101
|
Histone chaperone activity of Fanconi anemia proteins, FANCD2 and FANCI, is required for DNA crosslink repair. EMBO J 2012; 31:3524-36. [PMID: 22828868 DOI: 10.1038/emboj.2012.197] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2012] [Accepted: 07/03/2012] [Indexed: 01/10/2023] Open
Abstract
Fanconi anaemia (FA) is a rare hereditary disorder characterized by genomic instability and cancer susceptibility. A key FA protein, FANCD2, is targeted to chromatin with its partner, FANCI, and plays a critical role in DNA crosslink repair. However, the molecular function of chromatin-bound FANCD2-FANCI is still poorly understood. In the present study, we found that FANCD2 possesses nucleosome-assembly activity in vitro. The mobility of histone H3 was reduced in FANCD2-knockdown cells following treatment with an interstrand DNA crosslinker, mitomycin C. Furthermore, cells harbouring FANCD2 mutations that were defective in nucleosome assembly displayed impaired survival upon cisplatin treatment. Although FANCI by itself lacked nucleosome-assembly activity, it significantly stimulated FANCD2-mediated nucleosome assembly. These observations suggest that FANCD2-FANCI may regulate chromatin dynamics during DNA repair.
Collapse
|
102
|
Bleda M, Medina I, Alonso R, De Maria A, Salavert F, Dopazo J. Inferring the regulatory network behind a gene expression experiment. Nucleic Acids Res 2012; 40:W168-72. [PMID: 22693210 PMCID: PMC3394273 DOI: 10.1093/nar/gks573] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Transcription factors (TFs) and miRNAs are the most important dynamic regulators in the control of gene expression in multicellular organisms. These regulatory elements play crucial roles in development, cell cycling and cell signaling, and they have also been associated with many diseases. The Regulatory Network Analysis Tool (RENATO) web server makes the exploration of regulatory networks easy, enabling a better understanding of functional modularity and network integrity under specific perturbations. RENATO is suitable for the analysis of the result of expression profiling experiments. The program analyses lists of genes and search for the regulators compatible with its activation or deactivation. Tests of single enrichment or gene set enrichment allow the selection of the subset of TFs or miRNAs significantly involved in the regulation of the query genes. RENATO also offers an interactive advanced graphical interface that allows exploring the regulatory network found.RENATO is available at: http://renato.bioinfo.cipf.es/.
Collapse
Affiliation(s)
- Marta Bleda
- Department of Bioinformatics and Genomics, Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain
| | | | | | | | | | | |
Collapse
|
103
|
Cuccarolo P, Viaggi S, Degan P. New insights into redox response modulation in Fanconi's anemia cells by hydrogen peroxide and glutathione depletors. FEBS J 2012; 279:2479-94. [PMID: 22578062 DOI: 10.1111/j.1742-4658.2012.08629.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Fanconi's anemia (FA) patients face severe pathological consequences. Bone marrow failure, the major cause of death in FA, accounting for as much as 80-90% of FA mortality, appears to be significantly linked to excessive apoptosis of hematopoietic cells induced by oxidative stress. However, 20-25% of FA patients develop malignancies of myeloid origin. A survival strategy for bone marrow and hematopoietic cells under selective pressure evidently exists. This study reports that lymphoblastoid cell lines derived from two FA patients displayed significant resistance to oxidative stress induced by treatments with H(2) O(2) and various glutathione (GSH) inhibitors that induce production of reactive oxygen species, GSH depletion and mitochondrial membrane depolarization. Among the various GSH inhibitors employed, FA cells appear particularly resistant to menadione (5 μm) and ethacrynic acid (ETA, 50 μm), two drugs that specifically target mitochondria. Even after pre-treatment with buthionine sulfoximine, a GSH synthesis inhibitor that induces enhanced induction of reactive oxygen species, FA cells maintain significant resistance to these drugs. These data suggest that the resistance to oxidative stress and the altered mitochondrial and metabolic functionality found in the FA mutant cells used in this study may indicate the survival strategy that is adopted in FA cells undergoing transformation. The study of redox and mitochondria regulation in FA may be of assistance in diagnosis of the disease and in the care of patients.
Collapse
Affiliation(s)
- Paola Cuccarolo
- Department of Epidemiology, Prevention and Special Functions, Istituto di Ricovero e Cura a Carattere Scientifico Azienda Ospedaliera Universitaria San Martino-Istituto Scientifico Tumori-Istituto Nazionale per la Ricerca sul Cancro, Genova, Italy
| | | | | |
Collapse
|
104
|
Disrupted Signaling through the Fanconi Anemia Pathway Leads to Dysfunctional Hematopoietic Stem Cell Biology: Underlying Mechanisms and Potential Therapeutic Strategies. Anemia 2012; 2012:265790. [PMID: 22675615 PMCID: PMC3366203 DOI: 10.1155/2012/265790] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Accepted: 03/13/2012] [Indexed: 12/31/2022] Open
Abstract
Fanconi anemia (FA) is the most common inherited bone marrow failure syndrome. FA patients suffer to varying degrees from a heterogeneous range of developmental defects and, in addition, have an increased likelihood of developing cancer. Almost all FA patients develop a severe, progressive bone marrow failure syndrome, which impacts upon the production of all hematopoietic lineages and, hence, is thought to be driven by a defect at the level of the hematopoietic stem cell (HSC). This hypothesis would also correlate with the very high incidence of MDS and AML that is observed in FA patients. In this paper, we discuss the evidence that supports the role of dysfunctional HSC biology in driving the etiology of the disease. Furthermore, we consider the different model systems currently available to study the biology of cells defective in the FA signaling pathway and how they are informative in terms of identifying the physiologic mediators of HSC depletion and dissecting their putative mechanism of action. Finally, we ask whether the insights gained using such disease models can be translated into potential novel therapeutic strategies for the treatment of the hematologic disorders in FA patients.
Collapse
|
105
|
Abstract
Prevention and repair of DNA damage is essential for maintenance of genomic stability and cell survival. DNA replication during S-phase can be a source of DNA damage if endogenous or exogenous stresses impair the progression of replication forks. It has become increasingly clear that DNA-damage-response pathways do not only respond to the presence of damaged DNA, but also modulate DNA replication dynamics to prevent DNA damage formation during S-phase. Such observations may help explain the developmental defects or cancer predisposition caused by mutations in DNA-damage-response genes. The present review focuses on molecular mechanisms by which DNA-damage-response pathways control and promote replication dynamics in vertebrate cells. In particular, DNA damage pathways contribute to proper replication by regulating replication initiation, stabilizing transiently stalled forks, promoting replication restart and facilitating fork movement on difficult-to-replicate templates. If replication fork progression fails to be rescued, this may lead to DNA damage and genomic instability via nuclease processing of aberrant fork structures or incomplete sister chromatid separation during mitosis.
Collapse
|
106
|
Monoubiquitination-dependent chromatin loading of FancD2 in silkworms, a species lacking the FA core complex. Gene 2012; 501:180-7. [PMID: 22513077 DOI: 10.1016/j.gene.2012.03.071] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Revised: 03/28/2012] [Accepted: 03/30/2012] [Indexed: 11/21/2022]
Abstract
The Fanconi anemia (FA) pathway is required for activation and operation of the DNA interstrand cross-link (ICL) repair pathway, although the precise mechanism of the FA pathway remains largely unknown. A critical step in the FA pathway is the monoubiquitination of FANCD2 catalyzed by a FA core complex. This modification appears to allow FANCD2 to coordinate ICL repair with other DNA repair proteins on chromatin. Silkworm, Bombyx mori, lacks apparent homologues of the FA core complex. However, BmFancD2 and BmFancI, the putative substrates of the complex, and BmFancL, the putative catalytic E3 ubiquitin ligase, are conserved. Here, we report that the silkworm FancD2 is monoubiquitinated depending on FancI and FancL, and stabilized on chromatin, following MMC treatment. A substitution of BmFancD2 at lysine 519 to arginine abolishes the monoubiquitination, but not the interaction between the FancD2 and FancI. In addition, we demonstrated that depletion of BmFancD2, BmFancI or BmFancL had effects on cell proliferation in the presence of MMC. These results suggest that the FA pathway in B. mori works in the same manner as that in vertebrates.
Collapse
|
107
|
Hadiji Mseddi S, Kammoun L, Bellaaj H, Ben Youssef Y, Aissaoui L, Torjemane L, Telmoudi F, Amouri A, Elghezal H, Ouederni M, Ben Abdennebi Y, Hammemi S, Ben Othmen T, Ben Abid H, Bejaoui M, Abdelhak S, Hachicha M, Dellagi K, Frikha M. [Creation and report of the Tunisian Fanconi Anemia Registry (TFAR)]. Arch Pediatr 2012; 19:467-75. [PMID: 22480464 DOI: 10.1016/j.arcped.2012.02.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Revised: 01/04/2012] [Accepted: 02/24/2012] [Indexed: 11/17/2022]
Abstract
INTRODUCTION Fanconi anemia (FA) is a genetically and phenotypically heterogeneous inherited disease. Many groups have established FA registries. In Tunisia, in collaboration with the Tunisian Fanconi Anemia Study Group (TFASG), we set up the Tunisian Fanconi Anemia Registry (TFAR). PATIENTS AND METHODS We contacted all hematology and pediatrics departments to include their FA patients diagnosed between January 1983 and December 2008. The registry is available on the TFASG web site (www.fanconi-tunisie.net). RESULTS Sorting the files brought out 142 patients belonging to 118 families. The mean age at diagnosis was 11 years. There was consanguinity in 86%, malformative syndrome in 91%, and pancytopenia at diagnosis in 69%. Of 28 patients, 95% belonged to the FANCA group. Androgen treatment was given in 109 cases and genoidentical bone marrow transplantation (BMT) in 27 patients. The diagnosis of a myelodysplastic syndrome was retained in 4%, acute leukemia in 6%, and a solid tumor in 2%. The median overall survival time in all patients is 17 years 5 months; it is significantly better in patients having received allografts (p=0.01). CONCLUSION FA seems frequent in Tunisia, which is in part explained by the high consanguinity and endogamy in this country. Hematologic impairment is still the most frequent revealing circumstance of the disease. It is often severe or moderate and requires androgen treatment or bone marrow transplantation. BMT should be proposed to all patients with an HLA-compatible donor.
Collapse
Affiliation(s)
- S Hadiji Mseddi
- Service hématologie, hôpital Hédi Chaker, 3029 Sfax, Tunisie.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
108
|
Pennington KP, Swisher EM. Hereditary ovarian cancer: beyond the usual suspects. Gynecol Oncol 2012; 124:347-53. [PMID: 22264603 DOI: 10.1016/j.ygyno.2011.12.415] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2011] [Accepted: 11/29/2011] [Indexed: 01/08/2023]
Abstract
In the past, hereditary ovarian carcinoma was attributed almost entirely to mutations in BRCA1 and BRCA2, with a much smaller contribution from mutations in DNA mismatch repair genes. Recently, three new ovarian cancer susceptibility genes have been identified: RAD51C, RAD51D, and BRIP1. In addition, germline mutations in women with ovarian carcinoma have been recently identified in many of the previously identified breast cancer genes in the Fanconi anemia (FA)-BRCA pathway. While mutations in genes other than BRCA1 and BRCA2 are each individually rare, together they make up a significant proportion of cases. With at least 16 genes implicated in hereditary ovarian cancer to date, comprehensive testing for ovarian cancer risk will require assessment of many genes. As the cost of genomic sequencing continues to fall, the practice of evaluating cancer susceptibility one gene at a time is rapidly becoming obsolete. New advances in genomic technologies will likely accelerate the discovery of additional cancer susceptibility genes and increase the feasibility of comprehensive evaluation of multiple genes simultaneously at low cost. Improved recognition of inherited risk will identify individuals who are candidates for targeted prevention. In addition, identifying inherited mutations in a variety of FA-BRCA pathway genes may aid in identifying individuals who will selectively benefit from PARP inhibitors.
Collapse
Affiliation(s)
- Kathryn P Pennington
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Washington School of Medicine, Seattle, WA 98195, USA
| | | |
Collapse
|
109
|
Fanconi anemia (FA) binding protein FAAP20 stabilizes FA complementation group A (FANCA) and participates in interstrand cross-link repair. Proc Natl Acad Sci U S A 2012; 109:4491-6. [PMID: 22396592 DOI: 10.1073/pnas.1118720109] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Fanconi anemia (FA) pathway participates in interstrand cross-link (ICL) repair and the maintenance of genomic stability. The FA core complex consists of eight FA proteins and two Fanconi anemia-associated proteins (FAAP24 and FAAP100). The FA core complex has ubiquitin ligase activity responsible for monoubiquitination of the FANCI-FANCD2 (ID) complex, which in turn initiates a cascade of biochemical events that allow processing and removal of cross-linked DNA and thereby promotes cell survival following DNA damage. Here, we report the identification of a unique component of the FA core complex, namely, FAAP20, which contains a RAD18-like ubiquitin-binding zinc-finger domain. Our data suggest that FAAP20 promotes the functional integrity of the FA core complex via its direct interaction with the FA gene product, FANCA. Indeed, somatic knockout cells devoid of FAAP20 displayed the hallmarks of FA cells, including hypersensitivity to DNA cross-linking agents, chromosome aberrations, and reduced FANCD2 monoubiquitination. Taking these data together, our study indicates that FAAP20 is an important player involved in the FA pathway.
Collapse
|
110
|
Umaña LA, Magoulas P, Bi W, Bacino CA. A male newborn with VACTERL association and Fanconi anemia with a FANCB deletion detected by array comparative genomic hybridization (aCGH). Am J Med Genet A 2011; 155A:3071-4. [PMID: 22052692 DOI: 10.1002/ajmg.a.34296] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2011] [Accepted: 08/15/2011] [Indexed: 11/05/2022]
Abstract
We report on a male newborn with multiple congenital abnormalities consistent with the diagnosis of VACTERL association (vertebral, anal, cardiac, tracheo-esophageal fistula, renal, and limb anomalies), who had Fanconi anemia (complementation group B) recognized by the detection of a deletion in chromosome Xp22.2 using an oligonucleotide array. The diagnosis of Fanconi anemia was confirmed by increased chromosomal breakage abnormalities observed in cultured cells that were treated with cross-linking agents. This is the first report in the literature of Fanconi anemia complementation group B detected by oligonucleotide array testing postnatally.
Collapse
Affiliation(s)
- Luis A Umaña
- Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, Texas, USA
| | | | | | | |
Collapse
|
111
|
Ramaekers CH, van den Beucken T, Meng A, Kassam S, Thoms J, Bristow RG, Wouters BG. Hypoxia disrupts the Fanconi anemia pathway and sensitizes cells to chemotherapy through regulation of UBE2T. Radiother Oncol 2011; 101:190-7. [DOI: 10.1016/j.radonc.2011.05.059] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Revised: 05/25/2011] [Accepted: 05/26/2011] [Indexed: 11/25/2022]
|
112
|
Abstract
An animal model supporting human erythropoiesis will be highly valuable for assessing the biologic function of human RBCs under physiologic and disease settings, and for evaluating protocols of in vitro RBC differentiation. Herein, we analyzed human RBC reconstitution in NOD/SCID or NOD/SCID/γc(-/-) mice that were transplanted with human CD34+ fetal liver cells and fetal thymic tissue. Although a large number of human CD45- CD71+ nucleated immature erythroid cells were detected in the bone marrow, human RBCs were undetectable in the blood of these mice. Human RBCs became detectable in blood after macrophage depletion but disappeared again after withdrawal of treatment. Furthermore, treatment with human erythropoietin and IL-3 significantly increased human RBC reconstitution in macrophage-depleted, but not control, humanized mice. Significantly more rapid rejection of human RBCs than CD47-deficient mouse RBCs indicates that mechanisms other than insufficient CD47-SIRPα signaling are involved in human RBC xenorejection in mice. All considered, our data demonstrate that human RBCs are highly susceptible to rejection by macrophages in immunodeficient mice. Thus, strategies for preventing human RBC rejection by macrophages are required for using immunodeficient mice as an in vivo model to study human erythropoiesis and RBC function.
Collapse
|
113
|
Valeri A, Martínez S, Casado JA, Bueren JA. Fanconi anaemia: from a monogenic disease to sporadic cancer. Clin Transl Oncol 2011; 13:215-21. [PMID: 21493181 DOI: 10.1007/s12094-011-0645-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The dissection of the molecular pathways participating in genetic instability disorders has rendered invaluable information about the mechanisms of cancer pathogenesis and progression, and is offering a unique opportunity to establish targeted anticancer therapies. Fanconi anaemia (FA) is a paradigm of cancer-prone inherited monogenic disorders. Moreover, accumulated evidence indicates that genetic and epigenetic alterations in FA genes can also play an important role in sporadic cancer in the general population. Here, we summarise current progress in the understanding of the molecular biology of FA and review the principal mechanisms accounting for a disrupted FA pathway in sporadic cancer. Additionally, we discuss the impact of these findings in the development of new anticancer therapies, particularly with DNA interstrand crosslinkers and with new inhibitors of the FA and/or alternative DNA repair pathways.
Collapse
Affiliation(s)
- Antonio Valeri
- Hematopoiesis and Gene Therapy Division, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT) y Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | | | | | | |
Collapse
|
114
|
Abstract
Deinococcus radiodurans is a robust bacterium best known for its capacity to repair massive DNA damage efficiently and accurately. It is extremely resistant to many DNA-damaging agents, including ionizing radiation and UV radiation (100 to 295 nm), desiccation, and mitomycin C, which induce oxidative damage not only to DNA but also to all cellular macromolecules via the production of reactive oxygen species. The extreme resilience of D. radiodurans to oxidative stress is imparted synergistically by an efficient protection of proteins against oxidative stress and an efficient DNA repair mechanism, enhanced by functional redundancies in both systems. D. radiodurans assets for the prevention of and recovery from oxidative stress are extensively reviewed here. Radiation- and desiccation-resistant bacteria such as D. radiodurans have substantially lower protein oxidation levels than do sensitive bacteria but have similar yields of DNA double-strand breaks. These findings challenge the concept of DNA as the primary target of radiation toxicity while advancing protein damage, and the protection of proteins against oxidative damage, as a new paradigm of radiation toxicity and survival. The protection of DNA repair and other proteins against oxidative damage is imparted by enzymatic and nonenzymatic antioxidant defense systems dominated by divalent manganese complexes. Given that oxidative stress caused by the accumulation of reactive oxygen species is associated with aging and cancer, a comprehensive outlook on D. radiodurans strategies of combating oxidative stress may open new avenues for antiaging and anticancer treatments. The study of the antioxidation protection in D. radiodurans is therefore of considerable potential interest for medicine and public health.
Collapse
|
115
|
Myers KC, Bleesing JJ, Davies SM, Zhang X, Martin LJ, Mueller R, Harris RE, Filipovich AH, Kovacic MB, Wells SI, Mehta PA. Impaired immune function in children with Fanconi anaemia. Br J Haematol 2011; 154:234-40. [PMID: 21542827 PMCID: PMC5922775 DOI: 10.1111/j.1365-2141.2011.08721.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Fanconi anaemia is an autosomal recessive or X-linked disease characterized by progressive bone marrow failure, variable congenital abnormalities and a predisposition to malignancy. Reports of immune function in this population are limited, and include only specific areas of immune performance, showing variable defects. We report a cross-sectional immunological assessment in 10 children with FA. Absolute numbers of B cells and natural killer (NK) cells were reduced compared to controls (P = 0·048 and P = 0·0002, respectively), while absolute number of T cells were within normal range. Perforin and granzyme content of NK cells was reduced (P < 0·00001 and P = 0·0057, respectively) along with the NK cell cytotoxicity (P < 0·001). Antigen proliferation in response to tetanus was decreased (P = 0·008) while responses to candida and phytohaemagglutinin were not. Cytotoxic T cell function was also reduced (P < 0·0001). Immunoglobulin G levels were normal in those evaluated. Our series represents the first attempt at a comprehensive quantitative and functional evaluation of immune function in this rare group of patients and demonstrates a significant deficit in the NK cell compartment, a novel quantitative B cell defect, along with abnormal cytotoxic function. These findings may be especially relevant in this patient population with known predisposition to DNA damage and malignancy.
Collapse
Affiliation(s)
- Kasiani C Myers
- Divisions of Bone Marrow Transplant and Immune Deficiency, Department of Pediatrics, Cincinnati Children's Hospital and Medical Center, Cincinnati, OH 45229, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
116
|
A comprehensive functional characterization of BRCA2 variants associated with Fanconi anemia using mouse ES cell-based assay. Blood 2011; 118:2430-42. [PMID: 21719596 DOI: 10.1182/blood-2010-12-324541] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Biallelic mutations in the human breast cancer susceptibility gene, BRCA2, are associated with Fanconi anemia, implying that some persons who inherit 2 deleterious variants of BRCA2 are able to survive even though it is well established that BRCA2 is indispensable for viability in mice. One such variant, IVS7 + 2T > G, results in premature protein truncation because of skipping of exon 7. Surprisingly, the persons who are either IVS7 + 2T > G homozygous or compound heterozygous are born alive but die of malignancy associated with Fanconi anemia. Using a mouse embryonic stem cell-based functional assay, we found that the IVS7 + 2T > G allele produces an alternatively spliced transcript lacking exons 4-7, encoding an in-frame BRCA2 protein with an internal deletion of 105 amino acids (BRCA2(Δ105)). We demonstrate that BRCA2(Δ105) is proficient in homologous recombination-mediated DNA repair as measured by different functional assays. Evaluation of this transcript in normal and leukemia cells suggests that BRCA2(Δ105) may contribute to the viability of persons inheriting this mutation. In this study, we have also characterized 5 other BRCA2 variants and found 3 of these (p.L2510P, p.R2336H, and p.W2626C) to be deleterious and 2 (p.I2490T and p.K2729N) probably neutral. Such studies are important to understand the functional significance of unclassified BRCA2 variants.
Collapse
|
117
|
Abstract
Abstract
Reactive oxygen species (ROS) are a heterogeneous group of molecules that are generated by mature myeloid cells during innate immune responses, and are also implicated in normal intracellular signaling. Excessive production of ROS (and/or a deficiency in antioxidant pathways) can lead to oxidative stress, a state that has been observed in several hematopoietic malignancies including acute and chronic myeloid leukemias (AML and CML). Currently it is unclear what the cause of oxidative stress might be and whether oxidative stress contributes to the development, progression, or maintenance of these diseases. This article reviews the current evidence suggesting a role for ROS both in normal hematopoiesis and in myeloid leukemogenesis, and discusses the usefulness of therapeutically targeting oxidative stress in myeloid malignancy.
Collapse
|
118
|
Click ES, Cox B, Olson SB, Grompe M, Akkari Y, Moreau LA, Shimamura A, Sternen DL, Liu YJ, Leppig KA, Matthews DC, Parisi MA. Fanconi anemia-like presentation in an infant with constitutional deletion of 21q including the RUNX1 gene. Am J Med Genet A 2011; 155A:1673-9. [DOI: 10.1002/ajmg.a.34024] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2011] [Accepted: 02/24/2011] [Indexed: 11/09/2022]
|
119
|
Mason JM, Sekiguchi JM. Snm1B/Apollo functions in the Fanconi anemia pathway in response to DNA interstrand crosslinks. Hum Mol Genet 2011; 20:2549-59. [PMID: 21478198 DOI: 10.1093/hmg/ddr153] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Fanconi anemia (FA) is an inherited chromosomal instability disorder characterized by childhood aplastic anemia, developmental abnormalities and cancer predisposition. One of the hallmark phenotypes of FA is cellular hypersensitivity to agents that induce DNA interstrand crosslinks (ICLs), such as mitomycin C (MMC). FA is caused by mutation in at least 14 genes which function in the resolution of ICLs during replication. The FA proteins act within the context of a protein network in coordination with multiple repair factors that function in distinct pathways. SNM1B/Apollo is a member of metallo-β-lactamase/βCASP family of nucleases and has been demonstrated to function in ICL repair. However, the relationship between SNM1B and the FA protein network is not known. In the current study, we establish that SNM1B functions epistatically to the central FA factor, FANCD2, in cellular survival after ICL damage and homology-directed repair of DNA double-strand breaks. We also demonstrate that MMC-induced chromosomal anomalies are increased in SNM1B-depleted cells, and this phenotype is not further exacerbated upon depletion of either FANCD2 or another key FA protein, FANCI. Furthermore, we find that SNM1B is required for proper localization of critical repair factors, including FANCD2, BRCA1 and RAD51, to MMC-induced subnuclear foci. Our findings demonstrate that SNM1B functions within the FA pathway during the repair of ICL damage.
Collapse
Affiliation(s)
- Jennifer M Mason
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | | |
Collapse
|
120
|
Hucl T, Gallmeier E. DNA repair: exploiting the Fanconi anemia pathway as a potential therapeutic target. Physiol Res 2011; 60:453-65. [PMID: 21401292 DOI: 10.33549/physiolres.932115] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
DNA repair is an active cellular process to respond to constant DNA damage caused by metabolic processes and environmental factors. Since the outcome of DNA damage is generally adverse and long term effects may contribute to oncogenesis, cells have developed a variety of DNA repair mechanisms, which operate depending on the type of DNA damage inflicted. At least 15 Fanconi anemia (FA) proteins interact in a common pathway involved in homologous recombination. Inherited homozygous mutations in any of these FA genes cause a rare disease, Fanconi anemia, characterized by congenital abnormalities, progressive bone-marrow failure and cancer susceptibility. Heterozygous germline FA mutations predispose to various types of cancer. In addition, somatic FA mutations have been identified in diverse cancer types. Evidence exists that cells deficient in the FA pathway become dependent on alternative pathways for survival. Additional inhibition of such alternative pathways is thus expected to result in cell death, creating a relationship of synthetic lethality. Identifying these relationships can reveal yet unknown mechanisms of DNA repair and new targets for therapy.
Collapse
Affiliation(s)
- T Hucl
- Department of Gastroenterology and Hepatology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic.
| | | |
Collapse
|
121
|
Leung M, Rosen D, Fields S, Cesano A, Budman DR. Poly(ADP-ribose) polymerase-1 inhibition: preclinical and clinical development of synthetic lethality. Mol Med 2011; 17:854-62. [PMID: 21424107 DOI: 10.2119/molmed.2010.00240] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Accepted: 03/10/2011] [Indexed: 12/17/2022] Open
Abstract
The hereditary forms of breast cancer identified by BRCA1 and BRCA2 genes have a defect in homologous DNA repair and demonstrate a dependence on alternate DNA repair processes by base excision repair, which requires poly(ADP-ribose) polymerase 1 (PARP-1). siRNA and deletion mutations demonstrate that interference with PARP-1 function results in enhanced cell death when the malignancy has a defect in homologous recombination. These findings resulted in a plethora of agents in clinical trials that interfere with DNA repair, and these agents offer the potential of being more selective in their effects than classic chemotherapeutic drugs. An electronic search of the National Library of Medicine for published articles written in English used the terms "PARP inhibitors" and "breast cancer" to find prospective, retrospective and review articles. Additional searches were done for articles dealing with mechanism of action. A total of 152 articles dealing with breast cancer and PARP inhibition were identified. PARP inhibition not only affects nonhomologous repair, but also has several other nongenomic functions. Mutational resistance to these agents was seen in preclinical studies. To date, PARP-1 inhibitors were shown to enhance cytotoxic effects of some chemotherapy agents. This new class of agents may offer more therapeutic specificity by exploiting a DNA repair defect seen in some human tumors with initial clinical trials demonstrating antitumor activity. Although PARP inhibitors may offer a therapeutic option for selected malignancies, the long-term effects of these agents have not yet been defined.
Collapse
Affiliation(s)
- Mary Leung
- Division of Experimental Therapeutics, Monter Cancer Center and the Feinstein Institute, Hofstra University School of Medicine, Lake Success, New York, USA
| | | | | | | | | |
Collapse
|
122
|
Abstract
The maintenance of genome stability depends on the DNA damage response (DDR), which is a functional network comprising signal transduction, cell cycle regulation and DNA repair. The metabolism of DNA double-strand breaks governed by the DDR is important for preventing genomic alterations and sporadic cancers, and hereditary defects in this response cause debilitating human pathologies, including developmental defects and cancer. The MRE11 complex, composed of the meiotic recombination 11 (MRE11), RAD50 and Nijmegen breakage syndrome 1 (NBS1; also known as nibrin) proteins is central to the DDR, and recent insights into its structure and function have been gained from in vitro structural analysis and studies of animal models in which the DDR response is deficient.
Collapse
Affiliation(s)
- Travis H Stracker
- Institute for Research in Biomedicine Barcelona, C/ Baldiri Reixac 10, 08028 Barcelona, Spain.
| | | |
Collapse
|
123
|
Fanconi anemia protein FANCD2 inhibits TRF1 polyADP-ribosylation through tankyrase1-dependent manner. Genome Integr 2011; 2:4. [PMID: 21314979 PMCID: PMC3048478 DOI: 10.1186/2041-9414-2-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Accepted: 02/12/2011] [Indexed: 11/26/2022] Open
Abstract
Background Fanconi anemia (FA) is a rare autosomal recessive syndrome characterized by developmental abnormalities, progressive bone marrow failure, and predisposition to cancer. The key FA protein FANCD2 crosstalks with members of DNA damage and repair pathways that also play a role at telomeres. Therefore, we investigated whether FANCD2 has a similar involvement at telomeres. Results We reveal that FANCD2 may perform a novel function separate to the FANCD2/BRCA pathway. This function includes FANCD2 interaction with one of the telomere components, the PARP family member tankyrase-1. Moreover, FANCD2 inhibits tankyrase-1 activity in vitro. In turn, FANCD2 deficiency increases the polyADP-ribosylation of telomere binding factor TRF1. Conclusions FANCD2 binding and inhibiting tankyrase-1PARsylation at telomeres may provide an additional step within the FA pathway for the regulation of genomic integrity.
Collapse
|
124
|
Budrukkar A, Shahid T, Murthy V, Hussain T, Mulherkar R, Vundinti BR, Deshpande M, Sengar M, Laskar SG, Agarwal JP. Squamous cell carcinoma of base of tongue in a patient with Fanconi's anemia treated with radiation therapy: case report and review of literature. Head Neck 2011; 32:1422-7. [PMID: 19672872 DOI: 10.1002/hed.21211] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Fanconi's anemia (FA) is a rare autosomal recessive genetic disorder characterized by congenital anomalies, progressive aplastic anemia, and a predisposition for malignancies. Solid tumors in the head and neck region, especially in the tongue, are rarely observed. Management of these patients is a challenge because of hematological complications and increased toxicities. METHODS We report a case of Fanconi's anemia in a 27-year-old man with carcinoma of the base of tongue (T2N0M0) who was treated with radical radiation therapy to a dose of 70 Gy/35 fractions/51 days. We have also done in vitro radiosensitivity tests. RESULTS The patient tolerated the radiation treatment well and completed it without any interruptions. In vitro studies did not show any increased radiosensitivity in this patient. CONCLUSION Head and neck cancer in a patient with FA requires individualized treatment. The decision about opting for different modalities should be based on a balanced approach with respect to locoregional control and toxicities of the treatment.
Collapse
Affiliation(s)
- Ashwini Budrukkar
- Department of Radiation Oncology, Tata Memorial Hospital, Parel, Mumbai, India.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
125
|
Zhang Y, Zhou X, Zhao L, Li C, Zhu H, Xu L, Shan L, Liao X, Guo Z, Huang P. UBE2W interacts with FANCL and regulates the monoubiquitination of Fanconi anemia protein FANCD2. Mol Cells 2011; 31:113-22. [PMID: 21229326 PMCID: PMC3932686 DOI: 10.1007/s10059-011-0015-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2010] [Revised: 10/22/2010] [Accepted: 11/10/2010] [Indexed: 12/31/2022] Open
Abstract
Fanconi anemia (FA) is a rare cancer-predisposing genetic disease mostly caused by improper regulation of the monoubiquitination of Fanconi anemia complementation group D2 (FANCD2). Genetic studies have indicated that ubiquitin conjugating enzyme UBE2T and HHR6 could regulate FANCD2 monoubiquitination through distinct mechanisms. However, the exact regulation mechanisms of FANCD2 monoubiquitination in response to different DNA damages remain unclear. Here we report that UBE2W, a new ubiquitin conjugating enzyme, could regulate FANCD2 monoubiquitination by mechanisms different from UBE2T or HHR6. Indeed, UBE2W exhibits ubiquitin conjugating enzyme activity and catalyzes the monoubiquitination of PHD domain of Fanconi anemia complementation group L (FANCL) in vitro. UBE2W binds to FANCL, and the PHD domain is both necessary and sufficient for this interaction in mammalian cells. In addition, over-expression of UBE2W in cells promotes the monoubiquitination of FANCD2 and down-regulated UBE2W markedly reduces the UV irradiation-induced but not MMC-induced FANCD2 monoubiquitination. These results indicate that UBE2W regulates FANCD2 monoubiquitination by mechanisms different from UBE2T and HRR6. It may provide an additional regulatory step in the activation of the FA pathway.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Liran Shan
- Department of Biochemistry and Molecular Biology College of Life Sciences, Northwest A&F University, Xi’an, China
| | | | - Zekun Guo
- Department of Biochemistry and Molecular Biology College of Life Sciences, Northwest A&F University, Xi’an, China
| | | |
Collapse
|
126
|
Akbari MR, Malekzadeh R, Lepage P, Roquis D, Sadjadi AR, Aghcheli K, Yazdanbod A, Shakeri R, Bashiri J, Sotoudeh M, Pourshams A, Ghadirian P, Narod SA. Mutations in Fanconi anemia genes and the risk of esophageal cancer. Hum Genet 2011; 129:573-82. [DOI: 10.1007/s00439-011-0951-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2010] [Accepted: 01/17/2011] [Indexed: 01/06/2023]
|
127
|
Affiliation(s)
- Minoru Koi
- Division of Gastroenterology, Department of Internal Medicine, Sammons Cancer Center, Baylor Research Institute, Dallas, Texas 75246, USA.
| | | |
Collapse
|
128
|
Wang LC, Gautier J. The Fanconi anemia pathway and ICL repair: implications for cancer therapy. Crit Rev Biochem Mol Biol 2011; 45:424-39. [PMID: 20807115 DOI: 10.3109/10409238.2010.502166] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Fanconi anemia (FA) is an inherited disease caused by mutations in at least 13 genes and characterized by genomic instability. In addition to displaying strikingly heterogenous clinical phenotypes, FA patients are exquisitely sensitive to treatments with crosslinking agents that create interstrand crosslinks (ICL). In contrast to bacteria and yeast, in which ICLs are repaired through replication-dependent and -independent mechanisms, it is thought that ICLs are repaired primarily during DNA replication in vertebrates. However, recent data indicate that replication-independent ICL repair also operates in vertebrates. While the precise role of the FA pathway in ICL repair remains elusive, increasing evidence suggests that FA proteins function at different steps in the sensing, recognition and processing of ICLs, as well as in signaling from these very toxic lesions, which can be generated by a wide variety of cancer chemotherapeutic drugs. Here, we discuss some of the recent findings that have shed light on the role of the FA pathway in ICL repair, with special emphasis on the implications of these findings for cancer therapy since disruption of FA genes have been associated with cancer predisposition.
Collapse
Affiliation(s)
- Lily C Wang
- Institute for Cancer Genetics, Columbia University, New York, NY 10032, USA
| | | |
Collapse
|
129
|
Suhasini AN, Rawtani NA, Wu Y, Sommers JA, Sharma S, Mosedale G, North PS, Cantor SB, Hickson ID, Brosh RM. Interaction between the helicases genetically linked to Fanconi anemia group J and Bloom's syndrome. EMBO J 2011; 30:692-705. [PMID: 21240188 DOI: 10.1038/emboj.2010.362] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Accepted: 12/22/2010] [Indexed: 11/09/2022] Open
Abstract
Bloom's syndrome (BS) and Fanconi anemia (FA) are autosomal recessive disorders characterized by cancer and chromosomal instability. BS and FA group J arise from mutations in the BLM and FANCJ genes, respectively, which encode DNA helicases. In this work, FANCJ and BLM were found to interact physically and functionally in human cells and co-localize to nuclear foci in response to replication stress. The cellular level of BLM is strongly dependent upon FANCJ, and BLM is degraded by a proteasome-mediated pathway when FANCJ is depleted. FANCJ-deficient cells display increased sister chromatid exchange and sensitivity to replication stress. Expression of a FANCJ C-terminal fragment that interacts with BLM exerted a dominant negative effect on hydroxyurea resistance by interfering with the FANCJ-BLM interaction. FANCJ and BLM synergistically unwound a DNA duplex substrate with sugar phosphate backbone discontinuity, but not an 'undamaged' duplex. Collectively, the results suggest that FANCJ catalytic activity and its effect on BLM protein stability contribute to preservation of genomic stability and a normal response to replication stress.
Collapse
Affiliation(s)
- Avvaru N Suhasini
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, NIH Biomedical Research Center, Baltimore, MD 21224, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
130
|
Rizzo JL, Dunn J, Rees A, Rünger TM. No formation of DNA double-strand breaks and no activation of recombination repair with UVA. J Invest Dermatol 2010; 131:1139-48. [PMID: 21150922 DOI: 10.1038/jid.2010.365] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Longwave UVA is an independent class I carcinogen. A complete understanding of UVA-induced DNA damage and how this damage is processed in skin cells is therefore of utmost importance. A particular question that has remained contentious is whether UVA induces DNA double-strand breaks (DSBs), either directly or through processing of other types of DNA damage, such as recombination repair of replication forks stalled at DNA photoproducts. We therefore studied activation of the recombination repair pathway by solar available doses of UVA and assessed formation of DNA DSBs in primary skin fibroblasts. We found that, unlike ionizing radiation or UVB, UVA does not activate the Fanconi anemia/BRCA DNA damage response pathway or the "recombinase" RAD51 in primary skin fibroblasts. The fact that this pathway mediates recombination repair of DNA DSBs suggests that DNA DSBs are not formed by UVA. This is further supported by findings that UVA did not induce DNA DSBs, as assayed by neutral single-cell electrophoresis or by formation of γ-H2AX nuclear foci, considered the most sensitive assay for DNA DSBs. The lack of sufficient evidence for formation of DNA DSBs underlines the pivotal role of UVA-induced DNA photoproducts in UVA mutagenesis and carcinogenesis.
Collapse
Affiliation(s)
- Jennifer L Rizzo
- Department of Dermatology, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | | | | | |
Collapse
|
131
|
Gammon L, Biddle A, Fazil B, Harper L, Mackenzie IC. Stem cell characteristics of cell sub-populations in cell lines derived from head and neck cancers of Fanconi anemia patients. J Oral Pathol Med 2010; 40:143-52. [PMID: 21138479 DOI: 10.1111/j.1600-0714.2010.00972.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Increasing evidence indicates that cancer growth is driven by a sub-population of self-renewing cancer stem cells (CSCs) and that clinical problems of tumor recurrence after therapy may be related to differential resistance of CSCs to therapeutic elimination. Fanconi anemia (FA) is an autosomal recessive disorder associated with deficiencies of DNA repair and a greatly enhanced risk of hematopoietic malignancies and of head and neck squamous cell carcinoma (HNSCC). In FA patients, lack of DNA repair complicates therapies acting through DNA damage and alternative approaches, such as targeting signaling pathways associated with stem cell maintenance, might be of particular benefit. To assess effects of FA gene defects on the expression of stem cell properties, CSC patterns in cell lines derived from FA-related and sporadic HNSCC were compared. As for sporadic cell lines, FA cell lines showed colony morphologies associated with stem cell patterns. In all cell lines, cells with strong staining for CD44 (CD44(high) ) showed lower rates of apoptosis and a greater DNA damage induced block in the G2 phase of the cell cycle than CD44(low) cells. Mitomycin C, and UVB increased overall rates of apoptosis for both sporadic and FA cell lines, although FA cells tended to be more sensitive to apoptotic induction. Fluorescence activated cell sorting, immunohistochemistry, and QPCR indicated distinctly different patterns of gene expression of CD44(high) and CD44(low) cells in both sporadic and FA cell lines.
Collapse
Affiliation(s)
- Luke Gammon
- Blizard Institute of Cell and Molecular Science, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | | | | | | | | |
Collapse
|
132
|
Reliene R, Yamamoto ML, Rao PN, Schiestl RH. Genomic instability in mice is greater in Fanconi anemia caused by deficiency of Fancd2 than Fancg. Cancer Res 2010; 70:9703-10. [PMID: 21118969 DOI: 10.1158/0008-5472.can-09-1022] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Fanconi anemia (FA) results from mutations in the FANC genes and is characterized by bone marrow failure, birth defects, and a high incidence of cancer. FANCG is a part of the FA core complex that is responsible for monoubiquitination of FANCD2 and FANCI. The precise role of the FA pathway is not well understood, although it may be involved in homologous recombination (HR), nonhomologous end joining, and translesion synthesis (TLS). Fancd2(-/-) mice have a more severe phenotype than Fancg(-/-), and other FA core complex-deficient mice, although both Fancg and Fancd2 belong to the same FA pathway. We hypothesized that Fancd2 deficiency results in a more severe phenotype because Fancd2 also has a FA pathway-independent function in the maintenance of genomic integrity. To test this hypothesis, we determined the level of DNA damage and genomic instability in Fancd2(-/-), Fancg(-/-), and wild-type controls. Fancd2(-/-) mice displayed a higher magnitude of chromosomal breakage and micronucleus formation than the wild-type or Fancg(-/-) mice. Also, DNA strand breaks were increased in Fancd2(-/-) but not in Fancg(-/-) mice. In addition, Fancd2(-/-) mice displayed an elevated frequency of DNA deletions, resulting from HR at the endogenous p(un) locus. In contrast, in Fancg(-/-) mice, the frequency of DNA deletions was decreased. Thus, Fancd2 but not Fancg deficiency results in elevated chromosomal/DNA breakage and permanent genome rearrangements. This provides evidence that Fancd2 plays an additional role in the maintenance of genomic stability than Fancg, which might explain the higher predisposition to cancer seen in the Fancd2(-/-) mice.
Collapse
Affiliation(s)
- Ramune Reliene
- Cancer Research Center, Department of Environmental Health Sciences, University at Albany, State University of New York, Albany, New York, USA
| | | | | | | |
Collapse
|
133
|
Ismail IH, Andrin C, McDonald D, Hendzel MJ. BMI1-mediated histone ubiquitylation promotes DNA double-strand break repair. ACTA ACUST UNITED AC 2010; 191:45-60. [PMID: 20921134 PMCID: PMC2953429 DOI: 10.1083/jcb.201003034] [Citation(s) in RCA: 227] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The polycomb repressor complex ubiquitylates γ-H2AX and other components of the DNA damage response pathway to facilitate genomic repair. Polycomb group (PcG) proteins are major determinants of cell identity, stem cell pluripotency, and epigenetic gene silencing during development. The polycomb repressive complex 1, which contains BMI1, RING1, and RING2, functions as an E3-ubuiquitin ligase. We found that BMI1 and RING2 are recruited to sites of DNA double-strand breaks (DSBs) where they contribute to the ubiquitylation of γ-H2AX. In the absence of BMI1, several proteins dependent on ubiquitin signaling, including 53BP1, BRCA1, and RAP80, are impaired in recruitment to DSBs. Loss of BMI1 sensitizes cells to ionizing radiation to the same extent as loss of RNF8. The simultaneous depletion of both proteins revealed an additive increase in radiation sensitivity. These data uncover an unexpected link between the polycomb and the DNA damage response pathways, and suggest a novel function for BMI1 in maintaining genomic stability.
Collapse
Affiliation(s)
- Ismail Hassan Ismail
- Department of Oncology, University of Alberta, Edmonton, T6G 1Z2 Alberta, Canada
| | | | | | | |
Collapse
|
134
|
|
135
|
Busso CS, Lake MW, Izumi T. Posttranslational modification of mammalian AP endonuclease (APE1). Cell Mol Life Sci 2010; 67:3609-20. [PMID: 20711647 PMCID: PMC2989845 DOI: 10.1007/s00018-010-0487-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Accepted: 07/28/2010] [Indexed: 11/29/2022]
Abstract
A key issue in studying mammalian DNA base excision repair is how its component proteins respond to a plethora of cell-signaling mediators invoked by DNA damage and stress-inducing agents such as reactive oxygen species, and how the actions of individual BER proteins are attributed to cell survival or apoptotic/necrotic death. This article reviews the past and recent progress on posttranslational modification (PTM) of mammalian apurinic/apyrimidinic (AP) endonuclease 1 (APE1).
Collapse
Affiliation(s)
- Carlos S. Busso
- Department of Otorhinolaryngology and Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA 70112 USA
| | - Michael W. Lake
- Department of Otorhinolaryngology and Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA 70112 USA
| | - Tadahide Izumi
- Department of Otorhinolaryngology and Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA 70112 USA
| |
Collapse
|
136
|
|
137
|
Abstract
Progressive bone marrow failure is a major cause of morbidity and mortality in human Fanconi Anemia patients. In an effort to develop a Fanconi Anemia murine model to study bone marrow failure, we found that Fancd2(-/-) mice have readily measurable hematopoietic defects. Fancd2 deficiency was associated with a significant decline in the size of the c-Kit(+)Sca-1(+)Lineage(-) (KSL) pool and reduced stem cell repopulation and spleen colony-forming capacity. Fancd2(-/-) KSL cells showed an abnormal cell cycle status and loss of quiescence. In addition, the supportive function of the marrow microenvironment was compromised in Fancd2(-/-) mice. Treatment with Sirt1-mimetic and the antioxidant drug, resveratrol, maintained Fancd2(-/-) KSL cells in quiescence, improved the marrow microenvironment, partially corrected the abnormal cell cycle status, and significantly improved the spleen colony-forming capacity of Fancd2(-/-) bone marrow cells. We conclude that Fancd2(-/-) mice have readily quantifiable hematopoietic defects, and that this model is well suited for pharmacologic screening studies.
Collapse
|
138
|
Zhang F, Fan Q, Ren K, Auerbach AD, Andreassen PR. FANCJ/BRIP1 recruitment and regulation of FANCD2 in DNA damage responses. Chromosoma 2010; 119:637-49. [PMID: 20676667 DOI: 10.1007/s00412-010-0285-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2010] [Revised: 06/07/2010] [Accepted: 06/29/2010] [Indexed: 01/28/2023]
Abstract
FANCJ/BRIP1 encodes a helicase that has been implicated in the maintenance of genomic stability. Here, to better understand FANCJ function in DNA damage responses, we have examined the regulation of its cellular localization. FANCJ nuclear foci assemble spontaneously during S phase and are induced by various stresses. FANCJ foci colocalize with the replication fork following treatment with hydroxyurea, but not spontaneously. Using FANCJ mutants, we find that FANCJ helicase activity and the capacity to bind BRCA1 are both involved in FANCJ recruitment. Given similarities to the recruitment of another Fanconi anemia protein, FANCD2, we tested for colocalization of FANCJ and FANCD2. Importantly, these proteins show substantial colocalization, and FANCJ promotes the assembly of FANCD2 nuclear foci. This process is linked to the proper localization of FANCJ itself since both FANCJ and FANCD2 nuclear foci are compromised by FANCJ mutants that abrogate its helicase activity or interaction with BRCA1. Our results suggest that FANCJ is recruited in response to replication stress and that FANCJ/BRIP1 may serve to link FANCD2 to BRCA1.
Collapse
Affiliation(s)
- Fan Zhang
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Research Foundation, 3333 Burnet Ave. ML S7.203, Cincinnati, OH 45229, USA
| | | | | | | | | |
Collapse
|
139
|
Cuccarolo P, Barbieri F, Sancandi M, Viaggi S, Degan P. Differential behaviour of normal, transformed and Fanconi's anemia lymphoblastoid cells to modeled microgravity. J Biomed Sci 2010; 17:63. [PMID: 20667080 PMCID: PMC2916896 DOI: 10.1186/1423-0127-17-63] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Accepted: 07/28/2010] [Indexed: 01/30/2023] Open
Abstract
Background Whether microgravity might influence tumour growth and carcinogenesis is still an open issue. It is not clear also if and how normal and transformed cells are differently solicited by microgravity. The present study was designed to verify this issue. Methods Two normal, LB and HSC93, and two transformed, Jurkat and 1310, lymphoblast cell lines were used as representative for the two conditions. Two lymphoblast lines from Fanconi's anemia patients group A and C (FA-A and FA-C, respectively), along with their isogenic corrected counterparts (FA-A-cor and FA-C-cor) were also used. Cell lines were evaluated for their proliferative ability, vitality and apoptotic susceptibility upon microgravity exposure in comparison with unexposed cells. Different parameters correlated to energy metabolism, glucose consumption, mitochondrial membrane potential (MMP), intracellular ATP content, red-ox balance and ability of the cells to repair the DNA damage product 8-OHdG induced by the treatment of the cells with 20 mM KBrO3 were also evaluated. Results Transformed Jurkat and 1310 cells appear resistant to the microgravitational challenge. On the contrary normal LB and HSC93 cells display increased apoptotic susceptibility, shortage of energy storages and reduced ability to cope with oxidative stress. FA-A and FA-C cells appear resistant to microgravity exposure, analogously to transformed cells. FA corrected cells did shown intermediate sensitivity to microgravity exposure suggesting that genetic correction does not completely reverts cellular phenotype. Conclusions In the light of the reported results microgravity should be regarded as an harmful condition either when considering normal as well as transformed cells. Modeled microgravity and space-based technology are interesting tools in the biomedicine laboratory and offer an original, useful and unique approach in the study of cellular biochemistry and in the regulation of metabolic pathways.
Collapse
Affiliation(s)
- Paola Cuccarolo
- Department of Epidemiology, Prevention and Special Functions, National Institute for Cancer Research (IST), Genova, Italy
| | | | | | | | | |
Collapse
|
140
|
González-Murillo A, Lozano ML, Alvarez L, Jacome A, Almarza E, Navarro S, Segovia JC, Hanenberg H, Guenechea G, Bueren JA, Río P. Development of lentiviral vectors with optimized transcriptional activity for the gene therapy of patients with Fanconi anemia. Hum Gene Ther 2010; 21:623-30. [PMID: 20001454 DOI: 10.1089/hum.2009.141] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Fanconi anemia (FA) is an inherited genetic disease characterized mainly by bone marrow failure and cancer predisposition. Although gene therapy may constitute a good therapeutic option for many patients with FA, none of the clinical trials so far developed has improved the clinical status of these patients. We have proposed strategies for the genetic correction of bone marrow grafts from patients with FA, using lentiviral vectors (LVs). Here we investigate the relevance of the expression of FANCA to confer a therapeutic effect in cells from patients with FA-A, the most frequent complementation group in FA. Our data show that relatively weak promoters such as the vav or phosphoglycerate kinase (PGK) promoter confer, per copy of FANCA, physiological levels of FANCA mRNA in lymphoblastoid cell lines, whereas the cytomegalovirus and, more significantly, spleen focus-forming virus (SFFV) promoters mediated the expression of supraphysiological levels of FANCA mRNA. Insertion of the woodchuck hepatitis virus posttranscriptional regulatory element (WPRE) or a mutated WPRE into the 3' region of PGK-FANCA LVs significantly increased FANCA mRNA levels. At the protein level, however, all tested vectors conferred, per copy of FANCA, similar and physiological levels of the protein, except SFFV LVs, which again conferred supraphysiological levels of FANCA. In spite of their different activity, all tested vectors mediated a similar phenotypic correction in FA-A lymphoblastoid cell lines and also in hematopoietic progenitors from patients with FA-A. On the basis of the efficacy and safety properties of PGK LVs, a PGK LV carrying FANCA and a mutant WPRE is proposed as an optimized vector for the gene therapy of patients with FA-A.
Collapse
Affiliation(s)
- Africa González-Murillo
- Division of Hematopoiesis and Gene Therapy, Centro de Investigaciones Energéticas, Medioambientales, y Tecnológicas (CIEMAT), and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBER-ER), 28040 Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
141
|
Zhang P, Sridharan D, Lambert MW. Knockdown of mu-calpain in Fanconi anemia, FA-A, cells by siRNA restores alphaII spectrin levels and corrects chromosomal instability and defective DNA interstrand cross-link repair. Biochemistry 2010; 49:5570-81. [PMID: 20518497 DOI: 10.1021/bi100656j] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We have previously shown that there is a deficiency in the structural protein, nonerythroid alpha spectrin (alphaIISp), in cells from patients with Fanconi anemia (FA). These studies indicate that this deficiency is due to the reduced stability of alphaIISp and correlates with a decreased level of repair of DNA interstrand cross-links and chromosomal instability in FA cells. An important factor in the stability of alphaIISp is its susceptibility to cleavage by the protease, mu-calpain. We hypothesized that an increased level of mu-calpain cleavage of alphaIISp in FA cells leads to an increased level of breakdown of alphaIISp and that knocking down expression of mu-calpain in FA cells should restore levels of alphaIISp and correct a number of the phenotypic defects observed. The results showed that there is increased mu-calpain activity in FA-A, FA-C, FA-D2, FA-F, and FA-G cells that could account for the deficiency in alphaIISp in these FA cells. Protein interaction studies indicated that FANCA and FANCG bind directly to mu-calpain. We hypothesize that this binding may lead to inhibition of mu-calpain activity in normal cells. Knocking down mu-calpain by siRNA in FA-A cells restored levels of alphaIISp to normal and reversed a number of the cellular deficiencies in these cells. It corrected the DNA repair defect and the chromosomal instability observed after exposure to a DNA interstrand cross-linking agent. These studies indicate that FA proteins may play an important role in maintaining the stability of alphaIISp in the cell by regulating its cleavage by mu-calpain. Thus, by reducing the level of breakdown of alphaIISp in FA cells, we may be able to reverse a number of the cellular deficiencies observed in this disorder.
Collapse
Affiliation(s)
- Pan Zhang
- Department of Pathology and Laboratory Medicine, New Jersey Medical School and Graduate School of Biomedical Sciences, University of Medicine and Dentistry of New Jersey, Newark, New Jersey 07103, USA
| | | | | |
Collapse
|
142
|
Wang C, Lambert MW. The Fanconi anemia protein, FANCG, binds to the ERCC1-XPF endonuclease via its tetratricopeptide repeats and the central domain of ERCC1. Biochemistry 2010; 49:5560-9. [PMID: 20518486 DOI: 10.1021/bi100584c] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
There is evidence that Fanconi anemia (FA) proteins play an important role in the repair of DNA interstrand cross-links (ICLs), but the precise mechanism by which this occurs is not clear. One of the critical steps in the ICL repair process involves unhooking of the cross-link from DNA by incisions on one strand on either side of the ICL and its subsequent removal. The ERCC1-XPF endonuclease is involved in this unhooking step and in the removal of the cross-link. We have previously shown that several of the FA proteins are needed to produce incisions created by ERCC1-XPF at sites of ICLs. To more clearly establish a link between FA proteins and the incision step(s) mediated by ERCC1-XPF, we undertook yeast two-hybrid analysis to determine whether FANCA, FANCC, FANCF, and FANCG directly interact with ERCC1 and XPF and, if so, to determine the sites of interaction. One of these FA proteins, FANCG, was found to have a strong affinity for ERCC1 and a moderate affinity for XPF. FANCG has been shown to contain seven tetratricopeptide repeat (TPR) motifs, which are motifs that mediate protein-protein interactions. Mapping the sites of interaction of FANCG with ERCC1, using site-directed mutagenesis, demonstrated that TPRs 1, 3, 5, and 6 are needed for binding of FANCG to ERCC1. ERCC1, in turn, was shown to interact with FANCG via its central domain, which is different from the region of ERCC1 that binds to XPF. This binding between FANCG and the ERCC1-XPF endonuclease, combined with our previous studies which show that FANCG is involved in the incision step mediated by ERCC1-XPF, establishes a link between an FA protein and the critical unhooking step of the ICL repair process.
Collapse
Affiliation(s)
- Chuan Wang
- Department of Pathology and Laboratory Medicine, New Jersey Medical School and Graduate School of Biomedical Sciences, University of Medicine and Dentistry of New Jersey, Newark, New Jersey 07103, USA
| | | |
Collapse
|
143
|
Genetic disruption of both Fancc and Fancg in mice recapitulates the hematopoietic manifestations of Fanconi anemia. Blood 2010; 116:2915-20. [PMID: 20606166 DOI: 10.1182/blood-2009-08-240747] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Fanconi anemia (FA) is an inherited chromosomal instability syndrome characterized by bone marrow failure, myelodysplasia (MDS), and acute myeloid leukemia (AML). Eight FA proteins associate in a nuclear core complex to monoubiquitinate FANCD2/FANCI in response to DNA damage. Additional functions have been described for some of the core complex proteins; however, in vivo genetic proof has been lacking. Here we show that double-mutant Fancc(-/-);Fancg(-/-) mice develop spontaneous hematologic sequelae including bone marrow failure, AML, MDS and complex random chromosomal abnormalities that the single-mutant mice do not. This genetic model provides evidence for unique core complex protein function independent of their ability to monoubiquitinate FANCD2/FANCI. Importantly, this model closely recapitulates the phenotypes found in FA patients and may be useful as a preclinical platform to evaluate the molecular pathogenesis of spontaneous bone marrow failure, MDS and AML in FA.
Collapse
|
144
|
Cattell E, Sengerová B, McHugh PJ. The SNM1/Pso2 family of ICL repair nucleases: from yeast to man. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2010; 51:635-645. [PMID: 20175117 DOI: 10.1002/em.20556] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Efficient interstrand crosslink (ICL) repair in yeast depends on the Pso2/Snm1 protein. Pso2 is a member of the highly conserved metallo-beta-lactamase structural family of nucleases. Mammalian cells possess three SNM1/Pso2 related proteins, SNM1A, SNM1B/Apollo, and SNM1C/Artemis. Evidence that SNM1A and SNM1B contribute to ICL repair is mounting, whereas Artemis appears to primarily contribute to non-ICL repair pathways, particularly some double-strand break repair events. Yeast Pso2 and all three mammalian SNM1-family proteins have been shown to possess nuclease activity. Here, we review the biochemical, genetic, and cellular evidence for the SNM1 family as DNA repair factors, focusing on ICL repair.
Collapse
Affiliation(s)
- Emma Cattell
- Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | | | | |
Collapse
|
145
|
Preclinical correction of human Fanconi anemia complementation group A bone marrow cells using a safety-modified lentiviral vector. Gene Ther 2010; 17:1244-52. [PMID: 20485382 PMCID: PMC2927804 DOI: 10.1038/gt.2010.62] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
One of the major hurdles for the development of gene therapy for Fanconi anemia (FA) is the increased sensitivity of FA stem cells to free radical-induced DNA damage during ex vivo culture and manipulation. To minimize this damage, we have developed a brief transduction procedure for lentivirus vector-mediated transduction of hematopoietic progenitor cells from patients with Fanconi anemia complementation group A (FANCA). The lentiviral vector FancA-sW contains the phosphoglycerate kinase promoter, the FANCA cDNA, and a synthetic, safety-modified woodchuck post transcriptional regulatory element (sW). Bone marrow mononuclear cells or purified CD34+ cells from patients with FANCA were transduced in an overnight culture on recombinant fibronectin peptide CH-296, in low (5%) oxygen, with the reducing agent, N-acetyl-L-cysteine (NAC), and a combination of growth factors, granulocyte colony-stimulating factor (G-CSF), Flt3 ligand, stem cell factor (SCF), and thrombopoietin. Transduced cells plated in methylcellulose in hypoxia with NAC exhibited increased colony formation compared to 21% oxygen without NAC (P < 0.03), demonstrated increased resistance to mitomycin C compared to green fluorescent protein (GFP )-transduced controls (P < 0.007), and increased survival. Thus, combining short transduction and reducing oxidative stress may enhance the viability and engraftment of gene-corrected cells in patients with FANCA.
Collapse
|
146
|
Hosoya Y, Lefor A, Hirashima Y, Nokubi M, Yamaguti T, Jinbu Y, Muroi K, Nakazawa M, Yasuda Y. Successful treatment of esophageal squamous cell carcinoma in a patient with Fanconi anemia. Jpn J Clin Oncol 2010; 40:805-10. [PMID: 20410055 DOI: 10.1093/jjco/hyq049] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Fanconi anemia is a congenital syndrome characterized by hypoplasia of bone marrow and the development of aplastic anemia in childhood, followed by myelodysplastic syndrome and acute myelogenous leukemia in later life. We report here a patient first diagnosed with Fanconi anemia at age 10. Bone marrow transplantation was performed at age 23 and repeated after an episode of rejection at age 25. Hematologic findings returned to normal, but chronic graft-versus-host disease persisted. Esophageal cancer developed at age 35. Invasion of the bronchus and aorta by the tumor was suspected on computed tomography. Chemoradiotherapy was administered to down-stage the tumor, using low-dose cisplatin and 5-fluorouracil. After two courses of chemotherapy with cisplatin (total dose, 100 mg) and 5-fluorouracil (5000 mg) plus radiotherapy (30 Gy), Grade 3 diarrhea and bone marrow suppression developed, and treatment was discontinued. After resolution of toxicity, a good response to the neoadjuvant therapy was seen on computed tomography scan, and a subtotal esophagectomy was performed which demonstrated a complete response in the resected specimen. However, tongue cancer developed at age 40 years, and hemiglossectomy was performed. Patients with Fanconi anemia have a high risk of developing esophageal cancer while they are still young. Reduced doses of alkylating agents and radiotherapy are used in patients with Fanconi anemia. However, the optimal dosage of chemoradiotherapy and the treatment strategy for esophageal cancer in patients with Fanconi anemia remain unclear, and outcomes are generally extremely poor. In this patient, esophageal cancer associated with Fanconi anemia responded well to multidisciplinary therapy.
Collapse
Affiliation(s)
- Yoshinori Hosoya
- Department of Surgery, Jichi Medical University, 3311-1 Shimotsuke, Tochigi 329-0498, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
147
|
Zhang J, Zhao D, Park HK, Wang H, Dyer RB, Liu W, Klee GG, McNiven MA, Tindall DJ, Molina JR, Fei P. FAVL elevation in human tumors disrupts Fanconi anemia pathway signaling and promotes genomic instability and tumor growth. J Clin Invest 2010; 120:1524-34. [PMID: 20407210 DOI: 10.1172/jci40908] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2009] [Accepted: 02/17/2010] [Indexed: 12/22/2022] Open
Abstract
Fanconi anemia (FA) is a rare human genetic disease caused by mutations in any one of 13 known genes that encode proteins functioning in one common signaling pathway, the FA pathway, or in unknown genes. One characteristic of FA is an extremely high incidence of cancer, indicating the importance of the FA pathway in tumor suppression. However, the role of this pathway in the development and progression of human cancers in individuals who do not have FA has not been clearly determined. Here, we report that elevated expression of what we believe to be a novel splice variant of FA complementation group L (FANCL), which we identified and named FAVL, can impair the FA pathway in non-FA human tumor cells and act as a tumor promoting factor. FAVL expression was elevated in half of the human carcinoma cell lines and carcinoma tissue samples tested. Expression of FAVL resulted in decreased FANCL expression by sequestering FANCL to the cytoplasm and enhancing its degradation. Importantly, this impairment of the FA pathway by FAVL elevation provided human cancer cells with a growth advantage, caused chromosomal instability in vitro, and promoted tumor development in a xenograft mouse model. These data indicate that FAVL impairment of the FA pathway likely contributes to the development of non-FA human cancers and therefore add a challenging layer of complexity to the pathogenesis of human cancer. We further believe that these data will prove useful for developing additional tools for fighting human cancer.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
148
|
Abstract
Geneticists estimate that 5% to 10% of all cancers diagnosed in the pediatric age range occur in children born with a genetic mutation that directly increases their lifetime risk for neoplasia. However, despite the fact that only a fraction of cancers in children occur as a result of an identified inherited predisposition, characterizing genetic mutations responsible for increased cancer risk in such syndromes has resulted in a profound understanding of relevant molecular pathways involved in carcinogenesis and/or resistance to neoplasia. Importantly, because most cancer predisposition syndromes result in an increased risk of a small number of defined malignancies, personalized prophylactic surveillance and preventive measures can be implemented in affected patients. Lastly, many of the same genetic targets identified from cancer-prone families are mechanistically involved in the majority of sporadic cancers in adults and children, thereby underscoring the clinical relevance of knowledge gained from these defined syndromes and introducing novel therapeutic opportunities to the broader oncologic community. This review highlights the clinical and genetic features of many of the known constitutional genetic syndromes that predispose to malignancy in children and young adults.
Collapse
|
149
|
Gong Z, Kim JE, Leung CCY, Glover JNM, Chen J. BACH1/FANCJ acts with TopBP1 and participates early in DNA replication checkpoint control. Mol Cell 2010; 37:438-46. [PMID: 20159562 DOI: 10.1016/j.molcel.2010.01.002] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2009] [Revised: 07/22/2009] [Accepted: 11/12/2009] [Indexed: 10/19/2022]
Abstract
Human TopBP1 plays a critical role in the control of DNA replication checkpoint. In this study, we report a specific interaction between TopBP1 and BACH1/FANCJ, a DNA helicase involved in the repair of DNA crosslinks. The TopBP1/BACH1 interaction is mediated by the very C-terminal tandem BRCT domains of TopBP1 and S phase-specific phosphorylation of BACH1 at Thr 1133 site. Interestingly, we demonstrate that depletion of TopBP1 or BACH1 attenuates the loading of RPA on chromatin. Moreover, both TopBP1 and BACH1 are required for ATR-dependent phosphorylation events in response to replication stress. Taken together, our data suggest that BACH1 has an unexpected early role in replication checkpoint control. A specific interaction between TopBP1 and BACH1 is likely to be required for the extension of single-stranded DNA regions and RPA loading following replication stress, which is a prerequisite for the subsequent activation of replication checkpoint.
Collapse
Affiliation(s)
- Zihua Gong
- Department of Experimental Radiation Oncology, University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
150
|
Rinaldi A, Capello D, Scandurra M, Greiner TC, Chan WC, Bhagat G, Rossi D, Morra E, Paulli M, Rambaldi A, Rancoita PMV, Inghirami G, Ponzoni M, Moreno SM, Piris MA, Mian M, Chigrinova E, Zucca E, Favera RD, Gaidano G, Kwee I, Bertoni F. Single nucleotide polymorphism-arrays provide new insights in the pathogenesis of post-transplant diffuse large B-cell lymphoma. Br J Haematol 2010; 149:569-77. [PMID: 20230398 DOI: 10.1111/j.1365-2141.2010.08125.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Post-transplant lymphoproliferative disorders (PTLD) are complications of solid organ transplantation associated with severe morbidity and mortality. Diffuse large B-cell lymphoma (DLBCL) represents the most common form of monomorphic PTLD. We studied 44 cases of post-transplant DLBCL (PT-DLBCL) with high-density genome wide single nucleotide polymorphism-based arrays, and compared them with 105 cases of immunocompetent DLBCL (IC-DLBCL) and 28 cases of Human Immunodeficiency Virus-associated DLBCL (HIV-DLBCL). PT-DLBCL showed a genomic profile with specific features, although their genomic complexity was overall similar to that observed in IC- and HIV-DLBCL. Among the loci more frequently deleted in PT-DLBCL there were small interstitial deletions targeting known fragile sites, such as FRA1B, FRA2E and FRA3B. Deletions at 2p16.1 (FRA2E) were the most common lesions in PT-DLBCL, occurring at a frequency that was significantly higher than in IC-DLBCL. Genetic lesions that characterized post-germinal center IC-DLBCL were under-represented in our series of PT-DLBCL. Two other differences between IC-DLBCL and PT-DLBCL were the lack of del(13q14.3) (MIR15/MIR16) and of copy neutral LOH affecting 6p [major histocompatibility complex (MHC) locus] in the latter group. In conclusion, PT-DLBCL presented unique features when compared with IC-DLBCL. Changes in PT-DLBCL were partially different to those in HIV-DLBCL, suggesting different pathogenetic mechanisms in the two conditions linked to immunodeficiency.
Collapse
Affiliation(s)
- Andrea Rinaldi
- Laboratory of Experimental Oncology and Lymphoma Unit, Oncology Institute of Southern Switzerland (IOSI), Bellinzona, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|