101
|
Chatzinikolaidou M. Cell spheroids: the new frontiers in in vitro models for cancer drug validation. Drug Discov Today 2016; 21:1553-1560. [DOI: 10.1016/j.drudis.2016.06.024] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 06/17/2016] [Accepted: 06/22/2016] [Indexed: 02/07/2023]
|
102
|
Lee G, Lee J, Oh H, Lee S. Reproducible Construction of Surface Tension-Mediated Honeycomb Concave Microwell Arrays for Engineering of 3D Microtissues with Minimal Cell Loss. PLoS One 2016; 11:e0161026. [PMID: 27513567 PMCID: PMC4981302 DOI: 10.1371/journal.pone.0161026] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 07/28/2016] [Indexed: 01/12/2023] Open
Abstract
The creation of engineered 3D microtissues has attracted prodigious interest because of the fact that this microtissue structure is able to mimic in vivo environments. Such microtissues can be applied extensively in the fields of regenerative medicine and tissue engineering, as well as in drug and toxicity screening. Here, we develop a novel method of fabricating a large number of dense honeycomb concave microwells via surface tension-mediated self-construction. More specifically, in order to control the curvature and shape of the concavity in a precise and reproducible manner, a custom-made jig system was designed and fabricated. By applying a pre-set force using the jig system, the shape of the honeycomb concave well was precisely and uniformly controlled, despite the fact that wells were densely packed. The thin wall between the honeycomb wells enables the minimization of cell loss during the cell-seeding process. To evaluate the performance of the honeycomb microwell array, rat hepatocytes were seeded, and spheroids were successfully formed with uniform shape and size. Liver-specific functions such as albumin secretion and cytochrome P450 were subsequently analyzed. The proposed method of fabricating honeycomb concave wells is cost-effective, simple, and reproducible. The honeycomb well array can produce multiple spheroids with minimal cell loss, and can lead to significant contributions in tissue engineering and organ regeneration.
Collapse
Affiliation(s)
- GeonHui Lee
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Republic of Korea
| | - JaeSeo Lee
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Republic of Korea
| | - HyunJik Oh
- School of Biomedical Engineering, College of Health Science, Korea University, Seoul, Republic of Korea
- MicroFIT R&BD Institute, Dunchon-daero, Jungwon-gu, Gyeonggi-do, Republic of Korea
| | - SangHoon Lee
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Republic of Korea
- School of Biomedical Engineering, College of Health Science, Korea University, Seoul, Republic of Korea
- Department of Bio-convergence Engineering, College of Health Science, Korea University, Seoul, Republic of Korea
| |
Collapse
|
103
|
A high-throughput in vitro ring assay for vasoactivity using magnetic 3D bioprinting. Sci Rep 2016; 6:30640. [PMID: 27477945 PMCID: PMC4967891 DOI: 10.1038/srep30640] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 07/07/2016] [Indexed: 12/14/2022] Open
Abstract
Vasoactive liabilities are typically assayed using wire myography, which is limited by its high cost and low throughput. To meet the demand for higher throughput in vitro alternatives, this study introduces a magnetic 3D bioprinting-based vasoactivity assay. The principle behind this assay is the magnetic printing of vascular smooth muscle cells into 3D rings that functionally represent blood vessel segments, whose contraction can be altered by vasodilators and vasoconstrictors. A cost-effective imaging modality employing a mobile device is used to capture contraction with high throughput. The goal of this study was to validate ring contraction as a measure of vasoactivity, using a small panel of known vasoactive drugs. In vitro responses of the rings matched outcomes predicted by in vivo pharmacology, and were supported by immunohistochemistry. Altogether, this ring assay robustly models vasoactivity, which could meet the need for higher throughput in vitro alternatives.
Collapse
|
104
|
Skardal A, Shupe T, Atala A. Organoid-on-a-chip and body-on-a-chip systems for drug screening and disease modeling. Drug Discov Today 2016; 21:1399-1411. [PMID: 27422270 DOI: 10.1016/j.drudis.2016.07.003] [Citation(s) in RCA: 309] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 06/30/2016] [Accepted: 07/05/2016] [Indexed: 01/09/2023]
Abstract
In recent years, advances in tissue engineering and microfabrication technologies have enabled rapid growth in the areas of in vitro organoid development as well as organoid-on-a-chip platforms. These 3D model systems often are able to mimic human physiology more accurately than traditional 2D cultures and animal models. In this review, we describe the progress that has been made to generate organ-on-a-chip platforms and, more recently, more complex multi-organoid body-on-a-chip platforms and their applications. Importantly, these systems have the potential to dramatically impact biomedical applications in the areas of drug development, drug and toxicology screening, disease modeling, and the emerging area of personalized precision medicine.
Collapse
Affiliation(s)
- Aleksander Skardal
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA; Virginia Tech-Wake Forest University School of Biomedical Engineering and Sciences, Wake Forest Baptist Health, Medical Center Boulevard, Winston-Salem, NC 27157, USA; Department of Cancer Biology, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA.
| | - Thomas Shupe
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA; Virginia Tech-Wake Forest University School of Biomedical Engineering and Sciences, Wake Forest Baptist Health, Medical Center Boulevard, Winston-Salem, NC 27157, USA; Department of Urology, Wake Forest Baptist Medical Center, Medical Center Boulevard, Winston-Salem, NC 27157, USA
| |
Collapse
|
105
|
Mandrycky C, Wang Z, Kim K, Kim DH. 3D bioprinting for engineering complex tissues. Biotechnol Adv 2016; 34:422-434. [PMID: 26724184 PMCID: PMC4879088 DOI: 10.1016/j.biotechadv.2015.12.011] [Citation(s) in RCA: 956] [Impact Index Per Article: 106.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 12/10/2015] [Accepted: 12/22/2015] [Indexed: 02/07/2023]
Abstract
Bioprinting is a 3D fabrication technology used to precisely dispense cell-laden biomaterials for the construction of complex 3D functional living tissues or artificial organs. While still in its early stages, bioprinting strategies have demonstrated their potential use in regenerative medicine to generate a variety of transplantable tissues, including skin, cartilage, and bone. However, current bioprinting approaches still have technical challenges in terms of high-resolution cell deposition, controlled cell distributions, vascularization, and innervation within complex 3D tissues. While no one-size-fits-all approach to bioprinting has emerged, it remains an on-demand, versatile fabrication technique that may address the growing organ shortage as well as provide a high-throughput method for cell patterning at the micrometer scale for broad biomedical engineering applications. In this review, we introduce the basic principles, materials, integration strategies and applications of bioprinting. We also discuss the recent developments, current challenges and future prospects of 3D bioprinting for engineering complex tissues. Combined with recent advances in human pluripotent stem cell technologies, 3D-bioprinted tissue models could serve as an enabling platform for high-throughput predictive drug screening and more effective regenerative therapies.
Collapse
Affiliation(s)
- Christian Mandrycky
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Zongjie Wang
- School of Engineering, The University of British Columbia, Kelowna, BC V1V 1V7, Canada
| | - Keekyoung Kim
- School of Engineering, The University of British Columbia, Kelowna, BC V1V 1V7, Canada.
| | - Deok-Ho Kim
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
106
|
Peng W, Unutmaz D, Ozbolat IT. Bioprinting towards Physiologically Relevant Tissue Models for Pharmaceutics. Trends Biotechnol 2016; 34:722-732. [PMID: 27296078 DOI: 10.1016/j.tibtech.2016.05.013] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 05/18/2016] [Accepted: 05/20/2016] [Indexed: 02/08/2023]
Abstract
Improving the ability to predict the efficacy and toxicity of drug candidates earlier in the drug discovery process will speed up the introduction of new drugs into clinics. 3D in vitro systems have significantly advanced the drug screening process as 3D tissue models can closely mimic native tissues and, in some cases, the physiological response to drugs. Among various in vitro systems, bioprinting is a highly promising technology possessing several advantages such as tailored microarchitecture, high-throughput capability, coculture ability, and low risk of cross-contamination. In this opinion article, we discuss the currently available tissue models in pharmaceutics along with their limitations and highlight the possibilities of bioprinting physiologically relevant tissue models, which hold great potential in drug testing, high-throughput screening, and disease modeling.
Collapse
Affiliation(s)
- Weijie Peng
- Engineering Science and Mechanics, The Pennsylvania State University, State College, PA 16802, USA; Department of Pharmacology, Nanchang University, Nanchang, Jiangxi, China
| | - Derya Unutmaz
- The Jackson Laboratory of Genomics Medicine, Farmington, CT 06032, USA
| | - Ibrahim T Ozbolat
- Engineering Science and Mechanics, The Pennsylvania State University, State College, PA 16802, USA; The Huck Institutes of the Life Sciences, The Pennsylvania State University, State College, PA 16802, USA; Materials Research Institute, The Pennsylvania State University, State College, PA 16802, USA.
| |
Collapse
|
107
|
Smith AST, Davis J, Lee G, Mack DL, Kim DH. Muscular dystrophy in a dish: engineered human skeletal muscle mimetics for disease modeling and drug discovery. Drug Discov Today 2016; 21:1387-1398. [PMID: 27109386 DOI: 10.1016/j.drudis.2016.04.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 03/24/2016] [Accepted: 04/15/2016] [Indexed: 01/16/2023]
Abstract
Engineered in vitro models using human cells, particularly patient-derived induced pluripotent stem cells (iPSCs), offer a potential solution to issues associated with the use of animals for studying disease pathology and drug efficacy. Given the prevalence of muscle diseases in human populations, an engineered tissue model of human skeletal muscle could provide a biologically accurate platform to study basic muscle physiology, disease progression, and drug efficacy and/or toxicity. Such platforms could be used as phenotypic drug screens to identify compounds capable of alleviating or reversing congenital myopathies, such as Duchene muscular dystrophy (DMD). Here, we review current skeletal muscle modeling technologies with a specific focus on efforts to generate biomimetic systems for investigating the pathophysiology of dystrophic muscle.
Collapse
Affiliation(s)
- Alec S T Smith
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Jennifer Davis
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA; Department of Pathology, University of Washington, Seattle, WA 98195, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA
| | - Gabsang Lee
- Institute for Cell Engineering, Department of Neurology, The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - David L Mack
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA; Department of Rehabilitation Medicine, University of Washington, Seattle, WA 98195, USA
| | - Deok-Ho Kim
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA.
| |
Collapse
|
108
|
Ozbolat IT, Peng W, Ozbolat V. Application areas of 3D bioprinting. Drug Discov Today 2016; 21:1257-71. [PMID: 27086009 DOI: 10.1016/j.drudis.2016.04.006] [Citation(s) in RCA: 181] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 03/12/2016] [Accepted: 04/07/2016] [Indexed: 12/11/2022]
Abstract
Three dimensional (3D) bioprinting has been a powerful tool in patterning and precisely placing biologics, including living cells, nucleic acids, drug particles, proteins and growth factors, to recapitulate tissue anatomy, biology and physiology. Since the first time of cytoscribing cells demonstrated in 1986, bioprinting has made a substantial leap forward, particularly in the past 10 years, and it has been widely used in fabrication of living tissues for various application areas. The technology has been recently commercialized by several emerging businesses, and bioprinters and bioprinted tissues have gained significant interest in medicine and pharmaceutics. This Keynote review presents the bioprinting technology and covers a first-time comprehensive overview of its application areas from tissue engineering and regenerative medicine to pharmaceutics and cancer research.
Collapse
Affiliation(s)
- Ibrahim T Ozbolat
- Engineering Science and Mechanics Department, The Pennsylvania State University, State College, PA 16802, USA; The Huck Institutes of the Life Sciences, The Pennsylvania State University, State College, PA 16802, USA.
| | - Weijie Peng
- Engineering Science and Mechanics Department, The Pennsylvania State University, State College, PA 16802, USA; The Huck Institutes of the Life Sciences, The Pennsylvania State University, State College, PA 16802, USA; Department of Pharmacology, Nanchang University, Nanchang, JX 330006, China
| | - Veli Ozbolat
- Mechanical Engineering Department, Ceyhan Engineering Faculty, Cukurova University, 01330 Adana, Turkey
| |
Collapse
|
109
|
Abstract
Biomaterial scaffolds have been a foundational element of the tissue engineering paradigm since the inception of the field. Over the years there has been a progressive move toward the rational design and fabrication of bio-inspired materials that mimic the composition as well as the architecture and 3D structure of tissues. In this review, we chronicle advances in the field that address key challenges in tissue engineering as well as some emerging applications. Specifically, a summary of the materials and chemistries used to engineer bio-inspired 3D matrices that mimic numerous aspects of the extracellular matrix is provided, along with an overview of bioprinting, an additive manufacturing approach, for the fabrication of engineered tissues with precisely controlled 3D structures and architectures. To emphasize the potential clinical impact of the bio-inspired paradigm in biomaterials engineering, some applications of bio-inspired matrices are discussed in the context of translational tissue engineering. However, focus is also given to recent advances in the use of engineered 3D cellular microenvironments for fundamental studies in cell biology, including photoresponsive systems that are shedding new light on how matrix properties influence cell phenotype and function. In an outlook for future work, the need for high-throughput methods both for screening and fabrication is highlighted. Finally, microscale organ-on-a-chip technologies are highlighted as a promising area for future investment in the application of bio-inspired microenvironments.
Collapse
Affiliation(s)
- Chelsea M Magin
- Sharklet Technologies, Inc. Aurora, CO, USA. These authors contributed equally to the preparation of this manuscript
| | | | | |
Collapse
|
110
|
Kumari J, Karande AA, Kumar A. Combined Effect of Cryogel Matrix and Temperature-Reversible Soluble-Insoluble Polymer for the Development of in Vitro Human Liver Tissue. ACS APPLIED MATERIALS & INTERFACES 2016; 8:264-277. [PMID: 26654271 DOI: 10.1021/acsami.5b08607] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Hepatic cell culture on a three-dimensional (3D) matrix or as a hepatosphere appears to be a promising in vitro biomimetic system for liver tissue engineering applications. In this study, we have combined the concept of a 3D scaffold and a spheroid culture to develop an in vitro model to engineer liver tissue for drug screening. We have evaluated the potential of poly(ethylene glycol)-alginate-gelatin (PAG) cryogel matrix for in vitro culture of human liver cell lines. The synthesized cryogel matrix has a flow rate of 7 mL/min and water uptake capacity of 94% that enables easy nutrient transportation in the in vitro cell culture. Young's modulus of 2.4 kPa and viscoelastic property determine the soft and elastic nature of synthesized cryogel. Biocompatibility of PAG cryogel was evaluated through MTT assay of HepG2 and Huh-7 cells on matrices. The proliferation and functionality of the liver cells were enhanced by culturing hepatic cells as spheroids (hepatospheres) on the PAG cryogel using temperature-reversible soluble-insoluble polymer, poly(N-isopropylacrylamide) (PNIPAAm). Pore size of the cryogel above 100 μm modulated spheroid size that can prevent hypoxia condition within the spheroid culture. Both the hepatic cells have shown a significant difference (P < 0.05) in terms of cell number and functionality when cultured with PNIPAAm. After 10 days of culture using 0.05% PNIPAAm, the cell number increased by 11- and 7-fold in case of HepG2 and Huh-7 cells, respectively. Similarly, after 10 days of hepatic spheroids culture on PAG cryogel, the albumin production, urea secretion, and CYP450 activity were significantly higher in case of culture with PNIPAAm. The developed tissue mass on the PAG cryogel in the presence of PNIPAAm possess polarity, which was confirmed using F-actin staining and by presence of intercellular bile canalicular lumen. The developed cryogel matrix supports liver cells proliferation and functionality and therefore can be used for in vitro and in vivo drug testing.
Collapse
Affiliation(s)
- Jyoti Kumari
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur , Kanpur, 208016 UP, India
| | - Anjali A Karande
- Department of Biochemistry, Indian Institute of Sciences , Bangalore 560012, India
| | - Ashok Kumar
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur , Kanpur, 208016 UP, India
| |
Collapse
|
111
|
Jiang K, Dong C, Xu Y, Wang L. Microfluidic-based biomimetic models for life science research. RSC Adv 2016. [DOI: 10.1039/c6ra05691a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The advances in microfluidic technology have recently generated various microfluidic-based biomimetic models as novel 3D models for life science research, offering some great advantages over conventional models.
Collapse
Affiliation(s)
- Keqiu Jiang
- Division of Hepatobiliary and Pancreatic Surgery
- Department of General Surgery
- The Second Affiliated Hospital of Dalian Medical University
- Dalian
- China
| | - Chengyong Dong
- Division of Hepatobiliary and Pancreatic Surgery
- Department of General Surgery
- The Second Affiliated Hospital of Dalian Medical University
- Dalian
- China
| | - Yakun Xu
- Division of Hepatobiliary and Pancreatic Surgery
- Department of General Surgery
- The Second Affiliated Hospital of Dalian Medical University
- Dalian
- China
| | - Liming Wang
- Division of Hepatobiliary and Pancreatic Surgery
- Department of General Surgery
- The Second Affiliated Hospital of Dalian Medical University
- Dalian
- China
| |
Collapse
|
112
|
Huh DD, Kim DH. JALA special issue: microengineered cell- and tissue-based assays for drug screening and toxicology applications. ACTA ACUST UNITED AC 2015; 20:79-81. [PMID: 25795434 DOI: 10.1177/2211068215574458] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Dan Dongeun Huh
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Deok-Ho Kim
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| |
Collapse
|
113
|
Martinez NJ, Titus SA, Wagner AK, Simeonov A. High-throughput fluorescence imaging approaches for drug discovery using in vitro and in vivo three-dimensional models. Expert Opin Drug Discov 2015; 10:1347-61. [PMID: 26394277 DOI: 10.1517/17460441.2015.1091814] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION High-resolution microscopy using fluorescent probes is a powerful tool to investigate individual cell structure and function, cell subpopulations and mechanisms underlying cellular responses to drugs. Additionally, responses to drugs more closely resemble those seen in vivo when cells are physically connected in three-dimensional (3D) systems (either 3D cell cultures or whole organisms), as opposed to traditional monolayer cultures. Combined, the use of imaging-based 3D models in the early stages of drug development has the potential to generate biologically relevant data that will increase the likelihood of success for drug candidates in human studies. AREAS COVERED The authors discuss current methods for the culturing of cells in 3D as well as approaches for the imaging of whole-animal models and 3D cultures that are amenable to high-throughput settings and could be implemented to support drug discovery campaigns. Furthermore, they provide critical considerations when discussing imaging these 3D systems for high-throughput chemical screenings. EXPERT OPINION Despite widespread understanding of the limitations imposed by the two-dimensional versus the 3D cellular paradigm, imaging-based drug screening of 3D cellular models is still limited, with only a few screens found in the literature. Image acquisition in high throughput, accurate interpretation of fluorescent signal, and uptake of staining reagents can be challenging, as the samples are in essence large aggregates of cells. The authors recognize these shortcomings that need to be overcome before the field can accelerate the utilization of these technologies in large-scale chemical screens.
Collapse
Affiliation(s)
- Natalia J Martinez
- a National Institutes of Health, National Center for Advancing Translational Sciences , Rockville, MD 20850, USA
| | - Steven A Titus
- a National Institutes of Health, National Center for Advancing Translational Sciences , Rockville, MD 20850, USA
| | - Amanda K Wagner
- a National Institutes of Health, National Center for Advancing Translational Sciences , Rockville, MD 20850, USA
| | - Anton Simeonov
- a National Institutes of Health, National Center for Advancing Translational Sciences , Rockville, MD 20850, USA
| |
Collapse
|
114
|
Arnette C, Koetsier JL, Hoover P, Getsios S, Green KJ. In Vitro Model of the Epidermis: Connecting Protein Function to 3D Structure. Methods Enzymol 2015; 569:287-308. [PMID: 26778564 DOI: 10.1016/bs.mie.2015.07.015] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Much of our understanding of the biological processes that underlie cellular functions in humans, such as cell-cell communication, intracellular signaling, and transcriptional and posttranscriptional control of gene expression, has been acquired from studying cells in a two-dimensional (2D) tissue culture environment. However, it has become increasingly evident that the 2D environment does not support certain cell functions. The need for more physiologically relevant models prompted the development of three-dimensional (3D) cultures of epithelial, endothelial, and neuronal tissues (Shamir & Ewald, 2014). These models afford investigators with powerful tools to study the contribution of spatial organization, often in the context of relevant extracellular matrix and stromal components, to cellular and tissue homeostasis in normal and disease states.
Collapse
Affiliation(s)
- Christopher Arnette
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Jennifer L Koetsier
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Paul Hoover
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Spiro Getsios
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA; Department of Cell and Molecular Biology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA; Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois, USA
| | - Kathleen J Green
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA; Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA; Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois, USA.
| |
Collapse
|