101
|
Noris P, Pecci A. Hereditary thrombocytopenias: a growing list of disorders. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2017; 2017:385-399. [PMID: 29222283 PMCID: PMC6142591 DOI: 10.1182/asheducation-2017.1.385] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The introduction of high throughput sequencing (HTS) techniques greatly improved the knowledge of inherited thrombocytopenias (ITs) over the last few years. A total of 33 different forms caused by molecular defects affecting at least 32 genes have been identified; along with the discovery of new disease-causing genes, pathogenetic mechanisms of thrombocytopenia have been better elucidated. Although the clinical picture of ITs is heterogeneous, bleeding has been long considered the major clinical problem for patients with IT. Conversely, the current scenario indicates that patients with some of the most common ITs are at risk of developing additional disorders more dangerous than thrombocytopenia itself during life. In particular, MYH9 mutations result in congenital macrothrombocytopenia and predispose to kidney failure, hearing loss, and cataracts, MPL and MECOM mutations cause congenital thrombocytopenia evolving into bone marrow failure, whereas thrombocytopenias caused by RUNX1, ANKRD26, and ETV6 mutations are characterized by predisposition to hematological malignancies. Making a definite diagnosis of these forms is crucial to provide patients with the most appropriate treatment, follow-up, and counseling. In this review, the ITs known to date are discussed, with specific attention focused on clinical presentations and diagnostic criteria for ITs predisposing to additional illnesses. The currently available therapeutic options for the different forms of IT are illustrated.
Collapse
Affiliation(s)
- Patrizia Noris
- Department of Internal Medicine, IRCCS Policlinico San Matteo Foundation and University of Pavia, Pavia, Italy
| | - Alessandro Pecci
- Department of Internal Medicine, IRCCS Policlinico San Matteo Foundation and University of Pavia, Pavia, Italy
| |
Collapse
|
102
|
Nbeal2 interacts with Dock7, Sec16a, and Vac14. Blood 2017; 131:1000-1011. [PMID: 29187380 DOI: 10.1182/blood-2017-08-800359] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 11/21/2017] [Indexed: 12/11/2022] Open
Abstract
Mutations in NBEAL2, the gene encoding the scaffolding protein Nbeal2, are causal of gray platelet syndrome (GPS), a rare recessive bleeding disorder characterized by platelets lacking α-granules and progressive marrow fibrosis. We present here the interactome of Nbeal2 with additional validation by reverse immunoprecipitation of Dock7, Sec16a, and Vac14 as interactors of Nbeal2. We show that GPS-causing mutations in its BEACH domain have profound and possible effects on the interaction with Dock7 and Vac14, respectively. Proximity ligation assays show that these 2 proteins are physically proximal to Nbeal2 in human megakaryocytes. In addition, we demonstrate that Nbeal2 is primarily localized in the cytoplasm and Dock7 on the membrane of or in α-granules. Interestingly, platelets from GPS cases and Nbeal2-/- mice are almost devoid of Dock7, resulting in a profound dysregulation of its signaling pathway, leading to defective actin polymerization, platelet activation, and shape change. This study shows for the first time proteins interacting with Nbeal2 and points to the dysregulation of the canonical signaling pathway of Dock7 as a possible cause of the aberrant formation of platelets in GPS cases and Nbeal2-deficient mice.
Collapse
|
103
|
Nuytemans K, Ortel TL, Gomez L, Hofmann N, Alves N, Dueker N, Beecham A, Whitehead P, Hahn Estabrooks S, Kitchens CS, Erkan D, Brandão LR, James AH, Kulkarni R, Manco-Johnson MJ, Pericak-Vance MA, Vance JM. Variants in chondroitin sulfate metabolism genes in thrombotic storm. Thromb Res 2017; 161:43-51. [PMID: 29178990 DOI: 10.1016/j.thromres.2017.11.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 10/24/2017] [Accepted: 11/19/2017] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Thrombotic storm (TS) presents as a severe, acute thrombotic phenotype, characterized by multiple clotting events and frequently affecting younger adults. Understanding the extensive hypercoagulation of an extreme phenotype as TS will also provide insight into the pathogenesis of a wider spectrum of thrombotic disorders. MATERIAL AND METHODS We completed whole exome sequencing on 26 TS patients, including 1 multiplex family, 13 trios and 12 isolated TS patients. We examined both dominant and recessive inheritance models for known thrombotic factors as well as performed a genome-wide screen. Identified genes of interest in the family and trios were screened in the remaining TS patients. Variants were filtered on frequency (<5% in 1000 genomes), conservation and function in gene and were annotated for effect on protein and overall functionality. RESULTS We observed an accumulation of variants in genes linked to chondroitin sulfate (CS), but not heparan sulfate metabolism. Sixteen conserved, rare missense and nonsense variants in genes involved in CS metabolism (CHPF, CHPF2, CHST3, CHST12, CHST15, SLC26A2, PAPSS2, STAB2) were identified in over one-third of the TS patients. In contrast, we identified only seven variants in known thrombosis genes (including FV Leiden). CONCLUSIONS As CS has multiple functions in the glycocalyx protecting the endothelial cells, reduced availability of CS could diminish the normal control mechanisms for blood coagulation, making these CS metabolism genes strong potential risk factors for TS. Overall, no single gene was identified with strong evidence for TS causality; however, our data suggest TS is mediated by an accumulation of rare pro-thrombotic risk factors.
Collapse
Affiliation(s)
- Karen Nuytemans
- University of Miami, John P. Hussman Institute for Human Genomics, Miller School of Medicine, Biomedical Research Building, 1501 NW 10th Ave, Miami, FL 33136, United States.
| | - Thomas L Ortel
- Duke University Medical Center, Division of Hematology, Duke Hemostasis and Thrombosis Center, 40 Duke Medicine Circle, Durham, NC 27710, United States.
| | - Lissette Gomez
- University of Miami, John P. Hussman Institute for Human Genomics, Miller School of Medicine, Biomedical Research Building, 1501 NW 10th Ave, Miami, FL 33136, United States.
| | - Natalia Hofmann
- University of Miami, John P. Hussman Institute for Human Genomics, Miller School of Medicine, Biomedical Research Building, 1501 NW 10th Ave, Miami, FL 33136, United States.
| | - Natalie Alves
- University of Miami, John P. Hussman Institute for Human Genomics, Miller School of Medicine, Biomedical Research Building, 1501 NW 10th Ave, Miami, FL 33136, United States.
| | - Nicole Dueker
- University of Miami, John P. Hussman Institute for Human Genomics, Miller School of Medicine, Biomedical Research Building, 1501 NW 10th Ave, Miami, FL 33136, United States.
| | - Ashley Beecham
- University of Miami, John P. Hussman Institute for Human Genomics, Miller School of Medicine, Biomedical Research Building, 1501 NW 10th Ave, Miami, FL 33136, United States.
| | - Patrice Whitehead
- University of Miami, John P. Hussman Institute for Human Genomics, Miller School of Medicine, Biomedical Research Building, 1501 NW 10th Ave, Miami, FL 33136, United States.
| | - Susan Hahn Estabrooks
- University of Miami, John P. Hussman Institute for Human Genomics, Miller School of Medicine, Biomedical Research Building, 1501 NW 10th Ave, Miami, FL 33136, United States.
| | - Craig S Kitchens
- University of Florida, Division of Hematology and Oncology, 2000 SW Archer Rd, Gainesville, FL 32608, United States.
| | - Doruk Erkan
- Barbara Volcker Center for Women and Rheumatic Diseases, Hospital for Special Surgery, Weill Cornell Medicine, 535 East 70th Stm, New York, NY 10021, United States.
| | - Leonardo R Brandão
- The Hospital for Sick Children, 555 University Avenue, Toronto, ON M5G 1X8, Canada.
| | - Andra H James
- Duke University Medical Center, Division of Hematology, Duke Hemostasis and Thrombosis Center, 40 Duke Medicine Circle, Durham, NC 27710, United States.
| | - Roshni Kulkarni
- Michigan State University Centers for Bleeding and Clotting Disorders, 788 Service Rd B-216, East Lansing, MI 48824, United States.
| | - Marilyn J Manco-Johnson
- University of Colorado Hemophilia and Thrombosis Center, 13199 E. Montview Blvd Suite 100, Aurora, CO 80045, United States.
| | - Margaret A Pericak-Vance
- University of Miami, John P. Hussman Institute for Human Genomics, Miller School of Medicine, Biomedical Research Building, 1501 NW 10th Ave, Miami, FL 33136, United States.
| | - Jeffery M Vance
- University of Miami, John P. Hussman Institute for Human Genomics, Miller School of Medicine, Biomedical Research Building, 1501 NW 10th Ave, Miami, FL 33136, United States.
| |
Collapse
|
104
|
Nurden AT, Pillois X. ITGA2B and ITGB3 gene mutations associated with Glanzmann thrombasthenia. Platelets 2017; 29:98-101. [PMID: 29125375 DOI: 10.1080/09537104.2017.1371291] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Alan T Nurden
- a Institut de Rhythmologie et de Modélisation Cardiaque, Plateforme Technologique d'Innovation Biomédicale, Hôpital Xavier Arnozan , Pessac , France
| | - Xavier Pillois
- a Institut de Rhythmologie et de Modélisation Cardiaque, Plateforme Technologique d'Innovation Biomédicale, Hôpital Xavier Arnozan , Pessac , France.,b Université de Bordeaux, INSERM U1034 , Pessac , France
| |
Collapse
|
105
|
Cunha MLR, Meijers JCM, Rosendaal FR, Vlieg AVH, Reitsma PH, Middeldorp S. Whole exome sequencing in thrombophilic pedigrees to identify genetic risk factors for venous thromboembolism. PLoS One 2017; 12:e0187699. [PMID: 29117201 PMCID: PMC5695603 DOI: 10.1371/journal.pone.0187699] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 10/24/2017] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Family studies have shown a strong heritability component for venous thromboembolism (VTE), but established genetic risk factors are present in only half of VTE patients. AIM To identify genetic risk factors in two large families with unexplained hereditary VTE. METHODS We performed whole exome sequencing in 10 affected relatives of two unrelated families with an unexplained tendency for VTE. We prioritized variants shared by all affected relatives from both families, and evaluated these in the remaining affected and unaffected individuals. We prioritized variants based on 3 different filter strategies: variants within candidate genes, rare variants across the exome, and SNPs present in patients with familial VTE and with low frequency in the general population. We used whole exome sequencing data available from 96 unrelated VTE cases with a positive family history of VTE from an affected sib study (the GIFT study) to identify additional carriers and compared the risk-allele frequencies with the general population. Variants found in only one individual were also retained for further analysis. Finally, we assessed the association of these variants with VTE in a population-based case-control study (the MEGA study) with 4,291 cases and 4,866 controls. RESULTS Six variants remained as putative disease-risk candidates. These variants are located in 6 genes spread among 3 different loci: 2p21 (PLEKHH2 NM_172069:c.3105T>C, LRPPRC rs372371276, SRBD1 rs34959371), 5q35.2 (UNC5A NM_133369.2:c.1869+23C>A), and 17q25.1 (GPRC5C rs142232982, RAB37 rs556450784). In GIFT, additional carriers were identified only for the variants located in the 2p21 locus. In MEGA, additional carriers for several of these variants were identified in both cases and controls, without a difference in prevalence; no carrier of the UNC5A variant was present. CONCLUSION Despite sequencing of several individuals from two thrombophilic families resulting in 6 candidate variants, we were unable to confirm their relevance as novel thrombophilic defects.
Collapse
Affiliation(s)
- Marisa L. R. Cunha
- Department of Experimental Vascular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
- Department of Vascular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Joost C. M. Meijers
- Department of Experimental Vascular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
- Department of Plasma Proteins, Sanquin, Amsterdam, the Netherlands
| | - Frits R. Rosendaal
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Astrid van Hylckama Vlieg
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, the Netherlands
- Department of Thrombosis and Hemostasis, Leiden University Medical Center, Leiden, the Netherlands
| | - Pieter H. Reitsma
- Department of Thrombosis and Hemostasis, Leiden University Medical Center, Leiden, the Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Saskia Middeldorp
- Department of Vascular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
106
|
Nava T, Rivard GE, Bonnefoy A. Challenges on the diagnostic approach of inherited platelet function disorders: Is a paradigm change necessary? Platelets 2017; 29:148-155. [PMID: 29090587 DOI: 10.1080/09537104.2017.1356918] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Inherited platelet function disorders (IPFD) have been assessed for more than 50 years by aggregation- and secretion-based tests. Several decision trees are available intending to standardize the investigation of IPFD. A large variability of approaches is still in use among the laboratories across the world. In spite of costly and lengthy laboratory evaluation, the results have been found inconclusive or negative in a significant part of patients having bleeding manifestations. Molecular investigation of newly identified IPFD has recently contributed to a better understanding of the complexity of platelet function. Once considered "classic" IPFDs, Glanzmann thrombasthenia and Bernard-Soulier syndrome have each had their pathophysiology reassessed and their diagnosis made more precise and informative. Megakaryopoiesis, platelet formation, and function have been found tightly interlinked, with several genes being involved in both inherited thrombocytopenias and impaired platelet function. Moreover, genetic approaches have moved from being used as confirmatory diagnostic tests to being tools for identification of genetic variants associated with bleeding disorders, even in the absence of a clear phenotype in functional testing. In this study, we aim to address some limits of the conventional tests used for the diagnosis of IPFD, and to highlight the potential contribution of recent molecular tools and opportunities to rethink the way we should approach the investigation of IPFD.
Collapse
Affiliation(s)
- Tiago Nava
- a Centre Hospitalier Universitaire Sainte-Justine , Hematology and Oncology Division , Montréal , QC , Canada.,b Child and Adolescent Health, School of Medicine , Universidade Federal do Rio Grande do Sul (UFRGS) , Porto Alegre , Brazil
| | - Georges-Etienne Rivard
- a Centre Hospitalier Universitaire Sainte-Justine , Hematology and Oncology Division , Montréal , QC , Canada
| | - Arnaud Bonnefoy
- a Centre Hospitalier Universitaire Sainte-Justine , Hematology and Oncology Division , Montréal , QC , Canada
| |
Collapse
|
107
|
Bastida JM, Lozano ML, Benito R, Janusz K, Palma-Barqueros V, Del Rey M, Hernández-Sánchez JM, Riesco S, Bermejo N, González-García H, Rodriguez-Alén A, Aguilar C, Sevivas T, López-Fernández MF, Marneth AE, van der Reijden BA, Morgan NV, Watson SP, Vicente V, Hernández-Rivas JM, Rivera J, González-Porras JR. Introducing high-throughput sequencing into mainstream genetic diagnosis practice in inherited platelet disorders. Haematologica 2017; 103:148-162. [PMID: 28983057 PMCID: PMC5777202 DOI: 10.3324/haematol.2017.171132] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 09/29/2017] [Indexed: 12/30/2022] Open
Abstract
Inherited platelet disorders are a heterogeneous group of rare diseases, caused by inherited defects in platelet production and/or function. Their genetic diagnosis would benefit clinical care, prognosis and preventative treatments. Until recently, this diagnosis has usually been performed via Sanger sequencing of a limited number of candidate genes. High-throughput sequencing is revolutionizing the genetic diagnosis of diseases, including bleeding disorders. We have designed a novel high-throughput sequencing platform to investigate the unknown molecular pathology in a cohort of 82 patients with inherited platelet disorders. Thirty-four (41.5%) patients presented with a phenotype strongly indicative of a particular type of platelet disorder. The other patients had clinical bleeding indicative of platelet dysfunction, but with no identifiable features. The high-throughput sequencing test enabled a molecular diagnosis in 70% of these patients. This sensitivity increased to 90% among patients suspected of having a defined platelet disorder. We found 57 different candidate variants in 28 genes, of which 70% had not previously been described. Following consensus guidelines, we qualified 68.4% and 26.3% of the candidate variants as being pathogenic and likely pathogenic, respectively. In addition to establishing definitive diagnoses of well-known inherited platelet disorders, high-throughput sequencing also identified rarer disorders such as sitosterolemia, filamin and actinin deficiencies, and G protein-coupled receptor defects. This included disease-causing variants in DIAPH1 (n=2) and RASGRP2 (n=3). Our study reinforces the feasibility of introducing high-throughput sequencing technology into the mainstream laboratory for the genetic diagnostic practice in inherited platelet disorders.
Collapse
Affiliation(s)
- José M Bastida
- Servicio de Hematología, Hospital Universitario de Salamanca-IBSAL-USAL, Spain .,On behalf of the Project "Functional and Molecular Characterization of Patients with Inherited Platelet Disorders" of the Hemorrhagic Diathesis Working Group of the Spanish Society of Thrombosis and Haemostasis
| | - María L Lozano
- Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, Universidad de Murcia, IMIB-Arrixaca, CB15/00055-CIBERER, Spain.,On behalf of the Project "Functional and Molecular Characterization of Patients with Inherited Platelet Disorders" of the Hemorrhagic Diathesis Working Group of the Spanish Society of Thrombosis and Haemostasis
| | - Rocío Benito
- IBSAL, IBMCC, CIC, Universidad de Salamanca-CSIC, Spain
| | - Kamila Janusz
- IBSAL, IBMCC, CIC, Universidad de Salamanca-CSIC, Spain
| | - Verónica Palma-Barqueros
- Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, Universidad de Murcia, IMIB-Arrixaca, CB15/00055-CIBERER, Spain
| | | | | | - Susana Riesco
- Servicio de Pediatría, Hospital Universitario de Salamanca-IBSAL, Spain
| | - Nuria Bermejo
- Servicio de Hematología, Complejo Hospitalario San Pedro Alcántara, Cáceres, Spain
| | | | - Agustín Rodriguez-Alén
- Servicio de Hematología y Hemoterapia, Hospital Virgen de la Salud, Complejo Hospitalario de Toledo, Spain
| | - Carlos Aguilar
- Servicio de Hematología, Complejo Asistencial de Soria, Spain
| | - Teresa Sevivas
- Serviço de Imunohemoterapia, Sangue e Medicina Transfusional do Centro Hospitalar e Universitário de Coimbra, EPE, Portugal
| | | | - Anna E Marneth
- Department of Laboratory Medicine, Laboratory of Hematology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Bert A van der Reijden
- Department of Laboratory Medicine, Laboratory of Hematology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Neil V Morgan
- Birmingham Platelet Group, Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, UK
| | - Steve P Watson
- Birmingham Platelet Group, Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, UK
| | - Vicente Vicente
- On behalf of the Project "Functional and Molecular Characterization of Patients with Inherited Platelet Disorders" of the Hemorrhagic Diathesis Working Group of the Spanish Society of Thrombosis and Haemostasis
| | - Jesús M Hernández-Rivas
- Servicio de Hematología, Hospital Universitario de Salamanca-IBSAL-USAL, Spain.,IBSAL, IBMCC, CIC, Universidad de Salamanca-CSIC, Spain
| | - José Rivera
- Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, Universidad de Murcia, IMIB-Arrixaca, CB15/00055-CIBERER, Spain.,On behalf of the Project "Functional and Molecular Characterization of Patients with Inherited Platelet Disorders" of the Hemorrhagic Diathesis Working Group of the Spanish Society of Thrombosis and Haemostasis
| | | |
Collapse
|
108
|
Affiliation(s)
- Sarah K Westbury
- a School of Clinical Sciences, University of Bristol , Bristol , UK
| | | | - Andrew D Mumford
- c School of Cellular and Molecular Medicine, University of Bristol , Bristol , UK
| |
Collapse
|
109
|
Leinøe E, Zetterberg E, Kinalis S, Østrup O, Kampmann P, Norström E, Andersson N, Klintman J, Qvortrup K, Nielsen FC, Rossing M. Application of whole-exome sequencing to direct the specific functional testing and diagnosis of rare inherited bleeding disorders in patients from the Öresund Region, Scandinavia. Br J Haematol 2017; 179:308-322. [PMID: 28748566 PMCID: PMC5655919 DOI: 10.1111/bjh.14863] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 06/20/2017] [Indexed: 01/19/2023]
Abstract
Rare inherited bleeding disorders (IBD) are a common cause of bleeding tendency. To ensure a correct diagnosis, specialized laboratory analyses are necessary. This study reports the results of an upfront diagnostic strategy using targeted whole exome sequencing. In total, 156 patients with a significant bleeding assessment tool score participated in the study, of which a third had thrombocytopenia. Eighty‐seven genes specifically associated with genetic predisposition to bleeding were analysed by whole exome sequencing. Variants were classified according to the five‐tier scheme. We identified 353 germline variants. Eight patients (5%) harboured a known pathogenic variant. Of the 345 previously unknown variants, computational analyses predicted 99 to be significant. Further filtration according to the Mendelian inheritance pattern, resulted in 59 variants being predicted to be clinically significant. Moreover, 34% (20/59) were assigned as novel class 4 or 5 variants upon targeted functional testing. A class 4 or 5 variant was identified in 30% of patients with thrombocytopenia (14/47) versus 11% of patients with a normal platelet count (12/109) (P < 0·01). An IBD diagnosis has a major clinical impact. The genetic investigations detailed here extricated our patients from a diagnostic conundrum, thus demonstrating that continuous optimization of the diagnostic work‐up of IBD is of great benefit.
Collapse
Affiliation(s)
- Eva Leinøe
- Department of Haematology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Eva Zetterberg
- Department of Haematology, Coagulation Unit, Skaane University Hospital, Lund, Sweden
| | - Savvas Kinalis
- Centre for Genomic Medicine, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Olga Østrup
- Centre for Genomic Medicine, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Peter Kampmann
- Department of Haematology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Eva Norström
- Department of Translational Medicine, Lund University, Skaane University Hospital, Lund, Sweden
| | - Nadine Andersson
- Department of Haematology, Coagulation Unit, Skaane University Hospital, Lund, Sweden
| | - Jenny Klintman
- Department of Haematology, Coagulation Unit, Skaane University Hospital, Lund, Sweden
| | - Klaus Qvortrup
- Department of Biomedical Sciences, Core Facility for Integrated Microscopy (CFIM), University of Copenhagen, Copenhagen, Denmark
| | - Finn Cilius Nielsen
- Centre for Genomic Medicine, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Maria Rossing
- Centre for Genomic Medicine, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| |
Collapse
|
110
|
Najm J, Rath M, Schröder W, Felbor U. Diagnostic single gene analyses beyond Sanger. Hamostaseologie 2017; 38:158-165. [DOI: 10.5482/hamo-17-01-0008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
111
|
Fidalgo T, Martinho P, Pinto CS, Oliveira AC, Salvado R, Borràs N, Coucelo M, Manco L, Maia T, Mendes MJ, Del Orbe Barreto R, Corrales I, Vidal F, Ribeiro ML. Combined study of ADAMTS13 and complement genes in the diagnosis of thrombotic microangiopathies using next-generation sequencing. Res Pract Thromb Haemost 2017; 1:69-80. [PMID: 30046676 PMCID: PMC6058207 DOI: 10.1002/rth2.12016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 05/15/2017] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The 2 main forms of thrombotic microangiopathy (TMA) are thrombotic thrombocytopenic purpura (TTP) and atypical hemolytic uremic syndrome (aHUS). Deficiency of ADAMTS13 and dysregulation of the complement pathway result in TTP and aHUS, respectively; however, overlap of their clinical characteristics makes differential diagnosis challenging. OBJECTIVES AND METHODS We aimed to develop a TMA diagnosis workflow based on ADAMTS13 activity and screening of ADAMTS13 and complement genes using a custom next-generation sequencing (NGS) gene panel. PATIENTS For this, from a cohort of 154 Portuguese patients with acute TMA, the genotype-phenotype correlations were analyzed in 7 hereditary TTP (ADAMTS13 activity <10%, no inhibitor), 36 acquired TTP (ADAMTS13 activity <10%, presence of an inhibitor), and in 34 presumable aHUS. RESULTS In total, 37 different rare variants, 8 of which novel (in ADAMTS13,CFH, and CD46), were identified across 7 genes. Thirteen TTP patients were homozygous (n=6), compound heterozygous (n=2), and heterozygous (n=5) for 11 ADAMTS13 variants (6 pathogenic mutations). Among the 34 aHUS patients, 17 were heterozygous for 23 variants in the different complement genes with distinct consequences, ranging from single pathogenic mutations associated with complete disease penetrance to benign variants that cause aHUS only when combined with other variants and/or CFH and CD46 risk haplotypes or CFHR1-3 deletion. CONCLUSIONS Our study provides evidence of the usefulness of the NGS panel as an excellent technology that enables more rapid diagnosis of TMA, and is a valuable asset in clinical practice to discriminate between TTP and aHUS.
Collapse
Affiliation(s)
- Teresa Fidalgo
- Department of Clinical HaematologyCentro Hospitalar e Universitário de CoimbraCoimbraPortugal
| | - Patrícia Martinho
- Department of Clinical HaematologyCentro Hospitalar e Universitário de CoimbraCoimbraPortugal
| | - Catarina S. Pinto
- Department of Clinical HaematologyCentro Hospitalar e Universitário de CoimbraCoimbraPortugal
| | - Ana C. Oliveira
- Department of Clinical HaematologyCentro Hospitalar e Universitário de CoimbraCoimbraPortugal
| | - Ramon Salvado
- Department of Clinical HaematologyCentro Hospitalar e Universitário de CoimbraCoimbraPortugal
| | - Nina Borràs
- Congenital CoagulopathiesBlood and Tissue BankBarcelonaSpain
- Molecular Diagnosis and TherapyVall d'Hebron Research InstituteUniversitat Autònoma de Barcelona (VHIR‐UAB)BarcelonaSpain
| | - Margarida Coucelo
- Department of Clinical HaematologyCentro Hospitalar e Universitário de CoimbraCoimbraPortugal
| | - Licínio Manco
- Research Centre for Anthropology and Health (CIAS), Department of Life SciencesUniversity of CoimbraCoimbraPortugal
| | - Tabita Maia
- Department of Clinical HaematologyCentro Hospitalar e Universitário de CoimbraCoimbraPortugal
| | - M. João Mendes
- Department of Clinical HaematologyCentro Hospitalar e Universitário de CoimbraCoimbraPortugal
| | | | - Irene Corrales
- Congenital CoagulopathiesBlood and Tissue BankBarcelonaSpain
- Molecular Diagnosis and TherapyVall d'Hebron Research InstituteUniversitat Autònoma de Barcelona (VHIR‐UAB)BarcelonaSpain
| | - Francisco Vidal
- Congenital CoagulopathiesBlood and Tissue BankBarcelonaSpain
- Molecular Diagnosis and TherapyVall d'Hebron Research InstituteUniversitat Autònoma de Barcelona (VHIR‐UAB)BarcelonaSpain
| | - M. Letícia Ribeiro
- Department of Clinical HaematologyCentro Hospitalar e Universitário de CoimbraCoimbraPortugal
| |
Collapse
|
112
|
Freson K, Turro E. High-throughput sequencing approaches for diagnosing hereditary bleeding and platelet disorders. J Thromb Haemost 2017; 15:1262-1272. [PMID: 28671349 DOI: 10.1111/jth.13681] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Hereditary bleeding and platelet disorders (BPDs) are characterized by marked genetic heterogeneity, far greater than previously appreciated. The list of genes involved in the regulation of megakaryopoiesis, platelet formation, platelet function and bleeding has been growing rapidly since the introduction of high-throughput sequencing (HTS) approaches in research. Thanks to the gradual adoption of HTS in diagnostic practice, these discoveries are improving the diagnostic yield for BPD patients, who may or may not present with bleeding problems and often have other clinical symptoms unrelated to the blood system. However, it was previously found that screening for all known etiologies gives a diagnostic yield of over 90% when the phenotype closely matches a known BPD but drops to 10% when the phenotype is indicative of a novel disorder. Thus, further research is needed to identify currently unknown etiologies for BPDs. Novel genes are likely to be found to be implicated in BPDs. New modes of inheritance, including digenic inheritance, are likely to play a role in some cases. Additionally, identifying and interpreting pathogenic variants outside exons is a looming challenge that can only be tackled with an improved understanding of the regulatory landscape of relevant cell types and with the transition from targeted sequencing to whole-genome sequencing in the clinic.
Collapse
Affiliation(s)
- K Freson
- Department of Cardiovascular Sciences, University of Leuven, Leuven, Belgium
| | - E Turro
- Department of Haematology and MRC Biostatistics Unit, University of Cambridge, Cambridge, UK
| |
Collapse
|
113
|
Whole-exome sequencing in evaluation of patients with venous thromboembolism. Blood Adv 2017; 1:1224-1237. [PMID: 29296762 DOI: 10.1182/bloodadvances.2017005249] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 05/26/2017] [Indexed: 01/05/2023] Open
Abstract
Genetics play a significant role in venous thromboembolism (VTE), yet current clinical laboratory-based testing identifies a known heritable thrombophilia (factor V Leiden, prothrombin gene mutation G20210A, or a deficiency of protein C, protein S, or antithrombin) in only a minority of VTE patients. We hypothesized that a substantial number of VTE patients could have lesser-known thrombophilia mutations. To test this hypothesis, we performed whole-exome sequencing (WES) in 64 patients with VTE, focusing our analysis on a novel 55-gene extended thrombophilia panel that we compiled. Our extended thrombophilia panel identified a probable disease-causing genetic variant or variant of unknown significance in 39 of 64 study patients (60.9%), compared with 6 of 237 control patients without VTE (2.5%) (P < .0001). Clinical laboratory-based thrombophilia testing identified a heritable thrombophilia in only 14 of 54 study patients (25.9%). The majority of WES variants were either associated with thrombosis based on prior reports in the literature or predicted to affect protein structure based on protein modeling performed as part of this study. Variants were found in major thrombophilia genes, various SERPIN genes, and highly conserved areas of other genes with established or potential roles in coagulation or fibrinolysis. Ten patients (15.6%) had >1 variant. Sanger sequencing performed in family members of 4 study patients with and without VTE showed generally concordant results with thrombotic history. WES and extended thrombophilia testing are promising tools for improving our understanding of VTE pathogenesis and identifying inherited thrombophilias.
Collapse
|
114
|
Abstract
Heritable platelet function disorders (PFDs) are genetically heterogeneous and poorly characterized. Pathogenic variants in RASGRP2, which encodes calcium and diacylglycerol-regulated guanine exchange factor I (CalDAG-GEFI), have been reported previously in 3 pedigrees with bleeding and reduced platelet aggregation responses. To better define the phenotype associated with pathogenic RASGRP2 variants, we compared high-throughput sequencing and phenotype data from 2042 cases in pedigrees with unexplained bleeding or platelet disorders to data from 5422 controls. Eleven cases harbored 11 different, previously unreported RASGRP2 variants that were biallelic and likely pathogenic. The variants included 5 high-impact variants predicted to prevent CalDAG-GEFI expression and 6 missense variants affecting the CalDAG-GEFI CDC25 domain, which mediates Rap1 activation during platelet inside-out αIIbβ3 signaling. Cases with biallelic RASGRP2 variants had abnormal mucocutaneous, surgical, and dental bleeding from childhood, requiring ≥1 blood or platelet transfusion in 78% of cases. Platelets displayed reduced aggregation in response to adenosine 5'-diphosphate and epinephrine, but variable aggregation defects with other agonists. There were no other consistent clinical or laboratory features. These data enable definition of human CalDAG-GEFI deficiency as a nonsyndromic, recessive PFD associated with a moderate or severe bleeding phenotype and complex defects in platelet aggregation.
Collapse
|
115
|
Sivapalaratnam S, Collins J, Gomez K. Diagnosis of inherited bleeding disorders in the genomic era. Br J Haematol 2017; 179:363-376. [PMID: 28612396 DOI: 10.1111/bjh.14796] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Inherited bleeding disorders affect between 1 in 1000 individuals for the most common disorder, von Willebrand Disease, to only 8 reported cases worldwide of alpha-2-antiplasmin deficiency. Those with an identifiable abnormality can be divided into disorders of coagulation factors (87%), platelet count and function (8%) and the fibrinolytic system (3%). Of the patients registered in the UK with a bleeding disorder, the remaining 2% are unclassifiable. In addition to bleeding symptoms, patients with an inherited bleeding disorder can manifest other abnormalities, making an accurate and complete diagnosis that reflects the underlying molecular pathology important. Although some inherited bleeding disorders can still be easily diagnosed through a combination of careful clinical assessment and laboratory assays of varying degrees of complexity, there are many where conventional approaches are inadequate. Improvements in phenotyping assays have enhanced our diagnostic armoury but genotyping now offers the most accurate and complete diagnosis for some of these conditions. The advent of next generation sequencing technology has meant that many genes can now be analysed routinely in clinical practice. Here, we discuss the different diagnostic tools currently available for inherited bleeding disorders and suggest that genotyping should be incorporated at an early stage in the diagnostic pathway.
Collapse
Affiliation(s)
- Suthesh Sivapalaratnam
- Department of Haematology, University of Cambridge, Cambridge, UK.,The Royal London Haemophilia Centre, The Royal London Hospital, London, UK
| | - Janine Collins
- Department of Haematology, University of Cambridge, Cambridge, UK.,The Royal London Haemophilia Centre, The Royal London Hospital, London, UK
| | - Keith Gomez
- Katherine Dormandy Haemophilia Centre and Thrombosis Unit, Royal Free London NHS Foundation Trust, London, UK
| |
Collapse
|
116
|
Johnsen JM, Fletcher SN, Huston H, Roberge S, Martin BK, Kircher M, Josephson NC, Shendure J, Ruuska S, Koerper MA, Morales J, Pierce GF, Aschman DJ, Konkle BA. Novel approach to genetic analysis and results in 3000 hemophilia patients enrolled in the My Life, Our Future initiative. Blood Adv 2017; 1:824-834. [PMID: 29296726 PMCID: PMC5727804 DOI: 10.1182/bloodadvances.2016002923] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 04/22/2017] [Indexed: 01/05/2023] Open
Abstract
Hemophilia A and B are rare, X-linked bleeding disorders. My Life, Our Future (MLOF) is a collaborative project established to genotype and study hemophilia. Patients were enrolled at US hemophilia treatment centers (HTCs). Genotyping was performed centrally using next-generation sequencing (NGS) with an approach that detected common F8 gene inversions simultaneously with F8 and F9 gene sequencing followed by confirmation using standard genotyping methods. Sixty-nine HTCs enrolled the first 3000 patients in under 3 years. Clinically reportable DNA variants were detected in 98.1% (2357/2401) of hemophilia A and 99.3% (595/599) of hemophilia B patients. Of the 924 unique variants found, 285 were novel. Predicted gene-disrupting variants were common in severe disease; missense variants predominated in mild-moderate disease. Novel DNA variants accounted for ∼30% of variants found and were detected continuously throughout the project, indicating that additional variation likely remains undiscovered. The NGS approach detected >1 reportable variants in 36 patients (10 females), a finding with potential clinical implications. NGS also detected incidental variants unlikely to cause disease, including 11 variants previously reported in hemophilia. Although these genes are thought to be conserved, our findings support caution in interpretation of new variants. In summary, MLOF has contributed significantly toward variant annotation in the F8 and F9 genes. In the near future, investigators will be able to access MLOF data and repository samples for research to advance our understanding of hemophilia.
Collapse
Affiliation(s)
- Jill M Johnsen
- Bloodworks Northwest, Seattle, WA
- Department of Medicine and
| | | | | | | | - Beth K Martin
- Department of Genome Sciences, University of Washington, Seattle, WA
| | - Martin Kircher
- Department of Genome Sciences, University of Washington, Seattle, WA
| | | | - Jay Shendure
- Department of Genome Sciences, University of Washington, Seattle, WA
- Howard Hughes Medical Institute, Chevy Chase, MD
| | | | | | | | | | | | | |
Collapse
|
117
|
Hematopoietic transcription factor mutations: important players in inherited platelet defects. Blood 2017; 129:2873-2881. [PMID: 28416505 DOI: 10.1182/blood-2016-11-709881] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 01/26/2017] [Indexed: 01/19/2023] Open
Abstract
Transcription factors (TFs) are proteins that bind to specific DNA sequences and regulate expression of genes. The molecular and genetic mechanisms in most patients with inherited platelet defects are unknown. There is now increasing evidence that mutations in hematopoietic TFs are an important underlying cause for defects in platelet production, morphology, and function. The hematopoietic TFs implicated in patients with impaired platelet function and number include runt-related transcription factor 1, Fli-1 proto-oncogene, E-twenty-six (ETS) transcription factor (friend leukemia integration 1), GATA-binding protein 1, growth factor independent 1B transcriptional repressor, ETS variant 6, ecotropic viral integration site 1, and homeobox A11. These TFs act in a combinatorial manner to bind sequence-specific DNA within promoter regions to regulate lineage-specific gene expression, either as activators or repressors. TF mutations induce rippling downstream effects by simultaneously altering the expression of multiple genes. Mutations involving these TFs affect diverse aspects of megakaryocyte biology, and platelet production and function, culminating in thrombocytopenia and platelet dysfunction. Some are associated with predisposition to hematologic malignancies. These TF variants may occur more frequently in patients with inherited platelet defects than generally appreciated. This review focuses on alterations in hematopoietic TFs in the pathobiology of inherited platelet defects.
Collapse
|
118
|
Fager Ferrari M, Leinoe E, Rossing M, Norström E, Strandberg K, Steen Sejersen T, Qvortrup K, Zetterberg E. Germline heterozygous variants in genes associated with familial hemophagocytic lymphohistiocytosis as a cause of increased bleeding. Platelets 2017; 29:56-64. [PMID: 28399723 DOI: 10.1080/09537104.2017.1293808] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Familial hemophagocytic lymphohistiocytosis (FHL) is caused by biallelic variants in genes regulating granule secretion in cytotoxic lymphocytes. In FHL3-5, the affected genes UNC13D, STX11 and STXBP2 have further been shown to regulate the secretion of platelet granules, giving rise to compromised platelet function. Therefore, we aimed to investigate platelet degranulation in patients heterozygous for variants in UNC13D, STX11 and STXBP2. During the work-up of patients referred to the Coagulation Unit, Skåne University Hospital, Malmö, Sweden and the Department of Hematology, Rigshospitalet, Copenhagen, Denmark due to bleeding tendencies, 12 patients harboring heterozygous variants in UNC13D, STX11 or STXBP2 were identified using targeted whole exome sequencing. Transmission electron microscopy (TEM) was used to assess the secretion of platelet dense granules following thrombin stimulation. Platelet degranulation, activation and aggregation were further assessed by flow cytometry (FC) and light transmission aggregometry (LTA) with lumi-aggregometry. In total, eight out of twelve (67%) patients showed impaired degranulation by at least one of the assays (TEM, FC and LTA). In the 12 patients, eight different heterozygous variants were identified. One variant was strongly associated with impaired degranulation, while four of the variants were associated with impaired granule secretion to a slightly lesser extent. One additional variant was found in six out of the twelve patients, and was associated with varying degrees of degranulation impairment. Accordingly, six out of the eight (75%) identified variants were associated with impaired platelet degranulation. Our results suggest that heterozygous variants in UNC13D, STX11 and STXBP2 are sufficient to cause platelet secretion defects resulting in increased bleeding.
Collapse
Affiliation(s)
| | - Eva Leinoe
- b Department of Hematology, Rigshospitalet , Copenhagen University Hospital , Copenhagen , Denmark
| | - Maria Rossing
- c Department of Genomic Medicine, Rigshospitalet , Copenhagen University Hospital , Copenhagen , Denmark
| | - Eva Norström
- a Department of Translational Medicine , Lund University , Malmö , Sweden
| | - Karin Strandberg
- d Department of Laboratory Medicine , Lund University , Malmö , Sweden
| | - Tobias Steen Sejersen
- e Department of Biomedical Sciences, Core Facility for Integrated Microscopy (CFIM) , University of Copenhagen , Denmark
| | - Klaus Qvortrup
- e Department of Biomedical Sciences, Core Facility for Integrated Microscopy (CFIM) , University of Copenhagen , Denmark
| | - Eva Zetterberg
- a Department of Translational Medicine , Lund University , Malmö , Sweden
| |
Collapse
|
119
|
Mao GF, Goldfinger LE, Fan DC, Lambert MP, Jalagadugula G, Freishtat R, Rao AK. Dysregulation of PLDN (pallidin) is a mechanism for platelet dense granule deficiency in RUNX1 haplodeficiency. J Thromb Haemost 2017; 15:792-801. [PMID: 28075530 PMCID: PMC5378588 DOI: 10.1111/jth.13619] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Indexed: 01/01/2023]
Abstract
Essentials Platelet dense granule (DG) deficiency is a major abnormality in RUNX1 haplodeficiency patients. The molecular mechanisms leading to the platelet DG deficiency are unknown. Platelet expression of PLDN (BLOC1S6, pallidin), involved in DG biogenesis, is regulated by RUNX1. Downregulation of PLDN is a mechanism for DG deficiency in RUNX1 haplodeficiency. SUMMARY Background Inherited RUNX1 haplodeficiency is associated with thrombocytopenia and platelet dysfunction. Dense granule (DG) deficiency has been reported in patients with RUNX1 haplodeficiency, but the molecular mechanisms are unknown. Platelet mRNA expression profiling in a patient previously reported by us with a RUNX1 mutation and platelet dysfunction showed decreased expression of PLDN (BLOC1S6), which encodes pallidin, a subunit of biogenesis of lysosome-related organelles complex-1 (BLOC-1) involved in DG biogenesis. PLDN mutations in the pallid mouse and Hermansky-Pudlak syndrome-9 are associated with platelet DG deficiency. Objectives We postulated that PLDN is a RUNX1 target, and that its decreased expression leads to platelet DG deficiency in RUNX1 haplodeficiency. Results Platelet pallidin and DG levels were decreased in our patient. This was also observed in two siblings from a different family with a RUNX1 mutation. Chromatin immunoprecipitation and electrophoretic mobility shift assays with phorbol ester-treated human erythroleukemia (HEL) cells showed RUNX1 binding to RUNX1 consensus sites in the PLDN1 5' upstream region. In luciferase reporter studies, mutation of RUNX1 sites in the PLDN promoter reduced activity. RUNX1 overexpression enhanced and RUNX1 downregulation decreased PLDN1 promoter activity and protein expression. RUNX1 downregulation resulted in impaired handling of mepacrine and mislocalization of the DG marker CD63 in HEL cells, indicating impaired DG formation, recapitulating findings on PLDN downregulation. Conclusions These studies provide the first evidence that PLDN is a direct target of RUNX1 and that its dysregulation is a mechanism for platelet DG deficiency associated with RUNX1 haplodeficiency.
Collapse
Affiliation(s)
- G F Mao
- Sol Sherry Thrombosis Research Center, Temple University School of Medicine, Philadelphia, PA, USA
| | - L E Goldfinger
- Sol Sherry Thrombosis Research Center, Temple University School of Medicine, Philadelphia, PA, USA
- Department of Anatomy and Cell Biology, Temple University School of Medicine, Philadelphia, PA, USA
| | - D C Fan
- Sol Sherry Thrombosis Research Center, Temple University School of Medicine, Philadelphia, PA, USA
| | - M P Lambert
- Division of Hematology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Children's Hospital of Philadelphia and Department of Pediatrics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - G Jalagadugula
- Sol Sherry Thrombosis Research Center, Temple University School of Medicine, Philadelphia, PA, USA
| | - R Freishtat
- Department of Pediatrics, Children's National Medical Center, Washington, DC, USA
| | - A K Rao
- Sol Sherry Thrombosis Research Center, Temple University School of Medicine, Philadelphia, PA, USA
- Department of Medicine, Temple University School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
120
|
Jacquemin M, Vanlinthout I, Van Horenbeeck I, Debasse M, Toelen J, Schoeters J, Lavend'homme R, Freson K, Peerlinck K. The amplitude of coagulation curves from thrombin time tests allows dysfibrinogenemia caused by the common mutation FGG-Arg301 to be distinguished from hypofibrinogenemia. Int J Lab Hematol 2017; 39:301-307. [PMID: 28318107 DOI: 10.1111/ijlh.12625] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 12/12/2016] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Thrombin time (TT) tests are useful for diagnosing coagulation disorders involving abnormal fibrinogen but do not allow us to distinguish between qualitative and quantitative defects. However, with the widening availability of optical coagulation automates, more information about the coagulation process is becoming increasingly accessible. METHODS In this study, we compared the coagulation curves of TT tests carried out with plasma from healthy donors with those from patients with acquired low Clauss fibrinogen levels or with dysfibrinogenemia caused by a heterozygous point mutation in the fibrinogen γ-chain that results in a p.Arg301(275)Cys substitution. The functional fibrinogen levels of these three groups of samples were also measured with the Clauss method, and their fibrinogen protein levels were determined by ELISA. RESULTS Our data indicate that the amplitude and maximal velocity of coagulation curves from plasma samples from FGG p.Arg301(275)Cys dysfibrinogenemic patients were comparable to those from plasma samples with fibrinogen in the normal range, whereas the amplitude of coagulation curves from patients with acquired low fibrinogen levels was lower. CONCLUSIONS Examination of the amplitude of coagulation curves generated during TT tests may provide additional information to enable the differential diagnoses of diseases following a low fibrinogen measurement by the Clauss method.
Collapse
Affiliation(s)
- M Jacquemin
- Center for Molecular and Vascular Biology, University of Leuven, Leuven, Belgium.,Laboratorium Geneeskunde, UZ Leuven, Leuven, Belgium
| | - I Vanlinthout
- Laboratorium Geneeskunde, UZ Leuven, Leuven, Belgium
| | | | - M Debasse
- Laboratorium Geneeskunde, UZ Leuven, Leuven, Belgium
| | - J Toelen
- Laboratorium Geneeskunde, UZ Leuven, Leuven, Belgium
| | - J Schoeters
- Laboratorium Geneeskunde, UZ Leuven, Leuven, Belgium
| | - R Lavend'homme
- Center for Molecular and Vascular Biology, University of Leuven, Leuven, Belgium
| | - K Freson
- Center for Molecular and Vascular Biology, University of Leuven, Leuven, Belgium
| | - K Peerlinck
- Center for Molecular and Vascular Biology, University of Leuven, Leuven, Belgium.,Vascular Medicine and Haemostasis, UZ Leuven, Leuven, Belgium
| |
Collapse
|
121
|
Kunishima S, Yusuke O, Muramatsu H, Kojima D, Nagai N, Takahashi Y, Kojima S. Efficacy of neutrophil non-muscle myosin heavy chain-IIA immunofluorescence analysis in determining the pathogenicity of MYH9 variants. Ann Hematol 2017; 96:1065-1066. [DOI: 10.1007/s00277-017-2972-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 03/04/2017] [Indexed: 12/01/2022]
|
122
|
Abstract
Genetic diagnosis in families with inherited platelet disorders (IPD) is not performed widely because of the genetic heterogeneity of this group of disorders and because in most cases, it is not possible to select single candidate genes for analysis using clinical and laboratory phenotypes. Next-generation sequencing (NGS) technology has revolutionized the scale and cost-effectiveness of genetic testing, and has emerged as a valuable tool for IPD. This review examines the potential utility of NGS as a diagnostic tool to streamline detection of causal variants in known IPD genes and as a vehicle for new gene discovery.
Collapse
Affiliation(s)
- S K Westbury
- School of Clinical Sciences, University of Bristol, Bristol, UK
| | - A D Mumford
- School of Clinical Sciences, University of Bristol, Bristol, UK.,Bristol Haemophilia Comprehensive Care Centre, Bristol, UK.,West of England Genomic Medicine Centre, Bristol, UK
| |
Collapse
|
123
|
Sivapalaratnam S, Westbury SK, Stephens JC, Greene D, Downes K, Kelly AM, Lentaigne C, Astle WJ, Huizinga EG, Nurden P, Papadia S, Peerlinck K, Penkett CJ, Perry DJ, Roughley C, Simeoni I, Stirrups K, Hart DP, Tait RC, Mumford AD, Laffan MA, Freson K, Ouwehand WH, Kunishima S, Turro E. Rare variants in GP1BB are responsible for autosomal dominant macrothrombocytopenia. Blood 2017; 129:520-524. [PMID: 28064200 PMCID: PMC6037295 DOI: 10.1182/blood-2016-08-732248] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 11/03/2016] [Indexed: 02/04/2023] Open
Abstract
The von Willebrand receptor complex, which is composed of the glycoproteins Ibα, Ibβ, GPV, and GPIX, plays an essential role in the earliest steps in hemostasis. During the last 4 decades, it has become apparent that loss of function of any 1 of 3 of the genes encoding these glycoproteins (namely, GP1BA, GP1BB, and GP9) leads to autosomal recessive macrothrombocytopenia complicated by bleeding. A small number of variants in GP1BA have been reported to cause a milder and dominant form of macrothrombocytopenia, but only 2 tentative reports exist of such a variant in GP1BB By analyzing data from a collection of more than 1000 genome-sequenced patients with a rare bleeding and/or platelet disorder, we have identified a significant association between rare monoallelic variants in GP1BB and macrothrombocytopenia. To strengthen our findings, we sought further cases in 2 additional collections in the United Kingdom and Japan. Across 18 families exhibiting phenotypes consistent with autosomal dominant inheritance of macrothrombocytopenia, we report on 27 affected cases carrying 1 of 9 rare variants in GP1BB.
Collapse
Affiliation(s)
- Suthesh Sivapalaratnam
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
- National Institute for Health Research BioResource-Rare Diseases, Cambridge University Hospitals, Cambridge, United Kingdom
- Department of Haematology, Barts Health National Health Service Trust, London, United Kingdom
| | - Sarah K Westbury
- School of Clinical Sciences, University of Bristol, Bristol, United Kingdom
| | - Jonathan C Stephens
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
- National Institute for Health Research BioResource-Rare Diseases, Cambridge University Hospitals, Cambridge, United Kingdom
- National Health Service Blood and Transplant, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Daniel Greene
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
- National Institute for Health Research BioResource-Rare Diseases, Cambridge University Hospitals, Cambridge, United Kingdom
- Medical Research Council Biostatistics Unit, Cambridge Institute of Public Health, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Kate Downes
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
- National Institute for Health Research BioResource-Rare Diseases, Cambridge University Hospitals, Cambridge, United Kingdom
- National Health Service Blood and Transplant, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Anne M Kelly
- Department of Haematology, Great Ormond Street Hospital for Children National Health Service Trust, London, United Kingdom
| | - Claire Lentaigne
- Centre for Haematology, Hammersmith Campus, Imperial College Academic Health Sciences Centre, Imperial College London, London, United Kingdom
- Imperial College Healthcare National Health Service Trust, London, United Kingdom
| | - William J Astle
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
- National Institute for Health Research BioResource-Rare Diseases, Cambridge University Hospitals, Cambridge, United Kingdom
- Medical Research Council Biostatistics Unit, Cambridge Institute of Public Health, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Eric G Huizinga
- Crystal and Structural Chemistry, Department of Chemistry, Faculty of Science, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
| | - Paquita Nurden
- Institut Hospitalo-Universitaire LIRYC, Hôpital Xavier Arnozan, Pessac, France
| | - Sofia Papadia
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
- National Institute for Health Research BioResource-Rare Diseases, Cambridge University Hospitals, Cambridge, United Kingdom
| | - Kathelijne Peerlinck
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, University of Leuven, Leuven, Belgium
| | - Christopher J Penkett
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
- National Institute for Health Research BioResource-Rare Diseases, Cambridge University Hospitals, Cambridge, United Kingdom
| | - David J Perry
- Department of Haematology, Addenbrooke's Hospital, Cambridge University Hospitals National Health Service Foundation Trust, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Catherine Roughley
- Kent Haemophilia Thrombosis Centre at East Kent Hospitals University NHS Foundation Trust, Canterbury, United Kingdom
| | - Ilenia Simeoni
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
- National Institute for Health Research BioResource-Rare Diseases, Cambridge University Hospitals, Cambridge, United Kingdom
- National Health Service Blood and Transplant, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Kathleen Stirrups
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
- National Institute for Health Research BioResource-Rare Diseases, Cambridge University Hospitals, Cambridge, United Kingdom
| | - Daniel P Hart
- Department of Haematology, Barts Health National Health Service Trust, London, United Kingdom
| | - R Campbell Tait
- Department of Haematology, Royal Infirmary, Glasgow, United Kingdom
| | - Andrew D Mumford
- School of Clinical Sciences, University of Bristol, Bristol, United Kingdom
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Michael A Laffan
- Centre for Haematology, Hammersmith Campus, Imperial College Academic Health Sciences Centre, Imperial College London, London, United Kingdom
- Imperial College Healthcare National Health Service Trust, London, United Kingdom
| | - Kathleen Freson
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, University of Leuven, Leuven, Belgium
| | - Willem H Ouwehand
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
- National Institute for Health Research BioResource-Rare Diseases, Cambridge University Hospitals, Cambridge, United Kingdom
- National Health Service Blood and Transplant, Cambridge Biomedical Campus, Cambridge, United Kingdom
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom; and
| | - Shinji Kunishima
- Department of Advanced Diagnosis, Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
| | - Ernest Turro
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
- National Institute for Health Research BioResource-Rare Diseases, Cambridge University Hospitals, Cambridge, United Kingdom
- National Health Service Blood and Transplant, Cambridge Biomedical Campus, Cambridge, United Kingdom
- Medical Research Council Biostatistics Unit, Cambridge Institute of Public Health, Cambridge Biomedical Campus, Cambridge, United Kingdom
| |
Collapse
|
124
|
Wijgaerts A, Wittevrongel C, Thys C, Devos T, Peerlinck K, Tijssen MR, Van Geet C, Freson K. The transcription factor GATA1 regulates NBEAL2 expression through a long-distance enhancer. Haematologica 2017; 102:695-706. [PMID: 28082341 PMCID: PMC5395110 DOI: 10.3324/haematol.2016.152777] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Accepted: 01/10/2017] [Indexed: 01/19/2023] Open
Abstract
Gray platelet syndrome is named after the gray appearance of platelets due to the absence of α-granules. It is caused by recessive mutations in NBEAL2, resulting in macrothrombocytopenia and myelofibrosis. Though using the term gray platelets for GATA1 deficiency has been debated, a reduced number of α-granules has been described for macrothrombocytopenia due to GATA1 mutations. We compared platelet size and number of α-granules for two NBEAL2 and two GATA1-deficient patients and found reduced numbers of α-granules for all, with the defect being more pronounced for NBEAL2 deficiency. We further hypothesized that the granule defect for GATA1 is due to a defective control of NBEAL2 expression. Remarkably, platelets from two patients, and Gata1-deficient mice, expressed almost no NBEAL2. The differentiation of GATA1 patient-derived CD34+ stem cells to megakaryocytes showed defective proplatelet and α-granule formation with strongly reduced NBEAL2 protein and ribonucleic acid expression. Chromatin immunoprecipitation sequencing revealed 5 GATA binding sites in a regulatory region 31 kb upstream of NBEAL2 covered by a H3K4Me1 mark indicative of an enhancer locus. Luciferase reporter constructs containing this region confirmed its enhancer activity in K562 cells, and mutagenesis of the GATA1 binding sites resulted in significantly reduced enhancer activity. Moreover, DNA binding studies showed that GATA1 and GATA2 physically interact with this enhancer region. GATA1 depletion using small interfering ribonucleic acid in K562 cells also resulted in reduced NBEAL2 expression. In conclusion, we herein show a long-distance regulatory region with GATA1 binding sites as being a strong enhancer for NBEAL2 expression.
Collapse
Affiliation(s)
- Anouck Wijgaerts
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, KULeuven, Belgium
| | - Christine Wittevrongel
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, KULeuven, Belgium
| | - Chantal Thys
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, KULeuven, Belgium
| | - Timothy Devos
- Department of Haematology, University Hospitals Leuven, Belgium
| | - Kathelijne Peerlinck
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, KULeuven, Belgium
| | - Marloes R Tijssen
- NHS Blood and Transplant, Cambridge Biomedical Campus, UK.,Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, UK
| | - Chris Van Geet
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, KULeuven, Belgium.,Department of Pediatrics, University Hospitals Leuven, Belgium
| | - Kathleen Freson
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, KULeuven, Belgium
| |
Collapse
|
125
|
Swystun LL, James PD. Genetic diagnosis in hemophilia and von Willebrand disease. Blood Rev 2017; 31:47-56. [DOI: 10.1016/j.blre.2016.08.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 08/08/2016] [Accepted: 08/11/2016] [Indexed: 11/24/2022]
|
126
|
Songdej N, Rao AK. Inherited platelet dysfunction and hematopoietic transcription factor mutations. Platelets 2017; 28:20-26. [PMID: 27463948 PMCID: PMC5628047 DOI: 10.1080/09537104.2016.1203400] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 05/16/2016] [Accepted: 05/30/2016] [Indexed: 01/19/2023]
Abstract
Transcription factors (TFs) are proteins that bind to specific DNA sequences and regulate expression of genes. The molecular and genetic mechanisms in most patients with inherited platelet dysfunction are unknown. There is now increasing evidence that mutations in hematopoietic TFs are an important underlying cause for the defects in platelet production, morphology, and function. The hematopoietic TFs implicated in the patients with impaired platelet function include Runt related TF 1 (RUNX1), Fli-1 proto-oncogene, ETS TF (FLI1), GATA-binding protein 1 (GATA1), and growth factor independent 1B transcriptional repressor (GFI1B). These TFs act in a combinatorial manner to bind sequence-specific DNA within a promoter region to regulate lineage-specific gene expression, either as activators or as repressors. TF mutations induce rippling downstream effects by simultaneously altering the expression of multiple genes. Mutations involving these TFs affect diverse aspects of megakaryocyte biology and platelet production and function, culminating in thrombocytopenia, platelet dysfunction, and associated clinical features. Mutations in TFs may occur more frequently in the patients with inherited platelet dysfunction than generally appreciated. This review focuses on the alterations in hematopoietic TFs in the pathobiology of inherited platelet dysfunction.
Collapse
Affiliation(s)
- Natthapol Songdej
- a Sol Sherry Thrombosis Research Center, and Hematology Section, Department of Medicine , Lewis Katz School of Medicine at Temple University , Philadelphia , PA , USA
| | - A Koneti Rao
- a Sol Sherry Thrombosis Research Center, and Hematology Section, Department of Medicine , Lewis Katz School of Medicine at Temple University , Philadelphia , PA , USA
| |
Collapse
|
127
|
Revel-Vilk S, Richter C, Ben-Ami T, Yacobovich J, Aviner S, Ben-Barak A, Kuperman AA, Ben-Barak S, Kaplinsky C, Miskin H, Tamary H, Kenet G. Quantitation of bleeding symptoms in a national registry of patients with inherited platelet disorders. Blood Cells Mol Dis 2016; 67:59-62. [PMID: 27998672 DOI: 10.1016/j.bcmd.2016.11.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Accepted: 11/27/2016] [Indexed: 12/01/2022]
Abstract
BACKGROUND Inherited platelet deficiency and/or dysfunction may be more common in the general population than has previously been appreciated. In 2013 the Israeli Inherited Platelet Disorder (IPD) Registry was established. METHODS Clinical and laboratory data were collected to pre-specified registration forms. The study protocol was approved by the local hospital ethics committees. RESULTS To date we have included in the registry 89 patients (male 52%) from 79 families. Most patients (74%) have a not-yet specified inherited thrombocytopenia (n=39) or non-specific platelet function disorder (n=27). Full clinical data were available for 81 (91%) patients. The median (range) age at presentation and time of follow-up were 1.8years (1day-17.8years) and 4.7 (0-26) years, respectively. The Pediatric Bleeding Questionnaire was available for 78patients; abnormal bleeding score (≥2) was recorded in 47 (52.8%, 95% CI 42%-63.5%) patients and was less frequent in patients followed for isolated thrombocytopenia. Abnormal score was associated with a longer time of follow-up, OR 1.19 (95% CI 1.04-1.36). CONCLUSION Long term follow-up of patients with IPDs is important as bleeding risks may increase with time. We expect that clinical and laboratory information of patients/families with IPDs gathered in a systemic format will allow for better diagnosis and treatment of these patients.
Collapse
Affiliation(s)
- Shoshana Revel-Vilk
- Pediatric Hematology/Oncology Department, Hadassah - Hebrew University Medical Center, Jerusalem, Israel.
| | - Chana Richter
- Pediatric Hematology/Oncology Department, Hadassah - Hebrew University Medical Center, Jerusalem, Israel
| | - Tal Ben-Ami
- Pediatric Hematology/Oncology Department, Hadassah - Hebrew University Medical Center, Jerusalem, Israel
| | - Joanne Yacobovich
- Pediatric Hematology/Oncology Department, Schneider Children's Medical Center, Petah Tikva, Israel
| | - Shraga Aviner
- Pediatric Hematology Unit, Barzilai University Medical Center, Ashkelon, Israel; The Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Ayelet Ben-Barak
- Pediatric Hematology/Oncology Department, Rambam Medical Center, Haifa, Israel
| | - Amir Asher Kuperman
- Blood Coagulation Service and Pediatric Hematology Clinic, Galilee Medical Center, Nahariya, Israel; The Faculty of Medicine in the Galilee, Bar-Ilan University, Israel
| | - Shira Ben-Barak
- Pediatric Hematology/Oncology Department, Hadassah - Hebrew University Medical Center, Jerusalem, Israel
| | - Chaim Kaplinsky
- Pediatric Hematology/Oncology Department, Sheba Medical Center, Tel-Hashomer, Israel
| | - Hagit Miskin
- Pediatric Hematology Unit, Shari-Zedek Hospital, Jerusalem, Israel
| | - Hannah Tamary
- Pediatric Hematology/Oncology Department, Schneider Children's Medical Center, Petah Tikva, Israel
| | - Gili Kenet
- National Hemophilia Center, Sheba Medical Center, Tel Hashomer, Israel
| |
Collapse
|
128
|
Bariana TK, Ouwehand WH, Guerrero JA, Gomez K. Dawning of the age of genomics for platelet granule disorders: improving insight, diagnosis and management. Br J Haematol 2016; 176:705-720. [PMID: 27984638 DOI: 10.1111/bjh.14471] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Inherited disorders of platelet granules are clinically heterogeneous and their prevalence is underestimated because most patients do not undergo a complete diagnostic work-up. The lack of a genetic diagnosis limits the ability to tailor management, screen family members, aid with family planning, predict clinical progression and detect serious consequences, such as myelofibrosis, lung fibrosis and malignancy, in a timely manner. This is set to change with the introduction of high throughput sequencing (HTS) as a routine clinical diagnostic test. HTS diagnostic tests are now available, affordable and allow parallel screening of DNA samples for variants in all of the 80 known bleeding, thrombotic and platelet genes. Increased genetic diagnosis and curation of variants is, in turn, improving our understanding of the pathobiology and clinical course of inherited platelet disorders. Our understanding of the genetic causes of platelet granule disorders and the regulation of granule biogenesis is a work in progress and has been significantly enhanced by recent genomic discoveries from high-powered genome-wide association studies and genome sequencing projects. In the era of whole genome and epigenome sequencing, new strategies are required to integrate multiple sources of big data in the search for elusive, novel genes underlying granule disorders.
Collapse
Affiliation(s)
- Tadbir K Bariana
- Katharine Dormandy Haemophilia Centre and Thrombosis Unit, Royal Free London NHS Foundation Trust, London, UK.,Department of Haematology, University College London Cancer Institute, London, UK.,Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Willem H Ouwehand
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK.,NHS Blood and Transplant, Cambridge Biomedical Campus, Cambridge, UK.,NIHR BioResource, Cambridge University Hospitals, Cambridge Biomedical Campus, Cambridge, UK.,Human Genetics, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | - Jose A Guerrero
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK.,NHS Blood and Transplant, Cambridge Biomedical Campus, Cambridge, UK
| | - Keith Gomez
- Katharine Dormandy Haemophilia Centre and Thrombosis Unit, Royal Free London NHS Foundation Trust, London, UK
| | | |
Collapse
|
129
|
Molecular Genetic Diagnosis of the Inherited Bleeding Disorders: Are We Close to the Perfect Test? Indian J Hematol Blood Transfus 2016; 32:375-376. [DOI: 10.1007/s12288-016-0726-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
130
|
Köhler S, Vasilevsky NA, Engelstad M, Foster E, McMurry J, Aymé S, Baynam G, Bello SM, Boerkoel CF, Boycott KM, Brudno M, Buske OJ, Chinnery PF, Cipriani V, Connell LE, Dawkins HJS, DeMare LE, Devereau AD, de Vries BBA, Firth HV, Freson K, Greene D, Hamosh A, Helbig I, Hum C, Jähn JA, James R, Krause R, F Laulederkind SJ, Lochmüller H, Lyon GJ, Ogishima S, Olry A, Ouwehand WH, Pontikos N, Rath A, Schaefer F, Scott RH, Segal M, Sergouniotis PI, Sever R, Smith CL, Straub V, Thompson R, Turner C, Turro E, Veltman MWM, Vulliamy T, Yu J, von Ziegenweidt J, Zankl A, Züchner S, Zemojtel T, Jacobsen JOB, Groza T, Smedley D, Mungall CJ, Haendel M, Robinson PN. The Human Phenotype Ontology in 2017. Nucleic Acids Res 2016; 45:D865-D876. [PMID: 27899602 PMCID: PMC5210535 DOI: 10.1093/nar/gkw1039] [Citation(s) in RCA: 520] [Impact Index Per Article: 57.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 10/28/2016] [Indexed: 12/14/2022] Open
Abstract
Deep phenotyping has been defined as the precise and comprehensive analysis of phenotypic abnormalities in which the individual components of the phenotype are observed and described. The three components of the Human Phenotype Ontology (HPO; www.human-phenotype-ontology.org) project are the phenotype vocabulary, disease-phenotype annotations and the algorithms that operate on these. These components are being used for computational deep phenotyping and precision medicine as well as integration of clinical data into translational research. The HPO is being increasingly adopted as a standard for phenotypic abnormalities by diverse groups such as international rare disease organizations, registries, clinical labs, biomedical resources, and clinical software tools and will thereby contribute toward nascent efforts at global data exchange for identifying disease etiologies. This update article reviews the progress of the HPO project since the debut Nucleic Acids Research database article in 2014, including specific areas of expansion such as common (complex) disease, new algorithms for phenotype driven genomic discovery and diagnostics, integration of cross-species mapping efforts with the Mammalian Phenotype Ontology, an improved quality control pipeline, and the addition of patient-friendly terminology.
Collapse
Affiliation(s)
- Sebastian Köhler
- Institute for Medical Genetics and Human Genetics, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Nicole A Vasilevsky
- Library and Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Mark Engelstad
- Library and Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Erin Foster
- Library and Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Julie McMurry
- Library and Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Ségolène Aymé
- Institut du Cerveau et de la Moelle épinière-ICM, CNRS UMR 7225-Inserm U 1127-UPMC-P6 UMR S 1127, Hôpital Pitié-Salpêtrière, 47, bd de l'Hôpital, 75013 Paris, France
| | - Gareth Baynam
- Western Australian Register of Developmental Anomalies and Genetic Services of Western Australia, King Edward Memorial Hospital Department of Health, Government of Western Australia, Perth, WA 6008, Australia.,School of Paediatrics and Child Health, University of Western Australia, Perth, WA 6008, Australia
| | - Susan M Bello
- The Jackson Laboratory, 600 Main St, Bar Harbor, ME 04609, USA
| | - Cornelius F Boerkoel
- Imagenetics Research, Sanford Health, PO Box 5039, Route 5001, Sioux Falls, SD 57117-5039, USA
| | - Kym M Boycott
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Michael Brudno
- Department of Computer Science, University of Toronto, Toronto, ON M5S 2E4, Canada Centre for Computational Medicine, Hospital for Sick Children, Toronto, ON M5G 1L7, Canada
| | - Orion J Buske
- Department of Computer Science, University of Toronto, Toronto, ON M5S 2E4, Canada Centre for Computational Medicine, Hospital for Sick Children, Toronto, ON M5G 1L7, Canada
| | - Patrick F Chinnery
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge CB2 0QQ, UK.,NIHR Rare Diseases Translational Research Collaboration, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
| | - Valentina Cipriani
- UCL Institute of Ophthalmology, Department of Ocular Biology and Therapeutics, 11-43 Bath Street, London EC1V 9EL, UK.,UCL Genetics Institute, University College London, London WC1E 6BT, UK
| | | | - Hugh J S Dawkins
- Office of Population Health Genomics, Public Health Division, Health Department of Western Australia, 189 Royal Street, Perth, WA, 6004 Australia
| | - Laura E DeMare
- Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, USA
| | - Andrew D Devereau
- Genomics England, Queen Mary University of London, Dawson Hall, Charterhouse Square, London EC1M 6BQ, UK
| | - Bert B A de Vries
- Department of Human Genetics, Radboud University, University Medical Centre, Nijmegen, The Netherlands
| | - Helen V Firth
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Kathleen Freson
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, University of Leuven, Leuven, Belgium
| | - Daniel Greene
- Department of Haematology, University of Cambridge, NHS Blood and Transplant Centre, Long Road, Cambridge CB2 0PT, UK.,Medical Research Council Biostatistics Unit, Cambridge Institute of Public Health, Cambridge Biomedical Campus, Cambridge, UK
| | - Ada Hamosh
- McKusick-Nathans Institute of Genetic Medicine, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ingo Helbig
- Division of Neurology, The Children's Hospital of Philadelphia, 3501 Civic Center Blvd, Philadelphia, PA 19104, USA.,Department of Neuropediatrics, University Medical Center Schleswig-Holstein (UKSH), Kiel, Germany
| | - Courtney Hum
- Centre for Computational Medicine, The Hospital for Sick Children, Toronto, ON M5G 1H3, Canada
| | - Johanna A Jähn
- Department of Neuropediatrics, University Medical Center Schleswig-Holstein (UKSH), Kiel, Germany
| | - Roger James
- NIHR Rare Diseases Translational Research Collaboration, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK.,Medical Research Council Biostatistics Unit, Cambridge Institute of Public Health, Cambridge Biomedical Campus, Cambridge, UK
| | - Roland Krause
- LuxembourgCentre for Systems Biomedicine, University of Luxembourg, 7, avenue des Hauts-Fourneaux, L-4362 Esch-sur-Alzette, Luxembourg
| | | | - Hanns Lochmüller
- John Walton Muscular Dystrophy Research Centre, MRC Centre for Neuromuscular Diseases, Institute of Genetic Medicine, University of Newcastle, Newcastle upon Tyne, UK
| | - Gholson J Lyon
- Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, New York, NY 11797, USA
| | - Soichi Ogishima
- Dept of Bioclinical Informatics, Tohoku Medical Megabank Organization, Tohoku University, Tohoku Medical Megabank Organization Bldg 7F room #741,736, Seiryo 2-1, Aoba-ku, Sendai Miyagi 980-8573 Japan
| | - Annie Olry
- Orphanet-INSERM, US14, Plateforme Maladies Rares, 96 rue Didot, 75014 Paris, France
| | - Willem H Ouwehand
- Medical Research Council Biostatistics Unit, Cambridge Institute of Public Health, Cambridge Biomedical Campus, Cambridge, UK
| | - Nikolas Pontikos
- UCL Institute of Ophthalmology, Department of Ocular Biology and Therapeutics, 11-43 Bath Street, London EC1V 9EL, UK.,UCL Genetics Institute, University College London, London WC1E 6BT, UK
| | - Ana Rath
- Orphanet-INSERM, US14, Plateforme Maladies Rares, 96 rue Didot, 75014 Paris, France
| | - Franz Schaefer
- Division of Pediatric Nephrology and KFH Children's Kidney Center, Center for Pediatrics and Adolescent Medicine, 69120 Heidelberg, Germany
| | - Richard H Scott
- Genomics England, Queen Mary University of London, Dawson Hall, Charterhouse Square, London EC1M 6BQ, UK
| | - Michael Segal
- SimulConsult Inc., 27 Crafts Road, Chestnut Hill, MA 02467, USA
| | | | - Richard Sever
- Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, USA
| | - Cynthia L Smith
- The Jackson Laboratory, 600 Main St, Bar Harbor, ME 04609, USA
| | - Volker Straub
- John Walton Muscular Dystrophy Research Centre, MRC Centre for Neuromuscular Diseases, Institute of Genetic Medicine, University of Newcastle, Newcastle upon Tyne, UK
| | - Rachel Thompson
- John Walton Muscular Dystrophy Research Centre, MRC Centre for Neuromuscular Diseases, Institute of Genetic Medicine, University of Newcastle, Newcastle upon Tyne, UK
| | - Catherine Turner
- John Walton Muscular Dystrophy Research Centre, MRC Centre for Neuromuscular Diseases, Institute of Genetic Medicine, University of Newcastle, Newcastle upon Tyne, UK
| | - Ernest Turro
- Department of Haematology, University of Cambridge, NHS Blood and Transplant Centre, Long Road, Cambridge CB2 0PT, UK.,Medical Research Council Biostatistics Unit, Cambridge Institute of Public Health, Cambridge Biomedical Campus, Cambridge, UK
| | - Marijcke W M Veltman
- NIHR Rare Diseases Translational Research Collaboration, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
| | - Tom Vulliamy
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK
| | - Jing Yu
- Nuffield Department of Clinical Neurosciences, University of Oxford, Level 6, West Wing, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Julie von Ziegenweidt
- Department of Haematology, University of Cambridge, NHS Blood and Transplant Centre, Long Road, Cambridge CB2 0PT, UK
| | - Andreas Zankl
- Discipline of Genetic Medicine, Sydney Medical School, The University of Sydney, Australia.,Academic Department of Medical Genetics, Sydney Childrens Hospitals Network (Westmead), Australia
| | - Stephan Züchner
- JD McDonald Department of Human Genetics and Hussman Institute for Human Genomics, University of Miami, Miami, FL, USA
| | - Tomasz Zemojtel
- Institute for Medical Genetics and Human Genetics, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Julius O B Jacobsen
- Genomics England, Queen Mary University of London, Dawson Hall, Charterhouse Square, London EC1M 6BQ, UK
| | - Tudor Groza
- Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW 2010, Australia.,St Vincent's Clinical School, Faculty of Medicine, UNSW Australia
| | - Damian Smedley
- Genomics England, Queen Mary University of London, Dawson Hall, Charterhouse Square, London EC1M 6BQ, UK
| | - Christopher J Mungall
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Melissa Haendel
- Library and Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Peter N Robinson
- The Jackson Laboratory for Genomic Medicine, 10 Discovery Drive, Farmington, CT 06032, USA .,Institute for Systems Genomics, University of Connecticut, Farmington, CT 06032, USA
| |
Collapse
|
131
|
Sánchez-Luceros A, Woods AI, Bermejo E, Shukla S, Acharya S, Lavin M, Rydz N, Othman M. PT-VWD posing diagnostic and therapeutic challenges – small case series. Platelets 2016; 28:484-490. [DOI: 10.1080/09537104.2016.1237625] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Analía Sánchez-Luceros
- Hematological Research Institute, National Academy of Medicine, Buenos Aires, Argentina
- Institute of Experimental Medicine, CONICET-National Academy of Medicine, Buenos Aires, Argentina
| | - Adriana I. Woods
- Institute of Experimental Medicine, CONICET-National Academy of Medicine, Buenos Aires, Argentina
| | - Emilse Bermejo
- Hematological Research Institute, National Academy of Medicine, Buenos Aires, Argentina
| | - Shilpa Shukla
- Hemophilia Treatment Center, North Shore Long Island Jewish Health System, Cohen Children’s Medical Center of New York, North Hyde Park, NY, USA
| | - Suchitra Acharya
- Hemophilia Treatment Center, North Shore Long Island Jewish Health System, Cohen Children’s Medical Center of New York, North Hyde Park, NY, USA
| | - Michelle Lavin
- National Centre for Hereditary Coagulation Disorders, St James’s Hospital, Dublin, Ireland
| | - Natalia Rydz
- Division of Hematology and Hematologic Malignancies, University of Calgary, Calgary, Canada
| | - Maha Othman
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Canada
- School of Baccalaureate Nursing, St Lawrence College, Kingston, Canada
| |
Collapse
|
132
|
Zhang L. Personalized medicine and blood disorders. Per Med 2016; 13:587-596. [PMID: 29754548 DOI: 10.2217/pme-2016-0043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Personalized medicine has been using genomics approaches to elucidate the etiology of a disease as well as to personalize the management for patients of a particular disease based on that individual's genetic features. It benefits patients across a multitude of therapeutic areas and advancements are particularly evident in hematology/oncology. The importance of genomics discoveries and development in nonmalignant blood disorders generally goes unrecognized, but it becomes critical now due to the global disease burden and a high mortality. This paper focuses on the exploration of personalized medicine applications in hemoglobin diseases, and thrombotic and bleeding disorders. It discusses the challenges which slow down the implementation as well. The available data suggest that the ability to understand the clinical features of a patient's genetic profile and the knowledge of disease mechanisms are the keys to facilitate new diagnosis, new therapies, new prescriptions and better healthcare.
Collapse
Affiliation(s)
- Li Zhang
- Clinical Research Hematology, Baxalta, Inc., Cambridge, MA 02142, USA
| |
Collapse
|
133
|
Paddock M, Chapin J. Bleeding Diatheses: Approach to the Patient Who Bleeds or Has Abnormal Coagulation. Prim Care 2016; 43:637-650. [PMID: 27866582 DOI: 10.1016/j.pop.2016.07.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Many complex elements contribute to normal hemostasis, and an imbalance of these elements may lead to abnormal bleeding. In addition to evaluating medication effects, the hematologist must evaluate for congenital or acquired deficiencies in coagulation factors and platelet disorders. This evaluation should include a thorough bleeding history with careful attention to prior hemostatic challenges and common laboratory testing, including coagulation studies and/or functional platelet assays. An accurate diagnosis of a bleeding diathesis and selection of appropriate treatment are greatly aided by a basic understanding of the mechanisms of disease and the tests used to diagnose them.
Collapse
Affiliation(s)
- Marcia Paddock
- Department of Medicine, Division of Hematology and Medical Oncology, Weill Cornell Medicine and New York Presbyterian Hospital, 520 East 70th Street, Starr Pavilion, 3rd Floor, New York, NY 10065, USA.
| | - John Chapin
- Department of Medicine, Division of Hematology and Medical Oncology, Weill Cornell Medicine and New York Presbyterian Hospital, 520 East 70th Street, Starr Pavilion, 3rd Floor, New York, NY 10065, USA
| |
Collapse
|
134
|
Jurk K. Platelet granules - secretory and secretive. Hamostaseologie 2016; 37:208-210. [PMID: 27656707 DOI: 10.5482/hamo-16-07-0023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 09/07/2016] [Indexed: 11/05/2022] Open
Abstract
The article reviews three recent publications addressing physiological and pathological aspects of platelet granules and release as well as limitations of recent screening tests for diagnosis of non-syndromic inherited δ-storage pool disease (1-3).
Collapse
Affiliation(s)
- Kerstin Jurk
- PD Dr. rer. nat. Kerstin Jurk Center for Thrombosis and Hemostasis (CTH) University Medical Center Mainz Langenbeckstr. 1, 55131 Mainz, Germany E-Mail:
| |
Collapse
|
135
|
Gresele P, Falcinelli E, Bury L. Inherited platelet function disorders. Diagnostic approach and management. Hamostaseologie 2016; 36:265-278. [PMID: 27484722 DOI: 10.5482/hamo-16-02-0002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 07/16/2016] [Indexed: 12/25/2022] Open
Abstract
Inherited platelet function disorders (IPFDs) make up a significant proportion of congenital bleeding diatheses, but they remain poorly understood and often difficult to diagnose. Therefore, a rational diagnostic approach, based on a standardized sequence of laboratory tests, with consecutive steps of increasing level of complexity, plays a crucial role in the diagnosis of most IPFDs. In this review we discuss a diagnostic approach through platelet phenotyping and genotyping and we give an overview of the options for the management of bleeding in these disorders and an account of the few systematic studies on the bleeding risk associated with invasive procedures and its treatment.
Collapse
Affiliation(s)
- Paolo Gresele
- Paolo Gresele, MD, PhD, Division of Internal and Cardiovascular Medicine Department of Medicine, University of Perugia, Via E. dal Pozzo, 06126 Perugia, Italy, Tel. +39/07 55 78 39 89, Fax +39/07 55 71 60 83, E-Mail:
| | | | | |
Collapse
|
136
|
Altered fibrinolysis in autosomal dominant thrombomodulin-associated coagulopathy. Blood 2016; 128:1879-1883. [PMID: 27436851 DOI: 10.1182/blood-2016-05-716092] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 07/06/2016] [Indexed: 11/20/2022] Open
Abstract
Thrombomodulin-associated coagulopathy (TM-AC) is a newly recognized dominant bleeding disorder in which a p.Cys537Stop variant in the thrombomodulin (TM) gene THBD, results in high plasma TM levels and protein C-mediated suppression of thrombin generation. Thrombin in complex with TM also activates thrombin-activatable fibrinolysis inhibitor (TAFI). However, the effect of the high plasma TM on fibrinolysis in TM-AC is unknown. Plasma from TM-AC cases and high-TM model control samples spiked with recombinant soluble TM showed reduced tissue factor-induced thrombin generation. Lysis of plasma clots from TM-AC cases was significantly delayed compared with controls but was completely restored when TM/thrombin-mediated TAFI activation was inhibited. Clots formed in blood from TM-AC cases had the same viscoelastic strength as controls but also showed a TAFI-dependent delay in fibrinolysis. Delayed fibrinolysis was reproduced in high-TM model plasma and blood samples. Partial restoration of thrombin generation with recombinant activated factor VII or activated prothrombin complex concentrate did not alter the delayed fibrinolysis in high-TM model blood. Our finding of a previously unrecognized fibrinolytic phenotype indicates that bleeding in TM-AC has a complex pathogenesis and highlights the pivotal role of TM as a regulator of hemostasis.
Collapse
|
137
|
Maclachlan A, Watson SP, Morgan NV. Inherited platelet disorders: Insight from platelet genomics using next-generation sequencing. Platelets 2016; 28:14-19. [PMID: 27348543 PMCID: PMC5359778 DOI: 10.1080/09537104.2016.1195492] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Inherited platelet disorders (IPDs) are a heterogeneous group of disorders associated with normal or reduced platelet counts and bleeding diatheses of varying severities. The identification of the underlying cause of IPDs is clinically challenging due to the absence of a gold-standard platelet test, and is often based on a clinical presentation and normal values in other hematology assays. As a consequence, a DNA-based approach has a potentially important role in the investigation of these patients. Next-generation sequencing (NGS) technologies are allowing the rapid analysis of genes that have been previously implicated in IPDs or that are known to have a key role in platelet regulation, as well as novel genes that have not been previously implicated in platelet dysfunction. The potential limitations of NGS arise with the interpretation of the sheer volume of genetic information obtained from whole exome sequencing (WES) or whole genome sequencing (WGS) in order to identify function-disrupting variants. Following on from bioinformatic analysis, a number of candidate genetic variants usually remain, therefore adding to the difficulty of phenotype–genotype segregation verification. Linking genetic changes to an underlying bleeding disorder is an ongoing challenge and may not always be feasible due to the multifactorial nature of IPDs. Nevertheless, NGS will play a key role in our understanding of the mechanisms of platelet function and the genetics involved.
Collapse
Affiliation(s)
- Annabel Maclachlan
- a Institute of Cardiovascular Sciences, College of Medical and Dental Sciences , University of Birmingham , Birmingham , B15 2TT , UK
| | - Steve P Watson
- a Institute of Cardiovascular Sciences, College of Medical and Dental Sciences , University of Birmingham , Birmingham , B15 2TT , UK
| | - Neil V Morgan
- a Institute of Cardiovascular Sciences, College of Medical and Dental Sciences , University of Birmingham , Birmingham , B15 2TT , UK
| |
Collapse
|
138
|
|
139
|
Inherited platelet disorders: toward DNA-based diagnosis. Blood 2016; 127:2814-23. [PMID: 27095789 DOI: 10.1182/blood-2016-03-378588] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 04/13/2016] [Indexed: 12/11/2022] Open
Abstract
Variations in platelet number, volume, and function are largely genetically controlled, and many loci associated with platelet traits have been identified by genome-wide association studies (GWASs).(1) The genome also contains a large number of rare variants, of which a tiny fraction underlies the inherited diseases of humans. Research over the last 3 decades has led to the discovery of 51 genes harboring variants responsible for inherited platelet disorders (IPDs). However, the majority of patients with an IPD still do not receive a molecular diagnosis. Alongside the scientific interest, molecular or genetic diagnosis is important for patients. There is increasing recognition that a number of IPDs are associated with severe pathologies, including an increased risk of malignancy, and a definitive diagnosis can inform prognosis and care. In this review, we give an overview of these disorders grouped according to their effect on platelet biology and their clinical characteristics. We also discuss the challenge of identifying candidate genes and causal variants therein, how IPDs have been historically diagnosed, and how this is changing with the introduction of high-throughput sequencing. Finally, we describe how integration of large genomic, epigenomic, and phenotypic datasets, including whole genome sequencing data, GWASs, epigenomic profiling, protein-protein interaction networks, and standardized clinical phenotype coding, will drive the discovery of novel mechanisms of disease in the near future to improve patient diagnosis and management.
Collapse
|