesized that forced mouth opening would cause an anabolic response in the mandibular condylar cartilage. Six-week-old female C57BL/6 mice were divided into 3 groups: (1) control, (2) 0.25 N, and (3) 0.50 N of forced mouth opening. Gene expression, micro-CT, and proliferation were analyzed. 0.5 N of forced mouth opening caused a significant increase in mRNA expression of Pthrp, Sox9, and Collagen2a1, a significant increase in proliferation, and a significant increase in trabecular spacing in the subchondral bone, whereas 0.25 N of forced mouth opening did not cause any significant changes in any of the parameters examined. Forced mouth opening causes an increase in the expression of chondrocyte maturation markers and an increase in subchondral trabecular spacing.
Collapse
Affiliation(s)
- T Sobue
- Department of Craniofacial Sciences, Division of Orthodontics, University of Connecticut Health Center, School of Dental Medicine, 263 Farmington Avenue, Farmington, CT 06030, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
121
|
Chiang H, Liao CJ, Wang YH, Huang HY, Chen CN, Hsieh CH, Huang YY, Jiang CC. Comparison of articular cartilage repair by autologous chondrocytes with and without in vitro cultivation. Tissue Eng Part C Methods 2010; 16:291-300. [PMID: 20187869 DOI: 10.1089/ten.tec.2009.0298] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVE autologous chondrocyte implantation usually requires in vitro cell expansion before implantation. We compared the efficacy of cartilage regeneration by in vitro-expanded chondrocytes at high density and freshly harvested chondrocytes at low density. DESIGN surgically created osteochondral defects at weight-bearing surface of femoral condyles of domestic pigs were repaired by biphasic cylindrical porous plugs of DL-poly-lactide-co-glycolide and beta-tricalcium phosphate. Plugs were seeded with autologous chondrocytes in its chondral phase, and press-fit to defects. Seeded cells were (1) in vitro-expanded chondrocytes harvested from stifle joint 3 weeks before implantation and (2) freshly harvested chondrocytes from recipient knee. Seeding densities were 70 x 10(6) and 7 x 10(6) cells/mL, respectively. Cell-free plugs served as control and defects remained untreated as null control. Outcome was examined at 6 months with International Cartilage Repair Society Scale. RESULTS the two experimental groups were repaired by hyaline cartilage with collagen type II and Safranin-O. Tissue in control group was primarily fibrocartilage. No regeneration was found in null control. Experimental groups had higher mean International Cartilage Repair Society scores than control in surface, matrix, and cell distribution, but were comparable with control in cell viability, subchondral bone, and mineralization. No significant difference existed between two experimental groups in any of the six categories. Uni-axial indentation test revealed similar creeping stress-relaxation property as native cartilage on experimental, but not control, specimen. CONCLUSIONS cartilage could regenerate in both experimental models, in comparable quality. Culture of chondrocytes before implantation is not necessary.
Collapse
Affiliation(s)
- Hongsen Chiang
- National Taiwan University Hospital, and College of Medicine, Taipei, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
122
|
Sun Y, Ma S, Zhou J, Yamoah AK, Feng JQ, Hinton RJ, Qin C. Distribution of small integrin-binding ligand, N-linked glycoproteins (SIBLING) in the articular cartilage of the rat femoral head. J Histochem Cytochem 2010; 58:1033-43. [PMID: 20679519 DOI: 10.1369/jhc.2010.956771] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The small integrin-binding ligand, N-linked glycoprotein (SIBLING) family is closely related to osteogenesis. Until recently, little was known about their existence in articular cartilage. In this study, we systematically evaluated the presence and distribution of four SIBLING family members in rat femoral head cartilage: dentin matrix protein 1 (DMP1), bone sialoprotein (BSP), osteopontin (OPN), and dentin sialophosphoprotein (DSPP). First, non-collagenous proteins were extracted and then separated by ion-exchange chromatography. Next, the protein extracts eluted by chromatography were analyzed by Stains-all staining and Western immunoblotting. IHC was used to assess the distribution of these four SIBLING family members in the femoral head cartilage. Both approaches showed that all the four SIBLING family members are expressed in the femoral head cartilage. IHC showed that SIBLING members are distributed in various locations throughout the articular cartilage. The NH₂-terminal fragments of DMP1, BSP, and OPN are present in the cells and in the extracellular matrix, whereas the COOH-terminal fragment of DMP1 and the NH₂-terminal fragment of DSPP are primarily intracellularly localized in the chondrocytes. The presence of the SIBLING family members in the rat femoral head cartilage suggests that they may play important roles in chondrogenesis.
Collapse
Affiliation(s)
- Yao Sun
- Dept. of Biomedical Sciences, Baylor College of Dentistry, Texas A&M University System Health Science Center, Dallas, TX 75246, USA
| | | | | | | | | | | | | |
Collapse
|
123
|
Murakami T, Fukunaga T, Takeshita N, Hiratsuka K, Abiko Y, Yamashiro T, Takano-Yamamoto T. Expression of Ten-m/Odz3 in the fibrous layer of mandibular condylar cartilage during postnatal growth in mice. J Anat 2010; 217:236-44. [PMID: 20636325 DOI: 10.1111/j.1469-7580.2010.01267.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
It has been speculated that the mandibular condyle develops via the differentiation of the fibroblast-like cells covering the condyle into chondrocytes; however, the developmental mechanisms behind this process have not been revealed. We used laser-capture microdissection and cDNA microarray analysis to elucidate the genes that are highly expressed in these fibroblast-like cells. Among these genes, the transcription of Ten-m/Odz3 was significantly increased in the fibroblast-like cells compared with other cartilage tissues. For the first time, we describe the temporal and spatial expression of Ten-m/Odz3 mRNA in relation to the expression of type I, II, and X collagen mRNA, as determined by in-situ hybridization in mouse mandibular condylar cartilage and mouse femoral cartilage during the early stages of development. Ten-m/Odz3 was expressed in the fibrous layer and the proliferating and mature chondrocyte layers, which expressed type I and II collagen, respectively, but was not detected in the hypertrophic chondrocyte layer. Furthermore, we evaluated the in-vitro expression of Ten-m/Odz3 using ATDC5 cells, a mouse chondrogenic cell line. Ten-m/Odz3 was expressed during the early stage of the differentiation of mesenchymal cells into chondrocytes. These findings suggest that Ten-m/Odz3 is involved in the differentiation of chondrocytes and that it acts as a regulatory factor in the early stages of the development of mandibular condylar cartilage.
Collapse
Affiliation(s)
- Takashi Murakami
- Department of Orthodontics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | | | | | | | | | | | | |
Collapse
|
124
|
Jiao K, Wang MQ, Niu LN, Dai J, Yu SB, Liu XD. Mandibular condylar cartilage response to moving 2 molars in rats. Am J Orthod Dentofacial Orthop 2010; 137:460.e1-8; discussion 460-1. [PMID: 20362904 DOI: 10.1016/j.ajodo.2009.09.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2009] [Revised: 09/01/2009] [Accepted: 09/01/2009] [Indexed: 11/15/2022]
Abstract
INTRODUCTION The purpose of this study was to investigate the responses of mandibular condylar cartilage to moving 2 molars in different combinations. METHODS Rats were assigned to male and female control and experimental groups (each, n = 5). Elastic rubber bands were used to move medially the maxillary left and the mandibular right first molars in experimental group I. The same method was used to distally move the maxillary left and the mandibular right third molars, 2 mandibular third molars, and 2 maxillary third molars in experimental groups II, III, and IV, respectively. At the end of the eighth week, all condyles were examined histologically. The areas of histologic change as a percentage of total cartilage area were compared by using the Mann-Whitney U test. RESULTS Cartilage degenerative remodeling was observed in experimental groups II, III, and IV. The percentage areas of degenerative remodeling were higher in female experimental groups II and III than in the female control group, and in female experimental group II than in female experimental group IV and male experimental group II (all, P <0.05). CONCLUSIONS The mandibular condylar cartilage of female rats responded variously to different combinations of molar movement; the most obvious remodeling was observed in groups in which the maxillary left and mandibular right third molars were moved.
Collapse
Affiliation(s)
- Kai Jiao
- Department of Oral Anatomy and Physiology and TMD, School of Stomatology, Fourth Military Medical University, Xi'an, China
| | | | | | | | | | | |
Collapse
|
125
|
Wan Q, Li ZB. Intra-articular injection of parathyroid hormone in the temporomandibular joint as a novel therapy for mandibular asymmetry. Med Hypotheses 2010; 74:685-7. [DOI: 10.1016/j.mehy.2009.10.047] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2009] [Accepted: 10/31/2009] [Indexed: 11/29/2022]
|
126
|
Ochiai T, Shibukawa Y, Nagayama M, Mundy C, Yasuda T, Okabe T, Shimono K, Kanyama M, Hasegawa H, Maeda Y, Lanske B, Pacifici M, Koyama E. Indian hedgehog roles in post-natal TMJ development and organization. J Dent Res 2010; 89:349-54. [PMID: 20200412 DOI: 10.1177/0022034510363078] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Indian hedgehog (Ihh) is essential for embryonic mandibular condylar growth and disc primordium formation. To determine whether it regulates those processes during post-natal life, we ablated Ihh in cartilage of neonatal mice and assessed the consequences on temporomandibular joint (TMJ) growth and organization over age. Ihh deficiency caused condylar disorganization and growth retardation and reduced polymorphic cell layer proliferation. Expression of Sox9, Runx2, and Osterix was low, as was that of collagen II, collagen I, and aggrecan, thus altering the fibrocartilaginous nature of the condyle. Though a disc formed, it exhibited morphological defects, partial fusion with the glenoid bone surface, reduced synovial cavity space, and, unexpectedly, higher lubricin expression. Analysis of the data shows, for the first time, that continuous Ihh action is required for completion of post-natal TMJ growth and organization. Lubricin overexpression in mutants may represent a compensatory response to sustain TMJ movement and function.
Collapse
Affiliation(s)
- T Ochiai
- Department of Orthopaedic Surgery, Thomas Jefferson University College of Medicine, 1015 Walnut Street, Curtis Building Room 501, Philadelphia, PA 19107, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
127
|
Sun Y, Gandhi V, Prasad M, Yu W, Wang X, Zhu Q, Feng JQ, Hinton RJ, Qin C. Distribution of small integrin-binding ligand, N-linked glycoproteins (SIBLING) in the condylar cartilage of rat mandible. Int J Oral Maxillofac Surg 2010; 39:272-81. [PMID: 20097540 DOI: 10.1016/j.ijom.2009.12.017] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2009] [Revised: 04/22/2009] [Accepted: 12/22/2009] [Indexed: 02/04/2023]
Abstract
The Small Integrin-Binding LIgand, N-linked Glycoprotein (SIBLING) family is one category of non-collagenous proteins closely related to osteogenesis. In this study, the authors systematically evaluated the presence and distribution of four SIBLING family members, dentin sialophosphoprotein (DSPP), dentin matrix protein 1 (DMP1), bone sialoprotein (BSP) and osteopontin (OPN), in rat mandibular condylar cartilage using protein chemistry and immunohistochemistry. For protein chemistry, SIBLING proteins in the dissected condylar cartilage were extracted with 4M guanidium-HCl, separated by ion-exchange chromatography, and analyzed by Western immunoblotting. Immunohistochemistry was employed to assess the distribution of these four SIBLING proteins in the condylar cartilage of 2-, 5- and 8-week-old rats. Results from both approaches showed that all four members are expressed in the condylar cartilage. DSPP, unlike that observed in dentin and bone, exists as a full-length form (uncleaved) in the condylar cartilage. The NH(2)-terminal fragment of DMP1 is mainly detected in the matrix of the cartilage while the COOH-terminal fragment is primarily localized in the nuclei of cells in the chondroblastic and hypertrophic layers. The data obtained in this investigation provide clues about the potential roles of these SIBLING proteins in chondrogenesis.
Collapse
Affiliation(s)
- Y Sun
- Department of Biomedical Sciences, Baylor College of Dentistry, Texas A & M University System Health Science Center, Dallas, TX, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
128
|
Embree MC, Kilts TM, Ono M, Inkson CA, Syed-Picard F, Karsdal MA, Oldberg A, Bi Y, Young MF. Biglycan and fibromodulin have essential roles in regulating chondrogenesis and extracellular matrix turnover in temporomandibular joint osteoarthritis. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 176:812-26. [PMID: 20035055 DOI: 10.2353/ajpath.2010.090450] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The temporomandibular joint is critical for jaw movements and allows for mastication, digestion of food, and speech. Temporomandibular joint osteoarthritis is a degenerative disease that is marked by permanent cartilage destruction and loss of extracellular matrix (ECM). To understand how the ECM regulates mandibular condylar chondrocyte (MCC) differentiation and function, we used a genetic mouse model of temporomandibular joint osteoarthritis that is deficient in two ECM proteins, biglycan and fibromodulin (Bgn(-/0)Fmod(-/-)). Given the unavailability of cell lines, we first isolated primary MCCs and found that they were phenotypically unique from hyaline articular chondrocytes isolated from the knee joint. Using Bgn(-/0) Fmod(-/-) MCCs, we discovered the early basis for temporomandibular joint osteoarthritis arises from abnormal and accelerated chondrogenesis. Transforming growth factor (TGF)-beta1 is a growth factor that is critical for chondrogenesis and binds to both biglycan and fibromodulin. Our studies revealed the sequestration of TGF-beta1 was decreased within the ECM of Bgn(-/0) Fmod(-/-) MCCs, leading to overactive TGF-beta1 signal transduction. Using an explant culture system, we found that overactive TGF-beta1 signals induced chondrogenesis and ECM turnover in this model. We demonstrated for the first time a comprehensive study revealing the importance of the ECM in maintaining the mandibular condylar cartilage integrity and identified biglycan and fibromodulin as novel key players in regulating chondrogenesis and ECM turnover during temoporomandibular joint osteoarthritis pathology.
Collapse
Affiliation(s)
- Mildred C Embree
- Craniofacial and Skeletal Diseases Branch, National Institutes of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
129
|
Douglas CR, Avoglio JLV, de Oliveira H. Stomatognathic adaptive motor syndrome is the correct diagnosis for temporomandibular disorders. Med Hypotheses 2009; 74:710-8. [PMID: 19910127 DOI: 10.1016/j.mehy.2009.10.028] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2009] [Accepted: 10/14/2009] [Indexed: 11/18/2022]
Abstract
Temporomandibular disorder is a generic and inadequate conception to be used as a diagnosis. It fails to express the etiology or the pathophysiology and it is mainly associated with the anatomical site. Moreover, the clinical condition presents a mandibular motor problem and not a joint problem. The hypothesis presents the new diagnosis stomatognathic motor adaptive syndrome, which comprehend a motor response and the adaptive processes it induces. Inadequate occlusal contacts cause the mandible to shift in order to reach an ideal intercuspal position. The condylar displacements are proportional to such movements. Temporomandibular joint (TMJ) receptors respond to the capsular mechanical stress and the information reaches the trigeminal sensory nuclei. The mandibular modified position seems to be relevant information and may interfere with catecholaminergic neurotransmission in basal ganglia. The main motor responses comprise increased jaw muscle tone, decreased velocity of movements and incoordination. The overload of muscle function will produce adaptive responses on many stomatognathic structures. The muscle adaptive responses are hypertonia, pain, fatigue and weakness. Temporomandibular joint presents tissue modification, disc alteration and cracking noise. Periodontium show increased periodontal membrane, bone height loss and gingival recession. Teeth manifest increased wear facets, abfraction and non-accidental fractures. The periodontal and teeth adaptive processes are usually identified as occlusal trauma. The altered stomatognathic functions will show loss of velocity during mastication and speech. Fatigue, weakness in jaw muscle and difficulties to chew hard food are related to hypertonia. Incoordination between stomatognathic muscles groups is found, causing involuntary tongue/cheek biting and lateral jaw movements on speech. Otologic complaints, as aural fullness and tinnitus, are related to the tensor tympani muscle, innervated by the trigeminal nerve.
Collapse
|
130
|
Chen J, Gupta T, Barasz JA, Kalajzic Z, Yeh WC, Drissi H, Hand AR, Wadhwa S. Analysis of microarchitectural changes in a mouse temporomandibular joint osteoarthritis model. Arch Oral Biol 2009; 54:1091-8. [PMID: 19896116 DOI: 10.1016/j.archoralbio.2009.10.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2009] [Revised: 09/09/2009] [Accepted: 10/07/2009] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Little is known about the natural progression of the disease process of temporomandibular joint (TMJ) osteoarthritis (OA), which affects approximately 1% of the US population. The goal of this study was to examine the early microarchitectural and molecular changes in the condylar cartilage and subchondral bone in biglycan/fibromodulin (Bgn/Fmod) double-deficient mice, which develop TMJ-OA at 6 months. METHODS TMJs from 3-month-old (n=44) and 9-month-old (n=52) wild-type (WT n=46) and Bgn/Fmod (n=50) double-deficient mice were evaluated. Micro-CT analysis of the subchondral bone (n=24), transmission electron microscopy for condylar cartilage fibril diameters (n=26), and real-time PCR analysis for gene expression for bone and cartilage maturation markers (n=45) was performed. RESULTS A statistically significant increase in collagen fibril diameter of the condylar cartilage and a decrease in expression of Parathyroid related protein in the mandibular condylar head were observed in the 3-month Bgn/Fmod double-deficient mice compared to WT controls. The 9-month Bgn/Fmod double-deficient mouse demonstrated an increase in bone volume and total volume in subchondral bone, and an increase in the expression of Collagen Type X and Aggrecan in the mandibular condylar head compared to the WT controls. CONCLUSION We found that changes in the microarchitecture of the condylar cartilage preceded changes in the subchondral bone during OA in the TMJ in Bgn/Fmod double-deficient mice.
Collapse
Affiliation(s)
- J Chen
- University of Connecticut Health Center, Department of Craniofacial Sciences, Farmington, 06030, United States
| | | | | | | | | | | | | | | |
Collapse
|
131
|
Fang W, Friis TE, Long X, Xiao Y. Expression of chondromodulin-1 in the temporomandibular joint condylar cartilage and disc. J Oral Pathol Med 2009; 39:356-60. [PMID: 19903245 DOI: 10.1111/j.1600-0714.2009.00831.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND The temporomandibular joint (TMJ) cartilage consists of condylar cartilage and disc and undergoes continuous remodeling throughout post-natal life. To maintain the integrity of the TMJ cartilage, anti-angiogenic factors play an important role during the remodeling process. In this study, we investigated the expression of the anti-angiogenic factor, chondromodulin-1 (ChM-1), in TMJ cartilage and evaluate its potential role in TMJ remodeling. METHODS Eight TMJ specimens were collected from six 4-month-old Japanese white rabbits. Safranin-O staining was performed to determine proteoglycan content. ChM-1 expression in TMJ condylar cartilage and disc was determined by immunohistochemistry. Three human perforated disc tissue samples were collected for investigation of ChM-1 and vascular endothelial growth factor (VEGF) distribution in perforated TMJ disc. RESULTS Safranin-O stained weakly in TMJ compared with tibial articular and epiphyseal cartilage. In TMJ, ChM-1 was expressed in the proliferative and hypertrophic zone of condylar cartilage and chondrocyte-like cells in the disc. No expression of ChM-1 was observed in osteoblasts and subchondral bone. ChM-1 and VEGF were both similarly expressed in perforated disc tissues. CONCLUSIONS ChM-1 may play a role in the regulation of TMJ remodeling by preventing blood vessel invasion of the cartilage, thereby maintaining condylar cartilage and disc integrity.
Collapse
Affiliation(s)
- Wei Fang
- Key Laboratory of Oral Biomedical Engineering of Ministry of Education, Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei Province, PR China
| | | | | | | |
Collapse
|
132
|
Mérida Velasco JR, Rodríguez Vázquez JF, De la Cuadra Blanco C, Campos López R, Sánchez M, Mérida Velasco JA. Development of the mandibular condylar cartilage in human specimens of 10-15 weeks' gestation. J Anat 2009; 214:56-64. [PMID: 19166473 DOI: 10.1111/j.1469-7580.2008.01009.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
This study analyses some morphological and histological aspects that could have a role in the development of the condylar cartilage (CC). The specimens used were serial sections from 49 human fetuses aged 10-15 weeks. In addition, 3D reconstructions of the mandibular ramus and the CC were made from four specimens. During weeks 10-11 of development, the vascular canals (VC) appear in the CC and the intramembranous ossification process begins. At the same time, in the medial region of the CC, chondroclasts appear adjacent to the vascular invasion and to the cartilage destruction. During weeks 12-13 of development, the deepest portion of the posterolateral vascular canal is completely surrounded by the hypertrophic chondrocytes. The latter emerge with an irregular layout. During week 15 of development, the endochondral ossification of the CC begins. Our results suggest that the situation of the chondroclasts, the posterolateral vascular canal and the irregular arrangement of the hypertrophic chondrocytes may play a notable role in the development of the CC.
Collapse
Affiliation(s)
- J R Mérida Velasco
- Departamento de Anatomía y Embriología Humana II, Facultad de Medicina, Universidad Complutense de Madrid, Spain.
| | | | | | | | | | | |
Collapse
|
133
|
Wattanachai T, Yonemitsu I, Kaneko S, Soma K. Functional Lateral Shift of the Mandible Effects on the Expression of ECM in Rat Temporomandibular Cartilage. Angle Orthod 2009; 79:652-9. [DOI: 10.2319/080808-417.1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2008] [Accepted: 10/01/2008] [Indexed: 11/23/2022] Open
Abstract
Abstract
Objective: To test the hypothesis that the effects of mechanical stress from a functional lateral shift of the mandible have no effect on the expression of two main condylar cartilage extracellular matrix components, type II collagen and aggrecan, in rats from early puberty to young adulthood.
Materials and Methods: Functional lateral shift of the mandible was induced in experimental groups of 5-week-old male Wistar rats, using guiding appliances. The rats were sacrificed at 3, 7, 14, and 28 days post appliance attachment. The condyles were immunohistochemically evaluated for type II collagen and aggrecan (the immunoreactive areas were quantified).
Results: As compared with the control group, on the contralateral condyles, the immunoreactivity of the experimental groups was significantly increased from 7 to 14 days. While on the ipsilateral condyles, the immunoreactive areas were significantly decreased throughout the experimental period.
Conclusion: A functional lateral shift of the mandible modulated the condylar cartilage extracellular matrix differently on each side of the condyle, which affected condylar morphology, growth, biomechanical properties, and even the susceptibility of the condylar cartilage to pathogenesis.
Collapse
Affiliation(s)
- Tanapan Wattanachai
- a Graduate Student, Orthodontic Science, Department of Orofacial Development and Function, Division of Oral Health Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Ikuo Yonemitsu
- b Research Assistant, Orthodontic Science, Department of Orofacial Development and Function, Division of Oral Health Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Sawa Kaneko
- c Assistant Professor, Orthodontic Science, Department of Orofacial Development and Function, Division of Oral Health Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kunimichi Soma
- d Professor and Chairman, Orthodontic Science, Department of Orofacial Development and Function, Division of Oral Health Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
134
|
Sriram D, Jones A, Alatli-Burt I, Darendeliler MA. Effects of mechanical stimuli on adaptive remodeling of condylar cartilage. J Dent Res 2009; 88:466-70. [PMID: 19493892 DOI: 10.1177/0022034509336616] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Trabecular bone has been shown to be responsive to low-magnitude, high-frequency mechanical stimuli. This study aimed to assess the effects of these stimuli on condylar cartilage and its endochondral bone. Forty female 12-week-old C3H mice were divided into 3 groups: baseline control (killed at day 0), sham (killed at day 28 without exposure to mechanical stimuli), and experimental (killed following 28 days of exposure to mechanical stimuli). The experimental group was subjected to mechanical vibration of 30 Hz, for 20 minutes per day, 5 days per week, for 28 days. The specimens were analyzed by micro-computed tomography. The experimental group demonstrated a significant decrease in the volume of condylar cartilage and also a significant increase in bone histomorphometric parameters. The results suggest that the low-magnitude, high-frequency mechanical stimuli enhance adaptive remodeling of condylar cartilage, evidenced by the advent of endochondral bone replacing the hypertrophic cartilage.
Collapse
Affiliation(s)
- D Sriram
- Discipline of Orthodontics, Faculty of Dentistry, Sydney Dental Hospital, The University of Sydney, 2 Chalmers Street, Surry Hills, NSW 2010, Australia
| | | | | | | |
Collapse
|
135
|
Quintana L, Muiños TF, Genove E, Del Mar Olmos M, Borrós S, Semino CE. Early tissue patterning recreated by mouse embryonic fibroblasts in a three-dimensional environment. Tissue Eng Part A 2009; 15:45-54. [PMID: 19025338 DOI: 10.1089/ten.tea.2007.0296] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Cellular self-organization studies have been mainly focused on models such as Volvox, the slime mold Dictyostelium discoideum, and animal (metazoan) embryos. Moreover, animal tissues undergoing regeneration also exhibit properties of embryonic systems such as the self-organization process that rebuilds tissue complexity and function. We speculated that the recreation in vitro of the biological, biophysical, and biomechanical conditions similar to those of a regenerative milieu could elicit the intrinsic capacity of differentiated cells to proceed to the development of a tissue-like structure. Here we show that, when primary mouse embryonic fibroblasts are cultured in a soft nanofiber scaffold, they establish a cellular network that causes an organized cell contraction,proliferation, and migration that ends in the formation of a symmetrically bilateral structure with a distinct central axis. A subset of mesodermal genes (brachyury, Sox9, Runx2) is upregulated during this morphogenetic process. The expression of brachyury was localized first at the central axis, extending then to both sides of the structure. The spontaneous formation of cartilage-like tissue mainly at the paraxial zone followed expression ofSox9 and Runx2. Because cellular self-organization is an intrinsic property of the tissues undergoing development,this model could lead to new ways to consider tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Lluís Quintana
- Center for Biomedical Engineering, Massachusetts Institute of Technology, Boston, Massachusetts 02139, USA
| | | | | | | | | | | |
Collapse
|
136
|
Singh M, Detamore MS. Biomechanical properties of the mandibular condylar cartilage and their relevance to the TMJ disc. J Biomech 2009; 42:405-17. [PMID: 19200995 DOI: 10.1016/j.jbiomech.2008.12.012] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2008] [Revised: 12/16/2008] [Accepted: 12/17/2008] [Indexed: 10/21/2022]
Abstract
Mandibular condylar cartilage plays a crucial role in temporomandibular joint (TMJ) function, which includes facilitating articulation with the TMJ disc, reducing loads on the underlying bone, and contributing to bone remodeling. To improve our understanding of the TMJ function in normal and pathological situations, accurate and validated three-dimensional (3-D) finite element models (FEMs) of the human TMJ may serve as valuable diagnostic tools as well as predictors of thresholds for tissue damage resulting from parafunctional activities and trauma. In this context, development of reliable biomechanical standards for condylar cartilage is crucial. Moreover, biomechanical characteristics of the native tissue are important design parameters for creating functional tissue-engineered replacements. Towards these goals, biomechanical characteristics of the condylar cartilage have been reviewed here, highlighting the structure-function correlations. Structurally, condylar cartilage, like the TMJ disc, exhibits zonal and topographical heterogeneity. Early structural investigations of the condylar cartilage have suggested that the tissue possesses a somewhat transversely isotropic orientation of collagen fibers in the fibrous zone. However, recent tensile and shear evaluations have reported a higher stiffness of the tissue in the anteroposterior direction than in the mediolateral direction, corresponding to an anisotropic fiber orientation comparable to the TMJ disc. In a few investigations, condylar cartilage under compression was found to be stiffer anteriorly than posteriorly. As with the TMJ disc, further compressive characterization is warranted. To draw inferences for human tissue using animal models, establishing stiffness-thickness correlations and regional evaluation of proteoglycan/glycosaminoglycan content may be essential. Efforts directed from the biomechanics community for the characterization of TMJ tissues will facilitate the development of reliable and accurate 3-D FEMs of the human TMJ.
Collapse
Affiliation(s)
- M Singh
- Department of Chemical and Petroleum Engineering, University of Kansas, 1530 W. 15th Street, Room 4132, Lawrence, KS 66045-7609, USA
| | | |
Collapse
|
137
|
Affiliation(s)
- Sunil Wadhwa
- Division of Orthodontics; School of Dental Medicine; University of Connecticut Health Center
| | - Sunil Kapila
- Department of Orthodontics and Pediatric Dentistry; School of Dentistry; University of Michigan
| |
Collapse
|
138
|
Wu MJ, Zhan J, Gu ZY. Time Course of Expression of Bcl-2 and Bax in Rabbit Condylar Chondrocytes Following Forward Mandibular Positioning. Angle Orthod 2008; 78:453-9. [PMID: 18416607 DOI: 10.2319/012007-29.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2007] [Accepted: 06/01/2007] [Indexed: 11/23/2022] Open
Abstract
Abstract
Objective: To clarify the expression of Bcl-2 and Bax following forward mandibular positioning (FMP) in the condylar chondrocytes of rabbits.
Materials and Methods: Sixty rabbits at 8 weeks of age were randomly allocated to the experimental group (n = 36) and control group (n = 24). Rabbits in the experimental group were induced to FMP by a functional appliance. Six rabbits from the experimental group and four from the control group were sacrificed after 3 days and 1, 2, 4, 8, and 12 weeks, respectively. All the right temporomandibular joints (TMJs) were collected and the expression of Bcl-2 and Bax was evaluated by immunohistochemical staining.
Results: The results showed the expression pattern of Bcl-2 and Bax during 12 weeks after FMP. The expression of Bcl-2 reached the highest level at 1 week, whereas Bax reached its maximal expression after 4 weeks. Subsequently, the expression of Bcl-2 and Bax gradually decreased. The ratio of Bcl-2/Bax began to decrease 3 days after FMP and continued to decline until 12 weeks.
Conclusions: FMP with functional appliances could change the expression of Bcl-2 and Bax, which is related to apoptosis in condylar chondrocytes.
Collapse
Affiliation(s)
- Meng-Jie Wu
- a PhD graduate student, Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Zhejiang University, Hangzhou, China
| | - Jing Zhan
- b Research Assistant, Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Zhejiang University, Hangzhou, China
| | - Zhi-Yuan Gu
- c Professor, Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Zhejiang University, Hangzhou, China
| |
Collapse
|
139
|
Kim JY, Kim ST, Cho SW, Jung HS, Park KT, Son HK. Growth effects of botulinum toxin type A injected into masseter muscle on a developing rat mandible. Oral Dis 2008; 14:626-32. [PMID: 18331419 DOI: 10.1111/j.1601-0825.2007.01435.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
OBJECTIVES Botulinum toxin type A (BTX-A) reduces the muscular contractions by temporarily inhibiting the release of acetylcholine at the neuromuscular junction. The purpose of this study was to investigate the effects of the BTX-A injected into the masseter muscle of a developing rat mandible. MATERIALS AND METHODS Four-week-old male (no. 80) Sprague-Dawley rats were divided into four groups: control group, saline group, BTX-A group and baseline control group. Rats of baseline group were sacrificed at 0 day to provide baseline values of the mandibular measurements. The masseter muscle of rats in the saline and the BTX-A group were administered with saline and BTX-A solutions respectively. Experimental animals were sacrificed after 4 weeks. RESULTS The BTX-A group demonstrated smaller mandibular dimension compared with the other groups (P < 0.05). Their condylar cartilages showed increased apoptosis at the proliferation stage of the reserve zone and masseter muscle fibers demonstrated atrophic changes. CONCLUSIONS The result demonstrated BTX-A influence on inhibitory action of the developing mandible because of apoptosis at the proliferation stage of the reserve zone of the condylar cartilage in developing rat mandible.
Collapse
Affiliation(s)
- J-Y Kim
- Department of Pediatric Dentistry, The Institute of Oral Health Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | | | | | | | | | | |
Collapse
|
140
|
Chu FT, Tang GH, Hu Z, Qian YF, Shen G. Mandibular functional positioning only in vertical dimension contributes to condylar adaptation evidenced by concomitant expressions of L-Sox5 and type II collagen. Arch Oral Biol 2008; 53:567-74. [PMID: 18243156 DOI: 10.1016/j.archoralbio.2007.12.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2007] [Revised: 12/11/2007] [Accepted: 12/17/2007] [Indexed: 10/22/2022]
Abstract
OBJECTIVE Concerted expressions of L-Sox5 and type II collagen play an important part in osteogenic transition in epiphyseal cartilage. This study was designed to elucidate the role of mandibular vertical functional positioning in condylar adaptive remodelling by examining L-Sox5 and type II collagen expressions in condylar cartilage. DESIGN 40 female Sprague-Dawley rats at age of 5 weeks were randomly divided into the experimental (n=20) and control groups (n=20). Bite plates were fitted on the upper posterior teeth of the experimental animals to induce functional repositioning of mandible in vertical dimension. The animals in both experimental and matched control groups were sacrificed on days 3, 6, 9 and 12, respectively. Tissue sections were cut in the sagittal plane through the mandibular condyles and processed with histomorphological examination for cellular response and immunohistochemical test for expressions of L-Sox5 and type II collagen. Quantitative assessment was conducted with computer-assisted imaging system to reveal the correlation between these two factors. RESULTS (1) Both L-Sox5 and type II collagen were expressed in prechondroblastic cells and chondroblastic cells. (2) When mandible was downward positioned, the amount of L-Sox5 expression was significantly higher by 16.1% (day 9) and 24.2% (day 12) than that of the control (P<0.05); Similarly, type II collagen expression in the experimental group was also significantly stronger by 9.3% (day 9) and 12.3% (day 12) than control group (P<0.05), indicating an enhanced osteogenic transition occurring in condylar cartilage. (3) There was a similarity in temporospatial patterns between the expressions of these two factors, indicating their integral functions in facilitating condylar adaptation. CONCLUSIONS It is suggested that L-Sox5 plays a key role in adaptive remodelling of condylar cartilage resulting from downward positioning of the mandible. Integration with type II collagen enables L-Sox5 to induce osteogenic transition and consequently to encourage endochondral ossification.
Collapse
Affiliation(s)
- Feng Ting Chu
- Department of Orthodontics, School of Stomatology, Ninth People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | | | | | | | | |
Collapse
|
141
|
Jiang CC, Chiang H, Liao CJ, Lin YJ, Kuo TF, Shieh CS, Huang YY, Tuan RS. Repair of porcine articular cartilage defect with a biphasic osteochondral composite. J Orthop Res 2007; 25:1277-90. [PMID: 17576624 DOI: 10.1002/jor.20442] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Autologous chondrocyte implantation (ACI) has been recently used to treat cartilage defects. Partly because of the success of mosaicplasty, a procedure that involves the implantation of native osteochondral plugs, it is of potential significance to consider the application of ACI in the form of biphasic osteochondral composites. To test the clinical applicability of such composite construct, we repaired osteochondral defect with ACI at low cell-seeding density on a biphasic scaffold, and combined graft harvest and implantation in a single surgery. We fabricated a biphasic cylindrical porous plug of DL-poly-lactide-co-glycolide, with its lower body impregnated with beta-tricalcium phosphate as the osseous phase. Osteochondral defects were surgically created at the weight-bearing surface of femoral condyles of Lee-Sung mini-pigs. Autologous chondrocytes isolated from the cartilage were seeded into the upper, chondral phase of the plug, which was inserted by press-fitting to fill the defect. Defects treated with cell-free plugs served as control. Outcome of repair was examined 6 months after surgery. In the osseous phase, the biomaterial retained in the center and cancellous bone formed in the periphery, integrating well with native subchondral bone with extensive remodeling, as depicted on X-ray roentgenography by higher radiolucency. In the chondral phase, collagen type II immunohistochemistry and Safranin O histological staining showed hyaline cartilage regeneration in the experimental group, whereas only fibrous tissue formed in the control group. On the International Cartilage Repair Society Scale, the experimental group had higher mean scores in surface, matrix, cell distribution, and cell viability than control, but was comparable with the control group in subchondral bone and mineralization. Tensile stress-relaxation behavior determined by uni-axial indentation test revealed similar creep property between the surface of the experimental specimen and native cartilage, but not the control specimen. Implanted autologous chondrocytes could survive and could yield hyaline-like cartilage in vivo in the biphasic biomaterial construct. Pre-seeding of osteogenic cells did not appear to be necessary to regenerate subchondral bone.
Collapse
Affiliation(s)
- Ching-Chuan Jiang
- National Taiwan University Hospital, and National Taiwan University College of Medicine, Taipei, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
142
|
Shibukawa Y, Young B, Wu C, Yamada S, Long F, Pacifici M, Koyama E. Temporomandibular joint formation and condyle growth require Indian hedgehog signaling. Dev Dyn 2007; 236:426-34. [PMID: 17191253 DOI: 10.1002/dvdy.21036] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The temporomandibular joint (TMJ) is essential for jaw function, but the mechanisms regulating its development remain poorly understood. Because Indian hedgehog (Ihh) regulates trunk and limb skeletogenesis, we studied its possible roles in TMJ development. In wild-type mouse embryos, Ihh expression was already strong in condylar cartilage by embryonic day (E) 15.5, and expression of Ihh receptors and effector genes (Gli1, Gli2, Gli3, and PTHrP) indicated that Ihh range of action normally reached apical condylar tissue layers, including polymorphic chondroprogenitor layer and articular disc primordia. In Ihh(-/-) embryos, TMJ development was severely compromised. Condylar cartilage growth, polymorphic cell proliferation, and PTHrP expression were all inhibited, and growth plate organization and chondrocyte gene expression patterns were abnormal. These severe defects were partially corrected in double Ihh(-/-)/Gli3(-/-) mutants, signifying that Ihh action is normally modulated and delimited by Gli3 and Gli3(R) in particular. Both single and double mutants, however, failed to form an articular disc primordium, normally appreciable as an independent condensation between condylar apex and neighboring developing temporal bone in wild-type. This failure persisted at later stages, leading to complete absence of a normal functional disc and lubricin-expressing joint cavities. In summary, Ihh is very important for TMJ development, where it appears to regulate growth and elongation events, condylar cartilage phenotype, and chondroprogenitor cell function. Absence of articular disc and joint cavities in single and double mutants points to irreplaceable Ihh roles in formation of those critical TMJ components.
Collapse
Affiliation(s)
- Yoshihiro Shibukawa
- Department of Orthopaedic Surgery, Thomas Jefferson University College of Medicine, Philadelphia, Pennsylvania 19107, USA
| | | | | | | | | | | | | |
Collapse
|
143
|
Meikle MC. Remodeling the dentofacial skeleton: the biological basis of orthodontics and dentofacial orthopedics. J Dent Res 2007; 86:12-24. [PMID: 17189458 DOI: 10.1177/154405910708600103] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Orthodontic tooth movement is dependent upon the remodeling of the periodontal ligament and alveolar bone by mechanical means. Facial sutures are also fibrous articulations, and by remodeling these joints, one can alter the positional relationships of the bones of the facial skeleton. As might be expected from the structure and mobility of the temporomandibular joint (TMJ), this articulation is more resistant to mechanical deformation, and whether functional mandibular displacement can alter the growth of the condyle remains controversial. Clinical investigations of the effects of the Andresen activator and its variants on dentofacial growth suggest that the changes are essentially dento-alveolar. However, with the popularity of active functional appliances, such as the Herbst and twin-block based on 'jumping the bite', attention has focused on how they achieve dentofacial change. Animal experimentation enables informed decisions to be made regarding the effects of orthodontic treatment on the facial skeleton at the tissue, cellular, and molecular levels. Both rat and monkey models have been widely used, and the following conclusions can be drawn from such experimentation: (1) Facial sutures readily respond to changes in their mechanical environment; (2) anterior mandibular displacement in rat models does not increase the mitotic activity of cells within the condyle to be of clinical significance, and (3) mandibular displacement in non-human primates initiates remodeling activity within the TMJ and can alter condylar growth direction. This last conclusion may have clinical utility, particularly in an actively growing child.
Collapse
Affiliation(s)
- M C Meikle
- Department of Oral Sciences, Faculty of Dentistry, University of Otago, PO Box 647, Dunedin, New Zealand.
| |
Collapse
|
144
|
Wadhwa S, Embree M, Ameye L, Young MF. Mice deficient in biglycan and fibromodulin as a model for temporomandibular joint osteoarthritis. Cells Tissues Organs 2006; 181:136-43. [PMID: 16612079 DOI: 10.1159/000091375] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The temporomandibular joint (TMJ) within the craniofacial complex is unique. In humans, the TMJ can become diseased resulting in severe and disabling pain. There are no cures for TMJ disease at this time. Animal models of TMJ disease are scarce, but some exist, and they are described in this paper. We present in greater detail one animal model that is deficient in two extracellular matrix (ECM) proteoglycans, biglycan (BGN) and fibromodulin (FMOD). Doubly deficient BGN/FMOD mice develop premature TMJ osteoarthritis (OA). In order to explore the mechanistic basis of TMJ-OA, tissues from the condyle of mutant mice were examined for their relative capacity to differentiate and undergo apoptosis. Our data show that there is a redistribution of the critical ECM protein, type II collagen, in mutant mice compared with controls. Mutant mice also have increased apoptosis of the chondrocytes embedded in the articular cartilage. We speculate that the overall imbalance in apoptosis may be the cellular basis for the abnormal production of structural ECM proteins. The abnormal production of the ECM could, in turn, lead to premature erosion and degradation of the articular surface resulting in TMJ-OA. These data underscore the importance of the ECM in controlling the structural integrity of the TMJ.
Collapse
Affiliation(s)
- Sunil Wadhwa
- Craniofacial and Skeletal Diseases Branch, National Institutes of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA.
| | | | | | | |
Collapse
|