101
|
Hälvin K, Nisamedtinov I, Paalme T. Comparison of different extraction methods to determine free and bound forms of B-group vitamins in quinoa. Anal Bioanal Chem 2014; 406:7355-66. [DOI: 10.1007/s00216-014-8122-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 08/15/2014] [Accepted: 08/19/2014] [Indexed: 11/30/2022]
|
102
|
Kim GP, Lee J, Ahn KG, Hwang YS, Choi Y, Chun J, Chang WS, Choung MG. Differential responses of B vitamins in black soybean seeds. Food Chem 2014; 153:101-8. [PMID: 24491706 DOI: 10.1016/j.foodchem.2013.12.047] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 12/06/2013] [Accepted: 12/09/2013] [Indexed: 11/29/2022]
Abstract
This study was aimed to determine the contents and the association of B vitamins from seeds of 10 black and one yellow soybean (Glycine max (L.) Merr.) varieties with either green or yellow cotyledon. Thiamine, flavin adenine dinucleotide (FAD), riboflavin and total riboflavin were found highest in 'Chengjakong', while flavin mononucleotide (FMN) was greatest in 'Mirang'. Nicotinic acid and total vitamin B3 were highest in 'Shingi' as a yellow soybean variety but pantothenic acid and pyridoxine contents were greatest in 'Tawon' and 'Mirang', respectively. These content variations of B vitamins directly reflected the wide segregation of soybean varieties on the principal component analysis (PCA) scores plot, indicating that these 4 soybean varieties appeared to be least associated with other soybean varieties based on the different responses of B vitamins. The results of cluster and correlation analyses presented that the cotyledon colour of soybean seed contributed to a variation of B vitamin contents. Overall, the results suggest that a wide range of B vitamin contents would be affected by genotypic factors alongside the difference of cotyledon colour.
Collapse
Affiliation(s)
- Gi-Ppeum Kim
- Department of Herbal Medicine Resource, Dogye Campus, Kangwon National University, Hwangjori #3, Dogye-up, Samcheok 245-907, Republic of Korea
| | - Jinwook Lee
- USDA-ARS, Tree Fruit Research Laboratory, 1104 N. Western Ave., Wenatchee, WA 98801, USA
| | - Kyung-Geun Ahn
- Department of Herbal Medicine Resource, Dogye Campus, Kangwon National University, Hwangjori #3, Dogye-up, Samcheok 245-907, Republic of Korea
| | - Young-Sun Hwang
- Department of Herbal Medicine Resource, Dogye Campus, Kangwon National University, Hwangjori #3, Dogye-up, Samcheok 245-907, Republic of Korea
| | - Youngmin Choi
- Functional Food and Nutrition Division, National Academy of Agricultural Sciences, Rural Development Administration, Suwon 441-853, Republic of Korea
| | - Jiyeon Chun
- Department of Food Science and Technology, Sunchon National University, Sunchon 540-742, Republic of Korea
| | - Woo-Suk Chang
- Department of Biology, University of Texas-Arlington, Arlington, TX 76019, USA
| | - Myoung-Gun Choung
- Department of Herbal Medicine Resource, Dogye Campus, Kangwon National University, Hwangjori #3, Dogye-up, Samcheok 245-907, Republic of Korea; Department of Biology, University of Texas-Arlington, Arlington, TX 76019, USA.
| |
Collapse
|
103
|
Karim S, Alezzawi M, Garcia-Petit C, Solymosi K, Khan NZ, Lindquist E, Dahl P, Hohmann S, Aronsson H. A novel chloroplast localized Rab GTPase protein CPRabA5e is involved in stress, development, thylakoid biogenesis and vesicle transport in Arabidopsis. PLANT MOLECULAR BIOLOGY 2014; 84:675-92. [PMID: 24337800 DOI: 10.1007/s11103-013-0161-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Accepted: 12/03/2013] [Indexed: 05/21/2023]
Abstract
A novel Rab GTPase protein in Arabidopsis thaliana, CPRabA5e (CP = chloroplast localized) is located in chloroplasts and has a role in transport. Transient expression of CPRabA5e:EGFP fusion protein in tobacco (Nicotiana tabacum) leaves, and immunoblotting using Arabidopsis showed localization of CPRabA5e in chloroplasts (stroma and thylakoids). Ypt31/32 in the yeast Saccharomyces cerevisiae are involved in regulating vesicle transport, and CPRabA5e a close homolog of Ypt31/32, restores the growth of the ypt31Δ ypt32(ts) mutant at 37 °C in yeast complementation. Knockout mutants of CPRabA5e displayed delayed seed germination and growth arrest during oxidative stress. Ultrastructural studies revealed that after preincubation at 4 °C mutant chloroplasts contained larger plastoglobules, lower grana, and more vesicles close to the envelopes compared to wild type, and vesicle formation being enhanced under oxidative stress. This indicated altered thylakoid development and organization of the mutants. A yeast-two-hybrid screen with CPRabA5e as bait revealed 13 interacting partner proteins, mainly located in thylakoids and plastoglobules. These proteins are known or predicted to be involved in development, stress responses, and photosynthesis related processes, consistent with the stress phenotypes observed. The results observed suggest a role of CPRabA5e in transport to and from thylakoids, similar to cytosolic Rab proteins involved in vesicle transport.
Collapse
Affiliation(s)
- Sazzad Karim
- Department of Biological and Environmental Sciences, University of Gothenburg, SE-405 30, Gothenburg, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
104
|
Plant amino acid-derived vitamins: biosynthesis and function. Amino Acids 2013; 46:809-24. [PMID: 24368523 DOI: 10.1007/s00726-013-1653-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 12/14/2013] [Indexed: 02/06/2023]
Abstract
Vitamins are essential organic compounds for humans, having lost the ability to de novo synthesize them. Hence, they represent dietary requirements, which are covered by plants as the main dietary source of most vitamins (through food or livestock's feed). Most vitamins synthesized by plants present amino acids as precursors (B1, B2, B3, B5, B7, B9 and E) and are therefore linked to plant nitrogen metabolism. Amino acids play different roles in their biosynthesis and metabolism, either incorporated into the backbone of the vitamin or as amino, sulfur or one-carbon group donors. There is a high natural variation in vitamin contents in crops and its exploitation through breeding, metabolic engineering and agronomic practices can enhance their nutritional quality. While the underlying biochemical roles of vitamins as cosubstrates or cofactors are usually common for most eukaryotes, the impact of vitamins B and E in metabolism and physiology can be quite different on plants and animals. Here, we first aim at giving an overview of the biosynthesis of amino acid-derived vitamins in plants, with a particular focus on how this knowledge can be exploited to increase vitamin contents in crops. Second, we will focus on the functions of these vitamins in both plants and animals (and humans in particular), to unravel common and specific roles for vitamins in evolutionary distant organisms, in which these amino acid-derived vitamins play, however, an essential role.
Collapse
|
105
|
Minh-Thu PT, Hwang DJ, Jeon JS, Nahm BH, Kim YK. Transcriptome analysis of leaf and root of rice seedling to acute dehydration. RICE (NEW YORK, N.Y.) 2013; 6:38. [PMID: 24341907 PMCID: PMC3878681 DOI: 10.1186/1939-8433-6-38] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Accepted: 12/11/2013] [Indexed: 05/03/2023]
Abstract
BACKGROUND Water deficiency is one of the most serious worldwide problems for agriculture. Recently, it has become more serious and outspread, which urgently requires the production of drought-tolerant plants. Microarray experiments using mRNA from air-dried leaves and roots of rice were performed in an attempt to study genes involved in acute dehydration response. RESULTS Set of 10,537 rice genes was significantly up- or down-regulated in leaves or roots under the treatment. Gene Ontology analysis highlighted gene expression during acute dehydration response depending on organ types and the duration of stress. Rice responded by down-regulating many processes which are mainly involved in inhibiting growth and development. On the other hand, phytohormones (ABA, cytokinin, brassinosteroid) and protective molecules were induced to answer to multiple stresses. Leaves induced more genes than roots but those genes were scattered in various processes, most significantly were productions of osmoprotectants and precursors for important pathways in roots. Roots up-regulated fewer genes and focused on inducing antioxidants and enhancing photosynthesis. Myb, zf-C3HC4, and NAM were most strongly affected transcription factors with the dominance of leaf over root. CONCLUSIONS Leaf and root tissues shared some common gene expression during stress, with the purpose of enhancing protective systems. However, these two tissues appeared to act differently in response to the different level of dehydration they experience. Besides, they can affect each other via the signaling and transportation system.
Collapse
Affiliation(s)
- Pham-Thi Minh-Thu
- Division of Bioscience and Bioinformatics, Myongji University, Yongin, Kyonggido 449-728, South Korea
| | - Duk-Ju Hwang
- Rural Development Administration, National Academy of Agricultural Science, Suwon, Kyonggido 441-707, South Korea
| | - Jong-Seong Jeon
- Graduate School of Biotechnology, Kyung Hee University, Yongin, Kyonggido 446-701, South Korea
| | - Baek Hie Nahm
- Division of Bioscience and Bioinformatics, Myongji University, Yongin, Kyonggido 449-728, South Korea
- Genomics Genetics Institute, GreenGene BioTech Inc. Yongin, Yongin, Kyonggido 449-728, South Korea
| | - Yeon-Ki Kim
- Genomics Genetics Institute, GreenGene BioTech Inc. Yongin, Yongin, Kyonggido 449-728, South Korea
| |
Collapse
|
106
|
Zhu YN, Shi DQ, Ruan MB, Zhang LL, Meng ZH, Liu J, Yang WC. Transcriptome analysis reveals crosstalk of responsive genes to multiple abiotic stresses in cotton (Gossypium hirsutum L.). PLoS One 2013; 8:e80218. [PMID: 24224045 PMCID: PMC3818253 DOI: 10.1371/journal.pone.0080218] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2013] [Accepted: 09/28/2013] [Indexed: 12/15/2022] Open
Abstract
Abiotic stress is a major environmental factor that limits cotton growth and yield, moreover, this problem has become more and more serious recently, as multiple stresses often occur simultaneously due to the global climate change and environmental pollution. In this study, we sought to identify genes involved in diverse stresses including abscisic acid (ABA), cold, drought, salinity and alkalinity by comparative microarray analysis. Our result showed that 5790, 3067, 5608, 778 and 6148 transcripts, were differentially expressed in cotton seedlings under treatment of ABA (1 μM ABA), cold (4°C), drought (200 mM mannitol), salinity (200 mM NaCl) and alkalinity (pH=11) respectively. Among the induced or suppressed genes, 126 transcripts were shared by all of the five kinds of abiotic stresses, with 64 up-regulated and 62 down-regulated. These common members are grouped as stress signal transduction, transcription factors (TFs), stress response/defense proteins, metabolism, transport facilitation, as well as cell wall/structure, according to the function annotation. We also noticed that large proportion of significant differentially expressed genes specifically regulated in response to different stress. Nine of the common transcripts of multiple stresses were selected for further validation with quantitative real time RT-PCR (qRT-PCR). Furthermore, several well characterized TF families, for example, WRKY, MYB, NAC, AP2/ERF and zinc finger were shown to be involved in different stresses. As an original report using comparative microarray to analyze transcriptome of cotton under five abiotic stresses, valuable information about functional genes and related pathways of anti-stress, and/or stress tolerance in cotton seedlings was unveiled in our result. Besides this, some important common factors were focused for detailed identification and characterization. According to our analysis, it suggested that there was crosstalk of responsive genes or pathways to multiple abiotic or even biotic stresses, in cotton. These candidate genes will be worthy of functional study under diverse stresses.
Collapse
Affiliation(s)
- Ya-Na Zhu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Dong-Qiao Shi
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- * E-mail: (WCY); (DQS)
| | - Meng-Bin Ruan
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Li-Li Zhang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Zhao-Hong Meng
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Jie Liu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Wei-Cai Yang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- * E-mail: (WCY); (DQS)
| |
Collapse
|
107
|
Bunik VI, Tylicki A, Lukashev NV. Thiamin diphosphate-dependent enzymes: from enzymology to metabolic regulation, drug design and disease models. FEBS J 2013; 280:6412-42. [PMID: 24004353 DOI: 10.1111/febs.12512] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 07/29/2013] [Accepted: 08/21/2013] [Indexed: 02/06/2023]
Abstract
Bringing a knowledge of enzymology into research in vivo and in situ is of great importance in understanding systems biology and metabolic regulation. The central metabolic significance of thiamin (vitamin B1 ) and its diphosphorylated derivative (thiamin diphosphate; ThDP), and the fundamental differences in the ThDP-dependent enzymes of metabolic networks in mammals versus plants, fungi and bacteria, or in health versus disease, suggest that these enzymes are promising targets for biotechnological and medical applications. Here, the in vivo action of known regulators of ThDP-dependent enzymes, such as synthetic structural analogs of the enzyme substrates and thiamin, is analyzed in light of the enzymological data accumulated during half a century of research. Mimicking the enzyme-specific catalytic intermediates, the phosphonate analogs of 2-oxo acids selectively inhibit particular ThDP-dependent enzymes. Because of their selectivity, use of these compounds in cellular and animal models of ThDP-dependent enzyme malfunctions improves the validity of the model and its predictive power when compared with the nonselective and enzymatically less characterized oxythiamin and pyrithiamin. In vitro studies of the interaction of thiamin analogs and their biological derivatives with potential in vivo targets are necessary to identify and attenuate the analog selectivity. For both the substrate and thiamin synthetic analogs, in vitro reactivities with potential targets are highly relevant in vivo. However, effective concentrations in vivo are often higher than in vitro studies would suggest. The significance of specific inihibition of the ThDP-dependent enzymes for the development of herbicides, antibiotics, anticancer and neuroprotective strategies is discussed.
Collapse
Affiliation(s)
- Victoria I Bunik
- A.N. Belozersky Institute of Physicochemical Biology, Lomonosov Moscow State University, Moscow, Russia; Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
| | | | | |
Collapse
|
108
|
Coordinating metabolite changes with our perception of plant abiotic stress responses: emerging views revealed by integrative-omic analyses. Metabolites 2013; 3:761-86. [PMID: 24958149 PMCID: PMC3901284 DOI: 10.3390/metabo3030761] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 08/21/2013] [Accepted: 08/28/2013] [Indexed: 11/17/2022] Open
Abstract
Metabolic configuration and adaptation under a range of abiotic stresses, including drought, heat, salinity, cold, and nutrient deprivation, are subjected to an intricate span of molecular pathways that work in parallel in order to enhance plant fitness and increase stress tolerance. In recent years, unprecedented advances have been made in identifying and linking different abiotic stresses, and the current challenge in plant molecular biology is deciphering how the signaling responses are integrated and transduced throughout metabolism. Metabolomics have often played a fundamental role in elucidating the distinct and overlapping biochemical changes that occur in plants. However, a far greater understanding and appreciation of the complexity in plant metabolism under specific stress conditions have become apparent when combining metabolomics with other—omic platforms. This review focuses on recent advances made in understanding the global changes occurring in plant metabolism under abiotic stress conditions using metabolite profiling as an integrated discovery platform.
Collapse
|
109
|
Zhou J, Sun A, Xing D. Modulation of cellular redox status by thiamine-activated NADPH oxidase confers Arabidopsis resistance to Sclerotinia sclerotiorum. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:3261-72. [PMID: 23814275 DOI: 10.1093/jxb/ert166] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Sclerotinia sclerotiorum can initially suppress host oxidative burst to aid infection establishment, but later promotes reactive oxygen species (ROS) generation as proliferation advances. Here, it was shown that the cellular redox status can be modulated by thiamine to protect Arabidopsis thaliana against Sclerotinia at the early stages of infection. The initial inhibition of host ROS generation by Sclerotinia-secreted oxalate could effectively be alleviated by thiamine. Thiamine pre-treatment and subsequent wild-type Sclerotinia invasion induced an increase of ascorbate peroxidase activity concomitant with decreased ascorbate/dehydroascorbate ratios, which led to the cellular transition towards oxidative status in infected tissues. Particularly, it was observed that wild-type Sclerotinia, but not oxalate-deficient A2 mutant, could suppress the activity of NADPH oxidase (NOX), which might be an important mechanism underlying the early inhibition of ROS burst. Nevertheless, thiamine pre-treatment followed by wild-type Sclerotinia infection promoted NOX-derived ROS accumulation. Further studies showed that cytosolic Ca(2+) and staurosporine-sensitive protein kinase(s) participated in thiamine-induced activation of NOX. Moreover, thiamine-induced tissue defence responses including callose/lignin deposition and stomatal closure were closely correlated with NOX-derived ROS generation. Additionally, studies with Brassica species indicated that the regulation of thiamine is largely conserved upon Sclerotinia infection. Collectively, it was concluded that thiamine reverses the initial reducing status through activating NOX-dependent ROS signalling to perturb the disease progress of Sclerotinia.
Collapse
Affiliation(s)
- Jun Zhou
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, PR China
| | | | | |
Collapse
|
110
|
Wang R, Gao F, Guo BQ, Huang JC, Wang L, Zhou YJ. Short-term chromium-stress-induced alterations in the maize leaf proteome. Int J Mol Sci 2013; 14:11125-44. [PMID: 23712354 PMCID: PMC3709723 DOI: 10.3390/ijms140611125] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 04/25/2013] [Accepted: 05/15/2013] [Indexed: 11/16/2022] Open
Abstract
Soil contamination by chromium (Cr) has become an increasing problem worldwide as a result of extensive industrial activities. Chromium, especially hexavalent Cr, impairs the growth and productivity of plants. Although it has been proposed that plants could modify their metabolism to adapt to Cr stress by reprogramming the expression of genes, especially those related to the antioxidant system, damage response, and electron transport chain, evidence at the protein expression level is lacking. To better understand the precise mechanisms underlying Cr phytoxicity and the plant response to Cr exposure, the time-course of changes in the protein expression profile induced by short-term hexavalent Cr exposure (1, 6 and 24 h) were analyzed in maize leaves. Among the over 1200 protein spots detected reproducibly by two-dimensional electrophoresis (2-DE), 60 were found to be differentially accumulated during Cr stress treatment. Of the Cr-regulated proteins, 58 were identified using tandem mass spectrometry (MS/MS). The Cr-regulated proteins identified were mainly involved in ROS detoxification and defense responses (26%), photosynthesis and chloroplast organization (22%), post-transcriptional processing of mRNA and rRNA (12%), protein synthesis and folding (10%), the DNA damage response (5%), and the cytoskeleton (3%). The possible involvement of these Cr stress-responsive proteins in Cr phytoxicity and the plant response to Cr exposure in maize is discussed, taking into consideration the information available from other plant models. Our results provide preliminary evidence that will facilitate understanding the molecular mechanisms underlying Cr toxicity in maize.
Collapse
Affiliation(s)
- Rong Wang
- College of Life Science, Fuyang Teachers College, Fuyang 236037, China; E-Mails: (R.W.); (J.-C.H.)
| | - Fei Gao
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China; E-Mails: (F.G.); (B.-Q.G.)
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Bing-Qian Guo
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China; E-Mails: (F.G.); (B.-Q.G.)
| | - Ji-Chang Huang
- College of Life Science, Fuyang Teachers College, Fuyang 236037, China; E-Mails: (R.W.); (J.-C.H.)
| | - Lei Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Authors to whom correspondence should be addressed; E-Mails: (L.W.); (Y.-J.Z.); Tel./Fax: +86-10-8210-6134 (L.W.); +86-10-6893-2922 (Y.-J.Z.)
| | - Yi-Jun Zhou
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China; E-Mails: (F.G.); (B.-Q.G.)
- Authors to whom correspondence should be addressed; E-Mails: (L.W.); (Y.-J.Z.); Tel./Fax: +86-10-8210-6134 (L.W.); +86-10-6893-2922 (Y.-J.Z.)
| |
Collapse
|
111
|
Sylvander P, Häubner N, Snoeijs P. The thiamine content of phytoplankton cells is affected by abiotic stress and growth rate. MICROBIAL ECOLOGY 2013; 65:566-77. [PMID: 23263236 DOI: 10.1007/s00248-012-0156-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Accepted: 12/09/2012] [Indexed: 05/08/2023]
Abstract
Thiamine (vitamin B1) is produced by many plants, algae and bacteria, but by higher trophic levels, it must be acquired through the diet. We experimentally investigated how the thiamine content of six phytoplankton species belonging to five different phyla is affected by abiotic stress caused by changes in temperature, salinity and photon flux density. Correlations between growth rate and thiamine content per cell were negative for the five eukaryotic species, but not for the cyanobacterium Nodularia spumigena. We demonstrate a high variability in thiamine content among phytoplankton species, with the highest content in N. spumigena. Salinity was the factor with the strongest effect, followed by temperature and photon flux density, although the responses varied between the investigated phytoplankton species. Our results suggest that regime shifts in phytoplankton community composition through large-scale environmental changes has the potential to alter the thiamine availability for higher trophic levels. A decreased access to this essential vitamin may have serious consequences for aquatic food webs.
Collapse
Affiliation(s)
- Peter Sylvander
- Department of Systems Ecology, Stockholm University, Stockholm, Sweden.
| | | | | |
Collapse
|
112
|
Chen JW, Scaria J, Mao C, Sobral B, Zhang S, Lawley T, Chang YF. Proteomic comparison of historic and recently emerged hypervirulent Clostridium difficile strains. J Proteome Res 2013; 12:1151-61. [PMID: 23298230 DOI: 10.1021/pr3007528] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Clostridium difficile in recent years has undergone rapid evolution and has emerged as a serious human pathogen. Proteomic approaches can improve the understanding of the diversity of this important pathogen, especially in comparing the adaptive ability of different C. difficile strains. In this study, TMT labeling and nanoLC-MS/MS driven proteomics were used to investigate the responses of four C. difficile strains to nutrient shift and osmotic shock. We detected 126 and 67 differentially expressed proteins in at least one strain under nutrition shift and osmotic shock, respectively. During nutrient shift, several components of the phosphotransferase system (PTS) were found to be differentially expressed, which indicated that the carbon catabolite repression (CCR) was relieved to allow the expression of enzymes and transporters responsible for the utilization of alternate carbon sources. Some classical osmotic shock associated proteins, such as GroEL, RecA, CspG, and CspF, and other stress proteins such as PurG and SerA were detected during osmotic shock. Furthermore, the recently emerged strains were found to contain a more robust gene network in response to both stress conditions. This work represents the first comparative proteomic analysis of historic and recently emerged hypervirulent C. difficile strains, complementing the previously published proteomics studies utilizing only one reference strain.
Collapse
Affiliation(s)
- Jenn-Wei Chen
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, New York 14853, United States
| | | | | | | | | | | | | |
Collapse
|
113
|
Pourcel L, Moulin M, Fitzpatrick TB. Examining strategies to facilitate vitamin B1 biofortification of plants by genetic engineering. FRONTIERS IN PLANT SCIENCE 2013; 4:160. [PMID: 23755056 PMCID: PMC3665906 DOI: 10.3389/fpls.2013.00160] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Indexed: 05/20/2023]
Abstract
Thiamin (vitamin B1) is made by plants and microorganisms but is an essential micronutrient in the human diet. All organisms require it as a cofactor in its form as thiamin pyrophosphate (TPP) for the activity of key enzymes of central metabolism. In humans, deficiency is widespread particularly in populations where polished rice is a major component of the diet. Considerable progress has been made on the elucidation of the biosynthesis pathway within the last few years enabling concrete strategies for biofortification purposes to be devised, with a particular focus here on genetic engineering. Furthermore, the vitamin has been shown to play a role in both abiotic and biotic stress responses. The precursors for de novo biosynthesis of thiamin differ between microorganisms and plants. Bacteria use intermediates derived from purine and isoprenoid biosynthesis, whereas the pathway in yeast involves the use of compounds from the vitamin B3 and B6 groups. Plants on the other hand use a combination of the bacterial and yeast pathways and there is subcellular partitioning of the biosynthesis steps. Specifically, thiamin biosynthesis occurs in the chloroplast of plants through the separate formation of the pyrimidine and thiazole moieties, which are then coupled to form thiamin monophosphate (TMP). Phosphorylation of thiamin to form TPP occurs in the cytosol. Therefore, thiamin (or TMP) must be exported from the chloroplast to the cytosol for the latter step to be executed. The regulation of biosynthesis is mediated through riboswitches, where binding of the product TPP to the pre-mRNA of a biosynthetic gene modulates expression. Here we examine and hypothesize on genetic engineering approaches attempting to increase the thiamin content employing knowledge gained with the model plant Arabidopsis thaliana. We will discuss the regulatory steps that need to be taken into consideration and can be used a prerequisite for devising such strategies in crop plants.
Collapse
Affiliation(s)
| | | | - Teresa B. Fitzpatrick
- *Correspondence: Teresa B. Fitzpatrick, Department of Botany and Plant Biology, University of Geneva, Sciences III, 30 Quai E. Ansermet, 1211 Geneva, Switzerland e-mail:
| |
Collapse
|
114
|
Wojtyla Ł, Kosmala A, Garnczarska M. Lupine embryo axes under salinity stress. II. Mitochondrial proteome response. ACTA PHYSIOLOGIAE PLANTARUM 2013; 35:2383-2392. [PMID: 25834294 PMCID: PMC4372824 DOI: 10.1007/s11738-013-1273-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Revised: 03/13/2013] [Accepted: 03/19/2013] [Indexed: 05/09/2023]
Abstract
Germination is the first step of plant growth in plant life cycle. An embryonic radicle protruding the seed coat is the first part of plant which has direct contact with external environment including salt-affected soil. In embryo axes, mitochondria are the main energy producer. To understand better salinity impact on mitochondria functioning, this study was focused on the effect of NaCl stress onto mitochondria proteome. Mitochondria were isolated from yellow lupine (Lupine luteus L. 'Mister') embryo axes cultured in vitro for 12 h with 250 and 500 mM NaCl. Two-dimensional gel electrophoresis of mitochondrial proteins isolated from NaCl-treated axes demonstrated significant changes in proteins abundances as a response to salinity treatment. Twenty-one spots showing significant changes in protein expression profiles both under 250 and 500 mM NaCl treatment were selected for tandem mass spectrometry identification. This approach revealed proteins associated with different metabolic processes that represent enzymes of tricarboxylic acid cycle, mitochondrial electron transport chain, enzymes and proteins involved in mitochondria biogenesis and stresses response. Among proteins involved in mitochondria biogenesis, mitochondrial import inner membrane translocase, subunit Tim17/22, mitochondrial-processing peptidase subunit alpha-1, mitochondrial elongation factor Tu and chaperonins CPN60 were revealed. Finally, formate dehydrogenase 1 was found to accumulate in lupine embryo axes mitochondria under salinity. The functions of identified proteins are discussed in relation to salinity stress response, including salinity-induced PCD.
Collapse
Affiliation(s)
- Łukasz Wojtyla
- Department of Plant Physiology, Faculty of Biology, Adam Mickiewicz University, ul. Umultowska 89, 61-614 Poznań, Poland
| | - Arkadiusz Kosmala
- Laboratory of Cytogenetics, Institute of Plant Genetics, Polish Academy of Sciences, ul. Strzeszyńska 34, 60-479 Poznań, Poland
| | - Małgorzata Garnczarska
- Department of Plant Physiology, Faculty of Biology, Adam Mickiewicz University, ul. Umultowska 89, 61-614 Poznań, Poland
| |
Collapse
|
115
|
Bertrand EM, Allen AE. Influence of vitamin B auxotrophy on nitrogen metabolism in eukaryotic phytoplankton. Front Microbiol 2012; 3:375. [PMID: 23091473 PMCID: PMC3476827 DOI: 10.3389/fmicb.2012.00375] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Accepted: 10/02/2012] [Indexed: 01/22/2023] Open
Abstract
While nitrogen availability is known to limit primary production in large parts of the ocean, vitamin starvation amongst eukaryotic phytoplankton is becoming increasingly recognized as an oceanographically relevant phenomenon. Cobalamin (B(12)) and thiamine (B(1)) auxotrophy are widespread throughout eukaryotic phytoplankton, with over 50% of cultured isolates requiring B(12) and 20% requiring B(1). The frequency of vitamin auxotrophy in harmful algal bloom species is even higher. Instances of colimitation between nitrogen and B vitamins have been observed in marine environments, and interactions between these nutrients have been shown to impact phytoplankton species composition. This review surveys available data, including relevant gene expression patterns, to evaluate the potential for interactive effects of nitrogen and vitamin B(12) and B(1) starvation in eukaryotic phytoplankton. B(12) plays essential roles in amino acid and one-carbon metabolism, while B(1) is important for primary carbohydrate and amino acid metabolism and likely useful as an anti-oxidant. Here we will focus on three potential metabolic interconnections between vitamin, nitrogen, and sulfur metabolism that may have ramifications for the role of vitamin and nitrogen scarcities in driving ocean productivity and species composition. These include: (1) B(12), B(1), and N starvation impacts on osmolyte and antioxidant production, (2) B(12) and B(1) starvation impacts on polyamine biosynthesis, and (3) influence of B(12) and B(1) starvation on the diatom urea cycle and amino acid recycling through impacts on the citric acid cycle. We evaluate evidence for these interconnections and identify oceanographic contexts in which each may impact rates of primary production and phytoplankton community composition. Major implications include that B(12) and B(1) deprivation may impair the ability of phytoplankton to recover from nitrogen starvation and that changes in vitamin and nitrogen availability may synergistically impact harmful algal bloom formation.
Collapse
Affiliation(s)
- Erin M Bertrand
- Department of Microbial and Environmental Genomics, J. Craig Venter Institute San Diego, CA, USA
| | | |
Collapse
|
116
|
Graf A, Trofimova L, Loshinskaja A, Mkrtchyan G, Strokina A, Lovat M, Tylicky A, Strumilo S, Bettendorff L, Bunik VI. Up-regulation of 2-oxoglutarate dehydrogenase as a stress response. Int J Biochem Cell Biol 2012; 45:175-89. [PMID: 22814169 DOI: 10.1016/j.biocel.2012.07.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2012] [Revised: 06/28/2012] [Accepted: 07/01/2012] [Indexed: 01/08/2023]
Abstract
2-Oxoglutarate dehydrogenase multienzyme complex (OGDHC) operates at a metabolic cross-road, mediating Ca(2+)- and ADP-dependent signals in mitochondria. Here, we test our hypothesis that OGDHC plays a major role in the neurotransmitter metabolism and associated stress response. This possibility was assessed using succinyl phosphonate (SP), a highly specific and efficient in vivo inhibitor of OGDHC. Animals exposed to toxicants (SP, ethanol or MnCl(2)), trauma or acute hypoxia showed intrinsic up-regulation of OGDHC in brain and heart. The known mechanism of the SP action as OGDHC inhibitor pointed to the up-regulation triggered by the enzyme impairment. The animal behavior and skeletal muscle or heart performance were tested to correlate physiology with the OGDHC regulation and associated changes in the glutamate and cellular energy status. The SP-treated animals exhibited interdependent changes in the brain OGDHC activity, glutamate level and cardiac autonomic balance, suggesting the neurotransmitter role of glutamate to be involved in the changed heart performance. Energy insufficiency after OGDHC inhibition was detectable neither in animals up to 25 mg/kg SP, nor in cell culture during 24 h incubation with 0.1 mM SP. However, in animals subjected to acute ethanol intoxication SP did evoke energy deficit, decreasing muscular strength and locomotion and increasing the narcotic sleep duration. This correlated with the SP-induced decrease in NAD(P)H levels of the ethanol-exposed neurons. Thus, we show the existence of natural mechanisms to up-regulate mammalian OGDHC in response to stress, with both the glutamate neurotransmission and energy production potentially involved in the OGDHC impact on physiological performance. This article is part of a Directed Issue entitled: Bioenergetic dysfunction, adaptation and therapy.
Collapse
Affiliation(s)
- Anastasia Graf
- Department of Physiology of Biology Faculty of Lomonosov Moscow State University, Leninskije Gory 1, 119992 Moscow, Russian Federation.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
117
|
Kowalska E, Kujda M, Wolak N, Kozik A. Altered expression and activities of enzymes involved in thiamine diphosphate biosynthesis in Saccharomyces cerevisiae under oxidative and osmotic stress. FEMS Yeast Res 2012; 12:534-46. [PMID: 22449018 DOI: 10.1111/j.1567-1364.2012.00804.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Revised: 03/19/2012] [Accepted: 03/19/2012] [Indexed: 11/26/2022] Open
Abstract
Thiamine diphosphate (TDP) serves as a cofactor for enzymes engaged in pivotal carbohydrate metabolic pathways, which are known to be modulated under stress conditions to ensure the cell survival. Recent reports have proven a protective role of thiamine (vitamin B(1)) in the response of plants to abiotic stress. This work aimed at verifying a hypothesis that also baker's yeast, which can synthesize thiamine de novo similarly to plants and bacteria, adjust thiamine metabolism to adverse environmental conditions. Our analyses on the gene expression and enzymatic activity levels generally showed an increased production of thiamine biosynthesis enzymes (THI4 and THI6/THI6), a TDP synthesizing enzyme (THI80/THI80) and a TDP-requiring enzyme, transketolase (TKL1/TKL) by yeast subjected to oxidative (1 mM hydrogen peroxide) and osmotic (1 M sorbitol) stress. However, these effects differed in magnitude, depending on yeast growth phase and presence of thiamine in growth medium. A mutant thi4Δ with increased sensitivity to oxidative stress exhibited enhanced TDP biosynthesis as compared with the wild-type strain. Similar tendencies were observed in mutants yap1Δ and hog1Δ defective in the signaling pathways of the defense against oxidative and osmotic stress, respectively, suggesting that thiamine metabolism can partly compensate damages of yeast general defense systems.
Collapse
Affiliation(s)
- Ewa Kowalska
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland.
| | | | | | | |
Collapse
|