101
|
Interaction study of arsenic (III and V) ions with metallothionein gene (MT2A) fragment. Int J Biol Macromol 2014; 72:599-605. [PMID: 25218889 DOI: 10.1016/j.ijbiomac.2014.09.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 09/01/2014] [Accepted: 09/02/2014] [Indexed: 12/20/2022]
Abstract
Arsenic compounds belong to the most controversial agents concerning human health. Arsenic (As) is considered as a top environmental element influencing human health due to its adverse effects including cancer, diabetes, cardiovascular disease, and reproductive or developmental problems. Despite the proven mutagenic, teratogenic and carcinogenic effects, the arsenic compounds are used for centuries to treat infectious diseases. In our work, we focused on studying of interactions of As(III) and/or As(V) with DNA. Interactions between arsenic ions and DNA were monitored by UV/vis spectrophotometry by measuring absorption and fluorescence spectra, atomic absorption spectrometry, electrochemical measurements (square wave voltammetry) and agarose gel electrophoresis. Using these methods, we observed a stable structure of DNA with As(III) within the concentration range 0.4-6.25 μg mL(-1). Higher As(III) concentration caused degradation of DNA. However, similar effects were not observed for As(V).
Collapse
|
102
|
Waalkes MP, Qu W, Tokar EJ, Kissling GE, Dixon D. Lung tumors in mice induced by "whole-life" inorganic arsenic exposure at human-relevant doses. Arch Toxicol 2014; 88:1619-29. [PMID: 25005685 PMCID: PMC4130362 DOI: 10.1007/s00204-014-1305-8] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 06/23/2014] [Indexed: 01/08/2023]
Abstract
In mice, inorganic arsenic in the drinking water in the parts per million range via the dam during in utero life or with whole-life exposure is a multi-site carcinogen in the offspring. However, human arsenic exposure is typically in the parts per billion (ppb) range. Thus, we studied "whole-life" inorganic arsenic carcinogenesis in mice at levels more relevant to humans. Breeder male and female CD1 mice were exposed to 0, 50, 500 or 5,000 ppb arsenic (as sodium arsenite) in the drinking water for 3 weeks prior to breeding, during pregnancy and lactation, and after weaning (at week 3) groups of male and female offspring (initial n = 40) were exposed for up to 2 years. Tumors were assessed in these offspring. Arsenic exposure had no effect on pregnant dam weights or water consumption, litter size, offspring birthweight or weight at weaning compared to control. In male offspring mice, arsenic exposure increased (p < 0.05) bronchiolo-alveolar tumor (adenoma or carcinoma) incidence at 50-ppb group (51 %) and 500-ppb group (54 %), but not at 5,000-ppb group (28 %) compared to control (22 %). These arsenic-induced bronchiolo-alveolar tumors included increased (p < 0.05) carcinoma at 50-ppb group (27 %) compared to controls (8 %). An increase (p < 0.05) in lung adenoma (25 %) in the 50-ppb group compared to control (11 %) occurred in female offspring. Thus, in CD1 mice whole-life arsenic exposure induced lung tumors at human-relevant doses (i.e., 50 and 500 ppb).
Collapse
Affiliation(s)
- Michael P Waalkes
- Inorganic Toxicology Group, National Toxicology Program Laboratory, Division of the National Toxicology Program, National Institute of Environmental Health Sciences, 111 Alexander Drive, MD E1-07, P.O. Box 12233, Research Triangle Park, NC, 27709, USA,
| | | | | | | | | |
Collapse
|
103
|
Resveratrol, a natural antioxidant, has a protective effect on liver injury induced by inorganic arsenic exposure. BIOMED RESEARCH INTERNATIONAL 2014; 2014:617202. [PMID: 25147808 PMCID: PMC4132329 DOI: 10.1155/2014/617202] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 07/05/2014] [Accepted: 07/07/2014] [Indexed: 12/29/2022]
Abstract
Resveratrol (Rev) can ameliorate cytotoxic chemotherapy-induced toxicity and oxidative stress. Arsenic trioxide (As2O3) is a known cytotoxic environmental toxicant and a potent chemotherapeutic agent. However, the mechanisms by which resveratrol protects the liver against the cytotoxic effects of As2O3 are not known. Therefore, in the present study we investigated the mechanisms involved in the action of resveratrol using a cat model in which hepatotoxicity was induced by means of As2O3 treatment. We found that pretreatment with resveratrol, administered using a clinically comparable dose regimen, reversed changes in As2O3-induced morphological and liver parameters and resulted in a significant improvement in hepatic function. Resveratrol treatment also improved the activities of antioxidant enzymes and attenuated As2O3-induced increases in reactive oxygen species and malondialdehyde production. In addition, resveratrol attenuated the As2O3-induced reduction in the ratio of reduced glutathione to oxidized glutathione and the retention of arsenic in liver tissue. These findings provide a better understanding of the mechanisms whereby resveratrol modulates As2O3-induced changes in liver function and tissue morphology. They also provide a stronger rationale for the clinical utilization of resveratrol for the reduction of As2O3-induced hepatotoxicity.
Collapse
|
104
|
Gill H, Au WY, Cheung WW, Lee EY, Kwong YL. Oral arsenic trioxide-based regimen as salvage treatment for relapsed or refractory mantle cell lymphoma. Ann Oncol 2014; 25:1391-1397. [PMID: 24728036 DOI: 10.1093/annonc/mdu142] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/08/2023] Open
Abstract
BACKGROUND Mantle cell lymphoma (MCL) is aggressive, and relapsed/refractory disease has poor outcomes. PATIENTS AND METHODS Thirty-nine patients (men = 34, women = 5) at 64 (41-82) years of age with relapsed/refractory MCL, ineligible for high-dose chemotherapy and had received 2 (1-5) prior regimens, were treated with a continuous oral regimen, comprising oral arsenic trioxide (oral-As2O3), chlorambucil and ascorbic acid. RESULTS Overall response rate was 49% (complete response, CR = 28%; partial response, PR = 21%). Only grade 1/2 toxicities were observed (hematologic: 56%, hepatic: 8%). Response was maintained in 11 patients (CR = 8; PR = 3), after a median of 24 (2-108) months. Independent prognostic factors for response were increased lactate dehydrogenase (P = 0.04) and unfavorable MCL international prognostic index (P = 0.04). At a median follow-up of 21 (1-118) months, the median progression-free survival (PFS) was 16 months, and overall survival (OS) 38 months. Independent prognostic factors for PFS were female gender (P = 0.002), and Eastern Cooperative Oncology Group (ECOG) performance score of 2 (P = 0.009). Independent prognostic factors for OS were female gender (P < 0.001), ECOG performance score of 2 (P = 0.03), non-response (P < 0.001), and disease progression after initial response (P = 0.05). CONCLUSION An oral regimen of oral-As2O3, chlorambucil and ascorbic acid was active with minimal toxicity in relapsed/refractory MCL, achieving durable responses in ∼30% of cases.
Collapse
Affiliation(s)
- H Gill
- Department of Medicine, Queen Mary Hospital, Hong Kong
| | - W Y Au
- Blood-Med Clinic, Crawford House, Hong Kong
| | - W W Cheung
- Department of Medicine, Queen Mary Hospital, Hong Kong
| | - E Y Lee
- Department of Diagnostic Radiology, Queen Mary Hospital, Hong Kong, China
| | - Y L Kwong
- Department of Medicine, Queen Mary Hospital, Hong Kong.
| |
Collapse
|
105
|
Autophagy interplays with apoptosis and cell cycle regulation in the growth inhibiting effect of Trisenox in HEP-2, a laryngeal squamous cancer. Pathol Oncol Res 2014; 21:103-11. [PMID: 24838151 DOI: 10.1007/s12253-014-9794-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 05/06/2014] [Indexed: 02/02/2023]
Abstract
Laryngeal squamous cell carcinoma (LSCC) is the most common among several types of head and neck cancers. Current treatments have a poor effect on early and advanced cases, and further investigations for novel agents against LSCCs are desirable. In this study, we elucidate the cytotoxic enhancing effect of arsenic trioxide (As2O3) combined with L-buthionine sulfoximine (BSO) in LSCC. The effect of BSO with As2O3 or Cisplatin (CDDP) on cell viability was examined using 3-(4,5-dimethyl-thiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT). The reactive oxygen species (ROS) levels, cell cycle, and apoptosis were measured by flow cytometry using 2',7'-dichlorodihydrofluorescein diacetate (DCFH-DA), propidium iodide (PI) and annexin V/PI. The acidic vacuolar organelles were visualized by fluorescence microscope and quantified using flow cytometry. Neither CDDP nor As2O3 when used alone reduced the cell viability. BSO was found to enhance only As2O3 sensitivity, leading to G2/M arrest and autophagy with no correlation of ROS induction. This result suggests that modulation of glutathione enhances autophagy, which interplays with apoptosis. In this study, we obtained initial preclinical evidence for the potential efficacy of these drugs in a combined therapy protocol.
Collapse
|
106
|
|
107
|
Novel function of the chromosome 7 open reading frame 41 gene to promote leukemic megakaryocyte differentiation by modulating TPA-induced signaling. Blood Cancer J 2014; 4:e198. [PMID: 24681962 PMCID: PMC3972703 DOI: 10.1038/bcj.2014.18] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 02/17/2014] [Accepted: 02/20/2014] [Indexed: 01/14/2023] Open
Abstract
12-O-tetradecanoylphorbol-13-acetate (TPA) activates multiple signaling pathways, alters gene expression and causes leukemic cell differentiation. How TPA-induced genes contribute to leukemic cell differentiation remains elusive. We noticed that chromosome 7 open reading frame 41 (C7ORF41) was a TPA-responsive gene and its upregulation concurred with human megakaryocyte differentiation. In K562 cells, ectopic expression of C7ORF41 significantly increased CD61 expression, enhanced ERK and JNK signaling, and upregulated RUNX1 and FLI1, whereas C7ORF41 knockdown caused an opposite phenotype. These observations suggest that C7ORF41 may promote megakaryocyte differentiation partially through modulating ERK and JNK signaling that leads to upregulation of RUNX1 and FLI1. In supporting this, C7ORF41 overexpression rescued megakaryocyte differentiation blocked by ERK inhibition while JNK inhibition abrogated the upregulation of FLI1 by C7ORF41. Furthermore, we found that Y34F mutant C7ORF41 inhibited megakaryocyte differentiation. nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) was the major activator of C7ORF41 that in turn repressed NF-κB activity by inhibiting its phosphorylation at serine 536, while MAPK/ERK was the potent repressor of C7ORF41. Finally, we showed that C7ORF41 knockdown in mouse fetal liver cells impaired megakaryocyte differentiation. Taken together, we have identified the function of a novel gene C7ORF41 that forms interplaying regulatory network in TPA-induced signaling and promotes leukemic and normal megakaryocyte differentiation.
Collapse
|
108
|
Can we say farewell to monitoring minimal residual disease in acute promyelocytic leukaemia? Best Pract Res Clin Haematol 2014; 27:53-61. [DOI: 10.1016/j.beha.2014.04.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
109
|
|
110
|
Wang X, Zhao H, Shao Y, Wang P, Wei Y, Zhang W, Jiang J, Chen Y, Zhang Z. Nephroprotective effect of astaxanthin against trivalent inorganic arsenic-induced renal injury in wistar rats. Nutr Res Pract 2014; 8:46-53. [PMID: 24611105 PMCID: PMC3944156 DOI: 10.4162/nrp.2014.8.1.46] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 06/12/2013] [Accepted: 07/15/2013] [Indexed: 11/25/2022] Open
Abstract
Inorganic arsenic (iAs) is a toxic metalloid found ubiquitously in the environment. In humans, exposure to iAs can result in toxicity and cause toxicological manifestations. Arsenic trioxide (As2O3) has been used in the treatment for acute promyelocytic leukemia. The kidney is the critical target organ of trivalent inorganic As (iAsIII) toxicity. We examine if oral administration of astaxanthin (AST) has protective effects on nephrotoxicity and oxidative stress induced by As2O3 exposure (via intraperitoneal injection) in rats. Markers of renal function, histopathological changes, Na+-K+ ATPase, sulfydryl, oxidative stress, and As accumulation in kidneys were evaluated as indicators of As2O3 exposure. AST showed a significant protective effect against As2O3-induced nephrotoxicity. These results suggest that the mechanisms of action, by which AST reduces nephrotoxicity, may include antioxidant protection against oxidative injury and reduction of As accumulation. These findings might be of therapeutic benefit in humans or animals suffering from exposure to iAsIII from natural sources or cancer therapy.
Collapse
Affiliation(s)
- Xiaona Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Haiyuan Zhao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Yilan Shao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Pei Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Yanru Wei
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Weiqian Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Jing Jiang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Yan Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Zhigang Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
111
|
Affiliation(s)
- Katja Dralle Mjos
- Medicinal Inorganic Chemistry Group, Department of Chemistry, The University of British Columbia , 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | | |
Collapse
|
112
|
Yang Y, Zhang Z, Li S, Ye X, Li X, He K. Synergy effects of herb extracts: Pharmacokinetics and pharmacodynamic basis. Fitoterapia 2014; 92:133-47. [DOI: 10.1016/j.fitote.2013.10.010] [Citation(s) in RCA: 175] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2013] [Revised: 10/17/2013] [Accepted: 10/21/2013] [Indexed: 02/07/2023]
|
113
|
Abstract
Acute promyelocytic leukaemia (APL) is a rare subtype of acute myeloid leukaemia. The outcome of paediatric APL has improved substantially over the past 20 years; cure rates above 80% are expected when all-trans retinoic acid (ATRA) is given with anthracycline-based regimens. The presenting features of paediatric APL may include severe bleeding and thrombotic complications, which contribute to the high early death rate. The incidence of leucocytosis and the microgranular subtype is greater in paediatric than adult APL, and children experience greater ATRA-related toxicity. It is crucial to begin ATRA therapy and intensive platelet and fibrinogen replacement on first suspicion of APL. Recent risk-adapted therapeutic trials have shown that patients at greater risk of relapse benefit from the introduction of high-dose cytarabine during consolidation. Combination therapy with ATRA and arsenic trioxide provides very effective frontline treatment and may reduce the need for subsequent anthracycline therapy.
Collapse
Affiliation(s)
- Oussama Abla
- Division of Haematology/Oncology, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - Raul C. Ribeiro
- Department of Oncology and International Outreach Program, Saint Jude Children’s Research Hospital, Memphis, USA
| |
Collapse
|
114
|
Molecular oncology of acute promyelocytic leukemia (APL). Mol Oncol 2013. [DOI: 10.1017/cbo9781139046947.071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
115
|
Swindell EP, Hankins PL, Chen H, Miodragović ÐU, O'Halloran TV. Anticancer activity of small-molecule and nanoparticulate arsenic(III) complexes. Inorg Chem 2013; 52:12292-304. [PMID: 24147771 PMCID: PMC3893798 DOI: 10.1021/ic401211u] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Starting in ancient China and Greece, arsenic-containing compounds have been used in the treatment of disease for over 3000 years. They were used for a variety of diseases in the 20th century, including parasitic and sexually transmitted illnesses. A resurgence of interest in the therapeutic application of arsenicals has been driven by the discovery that low doses of a 1% aqueous solution of arsenic trioxide (i.e., arsenous acid) lead to complete remission of certain types of leukemia. Since Food and Drug Administration (FDA) approval of arsenic trioxide (As2O3) for treatment of acute promyelocytic leukemia in 2000, it has become a front-line therapy in this indication. There are currently over 100 active clinical trials involving inorganic arsenic or organoarsenic compounds registered with the FDA for the treatment of cancers. New generations of inorganic and organometallic arsenic compounds with enhanced activity or targeted cytotoxicity are being developed to overcome some of the shortcomings of arsenic therapeutics, namely, short plasma half-lives and a narrow therapeutic window.
Collapse
Affiliation(s)
- Elden P. Swindell
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208-3113
- Chemistry of Life Processes Institute, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208-3113
| | - Patrick L. Hankins
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208-3113
- Chemistry of Life Processes Institute, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208-3113
| | - Haimei Chen
- Chemistry of Life Processes Institute, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208-3113
| | - Ðenana U. Miodragović
- Chemistry of Life Processes Institute, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208-3113
| | - Thomas V. O'Halloran
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208-3113
- Chemistry of Life Processes Institute, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208-3113
| |
Collapse
|
116
|
Cheng Y, Xue J, Jiang H, Wang M, Gao L, Ma D, Zhang Z. Neuroprotective effect of resveratrol on arsenic trioxide–induced oxidative stress in feline brain. Hum Exp Toxicol 2013; 33:737-47. [DOI: 10.1177/0960327113506235] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Arsenic trioxide (As2O3) is a known environmental toxicant and potent chemotherapeutic agent. Significant correlation has been reported between arsenic exposure (including consumption of arsenic-contaminated water and clinical use of As2O3) and dysfunction in the nervous system. In this study, we aimed to elucidate the effect of resveratrol with neuroprotective activities on As2O3-induced oxidative damage and cerebral cortex injury. Twenty-four healthy Chinese Dragon Li cats of either sex were randomly divided into four groups: control (1 ml/kg physiological saline), As2O3 (1 mg/kg), resveratrol (3 mg/kg) and As2O3 (1 mg/kg) + resveratrol (3 mg/kg). As2O3+resveratrol-treated group were given resveratrol (3 mg/kg) 1 h before As2O3 (1 mg/kg) administration. Pretreatment with resveratrol upregulated the activities of antioxidant enzymes and attenuated As2O3-induced increases in reactive oxygen species and malondialdehyde production. In addition, resveratrol attenuated the As2O3-induced reduction in the level of reduced glutathione and the ratio of reduced glutathione to oxidised glutathione, and accumulation of arsenic in the cerebral cortex. These findings support neuroprotective effect of resveratrol on As2O3 toxicity in feline brain and provide a better understanding of the mechanism that resveratrol modulates As2O3-induced oxidative damage and a stronger rational for clinical use of resveratrol to protect brain against the toxicity of arsenic.
Collapse
Affiliation(s)
- Y Cheng
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - J Xue
- College of Animal Science and Technology, Inner Mongolia University for Nationalities, Tongliao, China
| | - H Jiang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - M Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - L Gao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - D Ma
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Z Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| |
Collapse
|
117
|
Cohen SM, Arnold LL, Beck BD, Lewis AS, Eldan M. Evaluation of the carcinogenicity of inorganic arsenic. Crit Rev Toxicol 2013; 43:711-52. [DOI: 10.3109/10408444.2013.827152] [Citation(s) in RCA: 123] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
118
|
El Eit RM, Iskandarani AN, Saliba JL, Jabbour MN, Mahfouz RA, Bitar NMA, Ayoubi HRE, Zaatari GS, Mahon FX, De Thé HB, Bazarbachi AA, Nasr RR. Effective targeting of chronic myeloid leukemia initiating activity with the combination of arsenic trioxide and interferon alpha. Int J Cancer 2013; 134:988-96. [PMID: 23934954 DOI: 10.1002/ijc.28427] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2013] [Revised: 07/03/2013] [Accepted: 07/25/2013] [Indexed: 01/19/2023]
Abstract
Imatinib is the standard of care in chronic meloid leukemia (CML) therapy. However, imatinib is not curative since most patients who discontinue therapy relapse indicating that leukemia initiating cells (LIC) are resistant. Interferon alpha (IFN) induces hematologic and cytogenetic remissions and interestingly, improved outcome was reported with the combination of interferon and imatinib. Arsenic trioxide was suggested to decrease CML LIC. We investigated the effects of arsenic and IFN on human CML cell lines or primary cells and the bone marrow retroviral transduction/transplantation murine CML model. In vitro, the combination of arsenic and IFN inhibited proliferation and activated apoptosis. Importantly, arsenic and IFN synergistically reduced the clonogenic activity of primary bone marrow cells derived from CML patients. Finally, in vivo, combined interferon and arsenic treatment, but not single agents, prolonged the survival of primary CML mice. Importantly, the combination severely impaired engraftment into untreated secondary recipients, with some recipients never developing the disease, demonstrating a dramatic decrease in CML LIC activity. Arsenic/IFN effect on CML LIC activity was significantly superior to that of imatinib. These results support further exploration of this combination, alone or with imatinib aiming at achieving CML eradication rather than long-term disease control.
Collapse
Affiliation(s)
- Rabab M El Eit
- Department of Anatomy, Cell Biology and Physiology, American University of Beirut, Beirut, Lebanon
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
119
|
Firkin F, Iland H. Arsenic: an old enemy now turned friend. Leuk Lymphoma 2013; 54:1864-6. [DOI: 10.3109/10428194.2013.790967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
120
|
Lo RKH, Kwong YL. Arsenic trioxide suppressed mantle cell lymphoma by downregulation of cyclin D1. Ann Hematol 2013; 93:255-65. [PMID: 23949314 DOI: 10.1007/s00277-013-1866-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 07/25/2013] [Indexed: 01/29/2023]
Abstract
Mantle cell lymphoma (MCL) is aggressive with poor prognosis. Due to t(11;14)(q13;q32), cyclin D1 is overexpressed. The in vitro activities of arsenic trioxide (As2O3) in MCL were investigated. In MCL lines Jeko-1 and Granta-519, As2O3 induced dose-dependent and time-dependent increases in apoptosis accompanied by cyclin D1 suppression. Downregulation of cyclin D1 resulted in decreased retinoblastoma protein phosphorylation, which led to repressed G1 progression to S/G2 phases. As2O3 did not affect cyclin D1 gene transcription. Instead, As2O3 activated glycogen synthase kinase-3beta (by tyrosine-216 phosphorylation) and IkappaB kinase alpha/beta (by serine-176/180 phosphorylation), both of which phosphorylated cyclin D1 at threonine-286, leading to its poly-ubiquitination and degradation in the proteasome. These observations were recapitulated partly in primary MCL samples obtained from patients refractory to conventional treatment. Our findings suggested that As2O3 might be clinically useful in MCL.
Collapse
Affiliation(s)
- Rico K H Lo
- Department of Medicine, Queen Mary Hospital, University of Hong Kong, Professorial Block, Pokfulam Road, Hong Kong, China
| | | |
Collapse
|
121
|
|
122
|
Sekhon BS. Metalloid compounds as drugs. Res Pharm Sci 2013; 8:145-58. [PMID: 24019824 PMCID: PMC3764666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2022] Open
Abstract
The six elements commonly known as metalloids are boron, silicon, germanium, arsenic, antimony, and tellurium. Metalloid containing compounds have been used as antiprotozoal drugs. Boron-based drugs, the benzoxaboroles have been exploited as potential treatments for neglected tropical diseases. Arsenic has been used as a medicinal agent and arsphenamine was the main drug used to treat syphilis. Arsenic trioxide has been approved for the treatment of acute promyelocytic leukemia. Pentavalent antimonials have been the recommended drug for visceral leishmaniasis and cutaneous leishmaniasis. Tellurium (IV) compounds may have important roles in thiol redox biological activity in the human body, and ammonium trichloro (dioxoethylene-O, O'-)tellurate (AS101) may be a promising agent for the treatment of Parkinson's disease. Organosilicon compounds have been shown to be effective in vitro multidrug-resistance reverting agents.
Collapse
Affiliation(s)
- B. S. Sekhon
- PCTE Institute of Pharmacy, near Baddowal Cantt, Ludhiana-142 021, India
| |
Collapse
|
123
|
Rao Y, Li R, Zhang D. A drug from poison: how the therapeutic effect of arsenic trioxide on acute promyelocytic leukemia was discovered. SCIENCE CHINA-LIFE SCIENCES 2013; 56:495-502. [DOI: 10.1007/s11427-013-4487-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 04/05/2013] [Indexed: 10/26/2022]
|
124
|
Irwin ME, Rivera-Del Valle N, Chandra J. Redox control of leukemia: from molecular mechanisms to therapeutic opportunities. Antioxid Redox Signal 2013; 18:1349-83. [PMID: 22900756 PMCID: PMC3584825 DOI: 10.1089/ars.2011.4258] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Reactive oxygen species (ROS) play both positive and negative roles in the proliferation and survival of a cell. This dual nature has been exploited by leukemia cells to promote growth, survival, and genomic instability-some of the hallmarks of the cancer phenotype. In addition to altered ROS levels, many antioxidants are dysregulated in leukemia cells. Together, the production of ROS and the expression and activity of antioxidant enzymes make up the primary redox control of leukemia cells. By manipulating this system, leukemia cells gain proliferative and survival advantages, even in the face of therapeutic insults. Standard treatment options have improved leukemia patient survival rates in recent years, although relapse and the development of resistance are persistent challenges. Therapies targeting the redox environment show promise for these cases. This review highlights the molecular mechanisms that control the redox milieu of leukemia cells. In particular, ROS production by the mitochondrial electron transport chain, NADPH oxidase, xanthine oxidoreductase, and cytochrome P450 will be addressed. Expression and activation of antioxidant enzymes such as superoxide dismutase, catalase, heme oxygenase, glutathione, thioredoxin, and peroxiredoxin are perturbed in leukemia cells, and the functional consequences of these molecular alterations will be described. Lastly, we delve into how these pathways can be potentially exploited therapeutically to improve treatment regimens and promote better outcomes for leukemia patients.
Collapse
Affiliation(s)
- Mary E Irwin
- Department of Pediatrics Research, Children's Cancer Hospital, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | |
Collapse
|
125
|
Ablain J, Nasr R, Zhu J, Bazarbachi A, Lallemand-Breittenbach V, de Thé H. How animal models of leukaemias have already benefited patients. Mol Oncol 2013; 7:224-31. [PMID: 23453906 DOI: 10.1016/j.molonc.2013.01.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 01/22/2013] [Indexed: 10/27/2022] Open
Abstract
The relative genetic simplicity of leukaemias, the development of which likely relies on a limited number of initiating events has made them ideal for disease modelling, particularly in the mouse. Animal models provide incomparable insights into the mechanisms of leukaemia development and allow exploration of the molecular pillars of disease maintenance, an aspect often biased in cell lines or ex vivo systems. Several of these models, which faithfully recapitulate the characteristics of the human disease, have been used for pre-clinical purposes and have been instrumental in predicting therapy response in patients. We plea for a wider use of genetically defined animal models in the design of clinical trials, with a particular focus on reassessment of existing cancer or non-cancer drugs, alone or in combination.
Collapse
Affiliation(s)
- Julien Ablain
- Université Paris Diderot, Sorbonne Paris Cité, Hôpital St. Louis 1, Avenue Claude Vellefaux, 75475 Paris cedex 10, France
| | | | | | | | | | | |
Collapse
|
126
|
8-CPT-cAMP/all-trans retinoic acid targets t(11;17) acute promyelocytic leukemia through enhanced cell differentiation and PLZF/RARα degradation. Proc Natl Acad Sci U S A 2013; 110:3495-500. [PMID: 23382200 DOI: 10.1073/pnas.1222863110] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The refractoriness of acute promyelocytic leukemia (APL) with t(11;17)(q23;q21) to all-trans retinoic acid (ATRA)-based therapy concerns clinicians and intrigues basic researchers. By using a murine leukemic model carrying both promyelocytic leukemia zinc finger/retinoic acid receptor-α (PLZF/RARα) and RARα/PLZF fusion genes, we discovered that 8-chlorophenylthio adenosine-3', 5'-cyclic monophosphate (8-CPT-cAMP) enhances cellular differentiation and improves gene trans-activation by ATRA in leukemic blasts. Mechanistically, in combination with ATRA, 8-CPT-cAMP activates PKA, causing phosphorylation of PLZF/RARα at Ser765 and resulting in increased dissociation of the silencing mediator for retinoic acid and thyroid hormone receptors/nuclear receptor corepressor from PLZF/RARα. This process results in changes of local chromatin and transcriptional reactivation of the retinoic acid pathway in leukemic cells. Meanwhile, 8-CPT-cAMP also potentiated ATRA-induced degradation of PLZF/RARα through its Ser765 phosphorylation. In vivo treatment of the t(11;17) APL mouse model demonstrated that 8-CPT-cAMP could significantly improve the therapeutic effect of ATRA by targeting a leukemia-initiating cell activity. This combined therapy, which induces enhanced differentiation and oncoprotein degradation, may benefit t(11;17) APL patients.
Collapse
|
127
|
Mastrangelo D, Massai L, Fioritoni G, Iacone A, Bartolomeo PD, Accorsi P, Bonfini T, Muscettola M, Grasso G. Megadoses of Sodium Ascorbate Efficiently Kill HL60 Cells <i>in Vitro</i>: Comparison with Arsenic Trioxide. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/jct.2013.48162] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
128
|
|
129
|
Abstract
Since the Central dogma of Molecular Biology was proposed about 40 years ago; our understanding of the intricacies of gene regulation has undergone tectonic shifts almost every decade. It is now widely accepted that the complexity of an organism is not directed by the sheer number of genes it carries but how they are decoded by a myriad of regulatory modules. Over the years, it has emerged that the organizations chromatins and its remodeling; splicing and polyadenylation of pre-mRNAs, stability and localization of mRNAs and modulation of their expression by non-coding and miRNAs play pivotal roles in metazoan gene expression. Nevertheless, in spite of tremendous progress in our understanding of all these mechanisms of gene regulation, the way these events are coordinated leading towards a highly defined proteome of a given cell type remains enigmatic. In that context, the structures of many metazoan genes cannot fully explain their pattern of expression in different tissues, especially during embryonic development and progression of various diseases. Further, numerous studies done during the past quarter of a century suggested that the heritable states of transcriptional activation or repression of a gene can be influenced by the covalent modifications of constituent bases and associated histones; its chromosomal context and long-range interactions between various chromosomal elements (Holliday 1987; Turner 1998; Lyon 1993). However, molecular dissection of these phenomena is largely unknown and is an exciting topic of research under the sub-discipline epigenetics (Gasser et al. 1998).
Collapse
Affiliation(s)
- Shyamal K Goswami
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India,
| |
Collapse
|
130
|
Alterations in glutathione levels and apoptotic regulators are associated with acquisition of arsenic trioxide resistance in multiple myeloma. PLoS One 2012; 7:e52662. [PMID: 23285138 PMCID: PMC3528737 DOI: 10.1371/journal.pone.0052662] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 11/19/2012] [Indexed: 11/19/2022] Open
Abstract
Arsenic trioxide (ATO) has been tested in relapsed/refractory multiple myeloma with limited success. In order to better understand drug mechanism and resistance pathways in myeloma we generated an ATO-resistant cell line, 8226/S-ATOR05, with an IC50 that is 2–3-fold higher than control cell lines and significantly higher than clinically achievable concentrations. Interestingly we found two parallel pathways governing resistance to ATO in 8226/S-ATOR05, and the relevance of these pathways appears to be linked to the concentration of ATO used. We found changes in the expression of Bcl-2 family proteins Bfl-1 and Noxa as well as an increase in cellular glutathione (GSH) levels. At low, clinically achievable concentrations, resistance was primarily associated with an increase in expression of the anti-apoptotic protein Bfl-1 and a decrease in expression of the pro-apoptotic protein Noxa. However, as the concentration of ATO increased, elevated levels of intracellular GSH in 8226/S-ATOR05 became the primary mechanism of ATO resistance. Removal of arsenic selection resulted in a loss of the resistance phenotype, with cells becoming sensitive to high concentrations of ATO within 7 days following drug removal, indicating changes associated with high level resistance (elevated GSH) are dependent upon the presence of arsenic. Conversely, not until 50 days without arsenic did cells once again become sensitive to clinically relevant doses of ATO, coinciding with a decrease in the expression of Bfl-1. In addition we found cross-resistance to melphalan and doxorubicin in 8226/S-ATOR05, suggesting ATO-resistance pathways may also be involved in resistance to other chemotherapeutic agents used in the treatment of multiple myeloma.
Collapse
|
131
|
Gaynor D, Griffith DM. The prevalence of metal-based drugs as therapeutic or diagnostic agents: beyond platinum. Dalton Trans 2012; 41:13239-13257. [PMID: 22930130 DOI: 10.1039/c2dt31601c] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Metal complexes and metal salts have a wide range of medicinal applications and are extensively administered to patients or purchased over the counter as a matter of routine. The abundance and variety of non-platinum metal complexes, which are approved for use as therapeutic or diagnostic agents, are highlighted. Current insights into the mechanism of action or indeed lack thereof of a selection of metallodrugs are discussed. Ultimately this perspective seeks to inspire chemists to tackle new challenges and raise awareness of opportunities in the area of inorganic therapeutic and diagnostic medicine.
Collapse
Affiliation(s)
- Declan Gaynor
- Department of Basic Medical Sciences, Royal College of Surgeons in Ireland Medical University of Bahrain, Building No. 2441, Road 2835, Busaiteen 228, PO Box 15503, Adliya, Kingdom of Bahrain.
| | | |
Collapse
|
132
|
Macoch M, Morzadec C, Fardel O, Vernhet L. Inorganic arsenic impairs differentiation and functions of human dendritic cells. Toxicol Appl Pharmacol 2012; 266:204-13. [PMID: 23164666 DOI: 10.1016/j.taap.2012.11.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Revised: 10/29/2012] [Accepted: 11/03/2012] [Indexed: 02/06/2023]
Abstract
Experimental studies have demonstrated that the antileukemic trivalent inorganic arsenic prevents the development of severe pro-inflammatory diseases mediated by excessive Th1 and Th17 cell responses. Differentiation of Th1 and Th17 subsets is mainly regulated by interleukins (ILs) secreted from dendritic cells (DCs) and the ability of inorganic arsenic to impair interferon-γ and IL-17 secretion by interfering with the physiology of DCs is unknown. In the present study, we demonstrate that high concentrations of sodium arsenite (As(III), 1-2 μM) clinically achievable in plasma of arsenic-treated patients, block differentiation of human peripheral blood monocytes into immature DCs (iDCs) by inducing their necrosis. Differentiation of monocytes in the presence of non-cytotoxic concentrations of As(III) (0.1 to 0.5 μM) only slightly impacts endocytotic activity of iDCs or expression of co-stimulatory molecules in cells activated with lipopolysaccharide. However, this differentiation in the presence of As(III) strongly represses secretion of IL-12p70 and IL-23, two major regulators of Th1 and Th17 activities, from iDCs stimulated with different toll-like receptor (TLR) agonists in metalloid-free medium. Such As(III)-exposed DCs also exhibit reduced mRNA levels of IL12A and/or IL12B genes when activated with TLR agonists. Finally, differentiation of monocytes with non-cytotoxic concentrations of As(III) subsequently reduces the ability of activated DCs to stimulate the release of interferon-γ and IL-17 from Th cells. In conclusion, our results demonstrate that clinically relevant concentrations of inorganic arsenic markedly impair in vitro differentiation and functions of DCs, which may contribute to the putative beneficial effects of the metalloid towards inflammatory autoimmune diseases.
Collapse
Affiliation(s)
- Mélinda Macoch
- UMR INSERM U1085, Institut de Recherche sur la Santé, l'Environnement et le Travail (IRSET), Université de Rennes 1, 2 avenue du Professeur Léon Bernard, 35043 Rennes, France
| | | | | | | |
Collapse
|
133
|
Tasaki KM. Circular causality in integrative multi-scale systems biology and its interaction with traditional medicine. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2012; 111:144-6. [PMID: 23085071 DOI: 10.1016/j.pbiomolbio.2012.09.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 09/26/2012] [Accepted: 09/27/2012] [Indexed: 10/27/2022]
Abstract
This paper discusses the concept of circular causality in "biological relativity" (Noble, Interface Focus. 2, 56-64, 2012) in the context of integrative and multi-scale systems approaches to biology. It also discusses the relationship between systems biology and traditional medicine (sometimes called scholarly medical traditions) mainly from East Asia and India. Systems biology helps illuminate circular processes identified in traditional medicine, while the systems concept of attractors in complex systems will also be important in analysing dynamic balance in the body processes that traditional medicine is concerned with. Ways of nudging disordered processes towards good attractors through the use of traditional medicines can lead to the development of new ways not only of curing disease but also of its prevention. Examples are given of cost-effective multi-component remedies that use integrative ideas derived from traditional medicine.
Collapse
Affiliation(s)
- Kazuyo Maria Tasaki
- University of Oxford, Department of Physiology, Anatomy and Genetics, Parks Road, Oxford OX1 3PT, UK.
| |
Collapse
|
134
|
Smith MA, Kang MH, Reynolds CP, Kurmasheva RT, Alexander D, Billups CA, Toretsky JA, Houghton PJ. Evaluation of arsenic trioxide by the pediatric preclinical testing program with a focus on Ewing sarcoma. Pediatr Blood Cancer 2012; 59:753-5. [PMID: 22315235 PMCID: PMC3612422 DOI: 10.1002/pbc.23391] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2011] [Accepted: 09/19/2011] [Indexed: 11/10/2022]
Abstract
Arsenic trioxide was tested against the PPTP in vitro panel (1.0 nM to 10 µM) and against the PPTP Ewing sarcoma in vivo panel administered intraperitoneally at a dose of 2.5 mg/kg daily × 5 per week for a planned treatment duration of 3 weeks. Arsenic trioxide showed a median relative IC(50) value of 0.9 µM, with Ewing sarcoma cell lines having IC(50) values similar to those of the remaining PPTP cell lines. Arsenic trioxide did not induce significant differences in EFS distribution compared to control in any of the Ewing sarcoma xenografts studied, and no objective responses were observed.
Collapse
Affiliation(s)
| | - Min H. Kang
- Texas Tech University Health Sciences Center, Lubbock, TX
| | | | | | | | | | | | | |
Collapse
|
135
|
Mutation associations in RA-defiant APL. Blood 2012; 120:1969-70. [DOI: 10.1182/blood-2012-07-441303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
136
|
Affiliation(s)
- Alexander Varshavsky
- Division of Biology, California Institute of Technology, Pasadena, California 91125, USA.
| |
Collapse
|
137
|
Morzadec C, Macoch M, Robineau M, Sparfel L, Fardel O, Vernhet L. Inorganic arsenic represses interleukin-17A expression in human activated Th17 lymphocytes. Toxicol Appl Pharmacol 2012; 262:217-22. [PMID: 22617429 DOI: 10.1016/j.taap.2012.05.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Accepted: 05/07/2012] [Indexed: 01/11/2023]
Abstract
Trivalent inorganic arsenic [As(III)] is an efficient anticancer agent used to treat patients suffering from acute promyelocytic leukemia. Recently, experimental studies have clearly demonstrated that this metalloid can also cure lymphoproliferative and/or pro-inflammatory syndromes in different murine models of chronic immune-mediated diseases. T helper (Th) 1 and Th17 lymphocytes play a central role in development of these diseases, in mice and humans, especially by secreting the potent pro-inflammatory cytokine interferon-γ and IL-17A, respectively. As(III) impairs basic functions of human T cells but its ability to modulate secretion of pro-inflammatory cytokines by differentiated Th lymphocytes is unknown. In the present study, we demonstrate that As(III), used at concentrations clinically achievable in plasma of patients, has no effect on the secretion of interferon-γ from Th1 cells but almost totally blocks the expression and the release of IL-17A from human Th17 lymphocytes co-stimulated for five days with anti-CD3 and anti-CD28 antibodies, in the presence of differentiating cytokines. In addition, As(III) specifically reduces mRNA levels of the retinoic-related orphan receptor (ROR)C gene which encodes RORγt, a key transcription factor controlling optimal IL-17 expression in fully differentiated Th17 cells. The metalloid also blocks initial expression of IL-17 gene induced by the co-stimulation, probably in part by impairing activation of the JNK/c-Jun pathway. In conclusion, our results demonstrate that As(III) represses expression of the major pro-inflammatory cytokine IL-17A produced by human Th17 lymphocytes, thus strengthening the idea that As(III) may be useful to treat inflammatory immune-mediated diseases in humans.
Collapse
Affiliation(s)
- Claudie Morzadec
- UMR INSERM U1085, Institut de Recherche sur lSanté, l'Environnement et Travail, Université de Rennes 1, 2 avenue du Professeur Léon Bernard, 35043 Rennes, France
| | | | | | | | | | | |
Collapse
|
138
|
The arsenic-based cure of acute promyelocytic leukemia promotes cytoplasmic sequestration of PML and PML/RARA through inhibition of PML body recycling. Blood 2012; 120:847-57. [DOI: 10.1182/blood-2011-10-388496] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Arsenic in the form of arsenic trioxide (ATO) is used as a therapeutic drug for treatment of acute promyelocytic leukemia (APL). The mechanism by which this agent cures this disease was previously shown to involve direct interactions between ATO and the promyelocytic leukemia protein (PML), as well as accelerated degradation of the APL-associated fusion oncoprotein PML/retinoic acid receptor α (RARA). Here we investigated the fate of PML-generated nuclear structures called PML bodies in ATO-treated cells. We found that ATO inhibits formation of progeny PML bodies while it stabilizes cytoplasmic precursor compartments, referred to as cytoplasmic assemblies of PML and nucleoporins (CyPNs), after cell division. This block in PML body recycling is readily detected at pharmacologic relevant ATO concentrations (0.02-0.5μM) that do not cause detectable cell-cycle defects, and it does not require modification of PML by SUMOylation. In addition, PML and PML/RARA carrying mutations previously identified in ATO-resistant APL patients are impeded in their ability to become sequestered within CyPNs. Thus, ATO may inhibit nuclear activities of PML and PML/RARA in postmitotic cells through CyPN-dependent cytoplasmic sequestration.
Collapse
|
139
|
Chen SJ, Zhou GB. Targeted therapy: The new lease on life for acute promyelocytic leukemia, and beyond. IUBMB Life 2012; 64:671-5. [PMID: 22714999 DOI: 10.1002/iub.1055] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Accepted: 04/30/2012] [Indexed: 01/12/2023]
Abstract
Leukemia, a group of hematological malignancies characterized by abnormal proliferation, decreased apoptosis, and blocked differentiation of hematopoietic stem/progenitor cells, is a disease involving dynamic change in the genome. Chromosomal translocation and point mutation are the major mechanisms in leukemia, which lead to production of oncogenes with dominant gain of function and tumor suppressor genes with recessive loss of function. Targeted therapy refers to treatment strategies perturbing the molecules critical for leukemia pathogenesis. The t(15;17) which generates PML-RARα, t(8;21) that produces AML1-ETO, and t(9;22) which generates BCR-ABL are the three most frequently seen chromosomal translocations in myeloid leukemia. The past two to three decades have witnessed tremendous success in development of targeted therapies for acute and chronic myeloid leukemia caused by the three fusion proteins. Here, we review the therapeutic efficacies and the mechanisms of action of targeted therapies for myeloid leukemia and show how this strategy significantly improve the clinical outcome of patients and even turn acute promyelocytic leukemia from highly fatal to highly curable.
Collapse
Affiliation(s)
- Sai-Juan Chen
- State Key Laboratory of Medical Genomics and Shanghai Institute of Hematology, Rui Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | | |
Collapse
|
140
|
Abstract
Abstract
Arsenic trioxide (ATO) has been successfully used as a treatment for acute promyelocytic leukemia (APL) for more than a decade. Here we report a patient with APL who developed a mitochondrial myopathy after treatment with ATO. Three months after ATO therapy withdrawal, the patient was unable to walk without assistance and skeletal muscle studies showed a myopathy with abundant cytoplasmic lipid droplets, decreased activities of the mitochondrial respiratory chain complexes, multiple mitochondrial DNA (mtDNA) deletions, and increased muscle arsenic content. Six months after ATO treatment was interrupted, the patient recovered normal strength, lipid droplets had decreased in size and number, respiratory chain complex activities were partially restored, but multiple mtDNA deletions and increased muscle arsenic content persisted. ATO therapy may provoke a delayed, severe, and partially reversible mitochondrial myopathy, and a long-term careful surveillance for muscle disease should be instituted when ATO is used in patients with APL.
Collapse
|
141
|
Liu JX, Zhou GB, Chen SJ, Chen Z. Arsenic compounds: revived ancient remedies in the fight against human malignancies. Curr Opin Chem Biol 2012; 16:92-8. [PMID: 22342767 DOI: 10.1016/j.cbpa.2012.01.015] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Revised: 01/18/2012] [Accepted: 01/26/2012] [Indexed: 01/27/2023]
Abstract
Arsenic, the 20th most abundant element in the earth crust, is one of the oldest drugs in the world. It was used in the 18th century in treating hematopoietic malignancies, discarded in 1950s in favor of chemotherapeutic agents (busulphan and others), and was revived in the 1970s due to its dramatic efficacy on acute promyelocytic leukemia (APL) driven by the t(15;17) translocation-generated PML-RARα fusion. Arsenic represents the most potent single agent for APL, and achieves a five-year overall survival of 90% in APL patients when combined with all-trans retinoic acid (ATRA) and chemotherapy (daunorubicin and cytarabine), turning this disease from highly fatal to highly curable. Arsenic triggers sumoylation/ubiquitination and proteasomal degradation of PML-RARα via directly binding to the C3HC4 zinc finger motif in the RBCC domain of the PML moiety and induction of its homodimerization/multimerization and interaction with the SUMO E2 conjugase Ubc9. Because of its multiplicity of targets and complex mechanisms of action, arsenic is widely tested in combination with other agents in a variety of malignancies. Other arsenic containing recipes including oral formulations and organic arsenicals are being developed and tested, and progress in these areas will definitely expand the use of arsenicals in other malignant diseases.
Collapse
Affiliation(s)
- Jian-Xiang Liu
- Shanghai Institute of Hematology and State Key Laboratory for Medical Genomics, Rui Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, China
| | | | | | | |
Collapse
|
142
|
Farris M, Lague A, Manuelyan Z, Statnekov J, Francklyn C. Altered nuclear cofactor switching in retinoic-resistant variants of the PML-RARα oncoprotein of acute promyelocytic leukemia. Proteins 2012; 80:1095-109. [PMID: 22228505 DOI: 10.1002/prot.24010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Revised: 11/18/2011] [Accepted: 11/28/2011] [Indexed: 11/06/2022]
Abstract
Acute promyelocytic leukemia (APL) results from a reciprocal translocation that fuses the gene for the PML tumor suppressor to that encoding the retinoic acid receptor alpha (RARα). The resulting PML-RARα oncogene product interferes with multiple regulatory pathways associated with myeloid differentiation, including normal PML and RARα functions. The standard treatment for APL includes anthracycline-based chemotherapeutic agents plus the RARα agonist all-trans retinoic acid (ATRA). Relapse, which is often accompanied by ATRA resistance, occurs in an appreciable frequency of treated patients. One potential mechanism suggested by model experiments featuring the selection of ATRA-resistant APL cell lines involves ATRA-resistant versions of the PML-RARα oncogene, where the relevant mutations localize to the RARα ligand-binding domain (LBD). Such mutations may act by compromising agonist binding, but other mechanisms are possible. Here, we studied the molecular consequence of ATRA resistance by use of circular dichroism, protease resistance, and fluorescence anisotropy assays employing peptides derived from the NCOR nuclear corepressor and the ACTR nuclear coactivator. The consequences of the mutations on global structure and cofactor interaction functions were assessed quantitatively, providing insights into the basis of agonist resistance. Attenuated cofactor switching and increased protease resistance represent features of the LBDs of ATRA-resistant PML-RARα, and these properties may be recapitulated in the full-length oncoproteins.
Collapse
Affiliation(s)
- Mindy Farris
- Department of Microbiology and Molecular Genetics, University of Vermont, Health Sciences Complex, Burlington, Vermont 05405, USA
| | | | | | | | | |
Collapse
|
143
|
Curing APL through PML/RARA degradation by As2O3. Trends Mol Med 2012; 18:36-42. [DOI: 10.1016/j.molmed.2011.10.001] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Revised: 10/03/2011] [Accepted: 10/05/2011] [Indexed: 11/19/2022]
|
144
|
Martinez-Outschoorn UE, Goldberg A, Lin Z, Ko YH, Flomenberg N, Wang C, Pavlides S, Pestell RG, Howell A, Sotgia F, Lisanti MP. Anti-estrogen resistance in breast cancer is induced by the tumor microenvironment and can be overcome by inhibiting mitochondrial function in epithelial cancer cells. Cancer Biol Ther 2011; 12:924-38. [PMID: 22041887 DOI: 10.4161/cbt.12.10.17780] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Here, we show that tamoxifen resistance is induced by cancer-associated fibroblasts (CAFs). Coculture of estrogen receptor positive (ER+) MCF7 cells with fibroblasts induces tamoxifen and fulvestrant resistance with 4.4 and 2.5-fold reductions, respectively, in apoptosis compared with homotypic MCF7 cell cultures. Treatment of MCF7 cells cultured alone with high-energy mitochondrial "fuels" (L-lactate or ketone bodies) is sufficient to confer tamoxifen resistance, mimicking the effects of coculture with fibroblasts. To further demonstrate that epithelial cancer cell mitochondrial activity is the origin of tamoxifen resistance, we employed complementary pharmacological and genetic approaches. First, we studied the effects of two mitochondrial "poisons," namely metformin and arsenic trioxide (ATO), on fibroblast-induced tamoxifen resistance. We show here that treatment with metformin or ATO overcomes fibroblast-induced tamoxifen resistance in MCF7 cells. Treatment with the combination of tamoxifen plus metformin or ATO leads to increases in glucose uptake in MCF7 cells, reflecting metabolic uncoupling between epithelial cancer cells and fibroblasts. In coculture, tamoxifen induces the upregulation of TIGAR (TP53-induced glycolysis and apoptosis regulator), a p53 regulated gene that simultaneously inhibits glycolysis, autophagy and apoptosis and reduces ROS generation, thereby promoting oxidative mitochondrial metabolism. To genetically mimic the effects of coculture, we next recombinantly overexpressed TIGAR in MCF7 cells. Remarkably, TIGAR overexpression protects epithelial cancer cells from tamoxifen-induced apoptosis, providing genetic evidence that increased mitochondrial function confers tamoxifen resistance. Finally, CAFs also protect MCF7 cells against apoptosis induced by other anticancer agents, such as the topoisomerase inhibitor doxorubicin (adriamycin) and the PARP-1 inhibitor ABT-888. These results suggest that the tumor microenvironment may be a general mechanism for conferring drug resistance. In summary, we have discovered that mitochondrial activity in epithelial cancer cells drives tamoxifen resistance in breast cancer and that mitochondrial "poisons" are able to re-sensitize these cancer cells to tamoxifen. In this context, TIGAR may be a key "druggable" target for preventing drug resistance in cancer cells, as it protects cancer cells against the onset of stress-induced mitochondrial dys-function and aerobic glycolysis.
Collapse
Affiliation(s)
- Ubaldo E Martinez-Outschoorn
- The Jefferson Stem Cell Biology and Regenerative Medicine Center, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
145
|
|
146
|
Gocek E, Marcinkowska E. Differentiation therapy of acute myeloid leukemia. Cancers (Basel) 2011; 3:2402-20. [PMID: 24212816 PMCID: PMC3757424 DOI: 10.3390/cancers3022402] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2011] [Revised: 04/29/2011] [Accepted: 05/05/2011] [Indexed: 12/31/2022] Open
Abstract
Acute Myeloid Leukemia (AML) is a predominant acute leukemia among adults, characterized by accumulation of malignantly transformed immature myeloid precursors. A very attractive way to treat myeloid leukemia, which is now called 'differentiation therapy', was proposed as in vitro studies have shown that a variety of agents stimulate differentiation of the cell lines isolated from leukemic patients. One of the differentiation-inducing agents, all-trans retinoic acid (ATRA), which can induce granulocytic differentiation in myeloid leukemic cell lines, has been introduced into clinics to treat patients with acute promyelocytic leukemia (APL) in which a PML-RARA fusion protein is generated by a t(15;17)(q22;q12) chromosomal translocation. Because differentiation therapy using ATRA has significantly improved prognosis for patients with APL, many efforts have been made to find alternative differentiating agents. Since 1,25-dihydroxyvitamin D3 (1,25D) is capable of inducing in vitro monocyte/macrophage differentiation of myeloid leukemic cells, clinical trials have been performed to estimate its potential to treat patients with AML or myelodysplastic syndrome (MDS). Unfortunately therapeutic concentrations of 1,25D can induce potentially fatal systemic hypercalcemia, thus limiting clinical utility of that compound. Attempts to overcome this problem have focused on the synthesis of 1,25D analogs (VDAs) which retain differentiation inducing potential, but lack its hypercalcemic effects. This review aims to discuss current problems and potential solutions in differentiation therapy of AML.
Collapse
Affiliation(s)
- Elzbieta Gocek
- Department of Biotechnology, University of Wroclaw, ul Tamka 2, Wroclaw 50-137, Poland; E-Mail: (E.G.)
| | - Ewa Marcinkowska
- Department of Biotechnology, University of Wroclaw, ul Tamka 2, Wroclaw 50-137, Poland; E-Mail: (E.G.)
| |
Collapse
|