101
|
Pereira SR, Tello Velasquez J, Duggan S, Ivanisevic B, McKenna JP, McCreary C, Downer EJ. Recent advances in the understanding of the aetiology and therapeutic strategies in burning mouth syndrome: Focus on the actions of cannabinoids. Eur J Neurosci 2020; 55:1032-1050. [DOI: 10.1111/ejn.14712] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/06/2020] [Accepted: 02/20/2020] [Indexed: 12/16/2022]
Affiliation(s)
- Sónia R. Pereira
- Discipline of Physiology School of Medicine Trinity Biomedical Sciences Institute Trinity College Dublin Dublin 2 Ireland
| | - Johana Tello Velasquez
- Discipline of Physiology School of Medicine Trinity Biomedical Sciences Institute Trinity College Dublin Dublin 2 Ireland
| | - Sarah Duggan
- Discipline of Physiology School of Medicine Trinity Biomedical Sciences Institute Trinity College Dublin Dublin 2 Ireland
| | - Bojana Ivanisevic
- Cork University Dental School and Hospital University College Cork Cork Ireland
| | - Joseph P. McKenna
- Cork University Dental School and Hospital University College Cork Cork Ireland
| | - Christine McCreary
- Cork University Dental School and Hospital University College Cork Cork Ireland
| | - Eric J. Downer
- Discipline of Physiology School of Medicine Trinity Biomedical Sciences Institute Trinity College Dublin Dublin 2 Ireland
| |
Collapse
|
102
|
Kelly R, Joers V, Tansey MG, McKernan DP, Dowd E. Microglial Phenotypes and Their Relationship to the Cannabinoid System: Therapeutic Implications for Parkinson's Disease. Molecules 2020; 25:molecules25030453. [PMID: 31973235 PMCID: PMC7037317 DOI: 10.3390/molecules25030453] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/14/2020] [Accepted: 01/16/2020] [Indexed: 12/11/2022] Open
Abstract
Parkinson’s disease is a neurodegenerative disorder, the motor symptoms of which are associated classically with Lewy body formation and nigrostriatal degeneration. Neuroinflammation has been implicated in the progression of this disease, by which microglia become chronically activated in response to α-synuclein pathology and dying neurons, thereby acquiring dishomeostatic phenotypes that are cytotoxic and can cause further neuronal death. Microglia have a functional endocannabinoid signaling system, expressing the cannabinoid receptors in addition to being capable of synthesizing and degrading endocannabinoids. Alterations in the cannabinoid system—particularly an upregulation in the immunomodulatory CB2 receptor—have been demonstrated to be related to the microglial activation state and hence the microglial phenotype. This paper will review studies that examine the relationship between the cannabinoid system and microglial activation, and how this association could be manipulated for therapeutic benefit in Parkinson’s disease.
Collapse
Affiliation(s)
- Rachel Kelly
- Pharmacology & Therapeutics, National University of Ireland, H91 W5P7 Galway, Ireland; (R.K.); (D.P.M.)
| | - Valerie Joers
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL 32611, USA; (V.J.); (M.G.T.)
| | - Malú G. Tansey
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL 32611, USA; (V.J.); (M.G.T.)
- Center for Translation Research in Neurodegenerative Disease, University of Florida College of Medicine, Gainesville, FL 32611, USA
| | - Declan P. McKernan
- Pharmacology & Therapeutics, National University of Ireland, H91 W5P7 Galway, Ireland; (R.K.); (D.P.M.)
| | - Eilís Dowd
- Pharmacology & Therapeutics, National University of Ireland, H91 W5P7 Galway, Ireland; (R.K.); (D.P.M.)
- Correspondence:
| |
Collapse
|
103
|
Cortez IL, Rodrigues da Silva N, Guimarães FS, Gomes FV. Are CB2 Receptors a New Target for Schizophrenia Treatment? Front Psychiatry 2020; 11:587154. [PMID: 33329132 PMCID: PMC7673393 DOI: 10.3389/fpsyt.2020.587154] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 09/30/2020] [Indexed: 01/25/2023] Open
Abstract
Schizophrenia is a complex disorder that involves several neurotransmitters such as dopamine, glutamate, and GABA. More recently, the endocannabinoid system has also been associated with this disorder. Although initially described as present mostly in the periphery, cannabinoid type-2 (CB2) receptors are now proposed to play a role in several brain processes related to schizophrenia, such as modulation of dopaminergic neurotransmission, microglial activation, and neuroplastic changes induced by stress. Here, we reviewed studies describing the involvement of the CB2 receptor in these processes and their association with the pathophysiology of schizophrenia. Taken together, these pieces of evidence indicate that CB2 receptor may emerge as a new target for the development of antipsychotic drugs.
Collapse
Affiliation(s)
- Isadora L Cortez
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Naielly Rodrigues da Silva
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Francisco S Guimarães
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Felipe V Gomes
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
104
|
Cannabinoids and the expanded endocannabinoid system in neurological disorders. Nat Rev Neurol 2019; 16:9-29. [PMID: 31831863 DOI: 10.1038/s41582-019-0284-z] [Citation(s) in RCA: 559] [Impact Index Per Article: 93.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/15/2019] [Indexed: 12/13/2022]
|
105
|
Shapiro L, Wong JC, Escayg A. Reduced cannabinoid 2 receptor activity increases susceptibility to induced seizures in mice. Epilepsia 2019; 60:2359-2369. [PMID: 31758544 DOI: 10.1111/epi.16388] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 10/22/2019] [Accepted: 10/22/2019] [Indexed: 02/06/2023]
Abstract
OBJECTIVE The endocannabinoid system (ECS) is comprised of cannabinoid receptors 1 and 2 (CB1R and CB2R), endogenous ligands, and regulatory enzymes, and serves to regulate several important physiological functions throughout the brain and body. Recent evidence suggests that the ECS may be a promising target for the treatment of epilepsy, including epilepsy subtypes that arise from mutations in the voltage-gated sodium channel SCN1A. The objective of this study was to explore the effects of modulating CB2R activity on seizure susceptibility. METHODS We examined susceptibility to induced seizures using a number of paradigms in CB2R knockout mice (Cnr2-/- ), and determined the effects of the CB2R agonist, JWH-133, and the CB2R antagonist, SR144528, on seizure susceptibility in wild-type mice. We also examined seizure susceptibility in Cnr2 mutants harboring the human SCN1A R1648H (RH) epilepsy mutation and performed Electroencephalography (EEG) analysis to determine whether the loss of CB2Rs would increase spontaneous seizure frequency in Scn1a RH mutant mice. RESULTS Both heterozygous (Cnr2+/- ) and homozygous (Cnr2-/- ) knockout mice exhibited increased susceptibility to pentylenetetrazole (PTZ)-induced seizures. The CB2R agonist JWH-133 did not significantly alter seizure susceptibility in wild-type mice; however, administration of the CB2R antagonist SR144528 resulted in increased susceptibility to PTZ-induced seizures. In offspring from a cross between the Cnr2 × RH lines, both Cnr2 and RH mutants were susceptible to PTZ-induced seizures; however, seizure susceptibility was not significantly increased in mutants expressing both mutations. No spontaneous seizures were observed in either RH or Cnr2/RH mutants during 336-504 hours of continuous EEG recordings. SIGNIFICANCE Our results demonstrate that reduced CB2R activity is associated with increased seizure susceptibility. CB2Rs might therefore provide a therapeutic target for the treatment of some forms of epilepsy.
Collapse
Affiliation(s)
- Lindsey Shapiro
- Department of Human Genetics, Emory University, Atlanta, Georgia
| | - Jennifer C Wong
- Department of Human Genetics, Emory University, Atlanta, Georgia
| | - Andrew Escayg
- Department of Human Genetics, Emory University, Atlanta, Georgia
| |
Collapse
|
106
|
Yamagishi S, Iga Y, Nakamura M, Takizawa C, Fukumoto D, Kakiuchi T, Nishiyama S, Ohba H, Tsukada H, Sato K, Ouchi Y. Upregulation of cannabinoid receptor type 2, but not TSPO, in senescence-accelerated neuroinflammation in mice: a positron emission tomography study. J Neuroinflammation 2019; 16:208. [PMID: 31707986 PMCID: PMC6842455 DOI: 10.1186/s12974-019-1604-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 09/26/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Microglial cells are activated in response to changes in brain homeostasis during aging, dementia, and stroke. Type 2 endocannabinoid receptors (CB2) and translocator protein 18 kD (TSPO) are considered to reflect distinct aspects of microglia-related neuroinflammatory responses in the brain. CB2 activation is considered to relate to the neuroprotective responses that may occur predominantly in the early stage of brain disorders such as Alzheimer's disease, while an increase in TSPO expression tends to occur later during neuroinflammation, in a proinflammatory fashion. However, this information was deduced from studies with different animal samples under different experimental settings. In this study, we aimed to examine the early microglial status in the inflammation occurring in the brains of senescence-accelerated mouse prone 10 (SAMP10) mice, using positron emission tomography (PET) with CB2 and TSPO tracers, together with immunohistochemistry. METHODS Five- and 15-week-old SAMP10 mice that undergo neurodegeneration after 7 months of age were used. The binding levels of the TSPO tracer (R)-[11C]PK11195 and CB2 tracer [11C]NE40 were measured using PET in combination with immunohistochemistry for CB2 and TSPO. To our knowledge, this is the first study to report PET data for CB2 and TSPO at the early stage of cognitive impairment in an animal model. RESULTS The standard uptake value ratios (SUVRs) of [11C]NE40 binding were significantly higher than those of (R)-[11C]PK11195 binding in the cerebral cortical region at 15 weeks of age. At 5 weeks of age, the [11C]NE40 SUVR tended to be higher than the (R)-[11C]PK11195 SUVR. The (R)-[11C]PK11195 SUVR did not significantly differ between 5- and 15-week-old mice. Consistently, immunostaining analysis confirmed the upregulation of CB2, but not TSPO. CONCLUSIONS The use of the CB2 tracer [11C]NE40 and/or an immunohistochemical approach allows evaluation of the role of microglia in acute neuroinflammatory processes in the early stage of neurodegeneration. The present results provide in vivo evidence of different responses of two types of microglia to senescence-accelerated neuroinflammation, implying the perturbation of microglial balance by aging. Specific treatment for CB2-positive microglia might help ameliorate senescence-related neuroinflammation and the following neurodegeneration.
Collapse
Affiliation(s)
- Satoru Yamagishi
- Department of Organ and Tissue Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, 431-3192, Japan
| | - Yurika Iga
- Department of Organ and Tissue Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, 431-3192, Japan
| | - Masato Nakamura
- Department of Organ and Tissue Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, 431-3192, Japan
| | - Chika Takizawa
- Department of Organ and Tissue Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, 431-3192, Japan
| | - Dai Fukumoto
- Central Research Laboratory, Hamamatsu Photonics KK, Hamamatsu, Japan
| | - Takeharu Kakiuchi
- Central Research Laboratory, Hamamatsu Photonics KK, Hamamatsu, Japan
| | - Shingo Nishiyama
- Central Research Laboratory, Hamamatsu Photonics KK, Hamamatsu, Japan
| | - Hiroyuki Ohba
- Central Research Laboratory, Hamamatsu Photonics KK, Hamamatsu, Japan
| | - Hideo Tsukada
- Central Research Laboratory, Hamamatsu Photonics KK, Hamamatsu, Japan
| | - Kohji Sato
- Department of Organ and Tissue Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, 431-3192, Japan
| | - Yasuomi Ouchi
- Department of Biofunctional Imaging, Preeminent Medical Photonics Education & Research Center, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, 431-3192, Japan.
| |
Collapse
|
107
|
Scheiner M, Dolles D, Gunesch S, Hoffmann M, Nabissi M, Marinelli O, Naldi M, Bartolini M, Petralla S, Poeta E, Monti B, Falkeis C, Vieth M, Hübner H, Gmeiner P, Maitra R, Maurice T, Decker M. Dual-Acting Cholinesterase-Human Cannabinoid Receptor 2 Ligands Show Pronounced Neuroprotection in Vitro and Overadditive and Disease-Modifying Neuroprotective Effects in Vivo. J Med Chem 2019; 62:9078-9102. [PMID: 31609608 PMCID: PMC7640639 DOI: 10.1021/acs.jmedchem.9b00623] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We have designed and synthesized a series of 14 hybrid molecules out of the cholinesterase (ChE) inhibitor tacrine and a benzimidazole-based human cannabinoid receptor subtype 2 (hCB2R) agonist and investigated them in vitro and in vivo. The compounds are potent ChE inhibitors, and for the most promising hybrids, the mechanism of human acetylcholinesterase (hAChE) inhibition as well as their ability to interfere with AChE-induced aggregation of β-amyloid (Aβ), and Aβ self-aggregation was assessed. All hybrids were evaluated for affinity and selectivity for hCB1R and hCB2R. To ensure that the hybrids retained their agonist character, the expression of cAMP-regulated genes was quantified, and potency and efficacy were determined. Additionally, the effects of the hybrids on microglia activation and neuroprotection on HT-22 cells were investigated. The most promising in vitro hybrids showed pronounced neuroprotection in an Alzheimer's mouse model at low dosage (0.1 mg/kg, i.p.), lacking hepatotoxicity even at high dose (3 mg/kg, i.p.).
Collapse
Affiliation(s)
- Matthias Scheiner
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy and Food Chemistry, Julius Maximilian University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Dominik Dolles
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy and Food Chemistry, Julius Maximilian University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Sandra Gunesch
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy and Food Chemistry, Julius Maximilian University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Matthias Hoffmann
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy and Food Chemistry, Julius Maximilian University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Massimo Nabissi
- School of Pharmacy, University of Camerino, Via Madonna delle Carceri 9, 62032 Camerino, Italy
| | - Oliviero Marinelli
- School of Pharmacy, University of Camerino, Via Madonna delle Carceri 9, 62032 Camerino, Italy
| | - Marina Naldi
- Department of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Manuela Bartolini
- Department of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Sabrina Petralla
- Department of Pharmacy and Biotechnology, University of Bologna, Via Selmi 3, 40126 Bologna, Italy
| | - Eleonora Poeta
- Department of Pharmacy and Biotechnology, University of Bologna, Via Selmi 3, 40126 Bologna, Italy
| | - Barbara Monti
- Department of Pharmacy and Biotechnology, University of Bologna, Via Selmi 3, 40126 Bologna, Italy
| | - Christina Falkeis
- Pathology, Clinical Center Bayreuth, Preuschwitzer Straße 101, 95445 Bayreuth, Germany
| | - Michael Vieth
- Pathology, Clinical Center Bayreuth, Preuschwitzer Straße 101, 95445 Bayreuth, Germany
| | - Harald Hübner
- Medicinal Chemistry, Department of Chemistry and Pharmacy, Friedrich-Alexander University Erlangen-Nürnberg, Schuhstraße 19, 91052 Erlangen, Germany
| | - Peter Gmeiner
- Medicinal Chemistry, Department of Chemistry and Pharmacy, Friedrich-Alexander University Erlangen-Nürnberg, Schuhstraße 19, 91052 Erlangen, Germany
| | - Rangan Maitra
- Center for Drug Discovery, Research Triangle Institute, Research Triangle Park, North Carolina 27709, United States
| | - Tangui Maurice
- MMDN, University of Montpellier, INSERM, EPHE, UMR-S1198, 34095 Montpellier, France
| | - Michael Decker
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy and Food Chemistry, Julius Maximilian University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| |
Collapse
|
108
|
Wu MM, Zhang X, Asher MJ, Thayer SA. Druggable targets of the endocannabinoid system: Implications for the treatment of HIV-associated neurocognitive disorder. Brain Res 2019; 1724:146467. [PMID: 31539547 DOI: 10.1016/j.brainres.2019.146467] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 09/13/2019] [Accepted: 09/16/2019] [Indexed: 12/24/2022]
Abstract
HIV-associated neurocognitive disorder (HAND) affects nearly half of all HIV-infected individuals. Synaptodendritic damage correlates with neurocognitive decline in HAND, and many studies have demonstrated that HIV-induced neuronal injury results from excitotoxic and inflammatory mechanisms. The endocannabinoid (eCB) system provides on-demand protection against excitotoxicity and neuroinflammation. Here, we discuss evidence of the neuroprotective and anti-inflammatory properties of the eCB system from in vitro and in vivo studies. We examine the pharmacology of the eCB system and evaluate the therapeutic potential of drugs that modulate eCB signaling to treat HAND. Finally, we provide perspective on the need for additional studies to clarify the role of the eCB system in HIV neurotoxicity and speculate that strategies that enhance eCB signaling might slow cognitive decline in HAND.
Collapse
Affiliation(s)
- Mariah M Wu
- Graduate Program in Neuroscience, University of Minnesota Medical School, Minneapolis, MN 55455, USA.
| | - Xinwen Zhang
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN 55455, USA.
| | - Melissa J Asher
- Graduate Program in Neuroscience, University of Minnesota Medical School, Minneapolis, MN 55455, USA.
| | - Stanley A Thayer
- Graduate Program in Neuroscience, University of Minnesota Medical School, Minneapolis, MN 55455, USA; Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN 55455, USA.
| |
Collapse
|
109
|
Páez JA, Campillo NE. Innovative Therapeutic Potential of Cannabinoid Receptors as Targets in Alzheimer’s Disease and Less Well-Known Diseases. Curr Med Chem 2019; 26:3300-3340. [DOI: 10.2174/0929867325666180226095132] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 02/08/2018] [Accepted: 02/15/2018] [Indexed: 02/07/2023]
Abstract
:
The discovery of cannabinoid receptors at the beginning of the 1990s, CB1 cloned
in 1990 and CB2 cloned in 1993, and the availability of selective and potent cannabimimetics
could only be justified by the existence of endogenous ligands that are capable of binding to
them. Thus, the characterisation and cloning of the first cannabinoid receptor (CB1) led to the
isolation and characterisation of the first endocannabinoid, arachidonoylethanolamide (AEA),
two years later and the subsequent identification of a family of lipid transmitters known as the
fatty acid ester 2-arachidonoylglycerol (2-AG).
:
The endogenous cannabinoid system is a complex signalling system that comprises transmembrane
endocannabinoid receptors, their endogenous ligands (the endocannabinoids), the
specific uptake mechanisms and the enzymatic systems related to their biosynthesis and degradation.
:
The endocannabinoid system has been implicated in a wide diversity of biological processes,
in both the central and peripheral nervous systems, including memory, learning, neuronal development,
stress and emotions, food intake, energy regulation, peripheral metabolism, and
the regulation of hormonal balance through the endocrine system.
:
In this context, this article will review the current knowledge of the therapeutic potential of
cannabinoid receptor as a target in Alzheimer’s disease and other less well-known diseases
that include, among others, multiple sclerosis, bone metabolism, and Fragile X syndrome.
:
The therapeutic applications will be addressed through the study of cannabinoid agonists acting
as single drugs and multi-target drugs highlighting the CB2 receptor agonist.
Collapse
Affiliation(s)
- Juan A. Páez
- Instituto de Quimica Medica (IQM-CSIC). C/ Juan de la Cierva, 3, 28006, Madrid, Spain
| | - Nuria E. Campillo
- Centro de Investigaciones Biologicas (CIB-CSIC). C/ Ramiro de Maeztu, 9, 28040, Madrid, Spain
| |
Collapse
|
110
|
Cheng J, Wang S, Lin W, Wu N, Wang Y, Chen M, Xie XQ, Feng Z. Computational Systems Pharmacology-Target Mapping for Fentanyl-Laced Cocaine Overdose. ACS Chem Neurosci 2019; 10:3486-3499. [PMID: 31257858 DOI: 10.1021/acschemneuro.9b00109] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The United States of America is fighting against one of its worst-ever drug crises. Over 900 people a week die from opioid- or heroin-related overdoses, while millions more suffer from opioid prescription addiction. Recently, drug overdoses caused by fentanyl-laced cocaine specifically are on the rise. Due to drug synergy and an increase in side effects, polydrug addiction can cause more risk than addiction to a single drug. In the present work, we systematically analyzed the overdose and addiction mechanism of cocaine and fentanyl. First, we applied our established chemogenomics knowledgebase and machine-learning-based methods to map out the potential and known proteins, transporters, and metabolic enzymes and the potential therapeutic target(s) for cocaine and fentanyl. Sequentially, we looked into the detail of (1) the addiction to cocaine and fentanyl by binding to the dopamine transporter and the μ opioid receptor (DAT and μOR, respectively), (2) the potential drug-drug interaction of cocaine and fentanyl via p-glycoprotein (P-gp) efflux, (3) the metabolism of cocaine and fentanyl in CYP3A4, and (4) the physiologically based pharmacokinetic (PBPK) model for two drugs and their drug-drug interaction at the absorption, distribution, metabolism, and excretion (ADME) level. Finally, we looked into the detail of JWH133, an agonist of cannabinoid 2-receptor (CB2) with potential as a therapy for cocaine and fentanyl overdose. All these results provide a better understanding of fentanyl and cocaine polydrug addiction and future drug abuse prevention.
Collapse
Affiliation(s)
- Jin Cheng
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, National Center of Excellence for Computational Drug Abuse Research, Drug Discovery Institute, Departments of Computational Biology and Structural Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- Department of Pharmacy, Jiangsu Vocational College of Medicine, Yancheng, Jiangsu 224005, China
| | - Siyi Wang
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, National Center of Excellence for Computational Drug Abuse Research, Drug Discovery Institute, Departments of Computational Biology and Structural Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Weiwei Lin
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, National Center of Excellence for Computational Drug Abuse Research, Drug Discovery Institute, Departments of Computational Biology and Structural Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Nan Wu
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, National Center of Excellence for Computational Drug Abuse Research, Drug Discovery Institute, Departments of Computational Biology and Structural Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Yuanqiang Wang
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, National Center of Excellence for Computational Drug Abuse Research, Drug Discovery Institute, Departments of Computational Biology and Structural Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Maozi Chen
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, National Center of Excellence for Computational Drug Abuse Research, Drug Discovery Institute, Departments of Computational Biology and Structural Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Xiang-Qun Xie
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, National Center of Excellence for Computational Drug Abuse Research, Drug Discovery Institute, Departments of Computational Biology and Structural Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Zhiwei Feng
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, National Center of Excellence for Computational Drug Abuse Research, Drug Discovery Institute, Departments of Computational Biology and Structural Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| |
Collapse
|
111
|
Silvestro S, Bramanti P, Mazzon E. Role of miRNAs in Alzheimer's Disease and Possible Fields of Application. Int J Mol Sci 2019; 20:E3979. [PMID: 31443326 PMCID: PMC6720959 DOI: 10.3390/ijms20163979] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/07/2019] [Accepted: 08/14/2019] [Indexed: 01/02/2023] Open
Abstract
miRNAs (or microRNAs) are a class of single-stranded RNA molecules, responsible for post-transcriptional gene silencing through binding to the coding region as well as 3' and 5' untranslated region of target genes. About 70% of experimentally detectable miRNAs are expressed in the brain and some studies suggest that miRNAs are intimately involved in synaptic function and in specific signals during memory formation. More and more evidence demonstrates the possible involvement of miRNAs in Alzheimer's disease (AD). AD is the most common form of senile dementia, a disease that affects memory and cognitive functions. It is a neurodegenerative disorder characterized by loss of synapses, extracellular amyloid plaques composed of the amyloid-β peptide (Aβ), and intracellular aggregates of hyperphosphorylated TAU protein. This review aims to provide an overview of the in vivo studies of the last 5 years in the literature describing the role of the different miRNAs involved in AD. miRNAs hold huge potential as diagnostic and prognostic biomarkers and, at the same time, their modulation could be a potential therapeutic strategy against AD.
Collapse
Affiliation(s)
- Serena Silvestro
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy
| | - Placido Bramanti
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy
| | - Emanuela Mazzon
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy.
| |
Collapse
|
112
|
Zamberletti E, Gabaglio M, Woolley-Roberts M, Bingham S, Rubino T, Parolaro D. Cannabidivarin Treatment Ameliorates Autism-Like Behaviors and Restores Hippocampal Endocannabinoid System and Glia Alterations Induced by Prenatal Valproic Acid Exposure in Rats. Front Cell Neurosci 2019; 13:367. [PMID: 31447649 PMCID: PMC6696797 DOI: 10.3389/fncel.2019.00367] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 07/29/2019] [Indexed: 12/13/2022] Open
Abstract
Autism spectrum disorder (ASD) is a developmental condition whose primary features include social communication and interaction impairments with restricted or repetitive motor movements. No approved treatment for the core symptoms is available and considerable research efforts aim at identifying effective therapeutic strategies. Emerging evidence suggests that altered endocannabinoid signaling and immune dysfunction might contribute to ASD pathogenesis. In this scenario, phytocannabinoids could hold great pharmacological potential due to their combined capacities to act either directly or indirectly on components of the endocannabinoid system and to modulate immune functions. Among all plant-cannabinoids, the phytocannabinoid cannabidivarin (CBDV) was recently shown to reduce motor impairments and cognitive deficits in animal models of Rett syndrome, a condition showing some degree of overlap with autism, raising the possibility that CBDV might have therapeutic potential in ASD. Here, we investigated the ability of CBDV treatment to reverse or prevent ASD-like behaviors in male rats prenatally exposed to valproic acid (VPA; 500 mg/kg i.p.; gestation day 12.5). The offspring received CBDV according to two different protocols: symptomatic (0.2/2/20/100 mg/kg i.p.; postnatal days 34–58) and preventative (2/20 mg/kg i.p.; postnatal days 19–32). The major efficacy of CBDV was observed at the dose of 20 mg/kg for both treatment schedules. CBDV in symptomatic rats recovered social impairments, social novelty preference, short-term memory deficits, repetitive behaviors and hyperlocomotion whereas preventative treatment reduced sociability and social novelty deficits, short-term memory impairments and hyperlocomotion, without affecting stereotypies. As dysregulations in the endocannabinoid system and neuroinflammatory markers contribute to the development of some ASD phenotypes in the VPA model, neurochemical studies were performed after symptomatic treatment to investigate possible CBDV’s effects on the endocannabinoid system, inflammatory markers and microglia activation in the hippocampus and prefrontal cortex. Prenatal VPA exposure increased CB1 receptor, FAAH and MAGL levels, enhanced GFAP, CD11b, and TNFα levels and triggered microglia activation restricted to the hippocampus. All these alterations were restored after CBDV treatment. These data provide preclinical evidence in support of the ability of CBDV to ameliorate behavioral abnormalities resembling core and associated symptoms of ASD. At the neurochemical level, symptomatic CBDV restores hippocampal endocannabinoid signaling and neuroinflammation induced by prenatal VPA exposure.
Collapse
Affiliation(s)
- Erica Zamberletti
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Marina Gabaglio
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | | | | | - Tiziana Rubino
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Daniela Parolaro
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy.,Zardi-Gori Foundation, Milan, Italy
| |
Collapse
|
113
|
Abstract
OBJECTIVE Bipolar disorder (BD) is a debilitating, lifelong neuropsychiatric illness characterised by unsteady mood states which vacillate from (hypo)mania to depression. Despite the availability of pharmaceutical agents which can be effective in ameliorating the acute affective symptoms and prevent episodic relapse, BD is inadequately treated in a subset of patients. The endocannabinoid system (ECS) is known to exert neuromodulatory effects on other neurotransmitter systems critical in governing emotions. Several studies ranging from clinical to molecular, as well as anecdotal evidence, have placed a spotlight on the potential role of the ECS in the pathophysiology of BD. In this perspective, we present advantages and disadvantages of cannabis use in the management of illness course of BD and provide mechanistic insights into how this system might contribute to the pathophysiology of BD. RESULTS We highlight the putative role of selective cannabinoid receptor 2 (CB2) agonists in BD and briefly discuss findings which provide a rationale for targeting the ECS to assuage the symptoms of BD. Further, data encourage basic and clinical studies to determine how cannabis and cannabinoids (CBs) can affect mood and to investigate emerging CB-based options as probable treatment approaches. CONCLUSION The probable role of the ECS has been almost neglected in BD; however, from data available which suggest a role of ECS in mood control, it is justified to support conducting comprehensive studies to determine whether ECS manipulation could positively affect BD. Based on the limited available data, we suggest that activation of CB2 may stabilise mood in this disorder.
Collapse
|
114
|
Rodríguez-Soacha DA, Scheiner M, Decker M. Multi-target-directed-ligands acting as enzyme inhibitors and receptor ligands. Eur J Med Chem 2019; 180:690-706. [PMID: 31401465 DOI: 10.1016/j.ejmech.2019.07.040] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/04/2019] [Accepted: 07/11/2019] [Indexed: 12/20/2022]
Abstract
In this review, we present the latest advances in the field of multi-target-directed ligand (MTDL) design for the treatment of various complex pathologies of multifactorial origin. In particular, latest findings in the field of MTDL design targeting both an enzyme and a receptor are presented for different diseases such as Alzheimer's disease (AD), depression, addiction, glaucoma, non-alcoholic steatohepatitis and pain and inflammation. The ethology of the diseases is briefly described, with special emphasis on how the MTDL can evolve into novel therapies that replace the classic pharmacological dogma "one target one disease". Considering the current needs for therapy adherence improvement, it is exposed as from the medicinal chemistry, different molecular scaffolds are studied. With the use of structure activity relationship studies and molecular optimization, new hybrid molecules are generated with improved biological properties acting at two biologically very distinct targets.
Collapse
Affiliation(s)
- Diego Alejandro Rodríguez-Soacha
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy and Food Chemistry, Julius Maximilian University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Matthias Scheiner
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy and Food Chemistry, Julius Maximilian University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Michael Decker
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy and Food Chemistry, Julius Maximilian University of Würzburg, Am Hubland, 97074, Würzburg, Germany.
| |
Collapse
|
115
|
Antiallodynic Effects of Cannabinoid Receptor 2 (CB 2R) Agonists on Retrovirus Infection-Induced Neuropathic Pain. Pain Res Manag 2019; 2019:1260353. [PMID: 31354896 PMCID: PMC6637694 DOI: 10.1155/2019/1260353] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 06/20/2019] [Indexed: 02/06/2023]
Abstract
The most common neurological complication in patients receiving successful combination antiretroviral therapy (cART) is peripheral neuropathic pain. Data show that distal symmetric polyneuropathy (DSP) also develops along with murine acquired immunodeficiency syndrome (MAIDS) after infection with the LP-BM5 murine retrovirus mixture. Links between cannabinoid receptor 2 (CB2R) and peripheral neuropathy have been established in animal models using nerve transection, chemotherapy-induced pain, and various other stimuli. Diverse types of neuropathic pain respond differently to standard drug intervention, and little is currently known regarding the effects of modulation through CB2Rs. In this study, we evaluated whether treatment with the exogenous synthetic CB2R agonists JWH015, JWH133, Gp1a, and HU308 controls neuropathic pain and neuroinflammation in animals with chronic retroviral infection. Hind-paw mechanical hypersensitivity in CB2R agonist-treated versus untreated animals was assessed using the MouseMet electronic von Frey system. Multicolor flow cytometry was used to determine the effects of CB2R agonists on macrophage activation and T-lymphocyte infiltration into dorsal root ganglia (DRG) and lumbar spinal cord (LSC). Results demonstrated that, following weekly intraperitoneal injections starting at 5 wk p.i., JWH015, JWH133, and Gp1a, but not HU308 (5 mg/kg), significantly ameliorated allodynia when assessed 2 h after ligand injection. However, these same agonists (2x/wk) did not display antiallodynic effects when mechanical sensitivity was assessed 24 h after ligand injection. Infection-induced macrophage activation and T-cell infiltration into the DRG and LSC were observed at 12 wk p.i., but this neuroinflammation was not affected by treatment with any CB2R agonist. Activation of JAK/STAT3 has been shown to contribute to development of neuropathic pain in the LSC and pretreatment of primary murine microglia (2 h) with JWH015-, JWH133-, or Gp1a-blocked IFN-gamma-induced phosphorylation of STAT1 and STAT3. Taken together, these data show that CB2R agonists demonstrate acute, but not long-term, antiallodynic effects on retrovirus infection-induced neuropathic pain.
Collapse
|
116
|
Rodrigues RS, Lourenço DM, Paulo SL, Mateus JM, Ferreira MF, Mouro FM, Moreira JB, Ribeiro FF, Sebastião AM, Xapelli S. Cannabinoid Actions on Neural Stem Cells: Implications for Pathophysiology. Molecules 2019; 24:E1350. [PMID: 30959794 PMCID: PMC6480122 DOI: 10.3390/molecules24071350] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 04/01/2019] [Accepted: 04/03/2019] [Indexed: 02/06/2023] Open
Abstract
With the increase of life expectancy, neurodegenerative disorders are becoming not only a health but also a social burden worldwide. However, due to the multitude of pathophysiological disease states, current treatments fail to meet the desired outcomes. Therefore, there is a need for new therapeutic strategies focusing on more integrated, personalized and effective approaches. The prospect of using neural stem cells (NSC) as regenerative therapies is very promising, however several issues still need to be addressed. In particular, the potential actions of pharmacological agents used to modulate NSC activity are highly relevant. With the ongoing discussion of cannabinoid usage for medical purposes and reports drawing attention to the effects of cannabinoids on NSC regulation, there is an enormous, and yet, uncovered potential for cannabinoids as treatment options for several neurological disorders, specifically when combined with stem cell therapy. In this manuscript, we review in detail how cannabinoids act as potent regulators of NSC biology and their potential to modulate several neurogenic features in the context of pathophysiology.
Collapse
Affiliation(s)
- Rui S Rodrigues
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, 1649-028 Lisboa, Portugal.
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, 1649-028 Lisboa, Portugal.
| | - Diogo M Lourenço
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, 1649-028 Lisboa, Portugal.
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, 1649-028 Lisboa, Portugal.
| | - Sara L Paulo
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, 1649-028 Lisboa, Portugal.
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, 1649-028 Lisboa, Portugal.
| | - Joana M Mateus
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, 1649-028 Lisboa, Portugal.
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, 1649-028 Lisboa, Portugal.
| | - Miguel F Ferreira
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, 1649-028 Lisboa, Portugal.
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, 1649-028 Lisboa, Portugal.
| | - Francisco M Mouro
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, 1649-028 Lisboa, Portugal.
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, 1649-028 Lisboa, Portugal.
| | - João B Moreira
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, 1649-028 Lisboa, Portugal.
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, 1649-028 Lisboa, Portugal.
| | - Filipa F Ribeiro
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, 1649-028 Lisboa, Portugal.
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, 1649-028 Lisboa, Portugal.
| | - Ana M Sebastião
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, 1649-028 Lisboa, Portugal.
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, 1649-028 Lisboa, Portugal.
| | - Sara Xapelli
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, 1649-028 Lisboa, Portugal.
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, 1649-028 Lisboa, Portugal.
| |
Collapse
|
117
|
Kind L, Kursula P. Structural properties and role of the endocannabinoid lipases ABHD6 and ABHD12 in lipid signalling and disease. Amino Acids 2018; 51:151-174. [PMID: 30564946 DOI: 10.1007/s00726-018-2682-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 11/23/2018] [Indexed: 12/18/2022]
Abstract
The endocannabinoid (eCB) system is an important part of both the human central nervous system (CNS) and peripheral tissues. It is involved in the regulation of various physiological and neuronal processes and has been associated with various diseases. The eCB system is a complex network composed of receptor molecules, their cannabinoid ligands, and enzymes regulating the synthesis, release, uptake, and degradation of the signalling molecules. Although the eCB system and the molecular processes of eCB signalling have been studied extensively over the past decades, the involved molecules and underlying signalling mechanisms have not been described in full detail. An example pose the two poorly characterised eCB-degrading enzymes α/β-hydrolase domain protein six (ABHD6) and ABHD12, which have been shown to hydrolyse 2-arachidonoyl glycerol-the main eCB in the CNS. We review the current knowledge about the eCB system and the role of ABHD6 and ABHD12 within this important signalling system and associated diseases. Homology modelling and multiple sequence alignments highlight the structural features of the studied enzymes and their similarities, as well as the structural basis of disease-related ABHD12 mutations. However, homologies within the ABHD family are very low, and even the closest homologues have widely varying substrate preferences. Detailed experimental analyses at the molecular level will be necessary to understand these important enzymes in full detail.
Collapse
Affiliation(s)
- Laura Kind
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Petri Kursula
- Department of Biomedicine, University of Bergen, Bergen, Norway. .,Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland.
| |
Collapse
|
118
|
Lötsch J, Schiffmann S, Schmitz K, Brunkhorst R, Lerch F, Ferreiros N, Wicker S, Tegeder I, Geisslinger G, Ultsch A. Machine-learning based lipid mediator serum concentration patterns allow identification of multiple sclerosis patients with high accuracy. Sci Rep 2018; 8:14884. [PMID: 30291263 PMCID: PMC6173715 DOI: 10.1038/s41598-018-33077-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 09/11/2018] [Indexed: 02/07/2023] Open
Abstract
Based on increasing evidence suggesting that MS pathology involves alterations in bioactive lipid metabolism, the present analysis was aimed at generating a complex serum lipid-biomarker. Using unsupervised machine-learning, implemented as emergent self-organizing maps of neuronal networks, swarm intelligence and Minimum Curvilinear Embedding, a cluster structure was found in the input data space comprising serum concentrations of d = 43 different lipid-markers of various classes. The structure coincided largely with the clinical diagnosis, indicating that the data provide a basis for the creation of a biomarker (classifier). This was subsequently assessed using supervised machine-learning, implemented as random forests and computed ABC analysis-based feature selection. Bayesian statistics-based biomarker creation was used to map the diagnostic classes of either MS patients (n = 102) or healthy subjects (n = 301). Eight lipid-markers passed the feature selection and comprised GluCerC16, LPA20:4, HETE15S, LacCerC24:1, C16Sphinganine, biopterin and the endocannabinoids PEA and OEA. A complex classifier or biomarker was developed that predicted MS at a sensitivity, specificity and accuracy of approximately 95% in training and test data sets, respectively. The present successful application of serum lipid marker concentrations to MS data is encouraging for further efforts to establish an MS biomarker based on serum lipidomics.
Collapse
Affiliation(s)
- Jörn Lötsch
- Institute of Clinical Pharmacology, Goethe-University, Theodor - Stern - Kai 7, 60590, Frankfurt am Main, Germany.
- Fraunhofer Institute of Molecular Biology and Applied Ecology - Project Group Translational Medicine and Pharmacology (IME-TMP), Theodor - Stern - Kai 7, 60590, Frankfurt am Main, Germany.
| | - Susanne Schiffmann
- Fraunhofer Institute of Molecular Biology and Applied Ecology - Project Group Translational Medicine and Pharmacology (IME-TMP), Theodor - Stern - Kai 7, 60590, Frankfurt am Main, Germany
| | - Katja Schmitz
- Institute of Clinical Pharmacology, Goethe-University, Theodor - Stern - Kai 7, 60590, Frankfurt am Main, Germany
| | - Robert Brunkhorst
- Department of Neurology, Goethe-University Hospital, Theodor - Stern - Kai 7, 60590, Frankfurt am Main, Germany
| | - Florian Lerch
- DataBionics Research Group, University of Marburg, Hans - Meerwein - Straße 22, 35032, Marburg, Germany
| | - Nerea Ferreiros
- Institute of Clinical Pharmacology, Goethe-University, Theodor - Stern - Kai 7, 60590, Frankfurt am Main, Germany
| | - Sabine Wicker
- Occupational Health Service, University Hospital Frankfurt, Theodor - Stern - Kai 7, 60590, Frankfurt am Main, Germany
| | - Irmgard Tegeder
- Institute of Clinical Pharmacology, Goethe-University, Theodor - Stern - Kai 7, 60590, Frankfurt am Main, Germany
| | - Gerd Geisslinger
- Institute of Clinical Pharmacology, Goethe-University, Theodor - Stern - Kai 7, 60590, Frankfurt am Main, Germany
- Fraunhofer Institute of Molecular Biology and Applied Ecology - Project Group Translational Medicine and Pharmacology (IME-TMP), Theodor - Stern - Kai 7, 60590, Frankfurt am Main, Germany
| | - Alfred Ultsch
- DataBionics Research Group, University of Marburg, Hans - Meerwein - Straße 22, 35032, Marburg, Germany
| |
Collapse
|
119
|
de Almeida V, Martins-de-Souza D. Cannabinoids and glial cells: possible mechanism to understand schizophrenia. Eur Arch Psychiatry Clin Neurosci 2018; 268:727-737. [PMID: 29392440 DOI: 10.1007/s00406-018-0874-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 01/24/2018] [Indexed: 01/03/2023]
Abstract
Clinical and neurobiological findings have reported the involvement of endocannabinoid signaling in the pathophysiology of schizophrenia. This system modulates dopaminergic and glutamatergic neurotransmission that is associated with positive, negative, and cognitive symptoms of schizophrenia. Despite neurotransmitter impairments, increasing evidence points to a role of glial cells in schizophrenia pathobiology. Glial cells encompass three main groups: oligodendrocytes, microglia, and astrocytes. These cells promote several neurobiological functions, such as myelination of axons, metabolic and structural support, and immune response in the central nervous system. Impairments in glial cells lead to disruptions in communication and in the homeostasis of neurons that play role in pathobiology of disorders such as schizophrenia. Therefore, data suggest that glial cells may be a potential pharmacological tool to treat schizophrenia and other brain disorders. In this regard, glial cells express cannabinoid receptors and synthesize endocannabinoids, and cannabinoid drugs affect some functions of these cells that can be implicated in schizophrenia pathobiology. Thus, the aim of this review is to provide data about the glial changes observed in schizophrenia, and how cannabinoids could modulate these alterations.
Collapse
Affiliation(s)
- Valéria de Almeida
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Monteiro Lobato 255, Campinas, SP, 13083-862, Brazil.
| | - Daniel Martins-de-Souza
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Monteiro Lobato 255, Campinas, SP, 13083-862, Brazil.,Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBION), Conselho Nacional de Desenvolvimento Científico e Tecnológico, São Paulo, Brazil
| |
Collapse
|
120
|
Pharmacological blockade of fatty acid amide hydrolase (FAAH) by URB597 improves memory and changes the phenotype of hippocampal microglia despite ethanol exposure. Biochem Pharmacol 2018; 157:244-257. [PMID: 30098312 DOI: 10.1016/j.bcp.2018.08.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 08/06/2018] [Indexed: 12/16/2022]
Abstract
Changes in endogenous cannabinoid homeostasis are associated with both ethanol-related neuroinflammation and memory decline. Extensive research is still required to unveil the role of endocannabinoid signaling activation on hippocampal microglial cells after ethanol exposure. Either microglial morphology, phenotype and recruitment may become notably altered after chronic alcohol-related neurodegeneration. Here, we evaluated the pharmacological effects of fatty-acid amide-hydrolase (FAAH) inhibitor URB597 (0.3 mg/kg), oleoylethanolamide (OEA, 10 mg/kg), arachidonoylethanolamide (AEA, 10 mg/kg), the CB1 receptor agonist ACEA (3 mg/kg) and the CB2 receptor agonist JWH133 (0.2 mg/kg) administered for 5 days in a rat model of subchronic (2 weeks) ethanol diet (11% v/v) exposure. URB597 turned to be the most effective treatment. URB597 increased microglial (IBA-1+) cell population, and changed morphometric features (cell area and perimeter, roughness, fractal dimension, lacunarity) associated with activated microglia in the hippocampus of ethanol-exposed rats. Regarding innate immune activity, URB597 specifically increased mRNA levels of toll-like receptor 4 (TLR4), glial fibrillary acidic protein (Gfap) and the chemokine stromal cell-derived factor 1 (SDF-1α/CXCL12), and elevated the cell population expressing the chemokine receptors CX3CR1, CCR2 and CCR4 in the ethanol-exposed rat hippocampus. Contrary to ethanol effect, URB597 reduced mRNA levels of Iba-1, Tnfα, IL-6 and the monocyte chemoattractant protein-1 (MCP-1/CCL2), as well as cell population expressing iNOS. URB597 effects on hippocampal immune system were accompanied by changes in short and long-term visual recognition memory. These results suggest that FAAH inhibition may modulates hippocampal microglial recruitment and activation that can be associated with improved hippocampal-dependent memory despite ethanol exposure.
Collapse
|
121
|
Maurya N, Velmurugan BK. Therapeutic applications of cannabinoids. Chem Biol Interact 2018; 293:77-88. [PMID: 30040916 DOI: 10.1016/j.cbi.2018.07.018] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 07/10/2018] [Accepted: 07/20/2018] [Indexed: 12/12/2022]
Abstract
The psychoactive property of cannabinoids is well known and there has been a continuous controversy regarding the usage of these compounds for therapeutic purposes all over the world. Their use for medical and research purposes are restricted in various countries. However, their utility as medications should not be overshadowed by its negative physiological activities. This review article is focused on the therapeutic potential and applications of phytocannabinoids and endocannabinoids. We further highlights their mode of action, overall effects on physiology, various in vitro and in vivo studies that have been done so far and the extent to which these compounds can be useful in different disease conditions such as cancer, Alzheimer's disease, multiple sclerosis, pain, inflammation, glaucoma and many others. Thus, this work is an attempt to make the readers understand the positive implications of these compounds and indicates the significant developments of utilizing cannabinoids as therapeutic agents.
Collapse
Affiliation(s)
- Nancy Maurya
- School of Biotechnology, Rajiv Gandhi Proudyogiki Vishwavidyalaya, Bhopal, India
| | | |
Collapse
|
122
|
Ano Y, Nakayama H. Preventive Effects of Dairy Products on Dementia and the Underlying Mechanisms. Int J Mol Sci 2018; 19:E1927. [PMID: 29966358 PMCID: PMC6073537 DOI: 10.3390/ijms19071927] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 06/26/2018] [Accepted: 06/29/2018] [Indexed: 12/19/2022] Open
Abstract
Alongside the rapid population aging occurring worldwide, the prevention of age-related memory decline and dementia has become a high priority. Dairy products have many physiological effects owing to their contents of lactic acid bacteria and the fatty acids and peptides generated during their fermentation. In particular, several recent studies have elucidated the effects of fermented dairy products on cognitive function. Epidemiological and clinical evidence has indicated that fermented dairy products have preventive effects against dementia, including Alzheimer’s disease. Recent preclinical studies have identified individual molecules generated during fermentation that are responsible for those preventive effects. Oleamide and dehydroergosterol have been identified as the agents responsible for reducing microglial inflammatory responses and neurotoxicity. In this review, the protective effects of fermented dairy products and their components on cognitive function, the mechanisms underlying those effects, and the prospects for their future clinical development will be discussed.
Collapse
Affiliation(s)
- Yasuhisa Ano
- Research Laboratories for Health Science & Food Technologies, Kirin Company Ltd, 1-13-5 Fukuura Kanazawa-ku, Yokohama-shi, Kanagawa 236-0004, Japan.
| | - Hiroyuki Nakayama
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, the University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.
| |
Collapse
|
123
|
Di Zazzo A, Roberti G, Mashaghi A, Abud TB, Pavese D, Bonini S. Use of Topical Cannabinomimetic Palmitoylethanolamide in Ocular Surface Disease Associated with Antiglaucoma Medications. J Ocul Pharmacol Ther 2018; 33:670-677. [PMID: 29045169 DOI: 10.1089/jop.2016.0117] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
PURPOSE Chronic use of topical hypotensive therapies in glaucoma patients leads to chronic inflammation of the ocular surface, which decreases the success rate of long-term glaucoma management. The aim of this study is to evaluate the effect of topical palmitoylethanolamide (PEA) (Defluxa©), a well-known anti-inflammatory and analgesic agent, in suppressing the ocular surface inflammation associated with the use of hypotensive eye drops. METHODS In a pilot clinical trial, we enrolled 15 glaucomatous patients who received topical PEA (Defluxa) in addition to the current antiglaucoma drugs, while 15 glaucomatous patients did not receive any additional treatment. At 3 different time points (day 0, 15, and 30), signs of ocular surface involvement, adverse events, visual acuity, and intraocular pressure were assessed. RESULTS Topical PEA (Defluxa) was effective in increasing the Schirmer test (P < 0.05) and the tear film breakup time (T-BUT) (P < 0.0001), and improving the conjunctival hyperemia (P < 0.0001) by day 30, compared to baseline. Compared to control, by day 15, the conjunctival hyperemia score was significantly decreased in the PEA (Defluxa) group (P < 0.01), while the T-BUT and the Schirmer Test achieved a significant improvement by day 30 (P < 0.05; P < 0.01). DISCUSSION Our data suggests that topical PEA (Defluxa) is a safe, effective, and generally well-tolerated treatment to prevent or suppress ocular surface inflammation attributable to chronic glaucoma treatment.
Collapse
Affiliation(s)
| | | | - Alireza Mashaghi
- 2 Faculty of Mathematics and Natural Sciences, Leiden Academic Centre for Drug Research, Leiden University , Leiden, The Netherlands .,3 Schepens Eye Research Institute , Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts.,4 Basir Eye Health Research Center , Tehran, Iran
| | - Tulio Batista Abud
- 5 Department of Ophthalmology, Federal University of Sao Paulo, Sao Paulo, Brazil
| | - Daniela Pavese
- 6 Department of Ophthalmology, Campus Bio-Medico University, Rome, Italy
| | - Stefano Bonini
- 6 Department of Ophthalmology, Campus Bio-Medico University, Rome, Italy
| |
Collapse
|
124
|
Mastinu A, Premoli M, Ferrari-Toninelli G, Tambaro S, Maccarinelli G, Memo M, Bonini SA. Cannabinoids in health and disease: pharmacological potential in metabolic syndrome and neuroinflammation. Horm Mol Biol Clin Investig 2018; 36:/j/hmbci.ahead-of-print/hmbci-2018-0013/hmbci-2018-0013.xml. [PMID: 29601300 DOI: 10.1515/hmbci-2018-0013] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 03/02/2018] [Indexed: 12/26/2022]
Abstract
The use of different natural and/or synthetic preparations of Cannabis sativa is associated with therapeutic strategies for many diseases. Indeed, thanks to the widespread diffusion of the cannabinoidergic system in the brain and in the peripheral districts, its stimulation, or inhibition, regulates many pathophysiological phenomena. In particular, central activation of the cannabinoidergic system modulates the limbic and mesolimbic response which leads to food craving. Moreover, cannabinoid agonists are able to reduce inflammatory response. In this review a brief history of cannabinoids and the protagonists of the endocannabinoidergic system, i.e. synthesis and degradation enzymes and main receptors, will be described. Furthermore, the pharmacological effects of cannabinoids will be outlined. An overview of the involvement of the endocannabinoidergic system in neuroinflammatory and metabolic pathologies will be made. Finally, particular attention will also be given to the new pharmacological entities acting on the two main receptors, cannabinoid receptor type 1 (CB1) and cannabinoid receptor type 2 (CB2), with particular focus on the neuroinflammatory and metabolic mechanisms involved.
Collapse
Affiliation(s)
- Andrea Mastinu
- Department of Molecular and Translational Medicine, Section of Pharmacology, University of Brescia, Brescia, Italy
| | - Marika Premoli
- Department of Molecular and Translational Medicine, Section of Pharmacology, University of Brescia, Brescia, Italy
| | - Giulia Ferrari-Toninelli
- Department of Molecular and Translational Medicine, Section of Pharmacology, University of Brescia, Brescia, Italy.,Istituto Clinico Città di Brescia, Brescia, Italy
| | - Simone Tambaro
- Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Neurogeriatrics, Karolinska Institutet, Huddinge, Sweden
| | - Giuseppina Maccarinelli
- Department of Molecular and Translational Medicine, Section of Pharmacology, University of Brescia, Brescia, Italy
| | - Maurizio Memo
- Department of Molecular and Translational Medicine, Section of Pharmacology, University of Brescia, Brescia, Italy
| | - Sara Anna Bonini
- Department of Molecular and Translational Medicine, Section of Pharmacology, University of Brescia, Brescia, Italy
| |
Collapse
|
125
|
Luo XQ, Li A, Yang X, Xiao X, Hu R, Wang TW, Dou XY, Yang DJ, Dong Z. Paeoniflorin exerts neuroprotective effects by modulating the M1/M2 subset polarization of microglia/macrophages in the hippocampal CA1 region of vascular dementia rats via cannabinoid receptor 2. Chin Med 2018; 13:14. [PMID: 29560022 PMCID: PMC5859430 DOI: 10.1186/s13020-018-0173-1] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 03/13/2018] [Indexed: 02/07/2023] Open
Abstract
Background Cerebral hypoperfusion is a pivotal risk factor for vascular dementia (VD), for which effective therapy remains inadequate. Persistent inflammatory responses and excessive chemotaxis of microglia/macrophages in the brain may accelerate the progression of VD. Endocannabinoids are involved in neuronal protection against inflammation-induced neuronal injury. Cannabinoids acting at cannabinoid receptor 2 (CB2R) can decrease inflammation. Based on the identification of paeoniflorin (PF) as a CB2R agonist, we investigated the neuroprotective and microglia/macrophages M1 to M2 polarization promoting effects of PF in a permanent four-vessel occlusion rat model. Methods One week after surgery, PF was intraperitoneally administered at a dose of 40 mg/kg once a day for 28 successive days. The effects of PF on memory deficit were investigated by a Morris water maze test, and the effects of PF on hippocampal neuronal damage were evaluated by light microscope and electron microscope. The mRNA and protein expression levels of key molecules related to the M1/M2 polarization of microglia/macrophages were assessed by RT-qPCR and Western blotting, respectively. Results Administration of PF could significantly attenuate cerebral hypoperfusion-induced impairment of learning and memory and reduce the morphological and ultrastructural changes in the hippocampal CA1 region of rats. Moreover, PF promoted an M1 to M2 phenotype transition in microglia/macrophages in the hippocampus of rats. In addition to its inhibitory property against proinflammatory M1 mediator expression, such as IL-1β, IL-6, TNF-α and NO, PF dramatically up-regulated expression of anti-inflammatory cytokines IL-10 and TGF-β1. Importantly, CB2R antagonist AM630 abolished these beneficial effects produced by PF on learning, memory and hippocampus structure in rats, as well as the polarization of microglia/macrophages to the M2 phenotype. Additionally, PF treatment significantly inhibited cerebral hypoperfusion-induced mTOR/NF-κB proinflammatory pathway and enhanced PI3K/Akt anti-inflammatory pathway. Effects of PF on these signaling pathways were effectively attenuated when rats were co-treated with PF and AM630, indicating that the mTOR/NF-κB and PI3K/Akt signaling pathways were involved in the PF effects through CB2R activation. Conclusion These findings demonstrated PF exerts its neuroprotective effect and shifts the inflammatory milieu toward resolution by modulation of microglia/macrophage polarization via CB2R activation. Electronic supplementary material The online version of this article (10.1186/s13020-018-0173-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xian-Qin Luo
- 1Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing, 400016 China
| | - Ao Li
- 2College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054 China
| | - Xue Yang
- 3Institute of Chinese Pharmacology and Toxicology, Chongqing Academy of Chinese Materia Medica, Chongqing, 400065 China
| | - Xiao Xiao
- 2College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054 China
| | - Rong Hu
- Drug Review Section, China Chongqing Technical Center for Drug Evaluation and Certification, Chongqing, 400014 China
| | - Tian-Wen Wang
- 3Institute of Chinese Pharmacology and Toxicology, Chongqing Academy of Chinese Materia Medica, Chongqing, 400065 China
| | - Xiao-Yun Dou
- 5Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016 China
| | - Da-Jian Yang
- 3Institute of Chinese Pharmacology and Toxicology, Chongqing Academy of Chinese Materia Medica, Chongqing, 400065 China
| | - Zhi Dong
- 1Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing, 400016 China
| |
Collapse
|
126
|
Haider A, Spinelli F, Herde AM, Mu B, Keller C, Margelisch M, Weber M, Schibli R, Mu L, Ametamey SM. Evaluation of 4-oxo-quinoline-based CB2 PET radioligands in R6/2 chorea huntington mouse model and human ALS spinal cord tissue. Eur J Med Chem 2018; 145:746-759. [PMID: 29353725 DOI: 10.1016/j.ejmech.2017.12.097] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 12/28/2017] [Accepted: 12/30/2017] [Indexed: 01/19/2023]
Abstract
The cannabinoid receptor 2 (CB2) has been implicated in a series of neurodegenerative disorders and has emerged as an interesting biological target for therapeutic as well as diagnostic purposes. In the present work, we describe an improved radiosynthetic approach to obtain the previously reported CB2-specific PET radioligand [18F]RS-126 in higher radiochemical yields and molar activities. Additionally, the study revealed that prolongation of the [18F]RS-126 fluoroalkyl side chain ultimately leads to an improved stability towards mouse liver enzymes but is accompanied by a reduction in selectivity over the cannabinoid receptor 1 (CB1). Huntington-related phenotypic changes as well as striatal D2R downregulation were confirmed for the transgenic R6/2 mouse model. CB2 upregulation in R6/2 Chorea Huntington mice was observed in hippocampus, cortex, striatum and cerebellum by qPCR, however, these results could not be confirmed at the protein level by PET imaging. Furthermore, we evaluated the utility of the newly developed [11C]RS-028, a potent [18F]RS-126 derivative with increased polarity and high selectivity over CB1 in post-mortem human ALS spinal cord and control tissue. Applying in vitro autoradiography, the translational relevance of CB2 imaging was demonstrated by the specific binding of [11C]RS-028 to post-mortem human ALS spinal cord tissue.
Collapse
Affiliation(s)
- Achi Haider
- Institute of Pharmaceutical Sciences, ETH Zürich, 8093 Zürich, Switzerland
| | - Francesco Spinelli
- Institute of Pharmaceutical Sciences, ETH Zürich, 8093 Zürich, Switzerland
| | | | - Boshuai Mu
- Institute of Pharmaceutical Sciences, ETH Zürich, 8093 Zürich, Switzerland
| | - Claudia Keller
- Institute of Pharmaceutical Sciences, ETH Zürich, 8093 Zürich, Switzerland
| | - Markus Margelisch
- Neuromuscular Diseases Unit/ALS Clinic, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Markus Weber
- Neuromuscular Diseases Unit/ALS Clinic, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Roger Schibli
- Institute of Pharmaceutical Sciences, ETH Zürich, 8093 Zürich, Switzerland; Department of Nuclear Medicine, University Hospital Zürich, CH-8091 Zürich, Switzerland
| | - Linjing Mu
- Department of Nuclear Medicine, University Hospital Zürich, CH-8091 Zürich, Switzerland.
| | - Simon M Ametamey
- Institute of Pharmaceutical Sciences, ETH Zürich, 8093 Zürich, Switzerland.
| |
Collapse
|
127
|
Dolles D, Hoffmann M, Gunesch S, Marinelli O, Möller J, Santoni G, Chatonnet A, Lohse MJ, Wittmann HJ, Strasser A, Nabissi M, Maurice T, Decker M. Structure-Activity Relationships and Computational Investigations into the Development of Potent and Balanced Dual-Acting Butyrylcholinesterase Inhibitors and Human Cannabinoid Receptor 2 Ligands with Pro-Cognitive in Vivo Profiles. J Med Chem 2018; 61:1646-1663. [PMID: 29400965 DOI: 10.1021/acs.jmedchem.7b01760] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The enzyme butyrylcholinesterase (BChE) and the human cannabinoid receptor 2 (hCB2R) represent promising targets for pharmacotherapy in the later stages of Alzheimer's disease. We merged pharmacophores for both targets into small benzimidazole-based molecules, investigated SARs, and identified several dual-acting ligands with a balanced affinity/inhibitory activity and an excellent selectivity over both hCB1R and hAChE. A homology model for the hCB2R was developed based on the hCB1R crystal structure and used for molecular dynamics studies to investigate binding modes. In vitro studies proved hCB2R agonism. Unwanted μ-opioid receptor affinity could be designed out. One well-balanced dual-acting and selective hBChE inhibitor/hCB2R agonist showed superior in vivo activity over the lead CB2 agonist with regards to cognition improvement. The data shows the possibility to combine a small molecule with selective and balanced GPCR-activity/enzyme inhibition and in vivo activity for the therapy of AD and may help to rationalize the development of other dual-acting ligands.
Collapse
Affiliation(s)
- Dominik Dolles
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy and Food Chemistry, Julius Maximilian University of Würzburg , Am Hubland, D-97074 Würzburg, Germany
| | - Matthias Hoffmann
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy and Food Chemistry, Julius Maximilian University of Würzburg , Am Hubland, D-97074 Würzburg, Germany
| | - Sandra Gunesch
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy and Food Chemistry, Julius Maximilian University of Würzburg , Am Hubland, D-97074 Würzburg, Germany
| | - Oliviero Marinelli
- School of Pharmacy, Department of Experimental Medicine, University of Camerino , I-62032 Camerino, Italy
| | - Jan Möller
- Institute of Pharmacology and Toxicology, Julius Maximilian University of Würzburg , Versbacher Strabe 9, D-97078 Würzburg, Germany
| | - Giorgio Santoni
- School of Pharmacy, Department of Experimental Medicine, University of Camerino , I-62032 Camerino, Italy
| | - Arnaud Chatonnet
- INRA UMR866, University of Montpellier , F-34060 Montpellier, France
| | - Martin J Lohse
- Institute of Pharmacology and Toxicology, Julius Maximilian University of Würzburg , Versbacher Strabe 9, D-97078 Würzburg, Germany
| | - Hans-Joachim Wittmann
- Pharmaceutical and Medicinal Chemistry II, Institute of Pharmacy, University of Regensburg , D-95053 Regensburg, Germany
| | - Andrea Strasser
- Pharmaceutical and Medicinal Chemistry II, Institute of Pharmacy, University of Regensburg , D-95053 Regensburg, Germany
| | - Massimo Nabissi
- School of Pharmacy, Department of Experimental Medicine, University of Camerino , I-62032 Camerino, Italy
| | - Tangui Maurice
- INSERM UMR-S1198, University of Montpellier, EPHE , F-34095 Montpellier, France
| | - Michael Decker
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy and Food Chemistry, Julius Maximilian University of Würzburg , Am Hubland, D-97074 Würzburg, Germany
| |
Collapse
|
128
|
Lin X, Dhopeshwarkar AS, Huibregtse M, Mackie K, Hohmann AG. Slowly Signaling G Protein-Biased CB 2 Cannabinoid Receptor Agonist LY2828360 Suppresses Neuropathic Pain with Sustained Efficacy and Attenuates Morphine Tolerance and Dependence. Mol Pharmacol 2018; 93:49-62. [PMID: 29192123 PMCID: PMC5749492 DOI: 10.1124/mol.117.109355] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 11/06/2017] [Indexed: 01/07/2023] Open
Abstract
The CB2 cannabinoid agonist LY2828360 lacked both toxicity and efficacy in a clinical trial for osteoarthritis. Whether LY2828360 suppresses neuropathic pain has not been reported, and its signaling profile is unknown. In vitro, LY2828360 was a slowly acting but efficacious G protein-biased CB2 agonist, inhibiting cAMP accumulation and activating extracellular signal-regulated kinase 1/2 signaling while failing to recruit arrestin, activate inositol phosphate signaling, or internalize CB2 receptors. In wild-type (WT) mice, LY2828360 (3 mg/kg per day i.p. × 12 days) suppressed chemotherapy-induced neuropathic pain produced by paclitaxel without producing tolerance. Antiallodynic efficacy of LY2828360 was absent in CB2 knockout (KO) mice. Morphine (10 mg/kg per day i.p. × 12 days) tolerance developed in CB2KO mice but not in WT mice with a history of LY2828360 treatment (3 mg/kg per day i.p. × 12 days). LY2828360-induced antiallodynic efficacy was preserved in WT mice previously rendered tolerant to morphine (10 mg/kg per day i.p. × 12 days), but it was absent in morphine-tolerant CB2KO mice. Coadministration of LY2828360 (0.1 mg/kg per day i.p. × 12 days) with morphine (10 mg/kg per day × 12 days) blocked morphine tolerance in WT but not in CB2KO mice. WT mice that received LY2828360 coadministered with morphine exhibited a trend (P = 0.055) toward fewer naloxone-precipitated jumps compared with CB2KO mice. In conclusion, LY2828360 is a slowly signaling, G protein-biased CB2 agonist that attenuates chemotherapy-induced neuropathic pain without producing tolerance and may prolong effective opioid analgesia while reducing opioid dependence. LY2828360 may be useful as a first-line treatment in chemotherapy-induced neuropathic pain and may be highly efficacious in neuropathic pain states that are refractive to opioid analgesics.
Collapse
Affiliation(s)
- Xiaoyan Lin
- Psychological and Brain Sciences (X.L., A.S.D., M.H., K.M., A.G.H.), Program in Neuroscience (K.M., A.G.H.), and Gill Center for Biomolecular Science (K.M., A.G.H.), Indiana University, Bloomington, Indiana
| | - Amey S Dhopeshwarkar
- Psychological and Brain Sciences (X.L., A.S.D., M.H., K.M., A.G.H.), Program in Neuroscience (K.M., A.G.H.), and Gill Center for Biomolecular Science (K.M., A.G.H.), Indiana University, Bloomington, Indiana
| | - Megan Huibregtse
- Psychological and Brain Sciences (X.L., A.S.D., M.H., K.M., A.G.H.), Program in Neuroscience (K.M., A.G.H.), and Gill Center for Biomolecular Science (K.M., A.G.H.), Indiana University, Bloomington, Indiana
| | - Ken Mackie
- Psychological and Brain Sciences (X.L., A.S.D., M.H., K.M., A.G.H.), Program in Neuroscience (K.M., A.G.H.), and Gill Center for Biomolecular Science (K.M., A.G.H.), Indiana University, Bloomington, Indiana
| | - Andrea G Hohmann
- Psychological and Brain Sciences (X.L., A.S.D., M.H., K.M., A.G.H.), Program in Neuroscience (K.M., A.G.H.), and Gill Center for Biomolecular Science (K.M., A.G.H.), Indiana University, Bloomington, Indiana
| |
Collapse
|
129
|
Karl T, Garner B, Cheng D. The therapeutic potential of the phytocannabinoid cannabidiol for Alzheimer's disease. Behav Pharmacol 2018; 28:142-160. [PMID: 27471947 DOI: 10.1097/fbp.0000000000000247] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder, characterized by progressive loss of cognition. Over 35 million individuals currently have AD worldwide. Unfortunately, current therapies are limited to very modest symptomatic relief. The brains of AD patients are characterized by the deposition of amyloid-β and hyperphosphorylated forms of tau protein. AD brains also show neurodegeneration and high levels of oxidative stress and inflammation. The phytocannabinoid cannabidiol (CBD) possesses neuroprotective, antioxidant and anti-inflammatory properties and reduces amyloid-β production and tau hyperphosphorylation in vitro. CBD has also been shown to be effective in vivo making the phytocannabinoid an interesting candidate for novel therapeutic interventions in AD, especially as it lacks psychoactive or cognition-impairing properties. CBD treatment would be in line with preventative, multimodal drug strategies targeting a combination of pathological symptoms, which might be ideal for AD therapy. Thus, this review will present a brief introduction to AD biology and current treatment options before outlining comprehensively CBD biology and pharmacology, followed by in-vitro and in-vivo evidence for the therapeutic potential of CBD. We will also discuss the role of the endocannabinioid system in AD before commenting on the potential future of CBD for AD therapy (including safety aspects).
Collapse
Affiliation(s)
- Tim Karl
- aSchool of Medicine, Western Sydney University, Campbelltown bNeuroscience Research Australia (NeuRA), Randwick cIllawarra Health and Medical Research Institute dSchool of Biological Sciences, University of Wollongong, Wollongong eVictor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia
| | | | | |
Collapse
|
130
|
Cilia R. Molecular Imaging of the Cannabinoid System in Idiopathic Parkinson's Disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2018; 141:305-345. [DOI: 10.1016/bs.irn.2018.08.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/06/2022]
|
131
|
Markovic D, Bošnjak D, Brkovic T, Jeric M, Rubic Z, Vuica Vukasović A, Puljak L. Cannabinoids for the treatment of dementia. Hippokratia 2017. [DOI: 10.1002/14651858.cd012820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Domagoj Markovic
- University Hospital Split; Clinic for Heart and Cardiovascular Diseases; Spinciceva 1 Split Croatia 21000
| | - Dina Bošnjak
- University Psychiatric Hospital Vrapče; Bolnicka cesta 32 Zagreb Grad Zagreb Croatia 10000
| | - Tonci Brkovic
- University of Split Hospital Center; Division of Nephrology, Department of Internal Medicine; Mejaši 31 Split Croatia 21000
| | - Milka Jeric
- General Hospital Zadar; Department of Dermatovenerology; Matoseva 59b Split CRO Croatia 21000
| | - Zana Rubic
- University of Split Hospital Center; Department of Clinical Microbiology; Spinciceva 1 Split Croatia 21000
| | - Ana Vuica Vukasović
- University of Split Hospital Center; Department of Nuclear Medicine; Split Croatia 21000
| | - Livia Puljak
- University of Split School of Medicine; Cochrane Croatia; Soltanska 2 Split Croatia 21000
| |
Collapse
|
132
|
Basavarajappa BS, Shivakumar M, Joshi V, Subbanna S. Endocannabinoid system in neurodegenerative disorders. J Neurochem 2017; 142:624-648. [PMID: 28608560 DOI: 10.1111/jnc.14098] [Citation(s) in RCA: 138] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 05/22/2017] [Accepted: 06/02/2017] [Indexed: 12/19/2022]
Abstract
Most neurodegenerative disorders (NDDs) are characterized by cognitive impairment and other neurological defects. The definite cause of and pathways underlying the progression of these NDDs are not well-defined. Several mechanisms have been proposed to contribute to the development of NDDs. These mechanisms may proceed concurrently or successively, and they differ among cell types at different developmental stages in distinct brain regions. The endocannabinoid system, which involves cannabinoid receptors type 1 (CB1R) and type 2 (CB2R), endogenous cannabinoids and the enzymes that catabolize these compounds, has been shown to contribute to the development of NDDs in several animal models and human studies. In this review, we discuss the functions of the endocannabinoid system in NDDs and converse the therapeutic efficacy of targeting the endocannabinoid system to rescue NDDs.
Collapse
Affiliation(s)
- Balapal S Basavarajappa
- Division of Analytical Psychopharmacology, Nathan Kline Institute for Psychiatric Research, Orangeburg, New York, USA.,New York State Psychiatric Institute, New York City, New York, USA.,Department of Psychiatry, College of Physicians & Surgeons, Columbia University, New York City, New York, USA.,Department of Psychiatry, New York University Langone Medical Center, New York City, New York, USA
| | - Madhu Shivakumar
- Division of Analytical Psychopharmacology, Nathan Kline Institute for Psychiatric Research, Orangeburg, New York, USA
| | - Vikram Joshi
- Division of Analytical Psychopharmacology, Nathan Kline Institute for Psychiatric Research, Orangeburg, New York, USA
| | - Shivakumar Subbanna
- Division of Analytical Psychopharmacology, Nathan Kline Institute for Psychiatric Research, Orangeburg, New York, USA
| |
Collapse
|
133
|
French JA, Koepp M, Naegelin Y, Vigevano F, Auvin S, Rho JM, Rosenberg E, Devinsky O, Olofsson PS, Dichter MA. Clinical studies and anti-inflammatory mechanisms of treatments. Epilepsia 2017; 58 Suppl 3:69-82. [PMID: 28675558 PMCID: PMC5679081 DOI: 10.1111/epi.13779] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2017] [Indexed: 02/06/2023]
Abstract
In this exciting era, we are coming closer and closer to bringing an anti-inflammatory therapy to the clinic for the purpose of seizure prevention, modification, and/or suppression. At present, it is unclear what this approach might entail, and what form it will take. Irrespective of the therapy that ultimately reaches the clinic, there will be some commonalities with regard to clinical trials. A number of animal models have now been used to identify inflammation as a major underlying mechanism of both chronic seizures and the epileptogenic process. These models have demonstrated that specific anti-inflammatory treatments can be effective at both suppressing chronic seizures and interfering with the process of epileptogenesis. Some of these have already been evaluated in early phase clinical trials. It can be expected that there will soon be more clinical trials of both "conventional, broad spectrum" anti-inflammatory agents and novel new approaches to utilizing specific anti-inflammatory therapies with drugs or other therapeutic interventions. A summary of some of those approaches appears below, as well as a discussion of the issues facing clinical trials in this new domain.
Collapse
Affiliation(s)
- Jacqueline A. French
- Comprehensive Epilepsy Center, NYU Langone School of Medicine, New York City, New York, U.S.A
| | - Matthias Koepp
- Institute of Neurology, University College London, London, United Kingdom
| | - Yvonne Naegelin
- Department of Neurology, University Hospital Basel, Basel, Switzerland
| | - Federico Vigevano
- Neurology Unit, Department of Neuroscience, Bambino Gesù Children Hospital, Rome, Italy
| | - Stéphane Auvin
- Pediatric Neurology, Robert Debré University Hospital, Paris, France
| | - Jong M. Rho
- Alberta Children’s Hospital, University of Calgary, Calgary, Alberta, Canada
| | - Evan Rosenberg
- Comprehensive Epilepsy Center, NYU Langone School of Medicine, New York City, New York, U.S.A
| | - Orrin Devinsky
- Comprehensive Epilepsy Center, NYU Langone School of Medicine, New York City, New York, U.S.A
| | - Peder S. Olofsson
- Center for Bioelectronic Medicine, Department of Medicine, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Marc A. Dichter
- Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania, U.S.A
| |
Collapse
|
134
|
Alberti TB, Barbosa WLR, Vieira JLF, Raposo NRB, Dutra RC. (-)-β-Caryophyllene, a CB2 Receptor-Selective Phytocannabinoid, Suppresses Motor Paralysis and Neuroinflammation in a Murine Model of Multiple Sclerosis. Int J Mol Sci 2017; 18:ijms18040691. [PMID: 28368293 PMCID: PMC5412277 DOI: 10.3390/ijms18040691] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 03/18/2017] [Accepted: 03/20/2017] [Indexed: 12/05/2022] Open
Abstract
(−)-β-caryophyllene (BCP), a cannabinoid receptor type 2 (CB2)-selective phytocannabinoid, has already been shown in precedent literature to exhibit both anti-inflammatory and analgesic effects in mouse models of inflammatory and neuropathic pain. Herein, we endeavored to investigate the therapeutic potential of BCP on experimental autoimmune encephalomyelitis (EAE), a murine model of multiple sclerosis (MS). Furthermore, we sought to demonstrate some of the mechanisms that underlie the modulation BCP exerts on autoimmune activated T cells, the pro-inflammatory scenery of the central nervous system (CNS), and demyelination. Our findings demonstrate that BCP significantly ameliorates both the clinical and pathological parameters of EAE. In addition, data hereby presented indicates that mechanisms underlying BCP immunomodulatory effect seems to be linked to its ability to inhibit microglial cells, CD4+ and CD8+ T lymphocytes, as well as protein expression of pro-inflammatory cytokines. Furthermore, it diminished axonal demyelination and modulated Th1/Treg immune balance through the activation of CB2 receptor. Altogether, our study represents significant implications for clinical research and strongly supports the effectiveness of BCP as a novel molecule to target in the development of effective therapeutic agents for MS.
Collapse
MESH Headings
- Animals
- Anti-Inflammatory Agents, Non-Steroidal/pharmacology
- Cannabinoid Receptor Agonists/pharmacology
- Cytokines/metabolism
- Demyelinating Diseases/prevention & control
- Disease Models, Animal
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Encephalomyelitis, Autoimmune, Experimental/physiopathology
- Encephalomyelitis, Autoimmune, Experimental/prevention & control
- Female
- Humans
- Hyperalgesia/prevention & control
- Mice, Inbred C57BL
- Microglia/drug effects
- Microglia/metabolism
- Multiple Sclerosis/metabolism
- Multiple Sclerosis/physiopathology
- Multiple Sclerosis/prevention & control
- Neurogenic Inflammation/metabolism
- Neurogenic Inflammation/physiopathology
- Neurogenic Inflammation/prevention & control
- Paralysis/metabolism
- Paralysis/physiopathology
- Paralysis/prevention & control
- Polycyclic Sesquiterpenes
- Receptor, Cannabinoid, CB2/agonists
- Receptor, Cannabinoid, CB2/metabolism
- Sesquiterpenes/pharmacology
- T-Lymphocytes/drug effects
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- T-Lymphocytes, Regulatory/drug effects
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- Th1 Cells/drug effects
- Th1 Cells/immunology
- Th1 Cells/metabolism
Collapse
Affiliation(s)
- Thaís Barbosa Alberti
- Laboratory of Autoimmunity and Immunopharmacology (LAIF), Department of Health Sciences, Center of Araranguá, Federal University of Santa Catarina, Araranguá 88906-072, Brazil.
| | | | | | - Nádia Rezende Barbosa Raposo
- Research and Innovation in Health Sciences (NUPICS), Federal University of Juiz de Fora, Juiz de Fora 36036-900, Brazil.
| | - Rafael Cypriano Dutra
- Laboratory of Autoimmunity and Immunopharmacology (LAIF), Department of Health Sciences, Center of Araranguá, Federal University of Santa Catarina, Araranguá 88906-072, Brazil.
| |
Collapse
|
135
|
Guida F, Luongo L, Boccella S, Giordano ME, Romano R, Bellini G, Manzo I, Furiano A, Rizzo A, Imperatore R, Iannotti FA, D'Aniello E, Piscitelli F, Sca Rossi F, Cristino L, Di Marzo V, de Novellis V, Maione S. Palmitoylethanolamide induces microglia changes associated with increased migration and phagocytic activity: involvement of the CB2 receptor. Sci Rep 2017; 7:375. [PMID: 28336953 PMCID: PMC5428303 DOI: 10.1038/s41598-017-00342-1] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 02/22/2017] [Indexed: 12/22/2022] Open
Abstract
The endogenous fatty acid amide palmitoylethanolamide (PEA) has been shown to exert anti-inflammatory actions mainly through inhibition of the release of pro-inflammatory molecules from mast cells, monocytes and macrophages. Indirect activation of the endocannabinoid (eCB) system is among the several mechanisms of action that have been proposed to underlie the different effects of PEA in vivo. In this study, we used cultured rat microglia and human macrophages to evaluate whether PEA affects eCB signaling. PEA was found to increase CB2 mRNA and protein expression through peroxisome proliferator-activated receptor-α (PPAR-α) activation. This novel gene regulation mechanism was demonstrated through: (i) pharmacological PPAR-α manipulation, (ii) PPAR-α mRNA silencing, (iii) chromatin immunoprecipitation. Moreover, exposure to PEA induced morphological changes associated with a reactive microglial phenotype, including increased phagocytosis and migratory activity. Our findings suggest indirect regulation of microglial CB2R expression as a new possible mechanism underlying the effects of PEA. PEA can be explored as a useful tool for preventing/treating the symptoms associated with neuroinflammation in CNS disorders.
Collapse
Affiliation(s)
- F Guida
- Department of Experimental Medicine, Section of Pharmacology L. Donatelli, Università degli Studi della Campania "Luigi Vanvitelli" (Ex SUN), 80138, Naples, Italy.,Endocannabinoid Research Group, Institute of Biomolecular Chemistry, C.N.R., Pozzuoli, Italy
| | - L Luongo
- Department of Experimental Medicine, Section of Pharmacology L. Donatelli, Università degli Studi della Campania "Luigi Vanvitelli" (Ex SUN), 80138, Naples, Italy.,Endocannabinoid Research Group, Institute of Biomolecular Chemistry, C.N.R., Pozzuoli, Italy
| | - S Boccella
- Department of Experimental Medicine, Section of Pharmacology L. Donatelli, Università degli Studi della Campania "Luigi Vanvitelli" (Ex SUN), 80138, Naples, Italy
| | - M E Giordano
- Department of Experimental Medicine, Section of Pharmacology L. Donatelli, Università degli Studi della Campania "Luigi Vanvitelli" (Ex SUN), 80138, Naples, Italy
| | - R Romano
- Department of Experimental Medicine, Section of Pharmacology L. Donatelli, Università degli Studi della Campania "Luigi Vanvitelli" (Ex SUN), 80138, Naples, Italy
| | - G Bellini
- Department of Women, Child and General and Specialistic Surgery, Università degli Studi della Campania "Luigi Vanvitelli" (Ex SUN), 80138, Naples, Italy
| | - I Manzo
- Department of Women, Child and General and Specialistic Surgery, Università degli Studi della Campania "Luigi Vanvitelli" (Ex SUN), 80138, Naples, Italy
| | - A Furiano
- Department of Experimental Medicine, Section of Pharmacology L. Donatelli, Università degli Studi della Campania "Luigi Vanvitelli" (Ex SUN), 80138, Naples, Italy
| | - A Rizzo
- Department of Experimental Medicine, Section of Microbiology and Clinical Microbiology, Università degli Studi della Campania "Luigi Vanvitelli" (Ex SUN), 80138, Naples, Italy
| | - R Imperatore
- Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Pozzuoli, Italy.,Department of Science and Technology, University of Sannio, Benevento, Italy
| | - F A Iannotti
- Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Pozzuoli, Italy.,Endocannabinoid Research Group, Institute of Biomolecular Chemistry, C.N.R., Pozzuoli, Italy
| | - E D'Aniello
- Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Pozzuoli, Italy.,Endocannabinoid Research Group, Institute of Biomolecular Chemistry, C.N.R., Pozzuoli, Italy
| | - F Piscitelli
- Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Pozzuoli, Italy.,Endocannabinoid Research Group, Institute of Biomolecular Chemistry, C.N.R., Pozzuoli, Italy
| | - F Sca Rossi
- Department of Women, Child and General and Specialistic Surgery, Università degli Studi della Campania "Luigi Vanvitelli" (Ex SUN), 80138, Naples, Italy
| | - L Cristino
- Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Pozzuoli, Italy.,Endocannabinoid Research Group, Institute of Biomolecular Chemistry, C.N.R., Pozzuoli, Italy
| | - V Di Marzo
- Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Pozzuoli, Italy.,Endocannabinoid Research Group, Institute of Biomolecular Chemistry, C.N.R., Pozzuoli, Italy
| | - V de Novellis
- Department of Experimental Medicine, Section of Pharmacology L. Donatelli, Università degli Studi della Campania "Luigi Vanvitelli" (Ex SUN), 80138, Naples, Italy.,Endocannabinoid Research Group, Institute of Biomolecular Chemistry, C.N.R., Pozzuoli, Italy
| | - S Maione
- Department of Experimental Medicine, Section of Pharmacology L. Donatelli, Università degli Studi della Campania "Luigi Vanvitelli" (Ex SUN), 80138, Naples, Italy. .,Endocannabinoid Research Group, Institute of Biomolecular Chemistry, C.N.R., Pozzuoli, Italy.
| |
Collapse
|
136
|
Lin L, Yihao T, Zhou F, Yin N, Qiang T, Haowen Z, Qianwei C, Jun T, Yuan Z, Gang Z, Hua F, Yunfeng Y, Zhi C. Inflammatory Regulation by Driving Microglial M2 Polarization: Neuroprotective Effects of Cannabinoid Receptor-2 Activation in Intracerebral Hemorrhage. Front Immunol 2017; 8:112. [PMID: 28261199 PMCID: PMC5306140 DOI: 10.3389/fimmu.2017.00112] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 01/24/2017] [Indexed: 12/14/2022] Open
Abstract
The cannabinoid receptor-2 (CB2R) was initially thought to be the “peripheral cannabinoid receptor.” Recent studies, however, have documented CB2R expression in the brain in both glial and neuronal cells, and increasing evidence suggests an important role for CB2R in the central nervous system inflammatory response. Intracerebral hemorrhage (ICH), which occurs when a diseased cerebral vessel ruptures, accounts for 10–15% of all strokes. Although surgical techniques have significantly advanced in the past two decades, ICH continues to have a high mortality rate. The aim of this study was to investigate the therapeutic effects of CB2R stimulation in acute phase after experimental ICH in rats and its related mechanisms. Data showed that stimulation of CB2R using a selective agonist, JWH133, ameliorated brain edema, brain damage, and neuron death and improved neurobehavioral outcomes in acute phase after ICH. The neuroprotective effects were prevented by SR144528, a selective CB2R inhibitor. Additionally, JWH133 suppressed neuroinflammation and upregulated the expression of microglial M2-associated marker in both gene and protein level. Furthermore, the expression of phosphorylated cAMP-dependent protein kinase (pPKA) and its downstream effector, cAMP-response element binding protein (CREB), were facilitated. Knockdown of CREB significantly inversed the increase of M2 polarization in microglia, indicating that the JWH133-mediated anti-inflammatory effects are closely associated with PKA/CREB signaling pathway. These findings demonstrated that CB2R stimulation significantly protected the brain damage and suppressed neuroinflammation by promoting the acquisition of microglial M2 phenotype in acute stage after ICH. Taken together, this study provided mechanism insight into neuroprotective effects by CB2R stimulation after ICH.
Collapse
Affiliation(s)
- Li Lin
- Department of Neurosurgery, Nanchong Central Hospital , Nanchong , China
| | - Tao Yihao
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University , Chongqing , China
| | - Feng Zhou
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University , Chongqing , China
| | - Niu Yin
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University , Chongqing , China
| | - Tan Qiang
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University , Chongqing , China
| | - Zheng Haowen
- Department of Neurosurgery, Southwest Medical University Affiliated Hospital, Southwest Medical University , Luzhou , China
| | - Chen Qianwei
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University , Chongqing , China
| | - Tang Jun
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University , Chongqing , China
| | - Zhang Yuan
- Department of Neurosurgery, Nanchong Central Hospital , Nanchong , China
| | - Zhu Gang
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University , Chongqing , China
| | - Feng Hua
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University , Chongqing , China
| | - Yang Yunfeng
- Department of Neurosurgery, Sichuan Provincial Corps Hospital, Chinese People's Armed Police Forces , Leshan , China
| | - Chen Zhi
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University , Chongqing , China
| |
Collapse
|
137
|
Cassano T, Calcagnini S, Pace L, De Marco F, Romano A, Gaetani S. Cannabinoid Receptor 2 Signaling in Neurodegenerative Disorders: From Pathogenesis to a Promising Therapeutic Target. Front Neurosci 2017; 11:30. [PMID: 28210207 PMCID: PMC5288380 DOI: 10.3389/fnins.2017.00030] [Citation(s) in RCA: 145] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 01/16/2017] [Indexed: 12/15/2022] Open
Abstract
As a consequence of an increasingly aging population, the number of people affected by neurodegenerative disorders, such as Alzheimer's disease, Parkinson's disease and Huntington's disease, is rapidly increasing. Although the etiology of these diseases has not been completely defined, common molecular mechanisms including neuroinflammation, excitotoxicity and mitochondrial dysfunction have been confirmed and can be targeted therapeutically. Moreover, recent studies have shown that endogenous cannabinoid signaling plays a number of modulatory roles throughout the central nervous system (CNS), including the neuroinflammation and neurogenesis. In particular, the up-regulation of type-2 cannabinoid (CB2) receptors has been found in a number of neurodegenerative disorders. Thus, the modulation of CB2 receptor signaling may represent a promising therapeutic target with minimal psychotropic effects that can be used to modulate endocannabinoid-based therapeutic approaches and to reduce neuronal degeneration. For these reasons this review will focus on the CB2 receptor as a promising pharmacological target in a number of neurodegenerative diseases.
Collapse
Affiliation(s)
- Tommaso Cassano
- Department of Clinical and Experimental Medicine, University of Foggia Foggia, Italy
| | - Silvio Calcagnini
- Department of Physiology and Pharmacology, Sapienza University of Rome Rome, Italy
| | - Lorenzo Pace
- Department of Clinical and Experimental Medicine, University of Foggia Foggia, Italy
| | - Federico De Marco
- Laboratory of Virology, The Regina Elena National Cancer Institute IRCCS, Rome, Italy
| | - Adele Romano
- Department of Physiology and Pharmacology, Sapienza University of Rome Rome, Italy
| | - Silvana Gaetani
- Department of Physiology and Pharmacology, Sapienza University of Rome Rome, Italy
| |
Collapse
|
138
|
|
139
|
Yuill MB, Hale DE, Guindon J, Morgan DJ. Anti-nociceptive interactions between opioids and a cannabinoid receptor 2 agonist in inflammatory pain. Mol Pain 2017; 13:1744806917728227. [PMID: 28879802 PMCID: PMC5593227 DOI: 10.1177/1744806917728227] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 06/05/2017] [Accepted: 07/27/2017] [Indexed: 01/13/2023] Open
Abstract
The cannabinoid 1 receptor and cannabinoid 2 receptor can both be targeted in the treatment of pain; yet, they have some important differences. Cannabinoid 1 receptor is expressed at high levels in the central nervous system, whereas cannabinoid 2 receptor is found predominantly, although not exclusively, outside the central nervous system. The objective of this study was to investigate potential interactions between cannabinoid 2 receptor and the mu-opioid receptor in pathological pain. The low level of adverse side effects and lack of tolerance for cannabinoid 2 receptor agonists are attractive pharmacotherapeutic traits. This study assessed the anti-nociceptive effects of a selective cannabinoid 2 receptor agonist (JWH-133) in pathological pain using mice subjected to inflammatory pain using the formalin test. Furthermore, we examined several ways in which JWH-133 may interact with morphine. JWH-133 produces dose-dependent anti-nociception during both the acute and inflammatory phases of the formalin test. This was observed in both male and female mice. However, a maximally efficacious dose of JWH-133 (1 mg/kg) was not associated with somatic withdrawal symptoms, motor impairment, or hypothermia. After eleven once-daily injections of 1 mg/JWH-133, no tolerance was observed in the formalin test. Cross-tolerance for the anti-nociceptive effects of JWH-133 and morphine were assessed to gain insight into physiologically relevant cannabinoid 2 receptor and mu-opioid receptor interaction. Mice made tolerant to the effects of morphine exhibited a lower JWH-133 response in both phases of the formalin test compared to vehicle-treated morphine-naïve animals. However, repeated daily JWH-133 administration did not cause cross-tolerance for morphine, suggesting opioid and cannabinoid 2 receptor cross-tolerance is unidirectional. However, preliminary data suggest co-administration of JWH-133 with morphine modestly attenuates morphine tolerance. Isobolographic analysis revealed that co-administration of JWH-133 and morphine has an additive effect on anti-nociception in the formalin test. Overall these findings show that cannabinoid 2 receptor may functionally interact with mu-opioid receptor to modulate anti-nociception in the formalin test.
Collapse
Affiliation(s)
- Matthew B Yuill
- Department of Anesthesiology and Perioperative Medicine, Penn State University College of Medicine, Hershey, PA, USA
- Department of Pharmacology, Penn State University College of Medicine, Hershey, PA, USA
- Department of Neural and Behavioral Sciences, Penn State University College of Medicine, Hershey, PA, USA
| | - David E Hale
- Department of Anesthesiology and Perioperative Medicine, Penn State University College of Medicine, Hershey, PA, USA
| | - Josée Guindon
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Daniel J Morgan
- Department of Anesthesiology and Perioperative Medicine, Penn State University College of Medicine, Hershey, PA, USA
- Department of Pharmacology, Penn State University College of Medicine, Hershey, PA, USA
- Department of Neural and Behavioral Sciences, Penn State University College of Medicine, Hershey, PA, USA
| |
Collapse
|
140
|
Annunziata P, Cioni C, Mugnaini C, Corelli F. Potent immunomodulatory activity of a highly selective cannabinoid CB2 agonist on immune cells from healthy subjects and patients with multiple sclerosis. J Neuroimmunol 2016; 303:66-74. [PMID: 28041663 DOI: 10.1016/j.jneuroim.2016.12.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 11/25/2016] [Accepted: 12/15/2016] [Indexed: 12/11/2022]
Abstract
COR167, a novel CB2-selective high affinity agonist, was found to significantly inhibit, in a dose-dependent manner, the proliferation of both peripheral blood mononuclear cells and myelin basic protein-reactive T cell lines from normal healthy subjects and patients with relapsing-remitting multiple sclerosis (MS). In MS, a significantly higher inhibition was observed in patients on treatment with disease modifying drugs compared to those naive to treatment. The inhibitory activity of COR167 was exerted through a mixed mechanism involving atypical and incomplete shift of Th1 phenotype towards Th2 phenotype associated with slight reduction of IL-4 and IL-5 as well as strongly reduced levels of Th17-related cytokines. COR167 was also able to reduce in vitro migration of stimulated immunocompetent cells through human brain endothelium associated with a significant reduction of levels of several chemokines. These findings demonstrate that COR167 exerts potent immunomodulatory effects and confirm the cannabinoid CB2 receptor as a novel pharmacological target to counteract neuroinflammation.
Collapse
Affiliation(s)
- Pasquale Annunziata
- Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy.
| | - Chiara Cioni
- Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Claudia Mugnaini
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Federico Corelli
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| |
Collapse
|
141
|
Tao Y, Li L, Jiang B, Feng Z, Yang L, Tang J, Chen Q, Zhang J, Tan Q, Feng H, Chen Z, Zhu G. Cannabinoid receptor-2 stimulation suppresses neuroinflammation by regulating microglial M1/M2 polarization through the cAMP/PKA pathway in an experimental GMH rat model. Brain Behav Immun 2016; 58:118-129. [PMID: 27261088 DOI: 10.1016/j.bbi.2016.05.020] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 05/30/2016] [Accepted: 05/31/2016] [Indexed: 10/21/2022] Open
Abstract
Excessive inflammatory responses are involved in secondary brain injury during germinal matrix hemorrhage (GMH). The process of microglial polarization to the pro-inflammatory M1 or anti-inflammatory M2 phenotypes is considered to occur in a major immunomodulatory manner during brain inflammation. We previously found that cannabinoid receptor-2 (CB2R) stimulation attenuated microglial accumulation and brain injury following experimental GMH. However, whether CB2R has effects on microglial polarization after GMH remains unclear. Herein, we investigated the effects of CB2R stimulation on neuroinflammation after experimental GMH and the potential mechanisms that mediate M1/M2 microglial phenotype regulation. The results indicated that during the GMH acute phase, microglia primarily polarized to the M1 phenotype and induced an overwhelming release of pro-inflammatory cytokines. However, JWH133, a selective CB2R agonist, significantly prevented the pro-inflammatory cytokine release while promoting an M1 to M2 phenotype transformation in microglia, resulting in an increased anti-inflammatory cytokine release. Moreover, in thrombin-induced rat primary microglial cells, JWH133 reduced the pro-inflammatory cytokine levels and M1 phenotype by enhancing the acquisition of the M2 phenotype. Additionally, JWH133 facilitated synthesis of cyclic AMP (cAMP) and its downstream effectors, phosphorylated cAMP-dependent protein kinase (p-PKA) and exchange protein activated by cyclic-AMP 1 (Epac1). The promoting effects of JWH133 on M2 polarization were attenuated with a specific PKA inhibitor but not with an Epac inhibitor, indicating that the cAMP/PKA signaling pathway was involved in the JWH133 effects. This is the first study to propose that promotion of microglial M2 polarization through the cAMP/PKA pathway participates in the CB2R-mediated anti-inflammatory effects after GMH induction. The results will help to further understand the mechanisms that underlie neuroprotection by CB2R in GMH and promote clinical translational research for CB2R agonists.
Collapse
Affiliation(s)
- Yihao Tao
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Lin Li
- Department of Neurosurgery, Nanchong Central Hospital, Nanchong 637000, China
| | - Bing Jiang
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Zhou Feng
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Liming Yang
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Jun Tang
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Qianwei Chen
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Jianbo Zhang
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Qiang Tan
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Hua Feng
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Zhi Chen
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing 400038, China.
| | - Gang Zhu
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing 400038, China.
| |
Collapse
|
142
|
Mecha M, Carrillo-Salinas F, Feliú A, Mestre L, Guaza C. Microglia activation states and cannabinoid system: Therapeutic implications. Pharmacol Ther 2016; 166:40-55. [DOI: 10.1016/j.pharmthera.2016.06.011] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2016] [Indexed: 12/16/2022]
|
143
|
Poutiainen P, Jaronen M, Quintana FJ, Brownell AL. Precision Medicine in Multiple Sclerosis: Future of PET Imaging of Inflammation and Reactive Astrocytes. Front Mol Neurosci 2016; 9:85. [PMID: 27695400 PMCID: PMC5023680 DOI: 10.3389/fnmol.2016.00085] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Accepted: 08/30/2016] [Indexed: 12/29/2022] Open
Abstract
Non-invasive molecular imaging techniques can enhance diagnosis to achieve successful treatment, as well as reveal underlying pathogenic mechanisms in disorders such as multiple sclerosis (MS). The cooperation of advanced multimodal imaging techniques and increased knowledge of the MS disease mechanism allows both monitoring of neuronal network and therapeutic outcome as well as the tools to discover novel therapeutic targets. Diverse imaging modalities provide reliable diagnostic and prognostic platforms to better achieve precision medicine. Traditionally, magnetic resonance imaging (MRI) has been considered the golden standard in MS research and diagnosis. However, positron emission tomography (PET) imaging can provide functional information of molecular biology in detail even prior to anatomic changes, allowing close follow up of disease progression and treatment response. The recent findings support three major neuroinflammation components in MS: astrogliosis, cytokine elevation, and significant changes in specific proteins, which offer a great variety of specific targets for imaging purposes. Regardless of the fact that imaging of astrocyte function is still a young field and in need for development of suitable imaging ligands, recent studies have shown that inflammation and astrocyte activation are related to progression of MS. MS is a complex disease, which requires understanding of disease mechanisms for successful treatment. PET is a precise non-invasive imaging method for biochemical functions and has potential to enhance early and accurate diagnosis for precision therapy of MS. In this review we focus on modulation of different receptor systems and inflammatory aspect of MS, especially on activation of glial cells, and summarize the recent findings of PET imaging in MS and present the most potent targets for new biomarkers with the main focus on experimental MS research.
Collapse
Affiliation(s)
- Pekka Poutiainen
- Athinoula A Martinos Biomedical Imaging Center, Department of Radiology, Massachusetts General Hospital, Harvard Medical SchoolCharlestown, MA, USA
| | - Merja Jaronen
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical SchoolBoston, MA, USA
| | - Francisco J. Quintana
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical SchoolBoston, MA, USA
| | - Anna-Liisa Brownell
- Athinoula A Martinos Biomedical Imaging Center, Department of Radiology, Massachusetts General Hospital, Harvard Medical SchoolCharlestown, MA, USA
| |
Collapse
|
144
|
Guerram M, Zhang LY, Jiang ZZ. G-protein coupled receptors as therapeutic targets for neurodegenerative and cerebrovascular diseases. Neurochem Int 2016; 101:1-14. [PMID: 27620813 DOI: 10.1016/j.neuint.2016.09.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 09/01/2016] [Accepted: 09/06/2016] [Indexed: 12/24/2022]
Abstract
Neurodegenerative and cerebrovascular diseases are frequent in elderly populations and comprise primarily of dementia (mainly Alzheimer's disease) Parkinson's disease and stroke. These neurological disorders (NDs) occur as a result of neurodegenerative processes and represent one of the most frequent causes of death and disability worldwide with a significant clinical and socio-economic impact. Although NDs have been characterized for many years, the exact molecular mechanisms that govern these pathologies or why they target specific individuals and specific neuronal populations remain unclear. As research progresses, many similarities appear which relate these diseases to one another on a subcellular level. Discovering these similarities offers hope for therapeutic advances that could ameliorate the conditions of many diseases simultaneously. G-protein coupled receptors (GPCRs) are the most abundant receptor type in the central nervous system and are linked to complex downstream pathways, manipulation of which may have therapeutic application in many NDs. This review will highlight the potential use of neurotransmitter GPCRs as emerging therapeutic targets for neurodegenerative and cerebrovascular diseases.
Collapse
Affiliation(s)
- Mounia Guerram
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China; Faculty of Exact Sciences and Nature and Life Sciences, Department of Biology, Larbi Ben M'hidi University, Oum El Bouaghi 04000, Algeria
| | - Lu-Yong Zhang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Zhen-Zhou Jiang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China; Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
145
|
Bisogno T, Oddi S, Piccoli A, Fazio D, Maccarrone M. Type-2 cannabinoid receptors in neurodegeneration. Pharmacol Res 2016; 111:721-730. [DOI: 10.1016/j.phrs.2016.07.021] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 07/14/2016] [Accepted: 07/19/2016] [Indexed: 01/01/2023]
|
146
|
Dhopeshwarkar A, Mackie K. Functional Selectivity of CB2 Cannabinoid Receptor Ligands at a Canonical and Noncanonical Pathway. J Pharmacol Exp Ther 2016; 358:342-51. [PMID: 27194477 PMCID: PMC4959096 DOI: 10.1124/jpet.116.232561] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 05/17/2016] [Indexed: 01/14/2023] Open
Abstract
The CB2 cannabinoid receptor (CB2) remains a tantalizing, but unrealized therapeutic target. CB2 receptor ligands belong to varied structural classes and display extreme functional selectivity. Here, we have screened diverse CB2 receptor ligands at canonical (inhibition of adenylyl cyclase) and noncanonical (arrestin recruitment) pathways. The nonclassic cannabinoid (-)-cis-3-[2-hydroxy-4-(1,1-dimethylheptyl)phenyl]-trans-4-(3-hydroxypropyl)cyclohexanol (CP55940) was the most potent agonist for both pathways, while the classic cannabinoid ligand (6aR,10aR)-3-(1,1-Dimethylbutyl)-6a,7,10,10a-tetrahydro-6,6,9-trimethyl-6H-dibenzo[b,d]pyran JWH133) was the most efficacious agonist among all the ligands profiled in cyclase assays. In the cyclase assay, other classic cannabinoids showed little [(-)-trans-Δ(9)-tetrahydrocannabinol and (-)-(6aR,7,10,10aR)-tetrahydro-6,6,9-trimethyl-3-(1-methyl-1-phenylethyl)-6H-dibenzo[b,d]pyran-1-ol] (KM233) to no efficacy [(6aR,10aR)-1-methoxy-6,6,9-trimethyl-3-(2-methyloctan-2-yl)-6a,7,10,10a-tetrahydrobenzo[c]chromene(L759633) and (6aR,10aR)-3-(1,1-dimethylheptyl)-6a,7,8,9,10,10a-hexahydro-1-methoxy-6,6-dimethyl-9-methylene-6H-dibenzo[b,d]pyran]L759656. Most aminoalkylindoles, including [(3R)-2,3-dihydro-5-methyl-3-(4-morpholinylmethyl)pyrrolo[1,2,3-de]-1,4-benzoxazin-6-yl]-1-naphthalenyl-methanone, monomethanesulfonate (WIN55212-2), were moderate efficacy agonists. The cannabilactone 3-(1,1-dimethyl-heptyl)-1-hydroxy-9-methoxy-benzo(c)chromen-6-one (AM1710) was equiefficacious to CP55940 to inhibit adenylyl cyclase, albeit with lower potency. In the arrestin recruitment assays, all classic cannabinoid ligands failed to recruit arrestins, indicating a bias toward G-protein coupling for this class of compound. All aminoalkylindoles tested, except for WIN55212-2 and (1-pentyl-1H-indol-3-yl)(2,2,3,3-tetramethylcyclopropyl)-methanone (UR144), failed to recruit arrestin. WIN55212-2 was a low efficacy agonist for arrestin recruitment, while UR144 was arrestin biased with no significant inhibition of cyclase. Endocannabinoids were G-protein biased with no arrestin recruitment. The diarylpyrazole antagonist 5-(4-chloro-3-methylphenyl)-1-[(4-methylphenyl)methyl]-N-[(1S,2S,4R)-1,3,3-trimethylbicyclo[2.2.1]hept-2-yl]-1H-pyrazole-3-carboxamide (SR144258) was an inverse agonist in cyclase and arrestin recruitment assays while the aminoalkylindole 6-iodo-2-methyl-1-[2-(4-morpholinyl)ethyl]-1H-indol-3-yl](4-methoxyphenyl)methanone (AM630) and carboxamide N-(1,3-benzodioxol-5-ylmethyl)-1,2-dihydro-7-methoxy-2-oxo-8-(pentyloxy)-3-quinolinecarboxamide (JTE907) were inverse agonists in cyclase but low efficacy agonists in arrestin recruitment assays. Thus, CB2 receptor ligands display strong and varied functional selectivity at both pathways. Therefore, extreme care must be exercised when using these compounds to infer the role of CB2 receptors in vivo.
Collapse
Affiliation(s)
- Amey Dhopeshwarkar
- The Gill Center for Biomolecular Science and the Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana
| | - Ken Mackie
- The Gill Center for Biomolecular Science and the Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana
| |
Collapse
|
147
|
Concannon RM, Okine BN, Finn DP, Dowd E. Upregulation of the cannabinoid CB2 receptor in environmental and viral inflammation-driven rat models of Parkinson's disease. Exp Neurol 2016; 283:204-12. [PMID: 27317300 DOI: 10.1016/j.expneurol.2016.06.014] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 06/10/2016] [Accepted: 06/13/2016] [Indexed: 12/31/2022]
Abstract
In recent years, it has become evident that Parkinson's disease is associated with a self-sustaining cycle of neuroinflammation and neurodegeneration, with dying neurons activating microglia, which, once activated, can release several factors that kill further neurons. One emerging pharmacological target that has the potential to break this cycle is the microglial CB2 receptor which, when activated, can suppress microglial activity and reduce their neurotoxicity. However, very little is known about CB2 receptor expression in animal models of Parkinson's disease which is essential for valid preclinical assessment of the anti-Parkinsonian efficacy of drugs targeting the CB2 receptor. Therefore, the aim of this study was to investigate and compare the changes that occur in CB2 receptor expression in environmental and inflammation-driven models of Parkinson's disease. To do so, male Sprague Dawley rats were given unilateral, intra-striatal injections of the Parkinson's disease-associated agricultural pesticide, rotenone, or the viral-like inflammagen, polyinosinic:polycytidylic acid (Poly (I:C)). Animals underwent behavioural testing for motor dysfunction on days 7, 14 and 28 post-surgery, and were sacrificed on days 1, 4, 14 and 28. Changes in the endocannabinoid system and neuroinflamamtion were investigated by qRT-PCR, liquid chromatography-mass spectrometry and immunohistochemistry. After injection of rotenone or Poly (I:C) into the rat striatum, we found that expression of the CB2 receptor was significantly elevated in both models, and that this increase correlated significantly with an increase in microglial activation in the rotenone model. Interestingly, the increase in CB2 receptor expression in the inflammation-driven Poly (I:C) model was significantly more pronounced than that in the neurotoxic rotenone model. Thus, this study has shown that CB2 receptor expression is dysregulated in animal models of Parkinson's disease, and has also revealed significant differences in the level of dysregulation between the models themselves. This study indicates that these models may be useful for further investigation of the CB2 receptor as a target for anti-inflammatory disease modification in Parkinson's disease.
Collapse
Affiliation(s)
- Ruth M Concannon
- Pharmacology & Therapeutics, National University of Ireland, Galway, Ireland; Galway Neuroscience Centre, National University of Ireland, Galway, Ireland
| | - Bright N Okine
- Pharmacology & Therapeutics, National University of Ireland, Galway, Ireland; Galway Neuroscience Centre, National University of Ireland, Galway, Ireland
| | - David P Finn
- Pharmacology & Therapeutics, National University of Ireland, Galway, Ireland; Galway Neuroscience Centre, National University of Ireland, Galway, Ireland
| | - Eilís Dowd
- Pharmacology & Therapeutics, National University of Ireland, Galway, Ireland; Galway Neuroscience Centre, National University of Ireland, Galway, Ireland.
| |
Collapse
|
148
|
Aso E, Ferrer I. CB2 Cannabinoid Receptor As Potential Target against Alzheimer's Disease. Front Neurosci 2016; 10:243. [PMID: 27303261 PMCID: PMC4885828 DOI: 10.3389/fnins.2016.00243] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 05/17/2016] [Indexed: 12/22/2022] Open
Abstract
The CB2 receptor is one of the components of the endogenous cannabinoid system, a complex network of signaling molecules and receptors involved in the homeostatic control of several physiological functions. Accumulated evidence suggests a role for CB2 receptors in Alzheimer's disease (AD) and indicates their potential as a therapeutic target against this neurodegenerative disease. Levels of CB2 receptors are significantly increased in post-mortem AD brains, mainly in microglia surrounding senile plaques, and their expression levels correlate with the amounts of Aβ42 and β-amyloid plaque deposition. Moreover, several studies on animal models of AD have demonstrated that specific CB2 receptor agonists, which are devoid of psychoactive effects, reduce AD-like pathology, resulting in attenuation of the inflammation associated with the disease but also modulating Aβ and tau aberrant processing, among other effects. CB2 receptor activation also improves cognitive impairment in animal models of AD. This review discusses available data regarding the role of CB2 receptors in AD and the potential usefulness of specific agonists of these receptors against AD.
Collapse
Affiliation(s)
- Ester Aso
- Institut de Neuropatologia, Servei d'Anatomia Patològica, Bellvitge Biomedical Research Institute (IDIBELL)-Hospital Universitari de Bellvitge, Universitat de BarcelonaL'Hospitalet de Llobregat, Spain
- CIBERNED - Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Instituto Carlos IIIMadrid, Spain
| | - Isidro Ferrer
- Institut de Neuropatologia, Servei d'Anatomia Patològica, Bellvitge Biomedical Research Institute (IDIBELL)-Hospital Universitari de Bellvitge, Universitat de BarcelonaL'Hospitalet de Llobregat, Spain
- CIBERNED - Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Instituto Carlos IIIMadrid, Spain
| |
Collapse
|
149
|
Activity of muscarinic, galanin and cannabinoid receptors in the prodromal and advanced stages in the triple transgenic mice model of Alzheimer's disease. Neuroscience 2016; 329:284-93. [PMID: 27223629 DOI: 10.1016/j.neuroscience.2016.05.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 05/09/2016] [Accepted: 05/10/2016] [Indexed: 12/31/2022]
Abstract
Neurochemical alterations in Alzheimer's disease (AD) include cholinergic neuronal loss in the nucleus basalis of Meynert (nbM) and a decrease in densities of the M2 muscarinic receptor subtype in areas related to learning and memory. Neuromodulators present in the cholinergic pathways, such as neuropeptides and neurolipids, control these cognitive processes and have become targets of research in order to understand and treat the pathophysiological and clinical stages of the disease. This is the case of the endocannabinoid and galaninergic systems, which have been found to be up-regulated in AD, and could therefore have a neuroprotective role. In the present study, the functional coupling of Gi/o protein-coupled receptors to GalR1, and the CB1 receptor subtype for endocannabinoids were analyzed in the 3xTg-AD mice model of AD. In addition, the activity mediated by Gi/o protein-coupled M2/4 muscarinic receptor subtypes was also analyzed in brain areas involved in anxiety and cognition. Thus, male mice were studied at 4 and 15months of age (prodromal and advanced stages, respectively) and compared to age-matched non-transgenic (NTg) mice (adult and old, respectively). In 4-month-old 3xTg-AD mice, the [(35)S]GTPγS binding stimulated by galanin was significantly increased in the hypothalamus, but a decrease of functional M2/4 receptors was observed in the posterior amygdala. The CB1 cannabinoid receptor activity was up-regulated in the anterior thalamus at that age. In 15-month-old 3xTg-AD mice, muscarinic receptor activity was found to be increased in motor cortex, while CB1 activity was decreased in nbM. No changes were found in GalR1-mediated activity at this age. Our results provide further evidence of the relevance of limbic areas in the prodromal stage of AD, the profile of which is characterized by anxiety. The up-regulation of galaninergic and endocannabinoid systems support the hypothesis of their neuroprotective roles, and these are established prior to the onset of clear clinical cognitive symptoms of the disease.
Collapse
|
150
|
Purohit V, Rapaka RS, Rutter J. Cannabinoid receptor-2 and HIV-associated neurocognitive disorders. J Neuroimmune Pharmacol 2016; 9:447-53. [PMID: 25015040 DOI: 10.1007/s11481-014-9554-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 07/02/2014] [Indexed: 12/11/2022]
Abstract
Despite the wide spread use of highly active antiretroviral therapy (HAART), mild forms of HIV-associated neuro cognitive disorders (HAND) remain commonplace. HAART treated patients now show low levels of viremia and more subtle yet biologically important signs of brain macrophage and microglial activation. Adjunctive therapeutic strategies are required to eliminate HIV-1 infection and suppress immune activation and its associated neuroinflammation. In this regard, cannabinoid receptor-2(CB2) activation is a promising means to attenuate HAND by inhibiting HIV replication, down regulating inflammation, and suppressing chemokine-like activity of viral neurotoxic proteins (for example, Tat and HIV-1gp120), and thereby prevent neuronal and synaptic loss. Inhibiting even low level HIV replication can attenuate neuronal injury by decreasing the production of neurotoxins. Down regulation of inflammation by CB2 activation is mediated through blunted activation of peri vascular macrophages and microglia; decreased production of tumor necrosis factor-α, chemokines and virotoxins. Down regulated neuroinflammation can decrease blood brain barrier permeability and leukocyte infiltration resulting in reduced neuronal injury. It is suggested that CB2 agonists may further attenuate HAND in HIVinfected patients on HAART. In addition, CB2 activation may also blunt brain injury by attenuating drug addiction.
Collapse
|