101
|
Giarrocco F, Averbeck B. Organization of Parieto-Prefrontal and Temporo-Prefrontal Networks in the Macaque. J Neurophysiol 2021; 126:1289-1309. [PMID: 34379536 DOI: 10.1152/jn.00092.2021] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The connectivity among architectonically defined areas of the frontal, parietal, and temporal cortex of the macaque has been extensively mapped through tract tracing methods. To investigate the statistical organization underlying this connectivity, and identify its underlying architecture, we performed a hierarchical cluster analysis on 69 cortical areas based on their anatomically defined inputs. We identified 10 frontal, 4 parietal, and 5 temporal hierarchically related sets of areas (clusters), defined by unique sets of inputs and typically composed of anatomically contiguous areas. Across cortex, clusters that share functional properties were linked by dominant information processing circuits in a topographically organized manner that reflects the organization of the main fiber bundles in the cortex. This led to a dorsal-ventral subdivision of the frontal cortex, where dorsal and ventral clusters showed privileged connectivity with parietal and temporal areas, respectively. Ventrally, temporo-frontal circuits encode information to discriminate objects in the environment, their value, emotional properties, and functions such as memory and spatial navigation. Dorsal parieto-frontal circuits encode information for selecting, generating, and monitoring appropriate actions based on visual-spatial and somatosensory information. This organization may reflect evolutionary antecedents, in which the vertebrate pallium, which is the ancestral cortex, was defined by a ventral and lateral olfactory region and a medial hippocampal region.
Collapse
Affiliation(s)
- Franco Giarrocco
- Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, United States
| | - Bruno Averbeck
- Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, United States
| |
Collapse
|
102
|
Franco LM, Goard MJ. A distributed circuit for associating environmental context with motor choice in retrosplenial cortex. SCIENCE ADVANCES 2021; 7:eabf9815. [PMID: 34433557 PMCID: PMC8386923 DOI: 10.1126/sciadv.abf9815] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 07/02/2021] [Indexed: 05/03/2023]
Abstract
During navigation, animals often use recognition of familiar environmental contexts to guide motor action selection. The retrosplenial cortex (RSC) receives inputs from both visual cortex and subcortical regions required for spatial memory and projects to motor planning regions. However, it is not known whether RSC is important for associating familiar environmental contexts with specific motor actions. We test this possibility by developing a task in which motor trajectories are chosen based on the context. We find that mice exhibit differential predecision activity in RSC and that optogenetic suppression of RSC activity impairs task performance. Individual RSC neurons encode a range of task variables, often multiplexed with distinct temporal profiles. However, the responses are spatiotemporally organized, with task variables represented along a posterior-to-anterior gradient along RSC during the behavioral performance, consistent with histological characterization. These results reveal an anatomically organized retrosplenial cortical circuit for associating environmental contexts with appropriate motor outputs.
Collapse
Affiliation(s)
- Luis M Franco
- Neuroscience Research Institute, University of California, Santa Barbara, CA 93106, USA
| | - Michael J Goard
- Neuroscience Research Institute, University of California, Santa Barbara, CA 93106, USA.
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA 93106, USA
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, CA 93106, USA
| |
Collapse
|
103
|
Perry BAL, Lomi E, Mitchell AS. Thalamocortical interactions in cognition and disease: the mediodorsal and anterior thalamic nuclei. Neurosci Biobehav Rev 2021; 130:162-177. [PMID: 34216651 DOI: 10.1016/j.neubiorev.2021.05.032] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 04/12/2021] [Accepted: 05/17/2021] [Indexed: 01/15/2023]
Abstract
The mediodorsal thalamus (MD) and anterior thalamic nuclei (ATN) are two adjacent brain nodes that support our ability to make decisions, learn, update information, form and retrieve memories, and find our way around. The MD and PFC work in partnerships to support cognitive processes linked to successful learning and decision-making, while the ATN and extended hippocampal system together coordinate the encoding and retrieval of memories and successful spatial navigation. Yet, while these distinctions may appear to be segregated, both the MD and ATN together support our higher cognitive functions as they regulate and are influenced by interconnected fronto-temporal neural networks and subcortical inputs. Our review focuses on recent studies in animal models and in humans. This evidence is re-shaping our understanding of the importance of MD and ATN cortico-thalamocortical pathways in influencing complex cognitive functions. Given the evidence from clinical settings and neuroscience research labs, the MD and ATN should be considered targets for effective treatments in neuropsychiatric diseases and disorders and neurodegeneration.
Collapse
Affiliation(s)
- Brook A L Perry
- Department of Experimental Psychology, Oxford University, The Tinsley Building, Mansfield Road, OX1 3SR, United Kingdom
| | - Eleonora Lomi
- Department of Experimental Psychology, Oxford University, The Tinsley Building, Mansfield Road, OX1 3SR, United Kingdom
| | - Anna S Mitchell
- Department of Experimental Psychology, Oxford University, The Tinsley Building, Mansfield Road, OX1 3SR, United Kingdom.
| |
Collapse
|
104
|
Meenakshi P, Kumar S, Balaji J. In vivo imaging of immediate early gene expression dynamics segregates neuronal ensemble of memories of dual events. Mol Brain 2021; 14:102. [PMID: 34187543 PMCID: PMC8243579 DOI: 10.1186/s13041-021-00798-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 05/27/2021] [Indexed: 11/10/2022] Open
Abstract
Identification of neurons undergoing plasticity in response to external stimuli is one of the pertinent problems in neuroscience. Immediate early genes (IEGs) are widely used as a marker for neuronal plasticity. Here, we model the dynamics of IEG expression as a consecutive, irreversible first-order reaction with a limiting substrate. First, we develop an analytical framework to show that such a model, together with two-photon in vivo imaging of IEG expression, can be used to identify distinct neuronal subsets representing multiple memories. Using the above combination, we show that the expression kinetics, rather than intensity threshold, can be used to identify neuronal ensembles responding to the presentation of two events in vivo. The analytical expression allowed us to segregate the neurons based on their temporal response to one specific behavioural event, thereby improving the ability to detect plasticity related neurons. We image the retrosplenial cortex (RSc) of cfos-GFP transgenic mice to follow the dynamics of cellular changes resulting from contextual fear conditioning behaviour, enabling us to establish a representation of context in RSc at the cellular scale following memory acquisition. Thus, we obtain a general method that distinguishes neurons that took part in multiple temporally separated events by measuring fluorescence of individual neurons in live mice.
Collapse
Affiliation(s)
- P Meenakshi
- Centre for Neurosciences, Indian Institute of Science, Bangalore, 560012, India
| | - S Kumar
- Centre for Neurosciences, Indian Institute of Science, Bangalore, 560012, India
| | - J Balaji
- Centre for Neurosciences, Indian Institute of Science, Bangalore, 560012, India.
| |
Collapse
|
105
|
Amelianchik A, Merkel J, Palanisamy P, Kaneki S, Hyatt E, Norris EH. The protective effect of early dietary fat consumption on Alzheimer's disease-related pathology and cognitive function in mice. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2021; 7:e12173. [PMID: 34084889 PMCID: PMC8144936 DOI: 10.1002/trc2.12173] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 03/24/2021] [Accepted: 04/05/2021] [Indexed: 11/12/2022]
Abstract
INTRODUCTION It has been suggested that obesity may influence Alzheimer's disease (AD) pathogenesis, yet the numerous publications on this topic have inconsistent results and conclusions. METHODS Our study examined the effect of varying the timing of high-fat diet (HFD) consumption on AD-related pathology and cognition in transgenic Tg6799 AD mice. RESULTS HFD feeding starting at or before 3 months of age, prior to severe AD pathology, had protective effects in AD mice: reduced extracellular amyloid beta (Aβ) deposition, decreased fibrinogen extravasation into the brain parenchyma, and improved cognitive function. However, delaying HFD consumption until 6 months of age, when AD pathology is ubiquitous, reduced these protective effects in AD mice. DISCUSSION Overall, we demonstrate that the timeline of HFD consumption may play an important role in how dietary fats affect AD pathogenesis and cognitive function.
Collapse
Affiliation(s)
- Anna Amelianchik
- Patricia and John Rosenwald Laboratory of Neurobiology and GeneticsThe Rockefeller UniversityNew YorkUSA
| | - Jonathan Merkel
- Patricia and John Rosenwald Laboratory of Neurobiology and GeneticsThe Rockefeller UniversityNew YorkUSA
- Paul Flechsig Institute of Brain ResearchLeipzig UniversityLeipzigGermany
| | - Premkumar Palanisamy
- Patricia and John Rosenwald Laboratory of Neurobiology and GeneticsThe Rockefeller UniversityNew YorkUSA
| | - Shigeru Kaneki
- Patricia and John Rosenwald Laboratory of Neurobiology and GeneticsThe Rockefeller UniversityNew YorkUSA
| | - Emily Hyatt
- Patricia and John Rosenwald Laboratory of Neurobiology and GeneticsThe Rockefeller UniversityNew YorkUSA
| | - Erin H. Norris
- Patricia and John Rosenwald Laboratory of Neurobiology and GeneticsThe Rockefeller UniversityNew YorkUSA
| |
Collapse
|
106
|
A Thalamic Reticular Circuit for Head Direction Cell Tuning and Spatial Navigation. Cell Rep 2021; 31:107747. [PMID: 32521272 DOI: 10.1016/j.celrep.2020.107747] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 02/13/2020] [Accepted: 05/18/2020] [Indexed: 01/13/2023] Open
Abstract
As we navigate in space, external landmarks and internal information guide our movement. Circuit and synaptic mechanisms that integrate these cues with head-direction (HD) signals remain, however, unclear. We identify an excitatory synaptic projection from the presubiculum (PreS) and the multisensory-associative retrosplenial cortex (RSC) to the anterodorsal thalamic reticular nucleus (TRN), so far classically implied in gating sensory information flow. In vitro, projections to TRN involve AMPA/NMDA-type glutamate receptors that initiate TRN cell burst discharge and feedforward inhibition of anterior thalamic nuclei. In vivo, chemogenetic anterodorsal TRN inhibition modulates PreS/RSC-induced anterior thalamic firing dynamics, broadens the tuning of thalamic HD cells, and leads to preferential use of allo- over egocentric search strategies in the Morris water maze. TRN-dependent thalamic inhibition is thus an integral part of limbic navigational circuits wherein it coordinates external sensory and internal HD signals to regulate the choice of search strategies during spatial navigation.
Collapse
|
107
|
Fournier DI, Cheng HY, Robinson S, Todd TP. Cortical Contributions to Higher-Order Conditioning: A Review of Retrosplenial Cortex Function. Front Behav Neurosci 2021; 15:682426. [PMID: 34093148 PMCID: PMC8170078 DOI: 10.3389/fnbeh.2021.682426] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 04/20/2021] [Indexed: 12/18/2022] Open
Abstract
In higher-order conditioning paradigms, such as sensory preconditioning or second-order conditioning, discrete (e.g., phasic) or contextual (e.g., static) stimuli can gain the ability to elicit learned responses despite never being directly paired with reinforcement. The purpose of this mini-review is to examine the neuroanatomical basis of high-order conditioning, by selectively reviewing research that has examined the role of the retrosplenial cortex (RSC) in sensory preconditioning and second-order conditioning. For both forms of higher-order conditioning, we first discuss the types of associations that may occur and then review findings from RSC lesion/inactivation experiments. These experiments demonstrate a role for the RSC in sensory preconditioning, suggesting that this cortical region might contribute to higher-order conditioning via the encoding of neutral stimulus-stimulus associations. In addition, we address knowledge gaps, avenues for future research, and consider the contribution of the RSC to higher-order conditioning in relation to related brain structures.
Collapse
Affiliation(s)
- Danielle I. Fournier
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, United States
| | - Han Yin Cheng
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, United States
| | - Siobhan Robinson
- Program in Neuroscience, Psychology Department, Hamilton College, Clinton, NY, United States
| | - Travis P. Todd
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, United States
| |
Collapse
|
108
|
Monko ME, Heilbronner SR. Retrosplenial Cortical Connectivity with Frontal Basal Ganglia Networks. J Cogn Neurosci 2021; 33:1096-1105. [PMID: 34428786 PMCID: PMC8428783 DOI: 10.1162/jocn_a_01699] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Previous studies of the retrosplenial cortex (RSC) have focused on its role in navigation and memory, consistent with its well-established medial temporal connections, but recent evidence also suggests a role for this region in reward and decision making. Because function is determined largely by anatomical connections, and to better understand the anatomy of RSC, we used tract-tracing methods to examine the anatomical connectivity between the rat RSC and frontostriatal networks (canonical reward and decision-making circuits). We find that, among frontal cortical regions, RSC bidirectionally connects most strongly with the anterior cingulate cortex, but also with an area of the central-medial orbito-frontal cortex. RSC projects to the dorsomedial striatum, and its terminal fields are virtually encompassed by the frontal-striatal projection zone, suggestive of functional convergence through the basal ganglia. This overlap is driven by anterior cingulate cortex, prelimbic cortex, and orbito-frontal cortex, all of which contribute to goal-directed decision making, suggesting that the RSC is involved in similar processes.
Collapse
Affiliation(s)
- Megan E. Monko
- Department of Neuroscience, University of Minnesota, Minneapolis, MN USA 55455
| | | |
Collapse
|
109
|
Liu B, Tian Q, Gu Y. Robust vestibular self-motion signals in macaque posterior cingulate region. eLife 2021; 10:e64569. [PMID: 33827753 PMCID: PMC8032402 DOI: 10.7554/elife.64569] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 03/29/2021] [Indexed: 11/13/2022] Open
Abstract
Self-motion signals, distributed ubiquitously across parietal-temporal lobes, propagate to limbic hippocampal system for vector-based navigation via hubs including posterior cingulate cortex (PCC) and retrosplenial cortex (RSC). Although numerous studies have indicated posterior cingulate areas are involved in spatial tasks, it is unclear how their neurons represent self-motion signals. Providing translation and rotation stimuli to macaques on a 6-degree-of-freedom motion platform, we discovered robust vestibular responses in PCC. A combined three-dimensional spatiotemporal model captured data well and revealed multiple temporal components including velocity, acceleration, jerk, and position. Compared to PCC, RSC contained moderate vestibular temporal modulations and lacked significant spatial tuning. Visual self-motion signals were much weaker in both regions compared to the vestibular signals. We conclude that macaque posterior cingulate region carries vestibular-dominant self-motion signals with plentiful temporal components that could be useful for path integration.
Collapse
Affiliation(s)
- Bingyu Liu
- CAS Center for Excellence in Brain Science and Intelligence Technology, Key Laboratory of Primate Neurobiology, Institute of Neuroscience, Chinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Qingyang Tian
- CAS Center for Excellence in Brain Science and Intelligence Technology, Key Laboratory of Primate Neurobiology, Institute of Neuroscience, Chinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yong Gu
- CAS Center for Excellence in Brain Science and Intelligence Technology, Key Laboratory of Primate Neurobiology, Institute of Neuroscience, Chinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
110
|
Delaux A, de Saint Aubert JB, Ramanoël S, Bécu M, Gehrke L, Klug M, Chavarriaga R, Sahel JA, Gramann K, Arleo A. Mobile brain/body imaging of landmark-based navigation with high-density EEG. Eur J Neurosci 2021; 54:8256-8282. [PMID: 33738880 PMCID: PMC9291975 DOI: 10.1111/ejn.15190] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 03/05/2021] [Accepted: 03/14/2021] [Indexed: 01/07/2023]
Abstract
Coupling behavioral measures and brain imaging in naturalistic, ecological conditions is key to comprehend the neural bases of spatial navigation. This highly integrative function encompasses sensorimotor, cognitive, and executive processes that jointly mediate active exploration and spatial learning. However, most neuroimaging approaches in humans are based on static, motion‐constrained paradigms and they do not account for all these processes, in particular multisensory integration. Following the Mobile Brain/Body Imaging approach, we aimed to explore the cortical correlates of landmark‐based navigation in actively behaving young adults, solving a Y‐maze task in immersive virtual reality. EEG analysis identified a set of brain areas matching state‐of‐the‐art brain imaging literature of landmark‐based navigation. Spatial behavior in mobile conditions additionally involved sensorimotor areas related to motor execution and proprioception usually overlooked in static fMRI paradigms. Expectedly, we located a cortical source in or near the posterior cingulate, in line with the engagement of the retrosplenial complex in spatial reorientation. Consistent with its role in visuo‐spatial processing and coding, we observed an alpha‐power desynchronization while participants gathered visual information. We also hypothesized behavior‐dependent modulations of the cortical signal during navigation. Despite finding few differences between the encoding and retrieval phases of the task, we identified transient time–frequency patterns attributed, for instance, to attentional demand, as reflected in the alpha/gamma range, or memory workload in the delta/theta range. We confirmed that combining mobile high‐density EEG and biometric measures can help unravel the brain structures and the neural modulations subtending ecological landmark‐based navigation.
Collapse
Affiliation(s)
- Alexandre Delaux
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | | | - Stephen Ramanoël
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Marcia Bécu
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Lukas Gehrke
- Institute of Psychology and Ergonomics, Technische Universität Berlin, Berlin, Germany
| | - Marius Klug
- Institute of Psychology and Ergonomics, Technische Universität Berlin, Berlin, Germany
| | - Ricardo Chavarriaga
- Center for Neuroprosthetics, Ecole Polytechnique Fédérale de Lausanne, Geneva, Switzerland.,Zurich University of Applied Sciences, ZHAW Datalab, Winterthur, Switzerland
| | - José-Alain Sahel
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France.,CHNO des Quinze-Vingts, INSERM-DGOS CIC 1423, Paris, France.,Fondation Ophtalmologique Rothschild, Paris, France.,Department of Ophthalmology, The University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Klaus Gramann
- Institute of Psychology and Ergonomics, Technische Universität Berlin, Berlin, Germany
| | - Angelo Arleo
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| |
Collapse
|
111
|
Liu Y, Fu H, Wu Y, Nie B, Liu F, Wang T, Xiao W, Yang S, Kan M, Fan L. Elamipretide (SS-31) Improves Functional Connectivity in Hippocampus and Other Related Regions Following Prolonged Neuroinflammation Induced by Lipopolysaccharide in Aged Rats. Front Aging Neurosci 2021; 13:600484. [PMID: 33732135 PMCID: PMC7956963 DOI: 10.3389/fnagi.2021.600484] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 02/01/2021] [Indexed: 12/11/2022] Open
Abstract
Neuroinflammation has been recognized as a major cause for neurocognitive diseases. Although the hippocampus has been considered an important region for cognitive dysfunction, the influence of hippocampal neuroinflammation on brain functional connectivity (FC) has been rarely studied. In this study, lipopolysaccharide (LPS) was used to induce systemic inflammation and neuroinflammation in the aged rat brain, while elamipretide (SS-31) was used for treatment. Systemic and hippocampal inflammation were determined using ELISA, while astrocyte responses during hippocampal neuroinflammation were determined by interleukin 1 beta (IL-1β)/tumor necrosis factor alpha (TNFα) double staining immunofluorescence. Oxidative stress was determined by reactive oxidative species (ROS), electron transport chain (ETC) complex, and superoxide dismutase (SOD). Short- (<7 days) and long-term (>30 days) learning and spatial working memory were tested by the Morris water maze (MWM). Resting-state functional magnetic resonance imaging (rs-fMRI) was used to analyze the brain FC by placing seed voxels on the left and right hippocampus. Compared with the vehicle group, rats with the LPS exposure showed an impaired MWM performance, higher oxidative stress, higher levels of inflammatory cytokines, and astrocyte activation in the hippocampus. The neuroimaging examination showed decreased FC on the right orbital cortex, right olfactory bulb, and left hippocampus on day 3, 7, and 31, respectively, after treatment. In contrast, rats with SS-31 treatment showed lower levels of inflammatory cytokines, less astrocyte activation in the hippocampus, and improved MWM performance. Neuroimaging examination showed increased FC on the left-parietal association cortex (L-PAC), left sensory cortex, and left motor cortex on day 7 with the right flocculonodular lobe on day 31 as compared with those without SS-31 treatment. Our study demonstrated that inhibiting neuroinflammation in the hippocampus not only reduces inflammatory responses in the hippocampus but also improves the brain FC in regions related to the hippocampus. Furthermore, early anti-inflammatory treatment with SS-31 has a long-lasting effect on reducing the impact of LPS-induced neuroinflammation.
Collapse
Affiliation(s)
- Yang Liu
- Department of Anesthesiology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Huiqun Fu
- Department of Anesthesiology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yan Wu
- Department of Anatomy, Capital Medical University, Beijing, China
| | - Binbin Nie
- Institue of High Energy Physics, Chinese Academy of Sciences, Beijing, China
| | - Fangyan Liu
- Department of Anesthesiology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Tianlong Wang
- Department of Anesthesiology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Wei Xiao
- Department of Anesthesiology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Shuyi Yang
- Department of Anesthesiology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Minhui Kan
- Department of Anesthesiology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Long Fan
- Department of Anesthesiology, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
112
|
Chen Y, Wang J, Cui C, Su Y, Jing D, Wu L, Liang P, Liang Z. Evaluating the association between brain atrophy, hypometabolism, and cognitive decline in Alzheimer's disease: a PET/MRI study. Aging (Albany NY) 2021; 13:7228-7246. [PMID: 33640881 PMCID: PMC7993730 DOI: 10.18632/aging.202580] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 01/14/2021] [Indexed: 11/25/2022]
Abstract
Glucose metabolism reduction and brain volume losses are widely reported in Alzheimer’s disease (AD). Considering that neuroimaging changes in the hippocampus and default mode network (DMN) are promising important candidate biomarkers and have been included in the research criteria for the diagnosis of AD, it is hypothesized that atrophy and metabolic changes of the abovementioned regions could be evaluated concurrently to fully explore the neural mechanisms underlying cognitive impairment in AD. Twenty-three AD patients and Twenty-four age-, sex- and education level-matched normal controls underwent a clinical interview, a detailed neuropsychological assessment and a simultaneous 18F-fluoro-2-deoxy-D-glucose positron emission tomography (18F-FDG PET)/high-resolution T1-weighted magnetic resonance imaging (MRI) scan on a hybrid GE SIGNA PET/MR scanner. Brain volume and glucose metabolism were examined in patients and controls to reveal group differences. Multiple linear regression models were employed to explore the relationship between multiple imaging features and cognitive performance in AD. The AD group had significantly reduced volume in the hippocampus and DMN regions (P < 0.001) relative to that of normal controls determined by using ROI analysis. Compared to normal controls, significantly decreased metabolism in the DMN (P < 0.001) was also found in AD patients, which still survived after controlling for gray matter atrophy (P < 0.001). These findings from ROI analysis were further confirmed by whole-brain confirmatory analysis (P < 0.001, FWE-corrected). Finally, multiple linear regression results showed that impairment of multiple cognitive tasks was significantly correlated with the combination of DMN hypometabolism and atrophy in the hippocampus and DMN regions. This study demonstrated that combining functional and structural features can better explain the cognitive decline of AD patients than unimodal FDG or brain volume changes alone. These findings may have important implications for understanding the neural mechanisms of cognitive decline in AD.
Collapse
Affiliation(s)
- Yifan Chen
- Department of Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Junkai Wang
- Department of Psychology, Tsinghua University, Beijing, China.,School of Psychology, Capital Normal University, Beijing, China.,Beijing Key Laboratory of Learning and Cognition, Beijing, China
| | - Chunlei Cui
- Department of Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yusheng Su
- Department of Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Donglai Jing
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - LiYong Wu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Peipeng Liang
- School of Psychology, Capital Normal University, Beijing, China.,Beijing Key Laboratory of Learning and Cognition, Beijing, China
| | - Zhigang Liang
- Department of Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
113
|
Gehrke L, Gramann K. Single-trial regression of spatial exploration behavior indicates posterior EEG alpha modulation to reflect egocentric coding. Eur J Neurosci 2021; 54:8318-8335. [PMID: 33609299 DOI: 10.1111/ejn.15152] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 12/24/2020] [Accepted: 02/17/2021] [Indexed: 12/29/2022]
Abstract
Learning to navigate uncharted terrain is a key cognitive ability that emerges as a deeply embodied process, with eye movements and locomotion proving most useful to sample the environment. We studied healthy human participants during active spatial learning of room-scale virtual reality (VR) mazes. In the invisible maze task, participants wearing a wireless electroencephalography (EEG) headset were free to explore their surroundings, only given the objective to build and foster a mental spatial representation of their environment. Spatial uncertainty was resolved by touching otherwise invisible walls that were briefly rendered visible inside VR, similar to finding your way in the dark. We showcase the capabilities of mobile brain/body imaging using VR, demonstrating several analysis approaches based on general linear models (GLMs) to reveal behavior-dependent brain dynamics. Confirming spatial learning via drawn sketch maps, we employed motion capture to image spatial exploration behavior describing a shift from initial exploration to subsequent exploitation of the mental representation. Using independent component analysis, the current work specifically targeted oscillations in response to wall touches reflecting isolated spatial learning events arising in deep posterior EEG sources located in the retrosplenial complex. Single-trial regression identified significant modulation of alpha oscillations by the immediate, egocentric, exploration behavior. When encountering novel walls, as well as with increasing walking distance between subsequent touches when encountering novel walls, alpha power decreased. We conclude that these oscillations play a prominent role during egocentric evidencing of allocentric spatial hypotheses.
Collapse
Affiliation(s)
- Lukas Gehrke
- Biopsychology and Neuroergonomics, Institute of Psychology and Ergonomics, Berlin, Germany
| | - Klaus Gramann
- Biopsychology and Neuroergonomics, Institute of Psychology and Ergonomics, Berlin, Germany.,Center for Advanced Neurological Engineering, University of California San Diego, San Diego, CA, USA.,School of Computer Science, University of Technology Sydney, Sydney, NSW, Australia
| |
Collapse
|
114
|
Neuroprotective Effects of ZiBuPiYin Recipe on db/db Mice via PI3K-Akt Signaling Pathway by Activating Grb2. Neural Plast 2021; 2021:8825698. [PMID: 33603781 PMCID: PMC7868140 DOI: 10.1155/2021/8825698] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 12/26/2020] [Accepted: 01/08/2021] [Indexed: 01/12/2023] Open
Abstract
Background Diabetes-associated cognitive decline (DACD) is one of the nervous system dysfunctions induced by diabetes mellitus with cognitive impairment as the major symptom. In a previous preliminary proteomic study, we found that endoplasmic reticulum processing and PI3K-Akt signaling pathway might be impaired in DACD pathogenesis. In addition, growth factor receptor-bound protein 2 might be a crucial protein as a molecular target of the neuroprotective effects of ZiBuPiYin recipe (ZBPYR). Methods In this study, 6-8 weeks aged db/db mice were treated with excipients or ZBPYR for 6 weeks. Body weight and RBG were recorded weekly. Oral glucose tolerance and insulin tolerance tests were used to assess insulin sensitivity. Morris water maze (MWM) tests were used to assess memory function. The expression of Grb2, Gab2, Akt, and GSK3β in mouse hippocampus and cerebral cortex were analyzed by Western blotting. Results ZBPYR not only significantly reduced RGB and improved glucose tolerance and insulin resistance, but also improved spatial cognition in DACD mice. The expression of Grb2 and Gab2 in hippocampus and cerebral cortex of db/db mice was upregulated after treated with ZBPYR, and then affected the PI3K/Akt signaling pathway, and inhibited GSK3β overactivity. Conclusions This study showed that ZBPYR could enhance the memory and learning ability of db/db mice. Such neuroprotective effect might be related to the activation of Grb2-PI3K/Akt signaling which might provide a novel therapeutic target for the clinical treatment of DACD.
Collapse
|
115
|
Chen Q, Qing Z, Jin J, Sun Y, Chen W, Lu J, Lv P, Liu J, Li X, Wang J, Zhang W, Wu S, Yan X, Nedelska Z, Hort J, Zhang X, Zhang B. Ego- and allo-network disconnection underlying spatial disorientation in subjective cognitive decline. Cortex 2021; 137:35-48. [PMID: 33588131 DOI: 10.1016/j.cortex.2020.12.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 10/27/2020] [Accepted: 12/18/2020] [Indexed: 11/24/2022]
Abstract
Patients with Alzheimer's disease (AD) related dementia and mild cognitive impairment experience difficulties with spatial navigation (SN). However, SN has rarely been investigated in individuals with subjective cognitive decline (SCD), a preclinical stage with elevated progression rate to symptomatic AD. In this study, 30 SCD subjects and 30 controls underwent cognitive scale (CS) evaluation, a 2D computerized SN test, and resting-state functional magnetic resonance imaging scanning. Two SN brain networks (ego-network and allo-network), each with 10 selected spherical regions, were defined. We calculated the average network functional connectivity (FC) and region-to-region FC within the two networks and evaluated correlations with SN performance. Compared with the controls, the SCD group performed worse in the SN test and showed decreased FC between the right retrosplenial and right prefrontal cortices in the ego-network, and between the right retrosplenial cortex and right hippocampus in the allo-network. The logistic regression model based on SN and FC measures revealed a high area under the curve of .880 in differentiating SCD individuals from controls. These results suggest that SN network disconnection contributes to spatial deficits in SCD, and SN and FC measures could benefit the preclinical detection of subjects with incipient AD dementia.
Collapse
Affiliation(s)
- Qian Chen
- Department of Radiology, Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing 210008, China
| | - Zhao Qing
- Department of Radiology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, 210008, China; Institute of Brain Science, Nanjing University, Nanjing, 210008, China
| | - Jiaxuan Jin
- Department of Radiology, Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing 210008, China
| | - Yi Sun
- Department of Radiology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, 210008, China
| | - Wenqian Chen
- Department of Radiology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, 210008, China
| | - Jiaming Lu
- Department of Radiology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, 210008, China
| | - Pin Lv
- Department of Radiology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, 210008, China
| | - Jiani Liu
- Department of Radiology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, 210008, China
| | - Xin Li
- Department of Radiology, Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing 210008, China
| | - Junxia Wang
- Department of Radiology, Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing 210008, China
| | - Wen Zhang
- Department of Radiology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, 210008, China
| | - Sichu Wu
- Department of Radiology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, 210008, China
| | - Xian Yan
- Department of Radiology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, 210008, China
| | - Zuzana Nedelska
- Memory Clinic, Department of Neurology, 2nd Faculty of Medicine, Charles University, University Hospital Motol, Prague, Czech Republic; International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic
| | - Jakub Hort
- Memory Clinic, Department of Neurology, 2nd Faculty of Medicine, Charles University, University Hospital Motol, Prague, Czech Republic; International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic
| | - Xin Zhang
- Department of Radiology, Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing 210008, China; Department of Radiology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, 210008, China.
| | - Bing Zhang
- Department of Radiology, Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing 210008, China; Department of Radiology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, 210008, China; Institute of Brain Science, Nanjing University, Nanjing, 210008, China.
| |
Collapse
|
116
|
Enhancement of parvalbumin interneuron-mediated neurotransmission in the retrosplenial cortex of adolescent mice following third trimester-equivalent ethanol exposure. Sci Rep 2021; 11:1716. [PMID: 33462326 PMCID: PMC7814038 DOI: 10.1038/s41598-021-81173-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 01/04/2021] [Indexed: 12/12/2022] Open
Abstract
Prenatal ethanol exposure causes a variety of cognitive deficits that have a persistent impact on quality of life, some of which may be explained by ethanol-induced alterations in interneuron function. Studies from several laboratories, including our own, have demonstrated that a single binge-like ethanol exposure during the equivalent to the third trimester of human pregnancy leads to acute apoptosis and long-term loss of interneurons in the rodent retrosplenial cortex (RSC). The RSC is interconnected with the hippocampus, thalamus, and other neocortical regions and plays distinct roles in visuospatial processing and storage, as well as retrieval of hippocampal-dependent episodic memories. Here we used slice electrophysiology to characterize the acute effects of ethanol on GABAergic neurotransmission in the RSC of neonatal mice, as well as the long-term effects of neonatal ethanol exposure on parvalbumin-interneuron mediated neurotransmission in adolescent mice. Mice were exposed to ethanol using vapor inhalation chambers. In postnatal day (P) 7 mouse pups, ethanol unexpectedly failed to potentiate GABAA receptor-mediated synaptic transmission. Binge-like ethanol exposure of P7 mice expressing channel rhodopsin in parvalbumin-positive interneurons enhanced the peak amplitudes, asynchronous activity and total charge, while decreasing the rise-times of optically-evoked GABAA receptor-mediated inhibitory postsynaptic currents in adolescent animals. These effects could partially explain the learning and memory deficits that have been documented in adolescent and young adult mice exposed to ethanol during the third trimester-equivalent developmental period.
Collapse
|
117
|
Genzel D, Yartsev MM. The fully automated bat (FAB) flight room: A human-free environment for studying navigation in flying bats and its initial application to the retrosplenial cortex. J Neurosci Methods 2021; 348:108970. [PMID: 33065152 PMCID: PMC8857751 DOI: 10.1016/j.jneumeth.2020.108970] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/23/2020] [Accepted: 10/07/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND Bats can offer important insight into the neural computations underlying complex forms of navigation. Up to now, this had been done with the confound of the human experimenter being present in the same environment the bat was navigating in. NEW METHOD We, therefore, developed a novel behavioral setup, the fully automated bat (FAB) flight room, to obtain a detailed and quantitative understanding of bat navigation flight behavior while studying its relevant neural circuits, but importantly without human intervention. As a demonstration of the FAB flight room utility we trained bats on a four-target, visually-guided, foraging task and recorded neural activity from the retrosplenial cortex (RSC). RESULTS We find that bats can be efficiently trained and engaged in complex, multi-target, visuospatial behavior in the FAB flight room. Wireless neural recordings from the bat RSC during the task confirm the multiplexed characteristics of single RSC neurons encoding spatial positional information, target selection, reward obtainment and the intensity of visual cues used to guide navigation. COMPARISON WITH EXISTING METHODS In contrast to the methods introduced in previous studies, we now can investigate spatial navigation in bats without potential experimental biases that can be easily introduced by active physical involvement and presence of experimenters in the room. CONCLUSIONS Combined, we describe a novel experimental approach for studying spatial navigation in freely flying bats and provide support for the involvement of bat RSC in aerial visuospatial foraging behavior.
Collapse
Affiliation(s)
- Daria Genzel
- Helen Wills Neuroscience Institute, UC Berkeley, Berkeley, 94720, United States; Department of Bioengineering, UC Berkeley, Berkeley, 94720, United States
| | - Michael M Yartsev
- Helen Wills Neuroscience Institute, UC Berkeley, Berkeley, 94720, United States; Department of Bioengineering, UC Berkeley, Berkeley, 94720, United States.
| |
Collapse
|
118
|
Yoshida M, Chinzorig C, Matsumoto J, Nishimaru H, Ono T, Yamazaki M, Nishijo H. Configural Cues Associated with Reward Elicit Theta Oscillations of Rat Retrosplenial Cortical Neurons Phase-Locked to LFP Theta Cycles. Cereb Cortex 2021; 31:2729-2741. [PMID: 33415336 DOI: 10.1093/cercor/bhaa395] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Previous behavioral studies implicated the retrosplenial cortex (RSC) in stimulus-stimulus associations, and also in the retrieval of remote associative memory based on EEG theta oscillations. However, neural mechanisms involved in the retrieval of stored information of such associations and memory in the RSC remain unclear. To investigate the neural mechanisms underlying these processes, RSC neurons and local field potentials (LFPs) were simultaneously recorded from well-trained rats performing a cue-reward association task. In the task, simultaneous presentation of two multimodal conditioned stimuli (configural CSs) predicted a reward outcome opposite to that associated with the individual presentation of each elemental CS. Here, we show neurophysiological evidence that the RSC is involved in stimulus-stimulus association where configural CSs are discriminated from each elementary CS that is a constituent of the configural CSs, and that memory retrieval of rewarding CSs is associated with theta oscillation of RSC neurons during CS presentation, which is phase-locked to LFP theta cycles. The results suggest that cue (elementary and configural CSs)-reinforcement associations are stored in the RSC neural circuits, and are retrieved in synchronization with LFP theta rhythm.
Collapse
Affiliation(s)
- Masashi Yoshida
- Department of Anesthesiology, Faculty of Medicine, University of Toyama, Toyama 930-0194, Japan
| | - Choijiljav Chinzorig
- Department of System Emotional Science, Faculty of Medicine, University of Toyama, Toyama 930-0194, Japan.,Department of Physiology, School of Bio-medicine, Mongolian National University of Medical Sciences, Ulaanbaatar 14210, Mongolia
| | - Jumpei Matsumoto
- Department of System Emotional Science, Faculty of Medicine, University of Toyama, Toyama 930-0194, Japan
| | - Hiroshi Nishimaru
- Department of System Emotional Science, Faculty of Medicine, University of Toyama, Toyama 930-0194, Japan.,Graduate School of Innovative Life Science, University of Toyama, Toyama 930-0194, Japan.,Research Center for Idling Brain Science (RCIBS), University of Toyama, Toyama 930-0194, Japan
| | - Taketoshi Ono
- Department of System Emotional Science, Faculty of Medicine, University of Toyama, Toyama 930-0194, Japan
| | - Mitsuaki Yamazaki
- Department of Anesthesiology, Faculty of Medicine, University of Toyama, Toyama 930-0194, Japan
| | - Hisao Nishijo
- Department of System Emotional Science, Faculty of Medicine, University of Toyama, Toyama 930-0194, Japan.,Graduate School of Innovative Life Science, University of Toyama, Toyama 930-0194, Japan.,Research Center for Idling Brain Science (RCIBS), University of Toyama, Toyama 930-0194, Japan
| |
Collapse
|
119
|
Jun E, Na K, Kang W, Lee J, Suk H, Ham B. Identifying
resting‐state
effective connectivity abnormalities in
drug‐naïve
major depressive disorder diagnosis via graph convolutional networks. Hum Brain Mapp 2020. [DOI: 10.1002/hbm.25175 10.1002/hbm.25175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Eunji Jun
- Department of Brain and Cognitive Engineering Korea University Seoul Republic of Korea
| | - Kyoung‐Sae Na
- Department of Psychiatry Gachon University Gil Medical Center Incheon Republic of Korea
| | - Wooyoung Kang
- Department of Biomedical Sciences Korea University College of Medicine Seoul Republic of Korea
| | - Jiyeon Lee
- Department of Brain and Cognitive Engineering Korea University Seoul Republic of Korea
| | - Heung‐Il Suk
- Department of Brain and Cognitive Engineering Korea University Seoul Republic of Korea
- Department of Artificial Intelligence Korea University Seoul Republic of Korea
| | - Byung‐Joo Ham
- Department of Psychiatry Korea University Anam Hospital, Korea University College of Medicine Seoul Republic of Korea
| |
Collapse
|
120
|
Hu JM, Chen CH, Chen SQ, Ding SL. Afferent Projections to Area Prostriata of the Mouse. Front Neuroanat 2020; 14:605021. [PMID: 33328909 PMCID: PMC7728849 DOI: 10.3389/fnana.2020.605021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 10/02/2020] [Indexed: 12/02/2022] Open
Abstract
Area prostriata plays important roles in fast detection and analysis of peripheral visual information. It remains unclear whether the prostriata directly receives and integrates information from other modalities. To gain insight into this issue, we investigated brain-wide afferent projections to mouse prostriata. We find convergent projections to layer 1 of the prostriata from primary and association visual and auditory cortices; retrosplenial, lateral entorhinal, and anterior cingulate cortices; subiculum; presubiculum; and anterior thalamic nuclei. Innervation of layers 2-3 of the prostriata mainly originates from the presubiculum (including postsubiculum) and anterior midline thalamic region. Layer 5 of the prostriata mainly receives its inputs from medial entorhinal, granular retrosplenial, and medial orbitofrontal cortices and anteromedial thalamic nucleus while layer 6 gets its major inputs from ectorhinal, postrhinal, and agranular retrosplenial cortices. The claustrum, locus coeruleus, and basal forebrain provide relatively diffuse innervation to the prostriata. Moreover, Cre-dependent tracing in cortical areas reveals that the cells of origin of the prostriata inputs are located in layers 2-4 and 5 of the neocortical areas, layers 2 and 5 of the medial entorhinal cortex, and layer 5 of the retrosplenial cortex. These results indicate that the prostriata is a unique region where primary and association visual and auditory inputs directly integrate with many limbic inputs.
Collapse
Affiliation(s)
- Jin-Meng Hu
- Key Laboratory of Neuroscience, School of Basic Medical Sciences, Institute of Neuroscience, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Chang-Hui Chen
- Key Laboratory of Neuroscience, School of Basic Medical Sciences, Institute of Neuroscience, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Sheng-Qiang Chen
- Key Laboratory of Neuroscience, School of Basic Medical Sciences, Institute of Neuroscience, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Song-Lin Ding
- Key Laboratory of Neuroscience, School of Basic Medical Sciences, Institute of Neuroscience, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
- Allen Institute for Brain Science, Seattle, WA, United States
| |
Collapse
|
121
|
Strategy-Specific Patterns of Arc Expression in the Retrosplenial Cortex and Hippocampus during T-Maze Learning in Rats. Brain Sci 2020; 10:brainsci10110854. [PMID: 33202708 PMCID: PMC7697392 DOI: 10.3390/brainsci10110854] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/04/2020] [Accepted: 11/10/2020] [Indexed: 11/16/2022] Open
Abstract
The retrosplenial cortex (RSC) belongs to the spatial memory circuit, but the precise timeline of its involvement and the relation to hippocampal activation have not been sufficiently described. We trained rats in a modified version of the T maze with transparent walls and distant visual cues to induce the formation of allocentric spatial memory. We used two distinct salient contexts associated with opposite sequences of turns. Switching between contexts allowed us to test the ability of animals to utilize spatial information. We then applied a CatFISH approach with a probe directed against the Arc immediate early gene in order to visualize the associated memory engrams in the RSC and the hippocampus. After training, rats displayed two strategies to solve the maze, with half of the animals relying on distant spatial cues (allocentric) and the other half using egocentric strategy. Rats that did not utilize the spatial cues showed higher Arc levels in the RSC compared to the allocentric group. The overlap between the two context engrams in the RSC was similar in both groups. These results show differential involvement of the RSC and hippocampus during spatial memory acquisition and point toward their distinct roles in forming the cognitive maps.
Collapse
|
122
|
van Wijngaarden JBG, Babl SS, Ito HT. Entorhinal-retrosplenial circuits for allocentric-egocentric transformation of boundary coding. eLife 2020; 9:e59816. [PMID: 33138915 PMCID: PMC7609058 DOI: 10.7554/elife.59816] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 10/15/2020] [Indexed: 12/20/2022] Open
Abstract
Spatial navigation requires landmark coding from two perspectives, relying on viewpoint-invariant and self-referenced representations. The brain encodes information within each reference frame but their interactions and functional dependency remains unclear. Here we investigate the relationship between neurons in the rat's retrosplenial cortex (RSC) and entorhinal cortex (MEC) that increase firing near boundaries of space. Border cells in RSC specifically encode walls, but not objects, and are sensitive to the animal's direction to nearby borders. These egocentric representations are generated independent of visual or whisker sensation but are affected by inputs from MEC that contains allocentric spatial cells. Pharmaco- and optogenetic inhibition of MEC led to a disruption of border coding in RSC, but not vice versa, indicating allocentric-to-egocentric transformation. Finally, RSC border cells fire prospective to the animal's next motion, unlike those in MEC, revealing the MEC-RSC pathway as an extended border coding circuit that implements coordinate transformation to guide navigation behavior.
Collapse
Affiliation(s)
| | - Susanne S Babl
- Institute of Neurophysiology, Neuroscience Center, Goethe UniversityFrankfurtGermany
| | - Hiroshi T Ito
- Max Planck Institute for Brain ResearchFrankfurtGermany
| |
Collapse
|
123
|
Ramanoël S, Durteste M, Bécu M, Habas C, Arleo A. Differential Brain Activity in Regions Linked to Visuospatial Processing During Landmark-Based Navigation in Young and Healthy Older Adults. Front Hum Neurosci 2020; 14:552111. [PMID: 33240060 PMCID: PMC7668216 DOI: 10.3389/fnhum.2020.552111] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 09/22/2020] [Indexed: 12/21/2022] Open
Abstract
Older adults have difficulties in navigating unfamiliar environments and updating their wayfinding behavior when faced with blocked routes. This decline in navigational capabilities has traditionally been ascribed to memory impairments and dysexecutive function, whereas the impact of visual aging has often been overlooked. The ability to perceive visuospatial information such as salient landmarks is essential to navigating efficiently. To date, the functional and neurobiological factors underpinning landmark processing in aging remain insufficiently characterized. To address this issue, functional magnetic resonance imaging (fMRI) was used to investigate the brain activity associated with landmark-based navigation in young and healthy older participants. The performances of 25 young adults (μ = 25.4 years, σ = 2.7; seven females) and 17 older adults (μ = 73.0 years, σ = 3.9; 10 females) were assessed in a virtual-navigation task in which they had to orient using salient landmarks. The underlying whole-brain patterns of activity as well as the functional roles of specific cerebral regions involved in landmark processing, namely the parahippocampal place area (PPA), the occipital place area (OPA), and the retrosplenial cortex (RSC), were analyzed. Older adults' navigational abilities were overall diminished compared to young adults. Also, the two age groups relied on distinct navigational strategies to solve the task. Better performances during landmark-based navigation were associated with increased neural activity in an extended neural network comprising several cortical and cerebellar regions. Direct comparisons between age groups revealed that young participants had greater anterior temporal activity. Also, only young adults showed significant activity in occipital areas corresponding to the cortical projection of the central visual field during landmark-based navigation. The region-of-interest analysis revealed an increased OPA activation in older adult participants during the landmark condition. There were no significant between-group differences in PPA and RSC activations. These preliminary results hint at the possibility that aging diminishes fine-grained information processing in occipital and temporal regions, thus hindering the capacity to use landmarks adequately for navigation. Keeping sight of its exploratory nature, this work helps towards a better comprehension of the neural dynamics subtending landmark-based navigation and it provides new insights on the impact of age-related visuospatial processing differences on navigation capabilities.
Collapse
Affiliation(s)
- Stephen Ramanoël
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
- Faculty of Psychology and Educational Sciences, University of Geneva, Geneva, Switzerland
- University of Côte d’Azur, LAMHESS, Nice, France
| | - Marion Durteste
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Marcia Bécu
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | | | - Angelo Arleo
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| |
Collapse
|
124
|
Brunner C, Grillet M, Sans-Dublanc A, Farrow K, Lambert T, Macé E, Montaldo G, Urban A. A Platform for Brain-wide Volumetric Functional Ultrasound Imaging and Analysis of Circuit Dynamics in Awake Mice. Neuron 2020; 108:861-875.e7. [PMID: 33080230 DOI: 10.1016/j.neuron.2020.09.020] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 08/12/2020] [Accepted: 09/14/2020] [Indexed: 01/31/2023]
Abstract
Imaging large-scale circuit dynamics is crucial to understanding brain function, but most techniques have a limited depth of field. Here, we describe volumetric functional ultrasound imaging (vfUSI), a platform for brain-wide vfUSI of hemodynamic activity in awake head-fixed mice. We combined a high-frequency 1,024-channel 2D-array transducer with advanced multiplexing and high-performance computing for real-time 3D power Doppler imaging at a high spatiotemporal resolution (220 × 280 × 175 μm3, up to 6 Hz). We developed a standardized software pipeline for registration, segmentation, and temporal analysis in 268 individual brain regions based on the Allen Mouse Common Coordinate Framework. We demonstrated the high sensitivity of vfUSI under multiple experimental conditions, and we successfully imaged stimulus-evoked activity when only a few trials were averaged. We also mapped neural circuits in vivo across the whole brain during optogenetic activation of specific cell types. Moreover, we identified the sequential activation of sensory-motor networks during a grasping water-droplet task.
Collapse
Affiliation(s)
- Clément Brunner
- Neuro-Electronics Research Flanders, Leuven, Belgium; VIB, Leuven, Belgium; Imec, Leuven, Belgium; Department of Neuroscience, Faculty of Medicine, KU Leuven, Leuven, Belgium
| | - Micheline Grillet
- Neuro-Electronics Research Flanders, Leuven, Belgium; VIB, Leuven, Belgium; Imec, Leuven, Belgium; Department of Neuroscience, Faculty of Medicine, KU Leuven, Leuven, Belgium
| | - Arnau Sans-Dublanc
- Neuro-Electronics Research Flanders, Leuven, Belgium; VIB, Leuven, Belgium; Imec, Leuven, Belgium; Department of Biology, Faculty of Science, KU Leuven, Leuven, Belgium
| | - Karl Farrow
- Neuro-Electronics Research Flanders, Leuven, Belgium; VIB, Leuven, Belgium; Imec, Leuven, Belgium; Department of Biology, Faculty of Science, KU Leuven, Leuven, Belgium
| | - Théo Lambert
- Neuro-Electronics Research Flanders, Leuven, Belgium; VIB, Leuven, Belgium; Imec, Leuven, Belgium; Department of Neuroscience, Faculty of Medicine, KU Leuven, Leuven, Belgium
| | - Emilie Macé
- Brain-Wide Circuits for Behavior Research Group, Max Planck Institute of Neurobiology, Martinsried, Germany
| | - Gabriel Montaldo
- Neuro-Electronics Research Flanders, Leuven, Belgium; VIB, Leuven, Belgium; Imec, Leuven, Belgium; Department of Neuroscience, Faculty of Medicine, KU Leuven, Leuven, Belgium
| | - Alan Urban
- Neuro-Electronics Research Flanders, Leuven, Belgium; VIB, Leuven, Belgium; Imec, Leuven, Belgium; Department of Neuroscience, Faculty of Medicine, KU Leuven, Leuven, Belgium.
| |
Collapse
|
125
|
Morin A, Mouzon B, Ferguson S, Paris D, Browning M, Stewart W, Mullan M, Crawford F. Nilvadipine suppresses inflammation via inhibition of P-SYK and restores spatial memory deficits in a mouse model of repetitive mild TBI. Acta Neuropathol Commun 2020; 8:166. [PMID: 33076989 PMCID: PMC7574534 DOI: 10.1186/s40478-020-01045-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 10/02/2020] [Indexed: 12/20/2022] Open
Abstract
Repeated exposure to mild TBI (mTBI) has been linked to an increased risk of Alzheimer's disease (AD), chronic traumatic encephalopathy (CTE) and other neurodegenerative diseases. Some pathological features typically observed in AD have been found in postmortem brains of TBI and CTE, hence treatments tested for AD have a potential to be effective against r-mTBI outcomes. Neuroinflammation may present a possible answer due to its central role both in acute brain injury and in chronic degenerative-like disorders. Our previous studies have shown that drug nilvadipine, acting as an inhibitor of spleen tyrosine kinase (SYK), is effective at reducing inflammation, tau hyperphosphorylation and amyloid production in AD mouse models. To demonstrate the effect of nilvadipine in the absence of age-related variables, we introduced the same treatment to young r-mTBI mice. We further investigate therapeutic mechanisms of nilvadipine using its racemic properties. Both enantiomers, (+)-nilvadipine and (-)-nilvadipine, can lower SYK activity, whereas (+)-nilvadipine is also a potent L-type calcium channel blocker (CCB) and shown to be anti-hypertensive. All r-mTBI mice exhibited increased neuroinflammation and impaired cognitive performance and motor functions. Treatment with racemic nilvadipine mitigated the TBI-induced inflammatory response and significantly improved spatial memory, whereas (-)-enantiomer decreased microgliosis and improved spatial memory but failed to reduce the astroglial response to as much as the racemate. These results suggest the therapeutic potential of SYK inhibition that is enhanced when combined with the CCB effect, which indicate a therapeutic advantage of multi-action drugs for r-mTBI.
Collapse
Affiliation(s)
- Alexander Morin
- The Roskamp Institute, Sarasota, FL, USA.
- The Open University, Milton-Keynes, UK.
- James A Haley Veterans Administration, Tampa, FL, USA.
| | - Benoit Mouzon
- The Roskamp Institute, Sarasota, FL, USA
- The Open University, Milton-Keynes, UK
- James A Haley Veterans Administration, Tampa, FL, USA
| | - Scott Ferguson
- The Roskamp Institute, Sarasota, FL, USA
- The Open University, Milton-Keynes, UK
- James A Haley Veterans Administration, Tampa, FL, USA
| | - Daniel Paris
- The Roskamp Institute, Sarasota, FL, USA
- The Open University, Milton-Keynes, UK
- James A Haley Veterans Administration, Tampa, FL, USA
| | | | | | - Mike Mullan
- The Roskamp Institute, Sarasota, FL, USA
- The Open University, Milton-Keynes, UK
| | - Fiona Crawford
- The Roskamp Institute, Sarasota, FL, USA
- The Open University, Milton-Keynes, UK
- James A Haley Veterans Administration, Tampa, FL, USA
| |
Collapse
|
126
|
Pelekanos V, Premereur E, Mitchell DJ, Chakraborty S, Mason S, Lee ACH, Mitchell AS. Corticocortical and Thalamocortical Changes in Functional Connectivity and White Matter Structural Integrity after Reward-Guided Learning of Visuospatial Discriminations in Rhesus Monkeys. J Neurosci 2020; 40:7887-7901. [PMID: 32900835 PMCID: PMC7548693 DOI: 10.1523/jneurosci.0364-20.2020] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 06/30/2020] [Accepted: 07/25/2020] [Indexed: 12/14/2022] Open
Abstract
The frontal cortex and temporal lobes together regulate complex learning and memory capabilities. Here, we collected resting-state functional and diffusion-weighted MRI data before and after male rhesus macaque monkeys received extensive training to learn novel visuospatial discriminations (reward-guided learning). We found functional connectivity changes in orbitofrontal, ventromedial prefrontal, inferotemporal, entorhinal, retrosplenial, and anterior cingulate cortices, the subicular complex, and the dorsal, medial thalamus. These corticocortical and thalamocortical changes in functional connectivity were accompanied by related white matter structural alterations in the uncinate fasciculus, fornix, and ventral prefrontal tract: tracts that connect (sub)cortical networks and are implicated in learning and memory processes in monkeys and humans. After the well-trained monkeys received fornix transection, they were impaired in learning new visuospatial discriminations. In addition, the functional connectivity profile that was observed after the training was altered. These changes were accompanied by white matter changes in the ventral prefrontal tract, although the integrity of the uncinate fasciculus remained unchanged. Our experiments highlight the importance of different communication relayed among corticocortical and thalamocortical circuitry for the ability to learn new visuospatial associations (learning-to-learn) and to make reward-guided decisions.SIGNIFICANCE STATEMENT Frontal neural networks and the temporal lobes contribute to reward-guided learning in mammals. Here, we provide novel insight by showing that specific corticocortical and thalamocortical functional connectivity is altered after rhesus monkeys received extensive training to learn novel visuospatial discriminations. Contiguous white matter fiber pathways linking these gray matter structures, namely, the uncinate fasciculus, fornix, and ventral prefrontal tract, showed structural changes after completing training in the visuospatial task. Additionally, different patterns of functional and structural connectivity are reported after removal of subcortical connections within the extended hippocampal system, via fornix transection. These results highlight the importance of both corticocortical and thalamocortical interactions in reward-guided learning in the normal brain and identify brain structures important for memory capabilities after injury.
Collapse
Affiliation(s)
- Vassilis Pelekanos
- Department of Experimental Psychology, University of Oxford, Oxford OX1 3SR, United Kingdom
| | - Elsie Premereur
- Laboratory for Neuro- and Psychophysiology, KU Leuven, 3000 Leuven, Belgium
| | - Daniel J Mitchell
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge CB2 7EF, United Kingdom
| | - Subhojit Chakraborty
- Department of Neuroinflammation, Queen Square Multiple Sclerosis Centre, Institute of Neurology, University College London, London WC1N 3BG, United Kingdom
| | - Stuart Mason
- Department of Experimental Psychology, University of Oxford, Oxford OX1 3SR, United Kingdom
| | - Andy C H Lee
- Department of Psychology (Scarborough), University of Toronto, Toronto, Ontario M1C 1A4, Canada
- Rotman Research Institute, Baycrest Centre, Toronto, Ontario M6A 2E1, Canada
| | - Anna S Mitchell
- Department of Experimental Psychology, University of Oxford, Oxford OX1 3SR, United Kingdom
| |
Collapse
|
127
|
Jun E, Na KS, Kang W, Lee J, Suk HI, Ham BJ. Identifying resting-state effective connectivity abnormalities in drug-naïve major depressive disorder diagnosis via graph convolutional networks. Hum Brain Mapp 2020; 41:4997-5014. [PMID: 32813309 PMCID: PMC7643383 DOI: 10.1002/hbm.25175] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 07/13/2020] [Accepted: 08/01/2020] [Indexed: 02/06/2023] Open
Abstract
Major depressive disorder (MDD) is a leading cause of disability; its symptoms interfere with social, occupational, interpersonal, and academic functioning. However, the diagnosis of MDD is still made by phenomenological approach. The advent of neuroimaging techniques allowed numerous studies to use resting-state functional magnetic resonance imaging (rs-fMRI) and estimate functional connectivity for brain-disease identification. Recently, attempts have been made to investigate effective connectivity (EC) that represents causal relations among regions of interest. In the meantime, to identify meaningful phenotypes for clinical diagnosis, graph-based approaches such as graph convolutional networks (GCNs) have been leveraged recently to explore complex pairwise similarities in imaging/nonimaging features among subjects. In this study, we validate the use of EC for MDD identification by estimating its measures via a group sparse representation along with a structured equation modeling approach in a whole-brain data-driven manner from rs-fMRI. To distinguish drug-naïve MDD patients from healthy controls, we utilize spectral GCNs based on a population graph to successfully integrate EC and nonimaging phenotypic information. Furthermore, we devise a novel sensitivity analysis method to investigate the discriminant connections for MDD identification in our trained GCNs. Our experimental results validated the effectiveness of our method in various scenarios, and we identified altered connectivities associated with the diagnosis of MDD.
Collapse
Affiliation(s)
- Eunji Jun
- Department of Brain and Cognitive Engineering, Korea University, Seoul, Republic of Korea
| | - Kyoung-Sae Na
- Department of Psychiatry, Gachon University Gil Medical Center, Incheon, Republic of Korea
| | - Wooyoung Kang
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Jiyeon Lee
- Department of Brain and Cognitive Engineering, Korea University, Seoul, Republic of Korea
| | - Heung-Il Suk
- Department of Brain and Cognitive Engineering, Korea University, Seoul, Republic of Korea.,Department of Artificial Intelligence, Korea University, Seoul, Republic of Korea
| | - Byung-Joo Ham
- Department of Psychiatry, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
128
|
McGregor M, Richer K, Ananth M, Thanos PK. The functional networks of a novel environment: Neural activity mapping in awake unrestrained rats using positron emission tomography. Brain Behav 2020; 10:e01646. [PMID: 32562468 PMCID: PMC7428510 DOI: 10.1002/brb3.1646] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 04/01/2020] [Accepted: 04/02/2020] [Indexed: 11/06/2022] Open
Abstract
INTRODUCTION Novel environment stimulation is thought to have an important role in cognitive development and has been shown to encourage exploratory behavior in rats. However, psychopathology or perceived danger or stress can impede this exploratory drive. The balance between brain circuits controlling the exploratory drive elicited by a novel environment, and the avoidance response to stressors, is not well understood. METHODS Using positron emission tomography (PET) and the glucose analog [18 F]fluorodeoxyglucose (18F-FDG), we assessed awake brain glucose metabolism (BGluM) in rats while in a novel environment (cage of an unfamiliar male rat) and non-novel environment (the animal's home cage). RESULTS Exposure to the novel environment increased BGluM in regions associated with vision (visual cortex), motor function and motivated behavior (striatum and motor cortex), and anxiety (stria terminalis), and decreased BGluM in regions associated with auditory processing (auditory cortex, insular cortex, inferior colliculus), locomotor activity (globus pallidus, striatum, motor cortex, ventral thalamic nucleus), spatial navigation (retrosplenial cortex), and working memory (hippocampus, cingulate cortex, prelimbic cortex, orbitofrontal cortex). CONCLUSION These results suggest that the novel cage is a stressful environment that inhibits activity in brain regions associated with exploratory behavior. Patterns of inhibition in the novel cage also support the proposed rat default mode network, indicating that animals are more cognitively engaged in this environment. Additionally, these data support the unique capability of combining FDG-PET with psychopharmacology experiments to examine novelty seeking and brain activation in the context of decision making, risk taking, and cognitive function more generally, along with response to environmental or stress challenges.
Collapse
Affiliation(s)
- Matthew McGregor
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biosciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Kaleigh Richer
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biosciences, State University of New York at Buffalo, Buffalo, NY, USA.,Department of Psychology, State University of New York at Buffalo, Buffalo, NY, USA
| | - Mala Ananth
- Department of Neurobiology, State University of New York at Stony Brook, Stony Brook, NY, USA
| | - Panayotis K Thanos
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biosciences, State University of New York at Buffalo, Buffalo, NY, USA.,Department of Psychology, State University of New York at Buffalo, Buffalo, NY, USA
| |
Collapse
|
129
|
Bierbrauer A, Kunz L, Gomes CA, Luhmann M, Deuker L, Getzmann S, Wascher E, Gajewski PD, Hengstler JG, Fernandez-Alvarez M, Atienza M, Cammisuli DM, Bonatti F, Pruneti C, Percesepe A, Bellaali Y, Hanseeuw B, Strange BA, Cantero JL, Axmacher N. Unmasking selective path integration deficits in Alzheimer's disease risk carriers. SCIENCE ADVANCES 2020; 6:eaba1394. [PMID: 32923622 PMCID: PMC7455192 DOI: 10.1126/sciadv.aba1394] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 07/15/2020] [Indexed: 05/11/2023]
Abstract
Alzheimer's disease (AD) manifests with progressive memory loss and spatial disorientation. Neuropathological studies suggest early AD pathology in the entorhinal cortex (EC) of young adults at genetic risk for AD (APOE ε4-carriers). Because the EC harbors grid cells, a likely neural substrate of path integration (PI), we examined PI performance in APOE ε4-carriers during a virtual navigation task. We report a selective impairment in APOE ε4-carriers specifically when recruitment of compensatory navigational strategies via supportive spatial cues was disabled. A separate fMRI study revealed that PI performance was associated with the strength of entorhinal grid-like representations when no compensatory strategies were available, suggesting grid cell dysfunction as a mechanistic explanation for PI deficits in APOE ε4-carriers. Furthermore, posterior cingulate/retrosplenial cortex was involved in the recruitment of compensatory navigational strategies via supportive spatial cues. Our results provide evidence for selective PI deficits in AD risk carriers, decades before potential disease onset.
Collapse
Affiliation(s)
- Anne Bierbrauer
- Department of Neuropsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Universitätsstraße 150, 44801 Bochum, Germany
- Corresponding author. (A.B.); (L.K.); (N.A.)
| | - Lukas Kunz
- Epilepsy Center, Medical Center–University of Freiburg, Faculty of Medicine, University of Freiburg, Breisacher Str. 64, 79106 Freiburg im Breisgau, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Schänzlestraße 1, 79104 Freiburg, Germany
- Corresponding author. (A.B.); (L.K.); (N.A.)
| | - Carlos A. Gomes
- Department of Neuropsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Universitätsstraße 150, 44801 Bochum, Germany
| | - Maike Luhmann
- Faculty of Psychology, Ruhr University Bochum, Bochum, Germany
| | - Lorena Deuker
- Department of Neuropsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Universitätsstraße 150, 44801 Bochum, Germany
| | - Stephan Getzmann
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), Technical University of Dortmund, Dortmund, Germany
| | - Edmund Wascher
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), Technical University of Dortmund, Dortmund, Germany
| | - Patrick D. Gajewski
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), Technical University of Dortmund, Dortmund, Germany
| | - Jan G. Hengstler
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), Technical University of Dortmund, Dortmund, Germany
| | - Marina Fernandez-Alvarez
- Laboratory of Functional Neuroscience, Pablo de Olavide University, Network Center for Biomedical Research in Neurodegenerative Disease (CIBERNED), Seville, Spain
| | - Mercedes Atienza
- Laboratory of Functional Neuroscience, Pablo de Olavide University, Network Center for Biomedical Research in Neurodegenerative Disease (CIBERNED), Seville, Spain
| | - Davide M. Cammisuli
- Department of Medicine and Surgery, Laboratory of Clinical Psychology, Clinical Psychophysiology and Clinical Neuropsychology, University of Parma, Parma, Italy
| | - Francesco Bonatti
- Department of Medicine and Surgery, Medical Genetics, University of Parma, Parma, Italy
| | - Carlo Pruneti
- Department of Medicine and Surgery, Laboratory of Clinical Psychology, Clinical Psychophysiology and Clinical Neuropsychology, University of Parma, Parma, Italy
| | - Antonio Percesepe
- Department of Medicine and Surgery, Medical Genetics, University of Parma, Parma, Italy
| | - Youssef Bellaali
- Department of Neurology, Cliniques Universitaires Saint-Luc, Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium
| | - Bernard Hanseeuw
- Department of Neurology, Cliniques Universitaires Saint-Luc, Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Bryan A. Strange
- Department of Neuroimaging, Alzheimer’s Disease Research Centre, Reina Sofia–CIEN Foundation, Madrid, Spain
- Laboratory for Clinical Neuroscience, Centre for Biomedical Technology, Universidad Politecnica de Madrid, Madrid, Spain
| | - Jose L. Cantero
- Laboratory of Functional Neuroscience, Pablo de Olavide University, Network Center for Biomedical Research in Neurodegenerative Disease (CIBERNED), Seville, Spain
| | - Nikolai Axmacher
- Department of Neuropsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Universitätsstraße 150, 44801 Bochum, Germany
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Xinjiekouwai Street 19, Beijing 100875, China
- Corresponding author. (A.B.); (L.K.); (N.A.)
| |
Collapse
|
130
|
Nau M, Navarro Schröder T, Frey M, Doeller CF. Behavior-dependent directional tuning in the human visual-navigation network. Nat Commun 2020; 11:3247. [PMID: 32591544 PMCID: PMC7320013 DOI: 10.1038/s41467-020-17000-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 06/05/2020] [Indexed: 01/06/2023] Open
Abstract
The brain derives cognitive maps from sensory experience that guide memory formation and behavior. Despite extensive efforts, it still remains unclear how the underlying population activity unfolds during spatial navigation and how it relates to memory performance. To examine these processes, we combined 7T-fMRI with a kernel-based encoding model of virtual navigation to map world-centered directional tuning across the human cortex. First, we present an in-depth analysis of directional tuning in visual, retrosplenial, parahippocampal and medial temporal cortices. Second, we show that tuning strength, width and topology of this directional code during memory-guided navigation depend on successful encoding of the environment. Finally, we show that participants' locomotory state influences this tuning in sensory and mnemonic regions such as the hippocampus. We demonstrate a direct link between neural population tuning and human cognition, where high-level memory processing interacts with network-wide visuospatial coding in the service of behavior.
Collapse
Affiliation(s)
- Matthias Nau
- Kavli Institute for Systems Neuroscience, Centre for Neural Computation, The Egil and Pauline Braathen and Fred Kavli Centre for Cortical Microcircuits, NTNU, Trondheim, Norway.
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
| | - Tobias Navarro Schröder
- Kavli Institute for Systems Neuroscience, Centre for Neural Computation, The Egil and Pauline Braathen and Fred Kavli Centre for Cortical Microcircuits, NTNU, Trondheim, Norway
| | - Markus Frey
- Kavli Institute for Systems Neuroscience, Centre for Neural Computation, The Egil and Pauline Braathen and Fred Kavli Centre for Cortical Microcircuits, NTNU, Trondheim, Norway
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Christian F Doeller
- Kavli Institute for Systems Neuroscience, Centre for Neural Computation, The Egil and Pauline Braathen and Fred Kavli Centre for Cortical Microcircuits, NTNU, Trondheim, Norway.
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
| |
Collapse
|
131
|
Saré RM, Cooke SK, Krych L, Zerfas PM, Cohen RM, Smith CB. Behavioral Phenotype in the TgF344-AD Rat Model of Alzheimer's Disease. Front Neurosci 2020; 14:601. [PMID: 32612506 PMCID: PMC7308710 DOI: 10.3389/fnins.2020.00601] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 05/15/2020] [Indexed: 11/13/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease resulting in cognitive decline. A unique rat model, TgF344-AD, recapitulates pathological hallmarks of AD. We used a longitudinal design to address the timing of expression of behavioral phenotypes in male and female TgF344-AD rats. In both sexes, we confirmed an age-dependent buildup of amyloid-β. In the open field, female, but not male, TgF344-AD rats were hypoactive at 6 and 12 months of age but at 18 months the two genotypes were similar in levels of activity response. Both male and female TgF344-AD rats had a deficit in performance on a learning and memory task. Male TgF344-AD, but not female, rats had evidence of hyposmia regardless of age. Rest-activity rhythms followed the typical active/inactive phase in all rats regardless of genotype or age. In males, home cage activity was similar across age and genotype; in females, regardless of genotype animals were less active as they aged. These changes highlight some behavioral markers of disease in the rat model. Early markers of disease may be important in early diagnosis and assessment of efficacy when treatment becomes available.
Collapse
Affiliation(s)
- Rachel Michelle Saré
- Section on Neuroadaptation and Protein Metabolism, National Institute of Mental Health, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, United States
| | - Spencer K Cooke
- Section on Neuroadaptation and Protein Metabolism, National Institute of Mental Health, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, United States
| | - Leland Krych
- Section on Neuroadaptation and Protein Metabolism, National Institute of Mental Health, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, United States
| | - Patricia M Zerfas
- Diagnostic and Research Services, Office of Research Services, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, United States
| | - Robert M Cohen
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, United States
| | - Carolyn Beebe Smith
- Section on Neuroadaptation and Protein Metabolism, National Institute of Mental Health, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, United States
| |
Collapse
|
132
|
Murata K, Kinoshita T, Ishikawa T, Kuroda K, Hoshi M, Fukazawa Y. Region- and neuronal-subtype-specific expression of Na,K-ATPase alpha and beta subunit isoforms in the mouse brain. J Comp Neurol 2020; 528:2654-2678. [PMID: 32301109 PMCID: PMC7540690 DOI: 10.1002/cne.24924] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 04/08/2020] [Accepted: 04/08/2020] [Indexed: 02/01/2023]
Abstract
Na,K‐ATPase is a ubiquitous molecule contributing to the asymmetrical distribution of Na+ and K+ ions across the plasma membrane and maintenance of the membrane potential, a prerequisite of neuronal activity. Na,K‐ATPase comprises three subunits (α, β, and FXYD). The α subunit has four isoforms in mice, with three of them (α1, α2, and α3) expressed in the brain. However, the functional and biological significances of the different brain isoforms remain to be fully elucidated. Recent studies have revealed the association of Atp1a3, a gene encoding α3 subunit, with neurological disorders. To map the cellular distributions of the α subunit isoforms and their coexpression patterns, we evaluated the mRNA expression of Atp1a1, Atp1a2, and Atp1a3 by in situ hybridization in the mouse brain. Atp1a1 and Atp1a3 were expressed in neurons, whereas Atp1a2 was almost exclusively expressed in glial cells. Most neurons coexpressed Atp1a1 and Atp1a3, with highly heterogeneous expression levels across the brain regions and neuronal subtypes. We identified parvalbumin (PV)‐expressing GABAergic neurons in the hippocampus, somatosensory cortex, and retrosplenial cortex as an example of a neuronal subtype expressing low Atp1a1 and high Atp1a3. The expression of Atp1b isoforms was also heterogeneous across brain regions and cellular subtypes. The PV‐expressing neurons expressed a high level of Atp1b1 and a low level of Atp1b2 and Atp1b3. These findings provide basic information on the region‐ and neuronal‐subtype‐dependent expression of Na,K‐ATPase α and β subunit isoforms, as well as a rationale for the selective involvement of neurons expressing high levels of Atp1a3 in neurological disorders.
Collapse
Affiliation(s)
- Koshi Murata
- Division of Brain Structure and Function, Faculty of Medical Sciences, University of Fukui, Fukui, Japan.,Life Science Innovation Center, Faculty of Medical Science, University of Fukui, Fukui, Japan
| | - Tomoki Kinoshita
- Division of Brain Structure and Function, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Tatsuya Ishikawa
- Division of Brain Structure and Function, Faculty of Medical Sciences, University of Fukui, Fukui, Japan.,Department of Functional Anatomy, Graduate School of Medical Science, Kanazawa University, Ishikawa, Japan
| | - Kazuki Kuroda
- Division of Brain Structure and Function, Faculty of Medical Sciences, University of Fukui, Fukui, Japan.,Life Science Innovation Center, Faculty of Medical Science, University of Fukui, Fukui, Japan
| | - Minako Hoshi
- Department for Brain and Neurodegenerative Disease Research, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Japan
| | - Yugo Fukazawa
- Division of Brain Structure and Function, Faculty of Medical Sciences, University of Fukui, Fukui, Japan.,Life Science Innovation Center, Faculty of Medical Science, University of Fukui, Fukui, Japan.,Research Center for Child Mental Development, University of Fukui, Fukui, Japan
| |
Collapse
|
133
|
Angelaki DE, Ng J, Abrego AM, Cham HX, Asprodini EK, Dickman JD, Laurens J. A gravity-based three-dimensional compass in the mouse brain. Nat Commun 2020; 11:1855. [PMID: 32296057 PMCID: PMC7160108 DOI: 10.1038/s41467-020-15566-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 03/12/2020] [Indexed: 02/07/2023] Open
Abstract
Gravity sensing provides a robust verticality signal for three-dimensional navigation. Head direction cells in the mammalian limbic system implement an allocentric neuronal compass. Here we show that head-direction cells in the rodent thalamus, retrosplenial cortex and cingulum fiber bundle are tuned to conjunctive combinations of azimuth and tilt, i.e. pitch or roll. Pitch and roll orientation tuning is anchored to gravity and independent of visual landmarks. When the head tilts, azimuth tuning is affixed to the head-horizontal plane, but also uses gravity to remain anchored to the allocentric bearings in the earth-horizontal plane. Collectively, these results demonstrate that a three-dimensional, gravity-based, neural compass is likely a ubiquitous property of mammalian species, including ground-dwelling animals. Head direction neurons constitute the brain’s compass, and are classically known to indicate head orientation in the horizontal plane. Here, the authors show that head direction neurons form a three-dimensional compass that can also indicate head tilt, and anchors to gravity.
Collapse
Affiliation(s)
- Dora E Angelaki
- Center for Neural Science and Tandon School of Engineering, New York University, New York, NY, USA. .,Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA.
| | - Julia Ng
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Amada M Abrego
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Henry X Cham
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Eftihia K Asprodini
- Department of Pharmacology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - J David Dickman
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA.,Department of Electrical and Computer Engineering, Rice University, Houston, TX, USA
| | - Jean Laurens
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
134
|
Anterior retrosplenial cortex is required for long-term object recognition memory. Sci Rep 2020; 10:4002. [PMID: 32152383 PMCID: PMC7062718 DOI: 10.1038/s41598-020-60937-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 02/19/2020] [Indexed: 01/06/2023] Open
Abstract
The retrosplenial cortex (RSC) is implicated on navigation and contextual memory. Lesions studies showed that the RSC shares functional similarities with the hippocampus (HP). Here we evaluated the role of the anterior RSC (aRSC) in the “what” and “where” components of recognition memory and contrasted it with that of the dorsal HP (dHP). Our behavioral and molecular findings show functional differences between the aRSC and the dHP in recognition memory. The inactivation of the aRSC, but not the dHP, impairs the consolidation and expression of the “what” memory component. In addition, object recognition task is accompanied by c-Fos levels increase in the aRSC. Interestingly, we found that the aRSC is recruited to process the “what” memory component only if it is active during acquisition. In contrast, both the aRSC and dHP are required for encoding the “where” component, which correlates with c-Fos levels increase. Our findings introduce a novel role of the aRSC in recognition memory, processing not only the “where”, but also the “what” memory component.
Collapse
|
135
|
Powell A, Connelly WM, Vasalauskaite A, Nelson AJD, Vann SD, Aggleton JP, Sengpiel F, Ranson A. Stable Encoding of Visual Cues in the Mouse Retrosplenial Cortex. Cereb Cortex 2020; 30:4424-4437. [PMID: 32147692 PMCID: PMC7438634 DOI: 10.1093/cercor/bhaa030] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The rodent retrosplenial cortex (RSC) functions as an integrative hub for sensory and motor signals, serving roles in both navigation and memory. While RSC is reciprocally connected with the sensory cortex, the form in which sensory information is represented in the RSC and how it interacts with motor feedback is unclear and likely to be critical to computations involved in navigation such as path integration. Here, we used 2-photon cellular imaging of neural activity of putative excitatory (CaMKII expressing) and inhibitory (parvalbumin expressing) neurons to measure visual and locomotion evoked activity in RSC and compare it to primary visual cortex (V1). We observed stimulus position and orientation tuning, and a retinotopic organization. Locomotion modulation of activity of single neurons, both in darkness and light, was more pronounced in RSC than V1, and while locomotion modulation was strongest in RSC parvalbumin-positive neurons, visual-locomotion integration was found to be more supralinear in CaMKII neurons. Longitudinal measurements showed that response properties were stably maintained over many weeks. These data provide evidence for stable representations of visual cues in RSC that are spatially selective. These may provide sensory data to contribute to the formation of memories of spatial information.
Collapse
Affiliation(s)
- Anna Powell
- School of Psychology, Cardiff University, CF10 3AS Cardiff, UK
| | | | | | | | | | - John P Aggleton
- School of Psychology, Cardiff University, CF10 3AS Cardiff, UK
| | - Frank Sengpiel
- School of Biosciences, Cardiff University, Cardiff, CF10 3AX, UK.,Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, CF24 4HQ, UK
| | - Adam Ranson
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, CF24 4HQ, UK.,Faculty of Medicine and Health Sciences, Department of Basic Sciences, Universitat Internacional de Catalunya, Barcelona, 08195, Spain.,Institut de Neurociènces, Universitat Autònoma de Barcelona, Bellaterra, 08193, Spain
| |
Collapse
|
136
|
Folville A, Bahri MA, Delhaye E, Salmon E, D’Argembeau A, Bastin C. Age-related differences in the neural correlates of vivid remembering. Neuroimage 2020; 206:116336. [DOI: 10.1016/j.neuroimage.2019.116336] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 10/18/2019] [Accepted: 11/04/2019] [Indexed: 12/28/2022] Open
|
137
|
Angelaki DE, Laurens J. The head direction cell network: attractor dynamics, integration within the navigation system, and three-dimensional properties. Curr Opin Neurobiol 2020; 60:136-144. [PMID: 31877492 PMCID: PMC7002189 DOI: 10.1016/j.conb.2019.12.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 12/02/2019] [Accepted: 12/04/2019] [Indexed: 11/30/2022]
Abstract
Knowledge of head direction cell function has progressed remarkably in recent years. The predominant theory that they form an attractor has been confirmed by several experiments. Candidate pathways that may convey visual input have been identified. The pre-subicular circuitry that conveys head direction signals to the medial entorhinal cortex, potentially sustaining path integration by grid cells, has been resolved. Although the neuronal substrate of the attractor remains unknown in mammals, a simple head direction network, whose structure is astoundingly similar to neuronal models theorized decades earlier, has been identified in insects. Finally, recent experiments have revealed that these cells do not encode head direction in the horizontal plane only, but also in vertical planes, thus providing a 3D orientation signal.
Collapse
Affiliation(s)
- Dora E Angelaki
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA; Center for Neural Science and Tandon School of Engineering, New York University, NY, USA
| | - Jean Laurens
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA; Ernst Strüngmann Institute for Neuroscience, Frankfurt, Germany.
| |
Collapse
|
138
|
Abstract
The integrative memory model formalizes a new conceptualization of memory in which interactions between representations and cognitive operations within large-scale cerebral networks generate subjective memory feelings. Such interactions allow to explain the complexity of memory expressions, such as the existence of multiples sources for familiarity and recollection feelings and the fact that expectations determine how one recognizes previously encountered information.
Collapse
|
139
|
Jin W, Qin H, Zhang K, Chen X. Spatial Navigation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1284:63-90. [PMID: 32852741 DOI: 10.1007/978-981-15-7086-5_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The hippocampus is critical for spatial navigation. In this review, we focus on the role of the hippocampus in three basic strategies used for spatial navigation: path integration, stimulus-response association, and map-based navigation. First, the hippocampus is not required for path integration unless the path of path integration is too long and complex. The hippocampus provides mnemonic support when involved in the process of path integration. Second, the hippocampus's involvement in stimulus-response association is dependent on how the strategy is conducted. The hippocampus is not required for the habit form of stimulus-response association. Third, while the hippocampus is fully engaged in map-based navigation, the shared characteristics of place cells, grid cells, head direction cells, and other spatial encoding cells, which are detected in the hippocampus and associated areas, offer a possibility that there is a stand-alone allocentric space perception (or mental representation) of the environment outside and independent of the hippocampus, and the spatially specific firing patterns of these spatial encoding cells are the unfolding of the intermediate stages of the processing of this allocentric spatial information when conveyed into the hippocampus for information storage or retrieval. Furthermore, the presence of all the spatially specific firing patterns in the hippocampus and the related neural circuits during the path integration and map-based navigation support such a notion that in essence, path integration is the same allocentric space perception provided with only idiothetic inputs. Taken together, the hippocampus plays a general mnemonic role in spatial navigation.
Collapse
Affiliation(s)
- Wenjun Jin
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing, China.
| | - Han Qin
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing, China
| | - Kuan Zhang
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing, China
| | - Xiaowei Chen
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing, China
| |
Collapse
|
140
|
Todd TP, Fournier DI, Bucci DJ. Retrosplenial cortex and its role in cue-specific learning and memory. Neurosci Biobehav Rev 2019; 107:713-728. [PMID: 31055014 PMCID: PMC6906080 DOI: 10.1016/j.neubiorev.2019.04.016] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 04/22/2019] [Accepted: 04/24/2019] [Indexed: 10/26/2022]
Abstract
The retrosplenial cortex (RSC) contributes to spatial navigation, as well as contextual learning and memory. However, a growing body of research suggests that the RSC also contributes to learning and memory for discrete cues, such as auditory or visual stimuli. In this review, we summarize and assess the Pavlovian and instrumental conditioning experiments that have examined the role of the RSC in cue-specific learning and memory. We use the term cue-specific to refer to these putatively non-spatial conditioning paradigms that involve discrete cues. Although these paradigms emphasize behavior related to cue presentations, we note that cue-specific learning and memory always takes place against a background of contextual stimuli. We review multiple ways by which contexts can influence responding to discrete cues and suggest that RSC contributions to cue-specific learning and memory are intimately tied to contextual learning and memory. Indeed, although the RSC is involved in several forms of cue-specific learning and memory, we suggest that many of these can be linked to processing of contextual stimuli.
Collapse
Affiliation(s)
- Travis P Todd
- Dartmouth College, Department of Psychological and Brain Sciences, 6207 Moore Hall, NH, 03755, USA.
| | - Danielle I Fournier
- Dartmouth College, Department of Psychological and Brain Sciences, 6207 Moore Hall, NH, 03755, USA
| | - David J Bucci
- Dartmouth College, Department of Psychological and Brain Sciences, 6207 Moore Hall, NH, 03755, USA
| |
Collapse
|
141
|
Bird CW, Barber MJ, Post HR, Jacquez B, Chavez GJ, Faturos NG, Valenzuela CF. Neonatal ethanol exposure triggers apoptosis in the murine retrosplenial cortex: Role of inhibition of NMDA receptor-driven action potential firing. Neuropharmacology 2019; 162:107837. [PMID: 31689422 DOI: 10.1016/j.neuropharm.2019.107837] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/07/2019] [Accepted: 10/30/2019] [Indexed: 02/07/2023]
Abstract
Exposure to ethanol during the last trimester equivalent of human pregnancy causes apoptotic neurodegeneration in the developing brain, an effect that is thought to be mediated, in part, by inhibition of NMDA receptors. However, NMDA receptors can rapidly adapt to the acute effects of ethanol and are ethanol resistant in some populations of developing neurons. Here, we characterized the effect of ethanol on NMDA and non-NMDA receptor-mediated synaptic transmission in the retrosplenial cortex (RSC), a brain region involved in the integration of different modalities of spatial information that is among the most sensitive regions to ethanol-induced neurodegeneration. A single 4-h exposure to ethanol vapor of 7-day-old transgenic mice that express the Venus fluorescent protein in interneurons triggered extensive apoptosis in the RSC. Slice electrophysiological recordings showed that bath-applied ethanol inhibits NMDA and non-NMDA receptor excitatory postsynaptic currents (EPSCs) in pyramidal neurons and interneurons; however, we found no evidence of acute tolerance development to this effect after the 4-h in-vivo ethanol vapor exposure. Acute bath application of ethanol reduced action potential firing evoked by synaptic stimulation to a greater extent in pyramidal neurons than interneurons. Submaximal inhibition of NMDA EPSCs, but not non-NMDA EPSCs, mimicked the acute effect of ethanol on synaptically-evoked action potential firing. These findings indicate that partial inhibition of NMDA receptors by ethanol has sizable effects on the excitability of glutamatergic and GABAergic neurons in the developing RSC, and suggest that positive allosteric modulators of these receptors could ameliorate ethanol intoxication-induced neurodegeneration during late stages of fetal development.
Collapse
Affiliation(s)
- Clark W Bird
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Megan J Barber
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Hilary R Post
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Belkis Jacquez
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Glenna J Chavez
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Nicholas G Faturos
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - C Fernando Valenzuela
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA.
| |
Collapse
|
142
|
Ramanoël S, York E, Le Petit M, Lagrené K, Habas C, Arleo A. Age-Related Differences in Functional and Structural Connectivity in the Spatial Navigation Brain Network. Front Neural Circuits 2019; 13:69. [PMID: 31736716 PMCID: PMC6828843 DOI: 10.3389/fncir.2019.00069] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 10/09/2019] [Indexed: 12/13/2022] Open
Abstract
Spatial navigation involves multiple cognitive processes including multisensory integration, visuospatial coding, memory, and decision-making. These functions are mediated by the interplay of cerebral structures that can be broadly separated into a posterior network (subserving visual and spatial processing) and an anterior network (dedicated to memory and navigation planning). Within these networks, areas such as the hippocampus (HC) are known to be affected by aging and to be associated with cognitive decline and navigation impairments. However, age-related changes in brain connectivity within the spatial navigation network remain to be investigated. For this purpose, we performed a neuroimaging study combining functional and structural connectivity analyses between cerebral regions involved in spatial navigation. Nineteen young (μ = 27 years, σ = 4.3; 10 F) and 22 older (μ = 73 years, σ = 4.1; 10 F) participants were examined in this study. Our analyses focused on the parahippocampal place area (PPA), the retrosplenial cortex (RSC), the occipital place area (OPA), and the projections into the visual cortex of central and peripheral visual fields, delineated from independent functional localizers. In addition, we segmented the HC and the medial prefrontal cortex (mPFC) from anatomical images. Our results show an age-related decrease in functional connectivity between low-visual areas and the HC, associated with an increase in functional connectivity between OPA and PPA in older participants compared to young subjects. Concerning the structural connectivity, we found age-related differences in white matter integrity within the navigation brain network, with the exception of the OPA. The OPA is known to be involved in egocentric navigation, as opposed to allocentric strategies which are more related to the hippocampal region. The increase in functional connectivity between the OPA and PPA may thus reflect a compensatory mechanism for the age-related alterations around the HC, favoring the use of the preserved structural network mediating egocentric navigation. Overall, these findings on age-related differences of functional and structural connectivity may help to elucidate the cerebral bases of spatial navigation deficits in healthy and pathological aging.
Collapse
Affiliation(s)
- Stephen Ramanoël
- Sorbonne Universités, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Elizabeth York
- Sorbonne Universités, INSERM, CNRS, Institut de la Vision, Paris, France.,Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Marine Le Petit
- Sorbonne Universités, INSERM, CNRS, Institut de la Vision, Paris, France.,Normandie Université, UNICAEN, PSL Université Paris, EPHE, INSERM, U1077, CHU de Caen, Neuropsychologie et Imagerie de la Mémoire Humaine, Caen, France
| | - Karine Lagrené
- Sorbonne Universités, INSERM, CNRS, Institut de la Vision, Paris, France
| | | | - Angelo Arleo
- Sorbonne Universités, INSERM, CNRS, Institut de la Vision, Paris, France
| |
Collapse
|
143
|
Changes in Resting-State Functional Connectivity Related to Freezing of Gait in Parkinson's Disease. Neuroscience 2019; 418:311-317. [PMID: 31479699 DOI: 10.1016/j.neuroscience.2019.08.042] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 07/18/2019] [Accepted: 08/22/2019] [Indexed: 11/22/2022]
Abstract
Freezing of gait (FOG) is a common motor symptom in Parkinson's disease (PD) thought to arise from the dysfunctional cortico-basal ganglia-thalamic circuity. The purpose of this study was to assess the changes in brain resting-state functional connectivity (rs-FC) of subcortical structures comprising the cortico-basal ganglia-thalamic circuity in individuals with PD with and without FOG. Resting-state functional magnetic resonance imaging was acquired in 27 individuals with idiopathic PD (14 with FOG and 13 without FOG). A seed-to-voxel analysis was performed with the seeds in the bilateral basal ganglia nuclei, thalamus, and pedunculopontine nucleus. Between-group differences in rs-FC revealed that the bilateral thalamus and globus pallidus external were significantly more connected with visual areas in PD with FOG compared to PD without FOG. In addition, PD with FOG had increased connectivity between the left putamen and retrosplenial cortex as well as with the cerebellum. Our findings suggest an increased connectivity at rest of subcortical and cortical regions involved in sensory and visuospatial processing that may be compensating for sensorimotor deficits in FOG. This increased connectivity may contribute to the hypothesized overload in the cortico-basal ganglia-thalamic circuity processing capacity, which may ultimately result in FOG occurrence.
Collapse
|
144
|
Holschneider DP, Givrad TK, Yang J, Stewart SB, Francis SR, Wang Z, Maarek J. Cerebral perfusion mapping during retrieval of spatial memory in rats. Behav Brain Res 2019; 375:112116. [PMID: 31377254 DOI: 10.1016/j.bbr.2019.112116] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 07/26/2019] [Accepted: 07/26/2019] [Indexed: 12/24/2022]
Abstract
Studies of brain functional activation during spatial navigation using electrophysiology and immediate-early gene responses have typically targeted a limited number of brain regions. Our study provides the first whole brain analysis of cerebral activation during retrieval of spatial memory in the freely-moving rat. Rats (LEARNERS) were trained in the Barnes maze, an allocentric spatial navigation task, while CONTROLS received passive exposure. After 19 days, functional brain mapping was performed during recall by bolus intravenous injection of [14C]-iodoantipyrine using a novel subcutaneous minipump triggered by remote activation. Regional cerebral blood flow (rCBF)-related tissue radioactivity was analyzed by statistical parametric mapping from autoradiographic images of the three-dimensionally reconstructed brains. Functional connectivity was examined between regions of the spatial navigation circuit through interregional correlation analysis. Significant rCBF increases were noted in LEARNERS compared to CONTROLS broadly across the spatial navigation circuit, including the hippocampus (anterior dorsal CA1, posterior ventral CA1-3), subiculum, thalamus, striatum, medial septum, cerebral cortex, with decreases noted in the mammillary nucleus, amygdala and insula. LEARNERS showed a significantly greater positive correlation of rCBF of the ventral hippocampus with retrosplenial, lateral orbital, parietal and primary visual cortex, and a significantly more negative correlation with the mammillary nucleus, amygdala, posterior entorhinal cortex, and anterior thalamic nucleus. The complex sensory component of the spatial navigation task was underscored by broad activation across visual, somatosensory, olfactory, auditory and vestibular circuits which was enhanced in LEARNERS. Brain mapping facilitated by an implantable minipump represents a powerful tool for evaluation of mammalian behaviors dependent on locomotion.
Collapse
Affiliation(s)
- D P Holschneider
- Dept. of Psychiatry and the Behavioral Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90089, United States; Dept. of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90089, United States; Viterbi School of Engineering, Dept. of Biomedical Engineering, Los Angeles, CA, 90033, United States.
| | - T K Givrad
- Viterbi School of Engineering, Dept. of Biomedical Engineering, Los Angeles, CA, 90033, United States
| | - J Yang
- Dept. of Psychiatry and the Behavioral Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90089, United States
| | - S B Stewart
- Dept. of Psychiatry and the Behavioral Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90089, United States
| | - S R Francis
- Dept. of Psychiatry and the Behavioral Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90089, United States
| | - Z Wang
- Dept. of Psychiatry and the Behavioral Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90089, United States
| | - Jmi Maarek
- Viterbi School of Engineering, Dept. of Biomedical Engineering, Los Angeles, CA, 90033, United States
| |
Collapse
|
145
|
Perry BAL, Mitchell AS. Considering the Evidence for Anterior and Laterodorsal Thalamic Nuclei as Higher Order Relays to Cortex. Front Mol Neurosci 2019; 12:167. [PMID: 31333412 PMCID: PMC6616498 DOI: 10.3389/fnmol.2019.00167] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Accepted: 06/17/2019] [Indexed: 12/25/2022] Open
Abstract
Our memories are essential in our daily lives. The frontal and cingulate cortices, hippocampal system and medial temporal lobes are key brain regions. In addition, severe amnesia also occurs after damage or dysfunction to the anterior thalamic nuclei; this subcortical thalamic hub is interconnected to these key cortical memory structures. Behavioral, anatomical, and physiological evidence across mammalian species has shown that interactions between the anterior thalamic nuclei, cortex and hippocampal formation are vital for spatial memory processing. Furthermore, the adjacent laterodorsal thalamic nucleus (LD), interconnected to the retrosplenial cortex (RSC) and visual system, also contributes to spatial memory in mammals. However, how these thalamic nuclei contribute to memory still remains largely unknown. Fortunately, our understanding of the importance of the thalamus in cognitive processes is being redefined, as widespread evidence challenges the established view of the thalamus as a passive relay of sensory and subcortical information to the cortex. In this review article, we examine whether the anterior thalamic nuclei and the adjacent LD are suitable candidates for "higher-order" thalamic nuclei, as defined by the Sherman and Guillery model. Rather than simply relaying information to cortex, "higher-order" thalamic nuclei have a prominent role in cognition, as they can regulate how areas of the cortex interact with one another. These considerations along with a review of the latest research will be used to suggest future studies that will clarify the contributions that the anterior and LD have in supporting cortical functions during cognitive processes.
Collapse
Affiliation(s)
- Brook A L Perry
- Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
| | - Anna S Mitchell
- Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
146
|
Xiang W, Li T, Gao T, Wang B. CREB down-regulation in the laterodorsal thalamic nucleus deteriorates memory consolidation in rats. Learn Mem 2019; 26:182-186. [PMID: 31092551 PMCID: PMC6529882 DOI: 10.1101/lm.049742.119] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Accepted: 04/19/2019] [Indexed: 11/26/2022]
Abstract
The laterodorsal thalamic nucleus (LD) is believed to play roles in learning and memory, especially spatial tasks. However, the molecular mechanism that underlies the cognitive process in the LD remains unclear and needs to be investigated. So far, there is plenty of evidence indicating that plasticity has been in some of the cortical or subcortical regions closely related to the LD, particularly stimulated by external learning tasks. Therefore, the present study aimed to test the hypothesis that similar effect exists in the LD. The transcription factor, cAMP-response element binding protein (CREB), works essentially in brain plasticity by tightly regulating the transcriptional level of memory-related target genes, and the increase of activated CREB (phosphorylated CREB, p-CREB) could facilitate memory consolidation. In this study, the siRNA against CREB was synthesized to down-regulate the CREB mRNA in the LD. After Morris water maze behavioral training, CREB siRNA rats exhibited a memory deficiency, significantly diverging from the control groups. In subsequent detection, the expression of p-CREB of these memory impairment rats attenuated. These results support the hypothesis that CREB-mediated plasticity contributes to memory facilitation and consolidation in the LD.
Collapse
Affiliation(s)
- Wenxi Xiang
- Department of Anatomy, College of Basic Medicine, Dalian Medical University, Dalian 116044, China
| | - Tingting Li
- Department of Anatomy, College of Basic Medicine, Dalian Medical University, Dalian 116044, China
| | - Tianhang Gao
- Department of Anatomy, College of Basic Medicine, Dalian Medical University, Dalian 116044, China
| | - Bin Wang
- Department of Anatomy, College of Basic Medicine, Dalian Medical University, Dalian 116044, China
| |
Collapse
|
147
|
Howett D, Castegnaro A, Krzywicka K, Hagman J, Marchment D, Henson R, Rio M, King JA, Burgess N, Chan D. Differentiation of mild cognitive impairment using an entorhinal cortex-based test of virtual reality navigation. Brain 2019; 142:1751-1766. [PMID: 31121601 PMCID: PMC6536917 DOI: 10.1093/brain/awz116] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 02/15/2019] [Accepted: 02/27/2019] [Indexed: 12/19/2022] Open
Abstract
The entorhinal cortex is one of the first regions to exhibit neurodegeneration in Alzheimer's disease, and as such identification of entorhinal cortex dysfunction may aid detection of the disease in its earliest stages. Extensive evidence demonstrates that the entorhinal cortex is critically implicated in navigation underpinned by the firing of spatially modulated neurons. This study tested the hypothesis that entorhinal-based navigation is impaired in pre-dementia Alzheimer's disease. Forty-five patients with mild cognitive impairment (26 with CSF Alzheimer's disease biomarker data: 12 biomarker-positive and 14 biomarker-negative) and 41 healthy control participants undertook an immersive virtual reality path integration test, as a measure of entorhinal-based navigation. Behavioural performance was correlated with MRI measures of entorhinal cortex volume, and the classification accuracy of the path integration task was compared with a battery of cognitive tests considered sensitive and specific for early Alzheimer's disease. Biomarker-positive patients exhibited larger errors in the navigation task than biomarker-negative patients, whose performance did not significantly differ from controls participants. Path-integration performance correlated with Alzheimer's disease molecular pathology, with levels of CSF amyloid-β and total tau contributing independently to distance error. Path integration errors were negatively correlated with the volumes of the total entorhinal cortex and of its posteromedial subdivision. The path integration task demonstrated higher diagnostic sensitivity and specificity for differentiating biomarker positive versus negative patients (area under the curve = 0.90) than was achieved by the best of the cognitive tests (area under the curve = 0.57). This study demonstrates that an entorhinal cortex-based virtual reality navigation task can differentiate patients with mild cognitive impairment at low and high risk of developing dementia, with classification accuracy superior to reference cognitive tests considered to be highly sensitive to early Alzheimer's disease. This study provides evidence that navigation tasks may aid early diagnosis of Alzheimer's disease, and the basis of this in animal cellular and behavioural studies provides the opportunity to answer the unmet need for translatable outcome measures for comparing treatment effect across preclinical and clinical trial phases of future anti-Alzheimer's drugs.
Collapse
Affiliation(s)
- David Howett
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Andrea Castegnaro
- Institute of Cognitive Neuroscience, University College London, London, UK
- Department of Electrical Engineering, University College London, London, UK
| | - Katarzyna Krzywicka
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Johanna Hagman
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Deepti Marchment
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Richard Henson
- MRC Cognition and Brain Sciences Unit, and Department of Psychiatry, University of Cambridge, UK
| | - Miguel Rio
- Department of Electrical Engineering, University College London, London, UK
| | - John A King
- Department of Clinical, Educational and Health Psychology, University College London, London, UK
| | - Neil Burgess
- Institute of Cognitive Neuroscience, University College London, London, UK
| | - Dennis Chan
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| |
Collapse
|
148
|
Cooper RA, Ritchey M. Cortico-hippocampal network connections support the multidimensional quality of episodic memory. eLife 2019; 8:45591. [PMID: 30900990 PMCID: PMC6450667 DOI: 10.7554/elife.45591] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 03/22/2019] [Indexed: 12/16/2022] Open
Abstract
Episodic memories reflect a bound representation of multimodal features that can be reinstated with varying precision. Yet little is known about how brain networks involved in memory, including the hippocampus and posterior-medial (PM) and anterior-temporal (AT) systems, interact to support the quality and content of recollection. Participants learned color, spatial, and emotion associations of objects, later reconstructing the visual features using a continuous color spectrum and 360-degree panorama scenes. Behaviorally, dependencies in memory were observed for the gist but not precision of event associations. Supporting this integration, hippocampus, AT, and PM regions showed increased connectivity and reduced modularity during retrieval compared to encoding. These inter-network connections tracked a multidimensional, objective measure of memory quality. Moreover, distinct patterns of connectivity tracked item color and spatial memory precision. These findings demonstrate how hippocampal-cortical connections reconfigure during episodic retrieval, and how such dynamic interactions might flexibly support the multidimensional quality of remembered events.
Collapse
Affiliation(s)
- Rose A Cooper
- Department of Psychology, Boston College, Boston, United States
| | - Maureen Ritchey
- Department of Psychology, Boston College, Boston, United States
| |
Collapse
|
149
|
Nelson AJD, Powell AL, Kinnavane L, Aggleton JP. Anterior thalamic nuclei, but not retrosplenial cortex, lesions abolish latent inhibition in rats. Behav Neurosci 2018; 132:378-387. [PMID: 30321027 PMCID: PMC6188468 DOI: 10.1037/bne0000265] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The present study examined the effects of excitotoxic lesions in 2 closely related structures, the anterior thalamic nuclei and the retrosplenial cortex, on latent inhibition. Latent inhibition occurs when nonreinforced preexposure to a stimulus retards the subsequent acquisition of conditioned responding to that stimulus. Latent inhibition was assessed in a within-subject procedure with auditory stimuli and food reinforcement. As expected, sham-operated animals were slower to acquire conditioned responding to a stimulus that had previously been experienced without consequence, relative to a non-preexposed stimulus. This latent inhibition effect was absent in rats with excitotoxic lesions in the anterior thalamic nuclei, as these animals conditioned to both stimuli at equivalent rates. The retrosplenial lesions appeared to spare latent inhibition, as these animals displayed a robust stimulus preexposure effect. The demonstration here that anterior thalamic nuclei lesions abolish latent inhibition is consistent with emerging evidence of the importance of these thalamic nuclei for attentional control. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Collapse
|
150
|
A Posterior-Anterior Distinction between Scene Perception and Scene Construction in Human Medial Parietal Cortex. J Neurosci 2018; 39:705-717. [PMID: 30504281 DOI: 10.1523/jneurosci.1219-18.2018] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 08/24/2018] [Accepted: 10/15/2018] [Indexed: 12/14/2022] Open
Abstract
Human retrosplenial complex (RSC), located in medial parietal cortex, has been implicated in numerous cognitive functions, including scene perception, spatial navigation, and autobiographical memory retrieval. Recently, a posterior-anterior distinction within RSC was proposed, such that posterior aspects process scene-related visual information (constituting a medial place area [MPA]), whereas anterior aspects process information that is vividly retrieved from memory, thereby supporting remembering and potentially navigation. Here, we tested this proposed distinction in a single group of participants (both male and female) using fMRI with both perceptual and mnemonic tasks. After completing a resting-state scan, participants performed a task that required constructing scenes from memory and completed a scene selectivity localizer task. We tested directly perceptual and mnemonic responses in MPA and an anterior, connectivity-defined region (CON), which showed strong functional connectivity with anterior parahippocampal place area. A double dissociation was observed, such that CON was more strongly activated during scene construction than was MPA, whereas MPA was more perceptually responsive than CON. Further, peak responses from the scene construction task were anterior to perceptual peaks in all but 1 participant and hemisphere. Finally, through analyses of the posterior-anterior response profiles, we identify the fundus of the parieto-occipital sulcus as a potential location for the crossover from perceptual to mnemonic representations and highlight a potential left-hemisphere advantage for mnemonic representations. Collectively, our results support a distinction between posterior and anterior aspects of the RSC, suggesting that more specific functional-anatomic terms should be used in its place in future work.SIGNIFICANCE STATEMENT The retrosplenial complex (RSC) has been implicated in vision, spatial cognition, and memory. We previously speculated on a potential posterior-anterior distinction within RSC for scene perception and memory-based scene construction/navigation. Here, we tested this distinction through a combination of resting-state, perceptual, and mnemonic task data. Consistent with our predictions, we demonstrate that perceptual responses peak consistently posterior of those elicited by memory-based scene construction within the broader RSC. Further, we highlight (1) the fundus of the parieto-occipital sulcus as a landmark for the transition between these representations, (2) the anterior bank of parieto-occipital sulcus as the point of maximal separation between these representations, and (3) identify a potential hemispheric asymmetry in mnemonic representations. These data support functional dissociations within RSC.
Collapse
|