101
|
Di Somma A, Moretta A, Canè C, Cirillo A, Duilio A. Antimicrobial and Antibiofilm Peptides. Biomolecules 2020; 10:E652. [PMID: 32340301 PMCID: PMC7226136 DOI: 10.3390/biom10040652] [Citation(s) in RCA: 139] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/17/2020] [Accepted: 04/21/2020] [Indexed: 12/11/2022] Open
Abstract
The increasing onset of multidrug-resistant bacteria has propelled microbiology research towards antimicrobial peptides as new possible antibiotics from natural sources. Antimicrobial peptides are short peptides endowed with a broad range of activity against both Gram-positive and Gram-negative bacteria and are less prone to trigger resistance. Besides their activity against planktonic bacteria, many antimicrobial peptides also show antibiofilm activity. Biofilms are ubiquitous in nature, having the ability to adhere to virtually any surface, either biotic or abiotic, including medical devices, causing chronic infections that are difficult to eradicate. The biofilm matrix protects bacteria from hostile environments, thus contributing to the bacterial resistance to antimicrobial agents. Biofilms are very difficult to treat, with options restricted to the use of large doses of antibiotics or the removal of the infected device. Antimicrobial peptides could represent good candidates to develop new antibiofilm drugs as they can act at different stages of biofilm formation, on disparate molecular targets and with various mechanisms of action. These include inhibition of biofilm formation and adhesion, downregulation of quorum sensing factors, and disruption of the pre-formed biofilm. This review focuses on the proprieties of antimicrobial and antibiofilm peptides, with a particular emphasis on their mechanism of action, reporting several examples of peptides that over time have been shown to have activity against biofilm.
Collapse
Affiliation(s)
- Angela Di Somma
- Dipartimento di Scienze Chimiche, Università Federico II, 80126 Naples, Italy; (A.D.S.); (C.C.)
- Istituto Nazionale Biostrutture e Biosistemi (INBB), 00136 Rome, Italy
| | - Antonio Moretta
- Dipartimento di Scienze, Università degli Studi della Basilicata, 85100 Potenza, Italy;
| | - Carolina Canè
- Dipartimento di Scienze Chimiche, Università Federico II, 80126 Naples, Italy; (A.D.S.); (C.C.)
| | | | - Angela Duilio
- Dipartimento di Scienze Chimiche, Università Federico II, 80126 Naples, Italy; (A.D.S.); (C.C.)
| |
Collapse
|
102
|
Yuan G, Li P, Xu X, Li P, Zhong Q, He S, Yi H, Yi W, Guan Y, Wen ZT. Azalomycin F 5a Eradicates Staphylococcus aureus Biofilm by Rapidly Penetrating and Subsequently Inducing Cell Lysis. Int J Mol Sci 2020; 21:ijms21030862. [PMID: 32013221 PMCID: PMC7036916 DOI: 10.3390/ijms21030862] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/24/2020] [Accepted: 01/28/2020] [Indexed: 12/14/2022] Open
Abstract
Antimicrobial resistance has emerged as a serious threat to public health. Bacterial biofilm, as a natural lifestyle, is a major contributor to resistance to antimicrobials. Azalomycin F5a, a natural guanidine-containing polyhydroxy macrolide, has remarkable activities against Gram-positive bacteria, including Staphylococcus aureus, a major causative agent of hospital-acquired infections. To further evaluate its potential to be developed as a new antimicrobial agent, its influence on S. aureus biofilm formation was evaluated using the crystal violet method, and then its eradication effect against mature biofilms was determined by confocal laser scanning microscopy, the drop plate method, and regrowth experiments. The results showed that azalomycin F5a could significantly inhibit S. aureus biofilm formation, and such effects were concentration dependent. In addition, it can also eradicate S. aureus mature biofilms with the minimum biofilm eradication concentration of 32.0 μg/mL. As extracellular deoxyribonucleic acid (eDNA) plays important roles in the structural integrity of bacterial biofilm, its influence on the eDNA release in S. aureus biofilm was further analyzed using gel electrophoresis. Combined with our previous works, these results indicate that azalomycin F5a could rapidly penetrate biofilm and causes damages to the cell membrane, leading to an increase in DNase release and eventually eradicating S. aureus biofilm.
Collapse
Affiliation(s)
- Ganjun Yuan
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China; (P.L.); (Q.Z.)
- Department of Oral and Craniofacial Biology, Louisiana State University Health Sciences Center, New Orleans, LA 70119, USA
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA 70119, USA
- Correspondence: (G.Y.); (Z.T.W.); Tel.: +86-791-83813459 (G.Y.); +1-504-9418465 (Z.T.W.)
| | - Pingyi Li
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China; (P.L.); (Q.Z.)
| | - Xuejie Xu
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China; (P.L.); (Q.Z.)
| | - Peibo Li
- School of Life Sciences, Sun Yat-sen University, 135 Xingang Road, Guangzhou 510275, China
| | - Qiwang Zhong
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China; (P.L.); (Q.Z.)
| | - Su He
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China; (P.L.); (Q.Z.)
| | - Houqin Yi
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China; (P.L.); (Q.Z.)
| | - Wenfang Yi
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China; (P.L.); (Q.Z.)
| | - Yingying Guan
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China; (P.L.); (Q.Z.)
| | - Zezhang Tom Wen
- Department of Oral and Craniofacial Biology, Louisiana State University Health Sciences Center, New Orleans, LA 70119, USA
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA 70119, USA
- Correspondence: (G.Y.); (Z.T.W.); Tel.: +86-791-83813459 (G.Y.); +1-504-9418465 (Z.T.W.)
| |
Collapse
|
103
|
Raheem N, Straus SK. Mechanisms of Action for Antimicrobial Peptides With Antibacterial and Antibiofilm Functions. Front Microbiol 2019; 10:2866. [PMID: 31921046 PMCID: PMC6927293 DOI: 10.3389/fmicb.2019.02866] [Citation(s) in RCA: 233] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 11/27/2019] [Indexed: 12/14/2022] Open
Abstract
The antibiotic crisis has led to a pressing need for alternatives such as antimicrobial peptides (AMPs). Recent work has shown that these molecules have great potential not only as antimicrobials, but also as antibiofilm agents, immune modulators, anti-cancer agents and anti-inflammatories. A better understanding of the mechanism of action (MOA) of AMPs is an important part of the discovery of more potent and less toxic AMPs. Many models and techniques have been utilized to describe the MOA. This review will examine how biological assays and biophysical methods can be utilized in the context of the specific antibacterial and antibiofilm functions of AMPs.
Collapse
Affiliation(s)
- Nigare Raheem
- Department of Chemistry, The University of British Columbia, Vancouver, BC, Canada
| | - Suzana K Straus
- Department of Chemistry, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
104
|
Paduszynska MA, Maciejewska M, Neubauer D, Golacki K, Szymukowicz M, Bauer M, Kamysz W. Influence of Short Cationic Lipopeptides with Fatty Acids of Different Chain Lengths on Bacterial Biofilms Formed on Polystyrene and Hydrogel Surfaces. Pharmaceutics 2019; 11:E506. [PMID: 31581500 PMCID: PMC6835763 DOI: 10.3390/pharmaceutics11100506] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/21/2019] [Accepted: 09/23/2019] [Indexed: 01/02/2023] Open
Abstract
Nowadays, biomaterials are applied in many different branches of medicine. They significantly improve the patients' comfort and quality of life, but also constitute a significant risk factor for biofilm-associated infections. Currently, intensive research on the development of novel materials resistant to microbial colonization as well as new compounds that are active against biofilms is being carried out. Within this research, antimicrobial peptides (AMPs) and their analogues are being intensively investigated due to their promising antimicrobial activities. The main goal of this study was to synthesize and evaluate the antimicrobial efficacy of short cationic lipopeptides that were designed to imitate the features of AMPs responsible for antimicrobial activities: positive net charge and amphipacity. The positive charge of the molecules results from the presence of basic amino acid residues: arginine and lysine. Amphipacity is provided by the introduction of decanoic, dodecanoic, tetradecanoic, and hexadecanoic acid chains to the molecules. Lipopeptides (C16-KR-NH2, C16-KKK-NH2, C16-KKC-NH2, C16-KGK-NH2, C14-KR-NH2, C14-KKC-NH2, C12-KR-NH2, C12-KKC-NH2, and (C10)2-KKKK-NH2) were synthesized using a novel solid-phase temperature-assisted methodology. The minimum inhibitory concentrations (MICs), minimum biofilm eradication concentrations (MBECs), and minimum biofilm formation inhibitory concentrations (MBFICs) were determined for the following bacterial strains: Staphylococcus aureus ATCC 25923, Staphylococcus epidermidis ATCC 14990, Enterococcus faecalis ATCC 29212, Escherichia coli ATCC 25922, Pseudomonas aeruginosa ATCC 9027, and Proteus mirabilis PCM 543. The biofilms were cultured on two types of surfaces: polystyrene plates (PS) and contact lenses (CL). The lipopeptides exhibited the ability to inhibit the growth of bacteria in a liquid medium as well as on the PS and CL. The compounds also eliminated the bacterial biofilm from the surface of both materials. In general, the activity against gram-positive bacteria was stronger in comparison to that against gram-negative strains. There were certain discrepancies between the activity of compounds against the biofilm cultured on PS and CL. This was especially noticeable for staphylococci-the lipopeptides presented much higher activity against biofilm formed on the PS surface. It is worth noting that the obtained MBEC values for lipopeptides were usually only a few times higher than the MICs. The results of the performed experiments suggest that further studies on lipopeptides and their potential application in the treatment and prophylaxis of biofilm-associated infections should be conducted.
Collapse
Affiliation(s)
- Malgorzata Anna Paduszynska
- Department of Inorganic Chemistry, Faculty of Pharmacy, Medical University of Gdansk, 80-416 Gdansk, Poland.
| | - Magdalena Maciejewska
- Department of Inorganic Chemistry, Faculty of Pharmacy, Medical University of Gdansk, 80-416 Gdansk, Poland.
- Pharmaceutical Laboratory Avena Sp. z.o.o., 86-031 Osielsko, Poland.
| | - Damian Neubauer
- Department of Inorganic Chemistry, Faculty of Pharmacy, Medical University of Gdansk, 80-416 Gdansk, Poland.
| | - Krzysztof Golacki
- Department of Inorganic Chemistry, Faculty of Pharmacy, Medical University of Gdansk, 80-416 Gdansk, Poland.
| | - Magdalena Szymukowicz
- Department of Inorganic Chemistry, Faculty of Pharmacy, Medical University of Gdansk, 80-416 Gdansk, Poland.
| | - Marta Bauer
- Department of Inorganic Chemistry, Faculty of Pharmacy, Medical University of Gdansk, 80-416 Gdansk, Poland.
| | - Wojciech Kamysz
- Department of Inorganic Chemistry, Faculty of Pharmacy, Medical University of Gdansk, 80-416 Gdansk, Poland.
| |
Collapse
|
105
|
Thieme L, Hartung A, Tramm K, Klinger-Strobel M, Jandt KD, Makarewicz O, Pletz MW. MBEC Versus MBIC: the Lack of Differentiation between Biofilm Reducing and Inhibitory Effects as a Current Problem in Biofilm Methodology. Biol Proced Online 2019; 21:18. [PMID: 31528123 PMCID: PMC6743098 DOI: 10.1186/s12575-019-0106-0] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 08/08/2019] [Indexed: 12/11/2022] Open
Abstract
Background Biofilms are communities of aggregated, matrix-embedded microbial cells showing a high tolerance to an in principle adequate antibiotic therapy, often resulting in treatment failure. A major challenge in the management of biofilm-associated infections is the development of adequate, standardized biofilm susceptibility testing assays that are clinically meaningful, i.e. that their results correlate with treatment outcome. Different biofilm susceptibility endpoint parameters like the minimal biofilm eradication concentration (MBEC) or the minimal biofilm inhibitory concentration (MBIC) have been suggested as a guide for treatment of biofilm-associated infections, however with inconsistent perception and use among biofilm researchers, leading to confusion and contradictions among different anti-biofilm component studies and clinical trials. Findings Evaluation of anti-biofilm effects is mostly based on the untreated reference growth control biofilm measured at the same endpoint as the treated biofilm, neglecting the possible change of the untreated reference biofilm from the time point of pre-antimicrobial exposure to the measured endpoint. In this commentary, we point out the importance of individual quantification of mature, established biofilms before antimicrobial treatment for each biofilm model in order to draw conclusions on the measured biofilm effect size, i.e. biofilm reducing (MBEC) or biofilm inhibitory (MBIC) effects. Conclusion The assessment of pre-treatment biofilms contributes to a standardized use of biofilm susceptibility endpoint parameters, which is urgently needed to improve the clinical validity of future anti-biofilm assays.
Collapse
Affiliation(s)
- Lara Thieme
- 1Institute for Infectious Diseases and Infection Control, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany
| | - Anita Hartung
- 1Institute for Infectious Diseases and Infection Control, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany
| | - Kristina Tramm
- 1Institute for Infectious Diseases and Infection Control, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany
| | - Mareike Klinger-Strobel
- 1Institute for Infectious Diseases and Infection Control, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany
| | - Klaus D Jandt
- 2Otto Schott Institute of Materials Research, Friedrich Schiller University Jena, Löbdergraben 32, Jena, 07743 Germany
| | - Oliwia Makarewicz
- 1Institute for Infectious Diseases and Infection Control, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany
| | - Mathias W Pletz
- 1Institute for Infectious Diseases and Infection Control, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany
| |
Collapse
|
106
|
Antibacterial Activities of Lipopeptide (C 10)₂-KKKK-NH₂ Applied Alone and in Combination with Lens Liquids to Fight Biofilms Formed on Polystyrene Surfaces and Contact Lenses. Int J Mol Sci 2019; 20:ijms20020393. [PMID: 30658481 PMCID: PMC6358866 DOI: 10.3390/ijms20020393] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 01/09/2019] [Accepted: 01/14/2019] [Indexed: 01/08/2023] Open
Abstract
The widespread use of biomaterials such as contact lenses is associated with the development of biofilm-related infections which are very difficult to manage with standard therapies. The formation of bacterial biofilms on the surface of biomaterials is associated with increased antibiotic resistance. Owing to their promising antimicrobial potential, lipopeptides are being intensively investigated as novel antimicrobials. However, due to the relatively high toxicity exhibited by numerous compounds, a lot of attention is being paid to designing new lipopeptides with optimal biological activities. The principal aim of this study was to evaluate the potential ophthalmic application of lipopeptide (C10)2-KKKK-NH2. This lipopeptide was synthesized according to Fmoc chemistry using the solid-phase method. The antibiofilm activities of the lipopeptide, antibiotics used in ocular infections, and commercially available lens liquids were determined using the broth dilution method on polystyrene 96-well plates and contact lenses. Resazurin was applied as the cell-viability reagent. The effectiveness of the commercially available lens liquids supplemented with the lipopeptide was evaluated using the same method and materials. (C10)2-KKKK-NH2 exhibited stronger anti-biofilm properties compared to those of the tested conventional antimicrobials and showed the ability to enhance the activity of lens liquids at relatively low concentrations (4–32 mg/L). Estimation of the eye irritation potential of the lipopeptide using Toxtree software 2.6.13 suggests that the compound could be safely applied on the human eye. The results of performed experiments encourage further studies on (C10)2-KKKK-NH2 and its potential application in the prophylaxis of contact lens-related eye infections.
Collapse
|