101
|
The Genome-Wide Identification of Long Non-Coding RNAs Involved in Floral Thermogenesis in Nelumbo nucifera Gaertn. Int J Mol Sci 2022; 23:ijms23094901. [PMID: 35563291 PMCID: PMC9102460 DOI: 10.3390/ijms23094901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/22/2022] [Accepted: 04/26/2022] [Indexed: 02/01/2023] Open
Abstract
The sacred lotus (Nelumbo nucifera Gaertn.) can maintain a stable floral chamber temperature when blooming, despite ambient temperature fluctuations; however, the long non-coding RNAs (lncRNAs) involved in floral thermogenesis remain unclear. In the present study, we obtain comprehensive lncRNAs expression profiles from receptacles at five developmental stages by strand-specific RNA sequencing to reveal the lncRNAs regulatory mechanism of the floral thermogenesis of N. nucifera. A total of 22,693 transcripts were identified as lncRNAs, of which approximately 44.78% had stage-specific expression patterns. Subsequently, we identified 2579 differential expressed lncRNAs (DELs) regulating 2367 protein-coding genes mainly involved in receptacle development and reproductive process. Then, lncRNAs with floral thermogenesis identified by weighted gene co-expression network analysis (WGCNA) were mainly related to sulfur metabolism and mitochondrial electron transport chains. Meanwhile, 70 lncRNAs were predicted to act as endogenous target mimics (eTMs) for 29 miRNAs and participate in the regulation of 16 floral thermogenesis-related genes. Our dual luciferase reporter assays indicated that lncRNA LTCONS_00068702 acted as eTMs for miR164a_4 to regulate the expression of TrxL2 gene. These results deepen our understanding of the regulation mechanism of floral thermogenesis by lncRNAs and accumulate data for further research.
Collapse
|
102
|
Wang H, Chu Z, Chang S, Jia S, Pang L, Xi C, Liu J, Zhao H, Wang Y, Han S. Transcriptomic identification of long noncoding RNAs and their hormone-associated nearby coding genes involved in the differential development of caryopses localized on different branches in rice. JOURNAL OF PLANT PHYSIOLOGY 2022; 271:153663. [PMID: 35245823 DOI: 10.1016/j.jplph.2022.153663] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/27/2022] [Accepted: 02/27/2022] [Indexed: 05/17/2023]
Abstract
Long noncoding RNAs (lncRNAs) play important regulatory roles in caryopsis development and grain size in rice. However, whether there exist differences in lncRNA expression between caryopses located on primary branches (CPB) and caryopses located on secondary branches (CSB) that contribute to their differential development remains elusive. Here, we performed transcriptome-wide analysis to identify 2,273 lncRNAs expressed in CPB and CSB at 0, 5, 12, and 20 days after flowering (DAF). Although these lncRNAs were widely distributed, the majority were located in intergenic regions of the 12 rice chromosomes. Based on gene expression cluster analysis, lncRNAs expressed in CPB and CSB were clustered into two subtypes in a position-independent manner: one includes 0- and 5-DAF CPB and CSB, and 12-DAF CSB; the second includes 12-DAF CPB and 20-DAF CPB and CSB. Furthermore, according to the expression value of each lncRNA, K-means cluster analysis revealed 135 early-stage, 116 middle-stage, and 114 late-stage expression-delayed lncRNAs in CSB. Then, we analyzed the expression values of the expression-delayed lncRNAs and nearby coding genes (100 kb upstream and downstream of the lncRNAs), and found 631 lncRNA-mRNA pairs, including 258 lncRNAs and 571 nearby coding genes, some of which are related to hormone-regulated grain development. These results suggested that expression-delayed lncRNAs in CSB may regulate the development of CPB and CSB, providing insight into the mechanism underlying the developmental differences between CPB and CSB, and the differences in grain yield.
Collapse
Affiliation(s)
- Hanmeng Wang
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Zhilin Chu
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Shu Chang
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Shenghua Jia
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Lu Pang
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Chao Xi
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Jin Liu
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Heping Zhao
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Yingdian Wang
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China; Academy of Plateau Science and Sustainability of the People's Government of Qinghai Province & Beijing Normal University, Qinghai Normal University, Xining, 810008, Qinghai, China.
| | - Shengcheng Han
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China; Academy of Plateau Science and Sustainability of the People's Government of Qinghai Province & Beijing Normal University, Qinghai Normal University, Xining, 810008, Qinghai, China.
| |
Collapse
|
103
|
Unravelling lncRNA mediated gene expression as potential mechanism for regulating secondary metabolism in Citrus limon. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2021.101448] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
104
|
Bai PP, Lin HY, Sun Y, Wu JJ, Gu KJ, Zhao YP. Temporal Dynamic Transcriptome Landscape Reveals Regulatory Network During the Early Differentiation of Female Strobilus Buds in Ginkgo biloba. FRONTIERS IN PLANT SCIENCE 2022; 13:863330. [PMID: 35432408 PMCID: PMC9008512 DOI: 10.3389/fpls.2022.863330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 02/24/2022] [Indexed: 06/14/2023]
Abstract
Reproductive bud differentiation is one of the most critical events for the reproductive success of seed plants. Yet, our understanding of genetic basis remains limited for the development of the reproductive organ of gymnosperms, namely, unisexual strobilus or cone, leaving its regulatory network largely unknown for strobilus bud differentiation. In this study, we analyzed the temporal dynamic landscapes of genes, long non-coding RNAs (lncRNAs), and microRNAs (miRNAs) during the early differentiation of female strobilus buds in Ginkgo biloba based on the whole transcriptome sequencing. Results suggested that the functions of three genes, i.e., Gb_19790 (GbFT), Gb_13989 (GinNdly), and Gb_16301 (AG), were conserved in both angiosperms and gymnosperms at the initial differentiation stage. The expression of genes, lncRNAs, and miRNAs underwent substantial changes from the initial differentiation to the enlargement of ovule stalk primordia. Besides protein-coding genes, 364 lncRNAs and 15 miRNAs were determined to be functional. Moreover, a competing endogenous RNA (ceRNA) network comprising 10,248 lncRNA-miRNA-mRNA pairs was identified, which was highly correlated with the development of ovulate stalk primordia. Using the living fossil ginkgo as the study system, this study not only reveals the expression patterns of genes related to flowering but also provides novel insights into the regulatory networks of lncRNAs and miRNAs, especially the ceRNA network, paving the way for future studies concerning the underlying regulation mechanisms of strobilus bud differentiation.
Collapse
|
105
|
Hu X, Wei Q, Wu H, Huang Y, Peng X, Han G, Ma Q, Zhao Y. Identification and characterization of heat-responsive lncRNAs in maize inbred line CM1. BMC Genomics 2022; 23:208. [PMID: 35291949 PMCID: PMC8925227 DOI: 10.1186/s12864-022-08448-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 03/07/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Frequent occurrence of extreme high temperature is a major threat to crop production. Increasing evidence demonstrates that long non-coding RNAs (lncRNAs) have important biological functions in the regulation of the response to heat stress. However, the regulatory mechanism of lncRNAs involved in heat response requires further exploration and the regulatory network remains poorly understood in maize. RESULTS In this research, high-throughput sequencing was adopted to systematically identify lncRNAs in maize inbred line CM1. In total, 53,249 lncRNAs (259 known lncRNAs and 52,990 novel lncRNAs) were detected, of which 993 lncRNAs showed significantly differential expression (DElncRNAs) under heat stress. By predicting the target genes, 953 common targets shared by cis- and trans-regulation of the DElncRNAs were identified, which exhibited differential expression between the control and the heat stress treatments. Functional annotation indicated that a number of important biological processes and pathways, including photosynthesis, metabolism, translation, stress response, hormone signal transduction, and spliceosome, were enriched for the common targets, suggesting that they play important roles in heat response. A lncRNA-mediated regulatory network was constructed to visualize the molecular response mechanism in response to heat stress, which represented the direct regulatory relationships of DElncRNAs, differentially expressed miRNAs, target genes, and functional annotations. CONCLUSIONS This study lays a foundation for further elucidation of the regulatory mechanism for the response to heat stress in the maize inbred line CM1. The findings provide important information for identification of heat-responsive genes, which will be beneficial for the molecular breeding in the cultivation of heat-tolerant maize germplasm.
Collapse
Affiliation(s)
- Xiaolin Hu
- The National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 203036, China
| | - Qiye Wei
- The National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 203036, China
| | - Hongying Wu
- The National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 203036, China
| | - Yuanxiang Huang
- The National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 203036, China
| | - Xiaojian Peng
- The National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 203036, China
| | - Guomin Han
- The National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 203036, China
| | - Qing Ma
- The National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 203036, China
| | - Yang Zhao
- The National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 203036, China.
| |
Collapse
|
106
|
Liang W, Hu F, Qi W, Zhao C, Chen T, Wang C, Lv Y, Zhang Y. Comprehensive Transcriptome Analysis of GS3 Near-Isogenic Lines During Panicle Development in Rice (Oryza sativa L.). Front Genet 2022; 13:857143. [PMID: 35299956 PMCID: PMC8921255 DOI: 10.3389/fgene.2022.857143] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 02/15/2022] [Indexed: 11/13/2022] Open
Abstract
Panicle architecture is an important agronomic trait in rice that affects rice yields and quality. The GRAIN SIZE 3 (GS3) locus has been identified as a major quantitative trait locus (QTL) affecting grain length and weight. The current understanding of the function of the GS3 gene, especially concerning the regulatory mechanism of panicle development, is still in its infancy. In this study, we generated GS3 near-isogenic lines (NILs) by successive crossing and backcrossing of TD70 (large grain) with Kasalath (small grain), using Kasalath as the recurrent parent. To identify potential transcription dynamic changes in rice panicle formation and grain shape, we deeply analyzed transcriptional profiles for the NILs (NIL-GS3 and NIL-gs3) at three different panicle developmental stages (S, M, and L). A total of 887, 1,768, and 1,478 differentially expressed genes (DEGs) were identified at stages S, M, and L, respectively. We also found 542 differential expressed long non-coding RNAs (lncRNAs). Co-expression analysis further revealed significant clusters associated with different development periods in NIL-gs3 lines. Gene Ontology and KEGG enrichment analysis revealed G-protein signaling and hormones pathway were successively activated at the M and L stages of NIL-gs3, which indicated activation of the G-protein signaling pathway might trigger the down-streaming hormone signaling transduction. we found that other hormones such ABA, Auxin, CK were significantly enriched in the L stage in the NIL-gs3. We highlighted the synergistic interplay of G-protein and multiple hormones signaling pathways and their essential roles in regulating rice panicle formation and the grain shape. Our study provides an invaluable resource for further molecular mechanistic studies that affect rice grain size and provide new insight for directed selection by marker-assisted backcross breeding.
Collapse
Affiliation(s)
- Wenhua Liang
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Jiangsu High Quality Rice R&D Center, Nanjing Branch of China National Center for Rice Improvement, Nanjing, China
| | - Fengqin Hu
- Excellence and Innovation Center, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Weicong Qi
- Excellence and Innovation Center, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Chunfang Zhao
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Jiangsu High Quality Rice R&D Center, Nanjing Branch of China National Center for Rice Improvement, Nanjing, China
| | - Tao Chen
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Jiangsu High Quality Rice R&D Center, Nanjing Branch of China National Center for Rice Improvement, Nanjing, China
| | - Cailin Wang
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Jiangsu High Quality Rice R&D Center, Nanjing Branch of China National Center for Rice Improvement, Nanjing, China
| | - Yuanda Lv
- Excellence and Innovation Center, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- *Correspondence: Yuanda Lv, ; Yadong Zhang,
| | - Yadong Zhang
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Jiangsu High Quality Rice R&D Center, Nanjing Branch of China National Center for Rice Improvement, Nanjing, China
- Key Laboratory of Jiangsu Province for Agrobiology, Nanjing, China
- *Correspondence: Yuanda Lv, ; Yadong Zhang,
| |
Collapse
|
107
|
Kong X, Wang H, Zhang M, Chen X, Fang R, Yan Y. A SA-regulated lincRNA promotes Arabidopsis disease resistance by modulating pre-rRNA processing. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 316:111178. [PMID: 35151436 DOI: 10.1016/j.plantsci.2022.111178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/23/2021] [Accepted: 01/07/2022] [Indexed: 06/14/2023]
Abstract
Regulation of gene expression at translational level has been shown critical for plant defense against pathogen infection. Pre-rRNA processing is essential for ribosome biosynthesis and thus affects protein translation. It remains unknown if plants modulate pre-rRNA processing as a translation regulatory mechanism for disease resistance. In this study, we show a 5' snoRNA capped and 3' polyadenylated (SPA) lincRNA named SUNA1 promotes disease resistance involved in modulating pre-rRNA processing in Arabidopsis. SUNA1 expression is highly induced by Pst DC3000 infection, which is impaired in SA biosynthesis-defective mutant sid2 and signaling mutant npr1. Consistently, SA triggers SUNA1 expression dependent on NPR1. Functional analysis indicates that SUNA1 plays a positive role in Arabidopsis defense against Pst DC3000 relying on its snoRNA signature motifs. Potential mechanism study suggests that the nucleus-localized SUNA1 interacts with the nucleolar methyltransferase fibrillarin to modulate SA-controlled pre-rRNA processing, then enhancing the translational efficiency (TE) of some defense genes in Arabidopsis response to Pst DC3000 infection. NPR1 appears to have similar effects as SUNA1 on pre-rRNA processing and TE of defense genes. Together, these studies reveal one kind of undescribed antibacterial translation regulatory mechanism, in which SA-NPR1-SUNA1 signaling cascade controls pre-rRNA processing and TE of certain defense genes in Arabidopsis.
Collapse
Affiliation(s)
- Xiaoyu Kong
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China; Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Huacai Wang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China; Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Mengting Zhang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China; Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Xiaoying Chen
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China; Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Rongxiang Fang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China; National Plant Gene Research Center, Beijing, China.
| | - Yongsheng Yan
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China; Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
108
|
Wei L, Liu B, Liu D, Xu Z, Wang R, Zhang W. Identification and expression analysis of genome-wide long noncoding RNA responsive CO 2 fluctuated environment in marine microalga Nannochloropsis oceanica. MARINE POLLUTION BULLETIN 2022; 176:113419. [PMID: 35152114 DOI: 10.1016/j.marpolbul.2022.113419] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 01/27/2022] [Accepted: 01/30/2022] [Indexed: 06/14/2023]
Abstract
Long non-coding RNAs (lncRNAs) have been demonstrated to participate in plant growth and development as well as response to different biotic and abiotic stresses. However, the knowledge of lncRNA was limited in microalgae. In this study, by RNA deep sequencing, 134 lncRNAs were identified in marine Nannochloropsis oceanica in response to carbon dioxide fluctuation. Among them, there were 51 lncRNAs displayed differentially expressed between low and high CO2 treatments, including 33 upregulation and 18 downregulation lncRNAs. Cellulose metabolic process, glucan metabolic process, polysaccharide metabolic process, and transmembrane transporter activity were functionally enriched. Multiple potential target genes of lncRNA and lncRNA-mRNA co-located gene network were analyzed. Subsequent analysis had demonstrated that lncRNAs would participate in many biological molecular processes, including gene expression, transcriptional regulation, protein expression and epigenetic regulation. In addition, alternative splicing events were firstly analyzed in response to CO2 fluctuation. There were 2051 alternative splicing (AS events) identified, which might be associated with lncRNA. These observations will provide a novel insight into lncRNA function in Nannochloropsis and provide a series of targets for lncRNA-based gene editing in future.
Collapse
Affiliation(s)
- Li Wei
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China.
| | - Bingqing Liu
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China
| | - Danmei Liu
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China
| | - Zhengru Xu
- College of Foreign Language, Hainan Normal University, Haikou 571157, China
| | - Ruiping Wang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China
| | - Wenfei Zhang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China.
| |
Collapse
|
109
|
Shi F, Pang Z, Liu C, Zhou L, Tan C, Ren J, Ye X, Feng H, Liu Z. Whole-transcriptome analysis and construction of an anther development-related ceRNA network in Chinese cabbage (Brassica campestris L. ssp. pekinensis). Sci Rep 2022; 12:2667. [PMID: 35177672 PMCID: PMC8854722 DOI: 10.1038/s41598-022-06556-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 01/24/2022] [Indexed: 01/17/2023] Open
Abstract
Anther development is precisely regulated by a complex gene network, which is of great significance to plant breeding. However, the molecular mechanism of anther development in Chinese cabbage is unclear. Here, we identified microRNAs (miRNAs), mRNAs, long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs) related to anther development in Chinese cabbage (Brassica campestris L. ssp. pekinensis) to construct competitive endogenous RNA (ceRNA) regulatory networks and provide valuable knowledge on anther development. Using whole-transcriptome sequencing, 9055, 585, 1344, and 165 differentially expressed mRNAs (DEmRNAs), miRNAs (DEmiRNAs), lncRNAs (DElncRNAs), and circRNAs (DEcircRNAs) were identified, respectively, in the anthers of Chinese cabbage compared with those in samples of the vegetative mass of four true leaves. An anther-related ceRNA regulatory network was constructed using miRNA targeting relationships, and 450 pairs of ceRNA relationships, including 97 DEmiRNA-DEmRNA, 281 DEmiRNA-DElncRNA, and 23 DEmiRNA-DEcircRNA interactions, were obtained. We identified important genes and their interactions with lncRNAs, circRNAs, and miRNAs involved in microsporogenesis, tapetum and callose layer development, pollen wall formation, and anther dehiscence. We analyzed the promoter activity of six predominant anther expression genes, which were expressed specifically in the anthers of Arabidopsis thaliana, indicating that they may play an important role in anther development of Chinese cabbage. This study lays the foundation for further research on the molecular mechanisms of anther growth and development in Chinese cabbage.
Collapse
Affiliation(s)
- Fengyan Shi
- Key Laboratory of Protected Horticulture (Shenyang Agricultural University), Ministry of Education, 120 Dongling Road, Shenhe District, Shenyang, 110866, China
| | - Zhijin Pang
- Key Laboratory of Protected Horticulture (Shenyang Agricultural University), Ministry of Education, 120 Dongling Road, Shenhe District, Shenyang, 110866, China
| | - Chuanhong Liu
- Key Laboratory of Protected Horticulture (Shenyang Agricultural University), Ministry of Education, 120 Dongling Road, Shenhe District, Shenyang, 110866, China
| | - Li Zhou
- Integrated Technical Service Center, Bayuquan Customs, Yingkou, 115007, China
| | - Chong Tan
- Key Laboratory of Protected Horticulture (Shenyang Agricultural University), Ministry of Education, 120 Dongling Road, Shenhe District, Shenyang, 110866, China
| | - Jie Ren
- Key Laboratory of Protected Horticulture (Shenyang Agricultural University), Ministry of Education, 120 Dongling Road, Shenhe District, Shenyang, 110866, China
| | - Xueling Ye
- Key Laboratory of Protected Horticulture (Shenyang Agricultural University), Ministry of Education, 120 Dongling Road, Shenhe District, Shenyang, 110866, China
| | - Hui Feng
- Key Laboratory of Protected Horticulture (Shenyang Agricultural University), Ministry of Education, 120 Dongling Road, Shenhe District, Shenyang, 110866, China
| | - Zhiyong Liu
- Key Laboratory of Protected Horticulture (Shenyang Agricultural University), Ministry of Education, 120 Dongling Road, Shenhe District, Shenyang, 110866, China.
| |
Collapse
|
110
|
Wang L, Gao J, Wang C, Xu Y, Li X, Yang J, Chen K, Kang Y, Wang Y, Cao P, Xie X. Comprehensive Analysis of Long Non-coding RNA Modulates Axillary Bud Development in Tobacco ( Nicotiana tabacum L.). FRONTIERS IN PLANT SCIENCE 2022; 13:809435. [PMID: 35237286 PMCID: PMC8884251 DOI: 10.3389/fpls.2022.809435] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 01/06/2022] [Indexed: 06/14/2023]
Abstract
Long non-coding RNAs (lncRNAs) regulate gene expression and are crucial for plant growth and development. However, the mechanisms underlying the effects of activated lncRNAs on axillary bud development remain largely unknown. By lncRNA transcriptomes of axillary buds in topped and untopped tobacco plants, we identified a total of 13,694 lncRNAs. LncRNA analysis indicated that the promoted growth of axillary bud by topping might be partially ascribed to the genes related to hormone signal transduction and glycometabolism, trans-regulated by differentially expressed lncRNAs, such as MSTRG.52498.1, MSTRG.60026.1, MSTRG.17770.1, and MSTRG.32431.1. Metabolite profiling indicated that auxin, abscisic acid and gibberellin were decreased in axillary buds of topped tobacco lines, while cytokinin was increased, consistent with the expression levels of related lncRNAs. MSTRG.52498.1, MSTRG.60026.1, MSTRG.17770.1, and MSTRG.32431.1 were shown to be influenced by hormones and sucrose treatments, and were associated with changes of axillary bud growth in the overexpression of NtCCD8 plants (with reduced axillary buds) and RNA interference of NtTB1 plants (with increased axillary buds). Moreover, MSTRG.28151.1 was identified as the antisense lncRNA of NtTB1. Silencing of MSTRG.28151.1 in tobacco significantly attenuated the expression of NtTB1 and resulted in larger axillary buds, suggesting the vital function of MSTRG.28151.1 axillary bud developmen by NtTB1. Our findings shed light on lncRNA-mRNA interactions and their functional roles in axillary bud growth, which would improve our understanding of lncRNAs as important regulators of axillary bud development and plant architecture.
Collapse
Affiliation(s)
- Lin Wang
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of China National Tobacco Corporation (CNTC), Zhengzhou, China
| | - Junping Gao
- China Tobacco Hunan Industrial Co., Ltd., Changsha, China
| | - Chen Wang
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of China National Tobacco Corporation (CNTC), Zhengzhou, China
| | - Yalong Xu
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of China National Tobacco Corporation (CNTC), Zhengzhou, China
| | - Xiaoxu Li
- China Tobacco Hunan Industrial Co., Ltd., Changsha, China
| | - Jun Yang
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of China National Tobacco Corporation (CNTC), Zhengzhou, China
| | - Kai Chen
- China Tobacco Hunan Industrial Co., Ltd., Changsha, China
| | - Yile Kang
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of China National Tobacco Corporation (CNTC), Zhengzhou, China
| | - Yaofu Wang
- China Tobacco Hunan Industrial Co., Ltd., Changsha, China
| | - Peijian Cao
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of China National Tobacco Corporation (CNTC), Zhengzhou, China
| | - Xiaodong Xie
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of China National Tobacco Corporation (CNTC), Zhengzhou, China
| |
Collapse
|
111
|
Xu H, Chen B, Zhao Y, Guo Y, Liu G, Li R, Zeisler-Diehl VV, Chen Y, He X, Schreiber L, Lin J. Non-Coding RNA Analyses of Seasonal Cambium Activity in Populus tomentosa. Cells 2022; 11:640. [PMID: 35203291 PMCID: PMC8869787 DOI: 10.3390/cells11040640] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/06/2022] [Accepted: 02/09/2022] [Indexed: 02/04/2023] Open
Abstract
Non-coding RNA, known as long non-coding RNA (lncRNA), circular RNA (circRNA) and microRNA (miRNA), are taking part in the multiple developmental processes in plants. However, the roles of which played during the cambium activity periodicity of woody plants remain poorly understood. Here, lncRNA/circRNA-miRNA-mRNA regulatory networks of the cambium activity periodicity in Populus tomentosa was constructed, combined with morphologic observation and transcriptome profiling. Light microscopy and Periodic Acid Schiff (PAS) staining revealed that cell walls were much thicker and number of cell layers was increased during the active-dormant stage, accompanied by abundant change of polysaccharides. The novel lncRNAs and circRNAs were investigated, and we found that 2037 lncRNAs and 299 circRNAs were differentially expression during the vascular cambium period, respectively. Moreover, 1046 genes were identified as a target gene of 2037 novel lncRNAs, and 89 of which were the miRNA precursors or targets. By aligning miRNA precursors to the 7655 lncRNAs, 21 lncRNAs were identified as precursors tof 19 known miRNAs. Furthermore, the target mRNA of lncRNA/circRNA-miRNA network mainly participated in phytohormone, cell wall alteration and chlorophyll metabolism were analyzed by GO enrichment and KEGG pathway. Especially, circRNA33 and circRNA190 taking part in the phytohormone signal pathway were down-regulated during the active-dormant transition. Xyloglucan endotransglucosylase/hydrolase protein 24-like and UDP-glycosyltransferase 85A1 involved in the cell wall modification were the targets of lncRNA MSTRG.11198.1 and MSTRG.1050.1. Notably, circRNA103 and MSTRG.10851.1 regulate the cambium periodicity may interact with the miR482. These results give a new light into activity-dormancy regulation, associated with transcriptional dynamics and non-coding RNA networks of potential targets identification.
Collapse
Affiliation(s)
- Huimin Xu
- College of Biological Sciences, China Agricultural University, Beijing 100193, China; (H.X.); (Y.C.)
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China; (B.C.); (Y.Z.); (Y.G.); (R.L.)
- Institute of Tree Development and Genome Editing, Beijing Forestry University, Beijing 100083, China
- College of Life Sciences, Peking University, Beijing 100871, China;
| | - Bo Chen
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China; (B.C.); (Y.Z.); (Y.G.); (R.L.)
- Institute of Tree Development and Genome Editing, Beijing Forestry University, Beijing 100083, China
| | - Yuanyuan Zhao
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China; (B.C.); (Y.Z.); (Y.G.); (R.L.)
- Institute of Tree Development and Genome Editing, Beijing Forestry University, Beijing 100083, China
| | - Yayu Guo
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China; (B.C.); (Y.Z.); (Y.G.); (R.L.)
- Institute of Tree Development and Genome Editing, Beijing Forestry University, Beijing 100083, China
| | - Guijun Liu
- Institute of Radiation Technology, Beijing Academy of Science and Technology, Beijing 100875, China;
| | - Ruili Li
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China; (B.C.); (Y.Z.); (Y.G.); (R.L.)
| | - Viktoria V. Zeisler-Diehl
- Department of Ecophysiology, Institute of Cellular and Molecular Botany, University of Bonn, Kirschallee 1, 53115 Bonn, Germany; (V.V.Z.-D.); (L.S.)
| | - Yanmei Chen
- College of Biological Sciences, China Agricultural University, Beijing 100193, China; (H.X.); (Y.C.)
| | - Xinqiang He
- College of Life Sciences, Peking University, Beijing 100871, China;
| | - Lukas Schreiber
- Department of Ecophysiology, Institute of Cellular and Molecular Botany, University of Bonn, Kirschallee 1, 53115 Bonn, Germany; (V.V.Z.-D.); (L.S.)
| | - Jinxing Lin
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China; (B.C.); (Y.Z.); (Y.G.); (R.L.)
- Institute of Tree Development and Genome Editing, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
112
|
Zhang YC, Zhou YF, Cheng Y, Huang JH, Lian JP, Yang L, He RR, Lei MQ, Liu YW, Yuan C, Zhao WL, Xiao S, Chen YQ. Genome-wide analysis and functional annotation of chromatin-enriched noncoding RNAs in rice during somatic cell regeneration. Genome Biol 2022; 23:28. [PMID: 35045887 PMCID: PMC8772118 DOI: 10.1186/s13059-022-02608-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 01/12/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Plants have the remarkable ability to generate callus, a pluripotent cell mass that acquires competence for subsequent tissue regeneration. Global chromatin remodeling is required for this cell fate transition, but how the process is regulated is not fully understood. Chromatin-enriched noncoding RNAs (cheRNAs) are thought to play important roles in maintaining chromatin state. However, whether cheRNAs participate in somatic cell regeneration in plants has not yet been clarified. RESULTS To uncover the characteristics and functions of cheRNAs during somatic cell reprogramming in plants, we systematically investigate cheRNAs during callus induction, proliferation and regeneration in rice. We identify 2284 cheRNAs, most of which are novel long non-coding RNAs or small nucleolar RNAs. These cheRNAs, which are highly conserved across plant species, shuttle between chromatin and the nucleoplasm during somatic cell regeneration. They positively regulate the expression of neighboring genes via specific RNA motifs, which may interact with DNA motifs around cheRNA loci. Large-scale mutant analysis shows that cheRNAs are associated with plant size and seed morphology. Further detailed functional investigation of two che-lncRNAs demonstrates that their loss of function impairs cell dedifferentiation and plant regeneration, highlighting the functions of cheRNAs in regulating the expression of neighboring genes via specific motifs. These findings support cis- regulatory roles of cheRNAs in influencing a variety of rice traits. CONCLUSIONS cheRNAs are a distinct subclass of regulatory non-coding RNAs that are required for somatic cell regeneration and regulate rice traits. Targeting cheRNAs has great potential for crop trait improvement and breeding in future.
Collapse
Affiliation(s)
- Yu-Chan Zhang
- Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory for Biocontrol, School of Life Science, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China.
- MOE Key Laboratory of Gene Function and Regulation, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China.
| | - Yan-Fei Zhou
- Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory for Biocontrol, School of Life Science, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Yu Cheng
- Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory for Biocontrol, School of Life Science, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Jia-Hui Huang
- Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory for Biocontrol, School of Life Science, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Jian-Ping Lian
- Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory for Biocontrol, School of Life Science, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Lu Yang
- Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory for Biocontrol, School of Life Science, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Rui-Rui He
- Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory for Biocontrol, School of Life Science, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Meng-Qi Lei
- Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory for Biocontrol, School of Life Science, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Yu-Wei Liu
- Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory for Biocontrol, School of Life Science, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Chao Yuan
- Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory for Biocontrol, School of Life Science, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Wen-Long Zhao
- Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory for Biocontrol, School of Life Science, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Shi Xiao
- Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory for Biocontrol, School of Life Science, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Yue-Qin Chen
- Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory for Biocontrol, School of Life Science, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China.
- MOE Key Laboratory of Gene Function and Regulation, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China.
| |
Collapse
|
113
|
Liu W, Sun J, Li J, Liu C, Si F, Yan B, Wang Z, Song X, Yang Y, Zhu Y, Cao X. Reproductive tissue-specific translatome of a rice thermo-sensitive genic male sterile line. J Genet Genomics 2022; 49:624-635. [PMID: 35041992 DOI: 10.1016/j.jgg.2022.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/05/2022] [Accepted: 01/06/2022] [Indexed: 10/19/2022]
Abstract
Translational regulation, especially tissue- or cell type-specific gene regulation, plays essential roles in plant growth and development. Thermo-sensitive genic male sterile (TGMS) lines have been widely used for hybrid breeding in rice (Oryza sativa). However, little is known about translational regulation during reproductive stage in TGMS rice. Here, we used translating ribosome affinity purification (TRAP) combined with RNA sequencing to investigate the reproductive tissue-specific translatome of TGMS rice expressing FLAG-tagged ribosomal protein L18 (RPL18) from the germline-specific promoter MEIOSIS ARRESTED AT LEPTOTENE1 (MEL1). Differentially expressed genes at the transcriptional and translational levels were enriched in pollen and anther-related formation and development processes. These contained a number of genes reported to be involved in tapetum programmed cell death (PCD) and lipid metabolism during pollen development and anther dehiscence in rice, including several encoding transcription factors and key enzymes, as well as several long non-coding RNAs (lncRNAs) that potentially affect tapetum and pollen-related genes in male sterility. This study represents the first comprehensive reproductive tissue-specific characterization of the translatome in TGMS rice. These results contribute to our understanding of the molecular basis of sterility in TGMS rice and will facilitate further genetic manipulation of TGMS rice in two-line breeding systems.
Collapse
Affiliation(s)
- Wei Liu
- College of Life Sciences, Wuhan University, Wuhan 430072, Hubei, China; State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jing Sun
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Ji Li
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Chunyan Liu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Fuyan Si
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Bin Yan
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhen Wang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xianwei Song
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yuanzhu Yang
- Department of Rice Breeding, Hunan Yahua Seed Scientific Research Institute, Changsha 410119, Hunan, China
| | - Yuxian Zhu
- College of Life Sciences, Wuhan University, Wuhan 430072, Hubei, China; Institute for Advanced Studies, Wuhan University, Wuhan 430072, Hubei, China.
| | - Xiaofeng Cao
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
114
|
Sharma Y, Sharma A, Madhu, Shumayla, Singh K, Upadhyay SK. Long Non-Coding RNAs as Emerging Regulators of Pathogen Response in Plants. Noncoding RNA 2022; 8:4. [PMID: 35076574 PMCID: PMC8788567 DOI: 10.3390/ncrna8010004] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/07/2022] [Accepted: 01/08/2022] [Indexed: 12/14/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are transcripts without protein-coding potential that contain more than 200 nucleotides that play important roles in plant survival in response to different stresses. They interact with molecules such as DNA, RNA, and protein, and play roles in the regulation of chromatin remodeling, RNA metabolism, and protein modification activities. These lncRNAs regulate the expression of their downstream targets through epigenetic changes, at the level of transcription and post-transcription. Emerging information from computational biology and functional characterization of some of them has revealed their diverse mechanisms of action and possible roles in biological processes such as flowering time, reproductive organ development, as well as biotic and abiotic stress responses. In this review, we have mainly focused on the role of lncRNAs in biotic stress response due to the limited availability of knowledge in this domain. We have discussed the available molecular mechanisms of certain known lncRNAs against specific pathogens. Further, considering that fungal, viral, and bacterial diseases are major factors in the global food crisis, we have highlighted the importance of lncRNAs against pathogen responses and the progress in plant research to develop a better understanding of their functions and molecular mechanisms.
Collapse
Affiliation(s)
- Yashraaj Sharma
- Department of Botany, Panjab University, Chandigarh 160014, India; (Y.S.); (A.S.); (M.); (S.)
- Department of Biotechnology, Panjab University, Chandigarh 160014, India;
| | - Alok Sharma
- Department of Botany, Panjab University, Chandigarh 160014, India; (Y.S.); (A.S.); (M.); (S.)
| | - Madhu
- Department of Botany, Panjab University, Chandigarh 160014, India; (Y.S.); (A.S.); (M.); (S.)
| | - Shumayla
- Department of Botany, Panjab University, Chandigarh 160014, India; (Y.S.); (A.S.); (M.); (S.)
| | - Kashmir Singh
- Department of Biotechnology, Panjab University, Chandigarh 160014, India;
| | - Santosh Kumar Upadhyay
- Department of Botany, Panjab University, Chandigarh 160014, India; (Y.S.); (A.S.); (M.); (S.)
| |
Collapse
|
115
|
Golicz AA. Long Intergenic Noncoding RNA (lincRNA) Discovery from Non-Strand-Specific RNA-Seq Data. Methods Mol Biol 2022; 2443:465-482. [PMID: 35037221 DOI: 10.1007/978-1-0716-2067-0_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Long noncoding RNAs (lncRNAs) are transcripts over 200 base pairs in length without discernible protein coding potential. Long intergenic noncoding RNAs (lincRNAs) constitute a subset of lncRNAs, which do not overlap protein coding genes. Here we describe a detailed pipeline for lincRNA discovery from publicly available non-stranded RNA-Seq datasets. The pipeline presented can be applied to any plant species for which RNA-Seq data and a reference genome sequence are available.
Collapse
Affiliation(s)
- A A Golicz
- Department of Plant Breeding, Justus Liebig University Gießen, Gießen, Germany.
| |
Collapse
|
116
|
Kourani M, Mohareb F, Rezwan FI, Anastasiadi M, Hammond JP. Genetic and Physiological Responses to Heat Stress in Brassica napus. FRONTIERS IN PLANT SCIENCE 2022; 13:832147. [PMID: 35449889 PMCID: PMC9016328 DOI: 10.3389/fpls.2022.832147] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 03/04/2022] [Indexed: 05/07/2023]
Abstract
Given the current rise in global temperatures, heat stress has become a major abiotic challenge affecting the growth and development of various crops and reducing their productivity. Brassica napus, the second largest source of vegetable oil worldwide, experiences a drastic reduction in seed yield and quality in response to heat. This review outlines the latest research that explores the genetic and physiological impact of heat stress on different developmental stages of B. napus with a special attention to the reproductive stages of floral progression, organogenesis, and post flowering. Several studies have shown that extreme temperature fluctuations during these crucial periods have detrimental effects on the plant and often leading to impaired growth and reduced seed production. The underlying mechanisms of heat stress adaptations and associated key regulatory genes are discussed. Furthermore, an overview and the implications of the polyploidy nature of B. napus and the regulatory role of alternative splicing in forming a priming-induced heat-stress memory are presented. New insights into the dynamics of epigenetic modifications during heat stress are discussed. Interestingly, while such studies are scarce in B. napus, opposite trends in expression of key genetic and epigenetic components have been identified in different species and in cultivars within the same species under various abiotic stresses, suggesting a complex role of these genes and their regulation in heat stress tolerance mechanisms. Additionally, omics-based studies are discussed with emphasis on the transcriptome, proteome and metabolome of B. napus, to gain a systems level understanding of how heat stress alters its yield and quality traits. The combination of omics approaches has revealed crucial interactions and regulatory networks taking part in the complex machinery of heat stress tolerance. We identify key knowledge gaps regarding the impact of heat stress on B. napus during its yield determining reproductive stages, where in-depth analysis of this subject is still needed. A deeper knowledge of heat stress response components and mechanisms in tissue specific models would serve as a stepping-stone to gaining insights into the regulation of thermotolerance that takes place in this important crop species and support future breeding of heat tolerant crops.
Collapse
Affiliation(s)
- Mariam Kourani
- Bioinformatics Group, Cranfield University, Cranfield, United Kingdom
| | - Fady Mohareb
- Bioinformatics Group, Cranfield University, Cranfield, United Kingdom
- *Correspondence: Fady Mohareb,
| | - Faisal I. Rezwan
- Bioinformatics Group, Cranfield University, Cranfield, United Kingdom
| | - Maria Anastasiadi
- Bioinformatics Group, Cranfield University, Cranfield, United Kingdom
| | - John P. Hammond
- School of Agriculture, Policy and Development, University of Reading, Reading, United Kingdom
- John P. Hammond,
| |
Collapse
|
117
|
Zhang J, Li J, Saeed S, Batchelor WD, Alariqi M, Meng Q, Zhu F, Zou J, Xu Z, Si H, Wang Q, Zhang X, Zhu H, Jin S, Yuan D. Identification and Functional Analysis of lncRNA by CRISPR/Cas9 During the Cotton Response to Sap-Sucking Insect Infestation. FRONTIERS IN PLANT SCIENCE 2022; 13:784511. [PMID: 35283887 PMCID: PMC8905227 DOI: 10.3389/fpls.2022.784511] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 01/31/2022] [Indexed: 05/04/2023]
Abstract
Sap-sucking insects cause severe damage to cotton production. Long non-coding RNAs (lncRNAs) play vital regulatory roles in various development processes and stress response, however, the function of lncRNAs during sap-sucking insect infection in cotton is largely unknown. In this study, the transcriptome profiles between resistant (HR) and susceptible (ZS) cotton cultivars under whitefly infestation at different time points (0, 4, 12, 24, and 48 h) were compared. A total of 6,651 lncRNAs transcript and 606 differentially expressed lncRNAs were identified from the RNA-seq data. A co-expression network indicated that lncA07 and lncD09 were potential hub genes that play a regulatory role in cotton defense against aphid infestation. Furthermore, CRISPR/Cas9 knock-out mutant of lncD09 and lncA07 showed a decrease of jasmonic acid (JA) content, which potentially lead to increased susceptibility toward insect infestation. Differentially expressed genes between wild type and lncRNA knock-out plants are enriched in modulating development and resistance to stimulus. Additionally, some candidate genes such as Ghir_A01G022270, Ghir_D04G014430, and Ghir_A01G022270 are involved in the regulation of the JA-mediated signaling pathway. This result provides a novel insight of the lncRNA role in the cotton defense system against pests.
Collapse
Affiliation(s)
- Jie Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jianying Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Sumbul Saeed
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | | | - Muna Alariqi
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Qingying Meng
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Fuhui Zhu
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jiawei Zou
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zhongping Xu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Huan Si
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Qiongqiong Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Huaguo Zhu
- College of Biology and Agricultural Resources, Huanggang Normal University, Huanggang, China
| | - Shuangxia Jin
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- *Correspondence: Shuangxia Jin,
| | - Daojun Yuan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Daojun Yuan,
| |
Collapse
|
118
|
Hajieghrari B, Farrokhi N. Plant RNA-mediated gene regulatory network. Genomics 2021; 114:409-442. [PMID: 34954000 DOI: 10.1016/j.ygeno.2021.12.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/21/2021] [Accepted: 12/20/2021] [Indexed: 11/26/2022]
Abstract
Not all transcribed RNAs are protein-coding RNAs. Many of them are non-protein-coding RNAs in diverse eukaryotes. However, some of them seem to be non-functional and are resulted from spurious transcription. A lot of non-protein-coding transcripts have a significant function in the translation process. Gene expressions depend on complex networks of diverse gene regulatory pathways. Several non-protein-coding RNAs regulate gene expression in a sequence-specific system either at the transcriptional level or post-transcriptional level. They include a significant part of the gene expression regulatory network. RNA-mediated gene regulation machinery is evolutionarily ancient. They well-evolved during the evolutionary time and are becoming much more complex than had been expected. In this review, we are trying to summarizing the current knowledge in the field of RNA-mediated gene silencing.
Collapse
Affiliation(s)
- Behzad Hajieghrari
- Department of Agricultural Biotechnology, College of Agriculture, Jahrom University, Jahrom, Iran.
| | - Naser Farrokhi
- Department of Cell, Molecular Biology Faculty of Life Sciences, Biotechnology, Shahid Beheshti University, G. C Evin, Tehran, Iran.
| |
Collapse
|
119
|
Genome-wide analysis uncovers tomato leaf lncRNAs transcriptionally active upon Pseudomonas syringae pv. tomato challenge. Sci Rep 2021; 11:24523. [PMID: 34972834 PMCID: PMC8720101 DOI: 10.1038/s41598-021-04005-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 12/01/2021] [Indexed: 01/27/2023] Open
Abstract
Plants rely on (in)direct detection of bacterial pathogens through plasma membrane-localized and intracellular receptor proteins. Surface pattern-recognition receptors (PRRs) participate in the detection of microbe-associated molecular patterns (MAMPs) and are required for the activation of pattern-triggered immunity (PTI). Pathogenic bacteria, such as Pseudomonas syringae pv. tomato (Pst) deploys ~ 30 effector proteins into the plant cell that contribute to pathogenicity. Resistant plants are capable of detecting the presence or activity of effectors and mount another response termed effector-triggered immunity (ETI). In order to investigate the involvement of tomato’s long non-coding RNAs (lncRNAs) in the immune response against Pst, we used RNA-seq data to predict and characterize those that are transcriptionally active in leaves challenged with a large set of treatments. Our prediction strategy was validated by sequence comparison with tomato lncRNAs described in previous works and by an alternative approach (RT-qPCR). Early PTI (30 min), late PTI (6 h) and ETI (6 h) differentially expressed (DE) lncRNAs were identified and used to perform a co-expression analysis including neighboring (± 100 kb) DE protein-coding genes. Some of the described networks could represent key regulatory mechanisms of photosynthesis, PRR abundance at the cell surface and mitigation of oxidative stress, associated to tomato-Pst pathosystem.
Collapse
|
120
|
Identification of Long Non-Coding RNAs Associated with Tomato Fruit Expansion and Ripening by Strand-Specific Paired-End RNA Sequencing. HORTICULTURAE 2021. [DOI: 10.3390/horticulturae7120522] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
As emerging essential regulators in plant development, long non-coding RNAs (lncRNAs) have been extensively investigated in multiple horticultural crops, as well as in different tissues of plants. Tomato fruits are an indispensable part of people’s diet and are consumed as fruits and vegetables. Meanwhile, tomato is widely used as a model to study the ripening mechanism in fleshy fruit. Although increasing evidence shows that lncRNAs are involved in lots of biological processes in tomato plants, the comprehensive identification of lncRNAs in tomato fruit during its expansion and ripening and their functions are partially known. Here, we performed strand-specific paired-end RNA sequencing (ssRNA-seq) of tomato Heinz1706 fruits at five different developmental stages, as well as flowers and leaves. We identified 17,674 putative lncRNAs by referencing the recently released SL4.0 and annotation ITAG4.0 in tomato plants. Many lncRNAs show different expression patterns in fleshy fruit at different developmental stages compared with leaves or flowers. Our results indicate that lncRNAs play an important role in the regulation of tomato fruit expansion and ripening, providing informative lncRNA candidates for further studies in tomato fruits. In addition, we also summarize the recent advanced progress in lncRNAs mediated regulation on horticultural fruits. Hence, our study updates the understanding of lncRNAs in horticultural plants and provides resources for future studies relating to the expansion and ripening of tomato fruits.
Collapse
|
121
|
Ma K, Luo X, Han L, Zhao Y, Mamat A, Li N, Mei C, Yan P, Zhang R, Hu J, Wang J. Transcriptome profiling based on Illumina- and SMRT-based RNA-seq reveals circadian regulation of key pathways in flower bud development in walnut. PLoS One 2021; 16:e0260017. [PMID: 34793486 PMCID: PMC8601540 DOI: 10.1371/journal.pone.0260017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 11/01/2021] [Indexed: 11/19/2022] Open
Abstract
Flower bud development is a defining feature of walnut, which contributes to the kernel yield, yield stability, fruit quality and commodity value. However, little is known about the mechanism of the flower bud development in walnut. Here, the stages of walnut female flower bud development were divided into five period (P01-05) by using histological observation. They were further studied through PacBio Iso-Seq and RNA-seq analysis. Accordingly, we obtained 52,875 full-length transcripts, where 4,579 were new transcripts, 3,065 were novel genes, 1,437 were consensus lncRNAs and 20,813 were alternatively spliced isoforms. These transcripts greatly improved the current genome annotation and enhanced our understanding of the walnut transcriptome. Next, RNA sequencing of female flower buds at five periods revealed that circadian rhythm-plant was commonly enriched along with the flower bud developmental gradient. A total of 14 differentially expressed genes (DEGs) were identified, and six of them were confirmed by real-time quantitative analysis. Additionally, six and two differentially expressed clock genes were detected to be regulated by AS events and lncRNAs, respectively. All these detected plant circadian genes form a complex interconnected network to regulate the flower bud development. Thus, investigation of key genes associated with the circadian clock could clarify the process of flower bud development in walnut.
Collapse
Affiliation(s)
- Kai Ma
- College of Horticulture, China Agricultural University, Beijing, China
- Institute of Horticultural and Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Xiang Luo
- State Key Laboratory of Crop Stress Adaption and Improvement, Henan University, Kaifeng, China
| | - Liqun Han
- Institute of Horticultural and Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Yu Zhao
- Institute of Horticultural and Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Aisajan Mamat
- Institute of Horticultural and Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Ning Li
- Institute of Horticultural and Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Chuang Mei
- Institute of Horticultural and Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Peng Yan
- Institute of Horticultural and Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Rui Zhang
- Xinjiang Production and Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, Tarim University, Alaer, China
| | - Jianfang Hu
- College of Horticulture, China Agricultural University, Beijing, China
- * E-mail: (JH); (JW)
| | - Jixun Wang
- Institute of Horticultural and Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
- * E-mail: (JH); (JW)
| |
Collapse
|
122
|
Abdel-Salam EM, Qahtan AA, Gaafar ARZ, Zein El-Abedein AI, Alshameri AM, Alhamdan AM. Tissue-specific analysis of Coffea arabica L. transcriptome revealed potential regulatory roles of lncRNAs. Saudi J Biol Sci 2021; 28:6023-6029. [PMID: 34764734 PMCID: PMC8568828 DOI: 10.1016/j.sjbs.2021.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 06/13/2021] [Accepted: 07/04/2021] [Indexed: 11/18/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) play pivot roles in regulating mRNA expression in eukaryotic organisms without coding any proteins. In the current study, a comprehensive analysis of 260 published RNA-Seq datasets collected from different tissues (fruits, leaves, stems, and roots) of Coffea arabica L. was performed to discover potential lncRNAs. A total of 10,564 unique lncRNAs were identified. Our results showed that 77.14% of the lncRNAs were intergenic and 60.39% of them are located within 5 Kbp from the partner gene. In general, all the identified lncRNAs showed shorter lengths, fewer number of exons, and lower expression levels as compared to mRNAs in different studied tissues. Several lncRNAs were determined as differentially expressed (DE) in fruits as compared to leaves, stems, or roots. The functional characterization of the DE lncRNAs revealed their roles in regulating significant biological processes in different tissues of C. arabica. The current study provides a comprehensive analysis and dataset of lncRNAs in C. arabica that could be utilized in further studies concerning the roles of these molecules in plant cells.
Collapse
Affiliation(s)
- Eslam M Abdel-Salam
- Department of Botany & Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Ahmed A Qahtan
- Department of Botany & Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Abdel-Rhman Z Gaafar
- Department of Botany & Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Assem I Zein El-Abedein
- Chair of Dates Industry and Technology, College of Food and Agricultural Sciences, King Saud University, PO Box 2460, Riyadh 11451, Saudi Arabia
| | - Aref M Alshameri
- Department of Botany & Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Abdullah M Alhamdan
- Chair of Dates Industry and Technology, College of Food and Agricultural Sciences, King Saud University, PO Box 2460, Riyadh 11451, Saudi Arabia
- Department of Agricultural Engineering, College of Food and Agricultural Sciences, King Saud University, PO Box 2460, Riyadh 11451, Saudi Arabia
| |
Collapse
|
123
|
Zhou YF, Zhang YC, Sun YM, Yu Y, Lei MQ, Yang YW, Lian JP, Feng YZ, Zhang Z, Yang L, He RR, Huang JH, Cheng Y, Liu YW, Chen YQ. The parent-of-origin lncRNA MISSEN regulates rice endosperm development. Nat Commun 2021; 12:6525. [PMID: 34764271 PMCID: PMC8585977 DOI: 10.1038/s41467-021-26795-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 10/22/2021] [Indexed: 11/09/2022] Open
Abstract
The cereal endosperm is a major factor determining seed size and shape. However, the molecular mechanisms of endosperm development are not fully understood. Long noncoding RNAs (lncRNAs) function in various biological processes. Here we show a lncRNA, MISSEN, that plays an essential role in early endosperm development in rice (Oryza sativa). MISSEN is a parent-of-origin lncRNA expressed in endosperm, and negatively regulates endosperm development, leading to a prominent dent and bulge in the seed. Mechanistically, MISSEN functions through hijacking a helicase family protein (HeFP) to regulate tubulin function during endosperm nucleus division and endosperm cellularization, resulting in abnormal cytoskeletal polymerization. Finally, we revealed that the expression of MISSEN is inhibited by histone H3 lysine 27 trimethylation (H3K27me3) modification after pollination. Therefore, MISSEN is the first lncRNA identified as a regulator in endosperm development, highlighting the potential applications in rice breeding.
Collapse
Affiliation(s)
- Yan-Fei Zhou
- Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory for Biocontrol, School of Life Science, Sun Yat-Sen University, 510275, Guangzhou, China
| | - Yu-Chan Zhang
- Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory for Biocontrol, School of Life Science, Sun Yat-Sen University, 510275, Guangzhou, China
| | - Yu-Meng Sun
- Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory for Biocontrol, School of Life Science, Sun Yat-Sen University, 510275, Guangzhou, China
| | - Yang Yu
- Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory for Biocontrol, School of Life Science, Sun Yat-Sen University, 510275, Guangzhou, China
| | - Meng-Qi Lei
- Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory for Biocontrol, School of Life Science, Sun Yat-Sen University, 510275, Guangzhou, China
| | - Yu-Wei Yang
- Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory for Biocontrol, School of Life Science, Sun Yat-Sen University, 510275, Guangzhou, China
| | - Jian-Ping Lian
- Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory for Biocontrol, School of Life Science, Sun Yat-Sen University, 510275, Guangzhou, China
| | - Yan-Zhao Feng
- Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory for Biocontrol, School of Life Science, Sun Yat-Sen University, 510275, Guangzhou, China
| | - Zhi Zhang
- Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory for Biocontrol, School of Life Science, Sun Yat-Sen University, 510275, Guangzhou, China
| | - Lu Yang
- Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory for Biocontrol, School of Life Science, Sun Yat-Sen University, 510275, Guangzhou, China
| | - Rui-Rui He
- Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory for Biocontrol, School of Life Science, Sun Yat-Sen University, 510275, Guangzhou, China
| | - Jia-Hui Huang
- Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory for Biocontrol, School of Life Science, Sun Yat-Sen University, 510275, Guangzhou, China
| | - Yu Cheng
- Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory for Biocontrol, School of Life Science, Sun Yat-Sen University, 510275, Guangzhou, China
| | - Yu-Wei Liu
- Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory for Biocontrol, School of Life Science, Sun Yat-Sen University, 510275, Guangzhou, China
| | - Yue-Qin Chen
- Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory for Biocontrol, School of Life Science, Sun Yat-Sen University, 510275, Guangzhou, China. .,MOE Key Laboratory of Gene Function and Regulation, Sun Yat-sen University, 510275, Guangzhou, China.
| |
Collapse
|
124
|
Kumar N, Bharadwaj C, Sahu S, Shiv A, Shrivastava AK, Reddy SPP, Soren KR, Patil BS, Pal M, Soni A, Roorkiwal M, Varshney RK. Genome-wide identification and functional prediction of salt- stress related long non-coding RNAs (lncRNAs) in chickpea ( Cicer arietinum L.). PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:2605-2619. [PMID: 34916736 PMCID: PMC8639897 DOI: 10.1007/s12298-021-01093-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 10/06/2021] [Accepted: 10/19/2021] [Indexed: 05/14/2023]
Abstract
LncRNAs (long noncoding RNAs) are 200 bp length crucial RNA molecules, lacking coding potential and having important roles in regulating gene expression, particularly in response to abiotic stresses. In this study, we identified salt stress-induced lncRNAs in chickpea roots and predicted their intricate regulatory roles. A total of 3452 novel lncRNAs were identified to be distributed across all 08 chickpea chromosomes. On comparing salt-tolerant (ICCV 10, JG 11) and salt-sensitive cultivars (DCP 92-3, Pusa 256), 4446 differentially expressed lncRNAs were detected under various salt treatments. We predicted 3373 lncRNAs to be regulating their target genes in cis regulating manner and 80 unique lncRNAs were observed as interacting with 136 different miRNAs, as eTMs (endogenous target mimic) targets of miRNAs and implicated them in the regulatory network of salt stress response. Functional analysis of these lncRNA revealed their association in targeting salt stress response-related genes like potassium transporter, transporter family genes, serine/threonine-protein kinase, aquaporins like TIP1-2, PIP2-5 and transcription factors like, AP2, NAC, bZIP, ERF, MYB and WRKY. Furthermore, about 614 lncRNA-SSRs (simple sequence repeats) were identified as a new generation of molecular markers with higher efficiency and specificity in chickpea. Overall, these findings will pave the understanding of comprehensive functional role of potential lncRNAs, which can help in providing insight into the molecular mechanism of salt tolerance in chickpea. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12298-021-01093-0.
Collapse
Affiliation(s)
- Neeraj Kumar
- Division of Genetics, ICAR-Indian Agricultural Research Institute, Pusa, New Delhi 110012 India
| | - Chellapilla Bharadwaj
- Division of Genetics, ICAR-Indian Agricultural Research Institute, Pusa, New Delhi 110012 India
| | - Sarika Sahu
- ICAR-Indian Agricultural Statistics Research Institute, Pusa, New Delhi 110012 India
| | - Aalok Shiv
- Division of Genetics, ICAR-Indian Agricultural Research Institute, Pusa, New Delhi 110012 India
- Present Address: ICAR-Indian Institute of Sugarcane Research, Lucknow, 226002 India
| | | | | | - Khela Ram Soren
- ICAR-Indian Institute of Pulses Research, Kanpur, 282 004 India
| | | | - Madan Pal
- Division of Genetics, ICAR-Indian Agricultural Research Institute, Pusa, New Delhi 110012 India
| | - Anjali Soni
- Division of Genetics, ICAR-Indian Agricultural Research Institute, Pusa, New Delhi 110012 India
| | - Manish Roorkiwal
- Centre of Excellence in Genomics, ICRISAT, Hyderabad, 502324 India
| | | |
Collapse
|
125
|
Kang Q, Meng J, Su C, Luan Y. Mining plant endogenous target mimics from miRNA-lncRNA interactions based on dual-path parallel ensemble pruning method. Brief Bioinform 2021; 23:6399881. [PMID: 34662389 DOI: 10.1093/bib/bbab440] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/07/2021] [Accepted: 09/24/2021] [Indexed: 12/14/2022] Open
Abstract
The interactions between microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) play important roles in biological activities. Specially, lncRNAs as endogenous target mimics (eTMs) can bind miRNAs to regulate the expressions of target messenger RNAs (mRNAs). A growing number of studies focus on animals, but the studies on plants are scarce and many functions of plant eTMs are unknown. This study proposes a novel ensemble pruning protocol for predicting plant miRNA-lncRNA interactions at first. It adaptively prunes the base models based on dual-path parallel ensemble method to meet the challenge of cross-species prediction. Then potential eTMs are mined from predicted results. The expression levels of RNAs are identified through biological experiment to construct the lncRNA-miRNA-mRNA regulatory network, and the functions of potential eTMs are inferred through enrichment analysis. Experiment results show that the proposed protocol outperforms existing methods and state-of-the-art predictors on various plant species. A total of 17 potential eTMs are verified by biological experiment to involve in 22 regulations, and 14 potential eTMs are inferred by Gene Ontology enrichment analysis to involve in 63 functions, which is significant for further research.
Collapse
Affiliation(s)
- Qiang Kang
- School of Computer Science and Technology, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Jun Meng
- School of Computer Science and Technology, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Chenglin Su
- School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, 116024 China
| | - Yushi Luan
- School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, 116024 China
| |
Collapse
|
126
|
Kandpal M, Dhaka N, Sharma R. Genome-wide in silico analysis of long intergenic non-coding RNAs from rice peduncles at the heading stage. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:2389-2406. [PMID: 34744373 PMCID: PMC8526681 DOI: 10.1007/s12298-021-01059-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 08/21/2021] [Accepted: 08/26/2021] [Indexed: 06/13/2023]
Abstract
UNLABELLED Long intergenic non-coding RNAs (lincRNAs) belong to the category of long non-coding RNAs (lncRNAs), originated from intergenic regions, which do not code for proteins. LincRNAs perform prominent role in regulation of gene expression during plant development and stress response by directly interacting with DNA, RNA, or proteins, or triggering production of small RNA regulatory molecules. Here, we identified 2973 lincRNAs and investigated their expression dynamics during peduncle elongation in two Indian rice cultivars, Pokkali and Swarna, at the time of heading. Differential expression analysis revealed common and cultivar-specific expression patterns, which we utilized to infer the lincRNA candidates with potential involvement in peduncle elongation and panicle exsertion. Their putative targets were identified using in silico prediction methods followed by pathway mapping and literature-survey based functional analysis. Further, to infer the mechanism of action, we identified the lincRNAs which potentially act as miRNA precursors or target mimics. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12298-021-01059-2.
Collapse
Affiliation(s)
- Manu Kandpal
- Grass Genetics and Informatics Group, School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Namrata Dhaka
- Department of Biotechnology, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendergarh, Haryana India
| | - Rita Sharma
- Grass Genetics and Informatics Group, School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani Campus, Pilani, Rajasthan 333031 India
| |
Collapse
|
127
|
Ghorbani F, Abolghasemi R, Haghighi M, Etemadi N, Wang S, Karimi M, Soorni A. Global identification of long non-coding RNAs involved in the induction of spinach flowering. BMC Genomics 2021; 22:704. [PMID: 34587906 PMCID: PMC8482690 DOI: 10.1186/s12864-021-07989-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 09/09/2021] [Indexed: 12/11/2022] Open
Abstract
Background Spinach is a beneficial annual vegetable species and sensitive to the bolting or early flowering, which causes a large reduction in quality and productivity. Indeed, bolting is an event induced by the coordinated effects of various environmental factors and endogenous genetic components. Although some key flowering responsive genes have been identified in spinach, non-coding RNA molecules like long non-coding RNAs (lncRNAs) were not investigated yet. Herein, we used bioinformatic approaches to analyze the transcriptome datasets from two different accessions Viroflay and Kashan at two vegetative and reproductive stages to reveal novel lncRNAs and the construction of the lncRNA-mRNA co-expression network. Additionally, correlations among gene expression modules and phenotypic traits were investigated; day to flowering was chosen as our interesting trait. Results In the present study, we identified a total of 1141 lncRNAs, of which 111 were differentially expressed between vegetative and reproductive stages. The GO and KEGG analyses carried out on the cis target gene of lncRNAs showed that the lncRNAs play an important role in the regulation of flowering spinach. Network analysis pinpointed several well-known flowering-related genes such as ELF, COL1, FLT, and FPF1 and also some putative TFs like MYB, WRKY, GATA, and MADS-box that are important regulators of flowering in spinach and could be potential targets for lncRNAs. Conclusions This study is the first report on identifying bolting and flowering-related lncRNAs based on transcriptome sequencing in spinach, which provides a useful resource for future functional genomics studies, genes expression researches, evaluating genes regulatory networks and molecular breeding programs in the regulation of the genetic mechanisms related to bolting in spinach. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07989-1.
Collapse
Affiliation(s)
- Fatemeh Ghorbani
- Department of Biotechnology, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | - Reza Abolghasemi
- Department of Horticulture, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | - Maryam Haghighi
- Department of Horticulture, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | - Nematollah Etemadi
- Department of Horticulture, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | - Shui Wang
- College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Marzieh Karimi
- Department of Biotechnology, College of Agriculture, Isfahan University of Technology, Isfahan, Iran.,Department of Plant Breeding and Biotechnology, College of Agriculture, University of Shahrekord, Shahrekord, Iran
| | - Aboozar Soorni
- Department of Biotechnology, College of Agriculture, Isfahan University of Technology, Isfahan, Iran.
| |
Collapse
|
128
|
Huang T, Gu W, Liu E, Shi X, Wang B, Wu W, Dong F, Xu G. Comprehensive analysis of miRNA-mRNA/lncRNA during gonadal development of triploid female rainbow trout (Oncorhynchus mykiss). Genomics 2021; 113:3533-3543. [PMID: 34450291 DOI: 10.1016/j.ygeno.2021.08.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 07/28/2021] [Accepted: 08/22/2021] [Indexed: 01/19/2023]
Abstract
Chromosomal ploidy manipulation is one of the means to create excellent germplasm. Triploid fish could provide an ideal sterile model for searching of a underlying mechanism of abnormality in meiosis. The complete understanding of the coding and noncoding RNAs regulating sterility caused by meiosis abnormality is still not well understood. By high-throughput sequencing, we compared the expression profiles of gonadal mRNA, long non-coding RNA (lncRNA), and microRNA (miRNA) at three different developmental stages between the diploid (XX) and triploid (XXX) female rainbow trout. These stages were gonads before differentiation (65 days post fertilisation, dpf), at the beginning of morphological differences (180 dpf) and showing clear difference between diploids and triploids (600 dpf), respectively. A majority of differentially expressed (DE) RNAs were identified, and 22 DE mRNAs related to oocyte meiosis and homologous recombination were characterized. The predicted miRNA-mRNA/lncRNA networks of 3 developmental stages were constructed based on the target pairs of DE lncRNA-miRNA and DE mRNA-miRNA. According to the networks, meiosis-related gene of ccne1 was targeted by dre-miR-15a-5p_R + 1, and 6 targeted DE lncRNAs were identified. Also, qRT-PCR was performed to validate the credibility of the network. Overall, this study explored the potential interplay between coding and noncoding RNAs during the gonadal development of polyploid fish. The mRNA, lncRNA and miRNA screened in this study may be helpful to identify the functional elements regulating fertility of rainbow trout, which may provide reference for character improvement in aquaculture.
Collapse
Affiliation(s)
- Tianqing Huang
- Key Laboratory of Freshwater Aquatic Biotechnology and Breeding, Ministry of Agriculture and Rural Affairs, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
| | - Wei Gu
- Key Laboratory of Freshwater Aquatic Biotechnology and Breeding, Ministry of Agriculture and Rural Affairs, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
| | - Enhui Liu
- Key Laboratory of Freshwater Aquatic Biotechnology and Breeding, Ministry of Agriculture and Rural Affairs, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
| | - Xiulan Shi
- Key Laboratory of Freshwater Aquatic Biotechnology and Breeding, Ministry of Agriculture and Rural Affairs, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
| | - Bingqian Wang
- Key Laboratory of Freshwater Aquatic Biotechnology and Breeding, Ministry of Agriculture and Rural Affairs, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
| | - Wenhua Wu
- Key Laboratory of Freshwater Aquatic Biotechnology and Breeding, Ministry of Agriculture and Rural Affairs, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
| | - Fulin Dong
- Key Laboratory of Freshwater Aquatic Biotechnology and Breeding, Ministry of Agriculture and Rural Affairs, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
| | - Gefeng Xu
- Key Laboratory of Freshwater Aquatic Biotechnology and Breeding, Ministry of Agriculture and Rural Affairs, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China.
| |
Collapse
|
129
|
Cheng C, Liu F, Tian N, Mensah RA, Sun X, Liu J, Wu J, Wang B, Li D, Lai Z. Identification and characterization of early Fusarium wilt responsive mRNAs and long non-coding RNAs in banana root using high-throughput sequencing. Sci Rep 2021; 11:16363. [PMID: 34381122 PMCID: PMC8358008 DOI: 10.1038/s41598-021-95832-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 07/29/2021] [Indexed: 12/03/2022] Open
Abstract
Fusarium wilt disease, caused by Fusarium oxysporum f.sp. cubense (Foc), has been recognized as the most devastating disease to banana. The regulatory role of long non-coding RNAs (lncRNAs) in plant defense has been verified in many plant species. However, the understanding of their role during early FocTR4 (Foc tropical race 4) infection stage is very limited. In this study, lncRNA sequencing was used to reveal banana root transcriptome profile changes during early FocTR4 infection stages. Quantitative real time PCR (qRT-PCR) was performed to confirm the expression of eight differentially expressed (DE) lncRNAs (DELs) and their predicted target genes (DETs), and three DE genes (DEGs). Totally, 12,109 lncRNAs, 36,519 mRNAs and 2642 novel genes were obtained, of which 1398 (including 78 DELs, 1220 DE known genes and 100 DE novel genes) were identified as FocTR4 responsive DE transcripts. Gene function analysis revealed that most DEGs were involved in biosynthesis of secondary metabolites, plant–pathogen interaction, plant hormone signal transduction, phenylalanine metabolism, phenylpropanoid biosynthesis, alpha-linolenic acid metabolism and so on. Coincidently, many DETs have been identified as DEGs in previous transcriptome studies. Moreover, many DETs were found to be involved in ribosome, oxidative phosphorylation, lipoic acid metabolism, ubiquitin mediated proteolysis, N-glycan biosynthesis, protein processing in endoplasmic reticulum and DNA damage response pathways. QRT-PCR result showed the expression patterns of the selected transcripts were mostly consistent with our lncRNA sequencing data. Our present study showed the regulatory role of lncRNAs on known biotic and abiotic stress responsive genes and some new-found FocTR4 responsive genes, which can provide new insights into FocTR4-induced changes in the banana root transcriptome during the early pathogen infection stage.
Collapse
Affiliation(s)
- Chunzhen Cheng
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China. .,College of Horticulture, Shanxi Agricultural University, Taigu, 030801, China.
| | - Fan Liu
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Na Tian
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Raphael Anue Mensah
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xueli Sun
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jiapeng Liu
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Junwei Wu
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Bin Wang
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Dan Li
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zhongxiong Lai
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
130
|
Li L, Jia X, Liu Y, He Y, Pang Y, Shen Y, Xu X, Li J. lncRNA-SUMO3 and lncRNA-HDMO13 modulate the inflammatory response by binding miR-21 and miR-142a-3p in grass carp. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 121:104082. [PMID: 33785433 DOI: 10.1016/j.dci.2021.104082] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 03/01/2021] [Accepted: 03/23/2021] [Indexed: 06/12/2023]
Abstract
Septicemia is a systemic inflammatory response to bacterial infection in grass carp (Ctenopharyngodon idella). It could lead to lethality. There is increasing evidence that long noncoding RNAs are involved in the regulation of inflammatory response. In the present study, we firstly confirmed that lncRNA-SUMO3 and lncRNA-HDMO13 could involve in the inflammatory response following infection with Aeromonas hydrophila. Dual-luciferase reporter assays and lncRNA expression profiling confirmed that lncRNA-SUMO3 and lncRNA-HDMO13 contains a functional miR-21 and miR-142a-3p binding site. Meanwhile, transfection with lncRNAs mimics and inhibitors affected the expression of miRNAs and its target genes, including jnk, ccr7, glut3 and tnfaip2. Moreover, the downstream proinflammatory factors of miR-21 and miR-142a-3p were also regulated by lncRNA-SUMO3 and lncRNA-HDMO13. Our results provide a theoretical basis for exploring the molecular mechanism of grass carp lncRNAs regulating inflammation.
Collapse
Affiliation(s)
- Liuyang Li
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China
| | - Xuewen Jia
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China
| | - Yang Liu
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China
| | - Yan He
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China
| | - Yifan Pang
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China
| | - Yubang Shen
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Xiaoyan Xu
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China.
| | - Jiale Li
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China.
| |
Collapse
|
131
|
Plant long non-coding RNAs in the regulation of transcription. Essays Biochem 2021; 65:751-760. [PMID: 34296250 DOI: 10.1042/ebc20200090] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/19/2021] [Accepted: 06/17/2021] [Indexed: 01/22/2023]
Abstract
Eukaryotic genomes are pervasively transcribed, producing large numbers of non-coding RNAs (ncRNAs), including tens of thousands of long ncRNAs (lncRNAs), defined as ncRNAs longer than 200 nucleotides. Recent studies have revealed the important roles lncRNAs play in the regulation of gene expression at various levels in all eukaryotes; moreover, emerging research in plants has identified roles for lncRNAs in key processes such as flowering time control, root organogenesis, reproduction, and adaptation to environmental changes. LncRNAs participate in regulating most steps of gene expression, including reshaping nuclear organization and chromatin structure; governing multiple steps of transcription, splicing, mRNA stability, and translation; and affecting post-translational protein modifications. In this review, I present the latest progress on the lncRNA-mediated regulatory mechanisms modulating transcription in Arabidopsis thaliana, focusing on their functions in regulation of gene expression via chromatin structure and interactions with the transcriptional machinery.
Collapse
|
132
|
Long Non-Coding RNA and Its Regulatory Network Response to Cold Stress in Eucalyptus urophylla S.T.Blake. FORESTS 2021. [DOI: 10.3390/f12070836] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Long non-coding RNA (lncRNA) plays an important regulatory role in plant growth and development, but its systematic identification and analysis in Eucalyptus has not yet been reported. Cold stress has a huge impact on the survival and yield of Eucalyptus seedlings, but the regulatory mechanism of lncRNA in Eucalyptus in response to cold stress is still unclear. In this study, the transcriptomes of young leaves of Eucalyptus urophylla S.T.Blake under low-temperature treatment and restoration were analyzed by RNA-seq. A total of 11,394 lncRNAs and 46,276 mRNAs were identified, of which 300 were differentially expressed lncRNAs (DE_lncRNAs) and 5606 were differentially expressed target genes of lncRNAs under cold stress, with the total number of target genes of DE_lncRNAs being 1681. A total of 677 differentially expressed transcription factors (TFs) were also identified, mainly including ERF, MYB and the NAC transcription factor family. Gene ontology (GO) analysis of the differentially expressed genes (DEGs) and target genes of DE_lncRNAs was mostly related to the response to cold stress and external stimuli. Furthermore, lncRNA–miRNA–mRNA regulatory networks were constructed, and 22 DE_lncRNAs were predicted to be targets or targeting mimics of 20 miRNAs. A qRT-PCR was used to verify the relative expression of genes in the regulatory EuGBF3-EUC_00002677-MSTRG.7690 network, and it matched the transcriptome data, indicating that it may play an important role in the response to cold stress in E. urophylla. This study provides a new insight into lncRNA and its regulatory network under abiotic stress, especially cold stress in E. urophylla.
Collapse
|
133
|
Abstract
Plants have an extraordinary diversity of transcription machineries, including five nuclear DNA-dependent RNA polymerases. Four of these enzymes are dedicated to the production of long noncoding RNAs (lncRNAs), which are ribonucleic acids with functions independent of their protein-coding potential. lncRNAs display a broad range of lengths and structures, but they are distinct from the small RNA guides of RNA interference (RNAi) pathways. lncRNAs frequently serve as structural, catalytic, or regulatory molecules for gene expression. They can affect all elements of genes, including promoters, untranslated regions, exons, introns, and terminators, controlling gene expression at various levels, including modifying chromatin accessibility, transcription, splicing, and translation. Certain lncRNAs protect genome integrity, while others respond to environmental cues like temperature, drought, nutrients, and pathogens. In this review, we explain the challenge of defining lncRNAs, introduce the machineries responsible for their production, and organize this knowledge by viewing the functions of lncRNAs throughout the structure of a typical plant gene.
Collapse
Affiliation(s)
- Andrzej T Wierzbicki
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109, USA;
| | - Todd Blevins
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, F-67084 Strasbourg, France;
| | - Szymon Swiezewski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland;
| |
Collapse
|
134
|
Xu YC, Zhang J, Zhang DY, Nan YH, Ge S, Guo YL. Identification of long noncoding natural antisense transcripts (lncNATs) correlated with drought stress response in wild rice (Oryza nivara). BMC Genomics 2021; 22:424. [PMID: 34103003 PMCID: PMC8188688 DOI: 10.1186/s12864-021-07754-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 05/27/2021] [Indexed: 11/13/2022] Open
Abstract
Background Wild rice, including Oryza nivara and Oryza rufipogon, which are considered as the ancestors of Asian cultivated rice (Oryza sativa), possess high genetic diversity and serve as a crucial resource for breeding novel cultivars of cultivated rice. Although rice domestication related traits, such as seed shattering and plant architecture, have been intensively studied at the phenotypic and genomic levels, further investigation is needed to understand the molecular basis of phenotypic differences between cultivated and wild rice. Drought stress is one of the most severe abiotic stresses affecting rice growth and production. Adaptation to drought stress involves a cascade of genes and regulatory factors that form complex networks. O. nivara inhabits swampy areas with a seasonally dry climate, which is an ideal material to discover drought tolerance alleles. Long noncoding natural antisense transcripts (lncNATs), a class of long noncoding RNAs (lncRNAs), regulate the corresponding sense transcripts and play an important role in plant growth and development. However, the contribution of lncNATs to drought stress response in wild rice remains largely unknown. Results Here, we conducted strand-specific RNA sequencing (ssRNA-seq) analysis of Nipponbare (O. sativa) and two O. nivara accessions (BJ89 and BJ278) to determine the role of lncNATs in drought stress response in wild rice. A total of 1246 lncRNAs were identified, including 1091 coding–noncoding NAT pairs, of which 50 were expressed only in Nipponbare, and 77 were expressed only in BJ89 and/or BJ278. Of the 1091 coding–noncoding NAT pairs, 240 were differentially expressed between control and drought stress conditions. Among these 240 NAT pairs, 12 were detected only in Nipponbare, and 187 were detected uniquely in O. nivara. Furthermore, 10 of the 240 coding–noncoding NAT pairs were correlated with genes enriched in stress responsive GO terms; among these, nine pairs were uniquely found in O. nivara, and one pair was shared between O. nivara and Nipponbare. Conclusion We identified lncNATs associated with drought stress response in cultivated rice and O. nivara. These results will improve our understanding of the function of lncNATs in drought tolerance and accelerate rice breeding. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07754-4.
Collapse
Affiliation(s)
- Yong-Chao Xu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jie Zhang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dong-Yan Zhang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ying-Hui Nan
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Song Ge
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ya-Long Guo
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
135
|
Gasparis S, Przyborowski M, Nadolska-Orczyk A. Genome-Wide Identification of Barley Long Noncoding RNAs and Analysis of Their Regulatory Interactions during Shoot and Grain Development. Int J Mol Sci 2021; 22:5087. [PMID: 34064912 PMCID: PMC8150791 DOI: 10.3390/ijms22105087] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 05/07/2021] [Accepted: 05/09/2021] [Indexed: 11/17/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) are a class of RNA molecules with gene regulatory functions in plant development and the stress response. Although the number of lncRNAs identified in plants is rapidly increasing, very little is known about their role in barley development. In this study, we performed global identification of barley lncRNAs based on 53 RNAseq libraries derived from nine different barley tissues and organs. In total, 17,250 lncRNAs derived from 10,883 loci were identified, including 8954 novel lncRNAs. Differential expression of lncRNAs was observed in the developing shoot apices and grains, the two organs that have a direct influence on the final yield. The regulatory interaction of differentially expressed lncRNAs with the potential target genes was evaluated. We identified 176 cis-acting lncRNAs in shoot apices and 424 in grains, while the number of trans-acting lncRNAs in these organs was 1736 and 540, respectively. The potential target protein-coding genes were identified, and their biological function was annotated using MapMan ontology. This is the first insight into the roles of lncRNAs in barley development on the genome-wide scale, and our results provide a solid background for future functional studies.
Collapse
Affiliation(s)
- Sebastian Gasparis
- Department of Functional Genomics, Plant Breeding and Acclimatization Institute—National Research Institute, 05-870 Błonie, Radzików, Poland; (M.P.); (A.N.-O.)
| | | | | |
Collapse
|
136
|
Baruah PM, Krishnatreya DB, Bordoloi KS, Gill SS, Agarwala N. Genome wide identification and characterization of abiotic stress responsive lncRNAs in Capsicum annuum. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 162:221-236. [PMID: 33706183 DOI: 10.1016/j.plaphy.2021.02.031] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 02/22/2021] [Indexed: 05/25/2023]
Abstract
Long non-coding RNAs (lncRNAs) are a type of non-coding transcripts having length of more than 200 nucleotides lacking protein-coding ability. In the present study, 12807 lncRNAs were identified in Capsicum annuum tissues exposed to abiotic stress conditions viz. heat, cold, osmotic and salinity stress. Expression analysis of lncRNAs in different treatment conditions demonstrates their stress-specific expression. Thirty lncRNAs were found to act as precursors for 10 microRNAs (miRNAs) of C. annuum. Additionally, a total of 1807 lncRNAs were found to interact with 194 miRNAs which targeted 621 mRNAs of C. annuum. Among these, 344 lncRNAs were found to act as target mimics for 621 genes. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed that out of those 621 gene sequences, 546 were tagged with GO terms, 105 Enzyme Code (EC) numbers were assigned to 246 genes and 223 genes are found to be involved in 63 biological pathways. In this report, we have highlighted the prospective role of lncRNAs in different abiotic stress conditions by interacting with miRNAs and regulating stress responsive transcription factors (TFs) such as DoF, WRKY, MYB, bZIP and ERF in C. annuum.
Collapse
Affiliation(s)
- Pooja Moni Baruah
- Department of Botany, Gauhati University, Jalukbari, Guwahati, Assam, 781014, India
| | | | | | - Sarvajeet Singh Gill
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, Haryana, 124 001, India
| | - Niraj Agarwala
- Department of Botany, Gauhati University, Jalukbari, Guwahati, Assam, 781014, India.
| |
Collapse
|
137
|
Li J, Li N, Zhu L, Zhang Z, Li X, Wang J, Xun H, Zhao J, Wang X, Wang T, Wang H, Liu B, Li Y, Gong L. Mutation of a major CG methylase alters genome-wide lncRNA expression in rice. G3-GENES GENOMES GENETICS 2021; 11:6146525. [PMID: 33617633 PMCID: PMC8049413 DOI: 10.1093/g3journal/jkab049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 02/08/2021] [Indexed: 11/14/2022]
Abstract
Plant long non-coding RNAs (lncRNAs) function in diverse biological processes, and lncRNA expression is under epigenetic regulation, including by cytosine DNA methylation. However, it remains unclear whether 5-methylcytosine (5mC) plays a similar role in different sequence contexts (CG, CHG, and CHH). In this study, we characterized and compared the profiles of genome-wide lncRNA profiles (including long intergenic non-coding RNAs [lincRNAs] and long noncoding natural antisense transcripts [lncNATs]) of a null mutant of the rice DNA methyltransferase 1, OsMET1-2 (designated OsMET1-2-/-) and its isogenic wild type (OsMET1-2+/+). The En/Spm transposable element (TE) family, which was heavily methylated in OsMET1-2+/+, was transcriptionally de-repressed in OsMET1-2-/- due to genome-wide erasure of CG methylation, and this led to abundant production of specific lncRNAs. In addition, RdDM-mediated CHH hypermethylation was increased in the 5'-upstream genomic regions of lncRNAs in OsMET1-2-/-. The positive correlation between the expression of lincRNAs and that of their proximal protein-coding genes was also analyzed. Our study shows that CG methylation negatively regulates the TE-related expression of lncRNA and demonstrates that CHH methylation is also involved in the regulation of lncRNA expression.
Collapse
Affiliation(s)
- Juzuo Li
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Ning Li
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Ling Zhu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Zhibin Zhang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Xiaochong Li
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Jinbin Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Hongwei Xun
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun 130033, China
| | - Jing Zhao
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Xiaofei Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Tianya Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Hongyan Wang
- Laboratory of Plant Epigenetics and Evolution, School of Life Science, Liaoning University, Shenyang 110036, China
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Yu Li
- Engineering Research Center of the Ministry of Education (MOE) for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, Jilin 130118, China
| | - Lei Gong
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| |
Collapse
|
138
|
AlnC: An extensive database of long non-coding RNAs in angiosperms. PLoS One 2021; 16:e0247215. [PMID: 33852582 PMCID: PMC8046212 DOI: 10.1371/journal.pone.0247215] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 03/27/2021] [Indexed: 11/19/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are defined as transcripts of greater than 200 nucleotides that play a crucial role in various cellular processes such as the development, differentiation and gene regulation across all eukaryotes, including plant cells. Since the last decade, there has been a significant rise in our understanding of lncRNA molecular functions in plants, resulting in an exponential increase in lncRNA transcripts, while these went unannounced from the major Angiosperm plant species despite the availability of large-scale high throughput sequencing data in public repositories. We, therefore, developed a user-friendly, open-access web interface, AlnC (Angiosperm lncRNA Catalogue) for the exploration of lncRNAs in diverse Angiosperm plant species using recent 1000 plant (1KP) trancriptomes data. The current version of AlnC offers 10,855,598 annotated lncRNA transcripts across 682 Angiosperm plant species encompassing 809 tissues. To improve the user interface, we added features for browsing, searching, and downloading lncRNA data, interactive graphs, and an online BLAST service. Additionally, each lncRNA record is annotated with possible small open reading frames (sORFs) to facilitate the study of peptides encoded within lncRNAs. With this user-friendly interface, we anticipate that AlnC will provide a rich source of lncRNAs for small-and large-scale studies in a variety of flowering plants, as well as aid in the improvement of key characteristics in relevance to their economic importance. Database URL: http://www.nipgr.ac.in/AlnC
Collapse
|
139
|
Yu J, Bennett D, Dardick C, Zhebentyayeva T, Abbott AG, Liu Z, Staton ME. Genome-Wide Changes of Regulatory Non-Coding RNAs Reveal Pollen Development Initiated at Ecodormancy in Peach. Front Mol Biosci 2021; 8:612881. [PMID: 33968979 PMCID: PMC8098804 DOI: 10.3389/fmolb.2021.612881] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 02/15/2021] [Indexed: 11/15/2022] Open
Abstract
Bud dormancy is under the regulation of complex mechanisms including genetic and epigenetic factors. To study the function of regulatory non-coding RNAs in winter dormancy release, we analyzed the small RNA and long non-coding RNA (lncRNA) expression from peach (Prunus persica) floral buds in endodormancy, ecodormancy and bud break stages. Small RNAs underwent a major shift in expression primarily between dormancy and flowering with specific pairs of microRNAs and their mRNA target genes undergoing coordinated differential expression. From endodormancy to ecodormancy, ppe-miR6285 was significantly upregulated while its target gene, an ASPARAGINE-RICH PROTEIN involved in the regulation of abscisic acid signaling, was downregulated. At ecodormancy, ppe-miR2275, a homolog of meiosis-specific miR2275 across angiosperms, was significantly upregulated, supporting microsporogenesis in anthers at a late stage of dormancy. The expression of 785 lncRNAs, unlike the overall expression pattern in the small RNAs, demonstrated distinctive expression signatures across all dormancy and flowering stages. We predicted that a subset of lncRNAs were targets of microRNAs and found 18 lncRNA/microRNA target pairs with both differentially expressed across time points. The genome-wide differential expression and network analysis of non-coding RNAs and mRNAs from the same tissues provide new candidate loci for dormancy regulation and suggest complex noncoding RNA interactions control transcriptional regulation across these key developmental time points.
Collapse
Affiliation(s)
- Jiali Yu
- Genome Science and Technology Program, University of Tennessee, Knoxville, TN, United States
| | - Dennis Bennett
- Appalachian Fruit Research Station, United States Department of Agriculture-Agriculture Research Service, Kearneysville, WV, United States
| | - Christopher Dardick
- Appalachian Fruit Research Station, United States Department of Agriculture-Agriculture Research Service, Kearneysville, WV, United States
| | - Tetyana Zhebentyayeva
- Department of Ecosystem Science and Management, Schatz Center for Tree Molecular Genetics, The Pennsylvania State University, University Park, PA, United States
| | - Albert G Abbott
- Forest Health Research and Education Center, University of Kentucky, Lexington, KY, United States
| | - Zongrang Liu
- Appalachian Fruit Research Station, United States Department of Agriculture-Agriculture Research Service, Kearneysville, WV, United States
| | - Margaret E Staton
- Genome Science and Technology Program, University of Tennessee, Knoxville, TN, United States.,Department of Entomology and Plant Pathology, Institute of Agriculture, University of Tennessee, Knoxville, TN, United States
| |
Collapse
|
140
|
Ma B, Zhang A, Zhao Q, Li Z, Lamboro A, He H, Li Y, Jiao S, Guan S, Liu S, Yao D, Zhang J. Genome-wide identification and analysis of long non-coding RNAs involved in fatty acid biosynthesis in young soybean pods. Sci Rep 2021; 11:7603. [PMID: 33828134 PMCID: PMC8027399 DOI: 10.1038/s41598-021-87048-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 03/22/2021] [Indexed: 02/01/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are non-coding RNAs of more than 200 nucleotides. To date, the roles of lncRNAs in soybean fatty acid synthesis have not been fully studied. Here, the low-linolenic acid mutant 'MT72' and the wild-type control 'JN18' were used as materials. The lncRNAs in young pods at 30 and 40 days (d) after flowering were systematically identified and analyzed using transcriptome sequencing technology combined with bioinformatics tools. A total of 39,324 lncRNAs and 561 differentially expressed lncRNAs were identified. A lncRNAs-miRNAs-protein-coding genes (mRNAs) network was constructed, and 46 lncRNAs, 46 miRNAs and 137 mRNAs were found to be correlated. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of 12 targeted mRNAs in the competing endogenous RNA network showed that these lncRNAs may be involved in the biological processes of fatty acid transport, lipid synthesis and cell division. Finally, the expression levels of differentially expressed lncRNAs, miRNAs and mRNAs were verified using qRT-PCR. The expression patterns of most genes were consistent with the sequencing results. In conclusion, new information was provided for the study of fatty acid synthesis by lncRNAs in young soybean pods.
Collapse
Affiliation(s)
- Bohan Ma
- College of Life Sciences, Jilin Agricultural University, Changchun, 130118, China
| | - Aijing Zhang
- College of Life Sciences, Jilin Agricultural University, Changchun, 130118, China
| | - Qiuzhu Zhao
- College of Life Sciences, Jilin Agricultural University, Changchun, 130118, China
| | - Zeyuan Li
- College of Life Sciences, Jilin Agricultural University, Changchun, 130118, China
| | - Abraham Lamboro
- College of Agronomy, Jilin Agricultural University, Changchun, 130118, Jilin, China
| | - Haobo He
- College of Life Sciences, Jilin Agricultural University, Changchun, 130118, China
| | - Yue Li
- College of Life Sciences, Jilin Agricultural University, Changchun, 130118, China
| | - Suqi Jiao
- College of Life Sciences, Jilin Agricultural University, Changchun, 130118, China
| | - Shuyan Guan
- College of Life Sciences, Jilin Agricultural University, Changchun, 130118, China
| | - Siyan Liu
- College of Life Sciences, Jilin Agricultural University, Changchun, 130118, China
| | - Dan Yao
- College of Life Sciences, Jilin Agricultural University, Changchun, 130118, China.
| | - Jun Zhang
- College of Agronomy, Jilin Agricultural University, Changchun, 130118, Jilin, China.
| |
Collapse
|
141
|
Mao H, Xu X, Cao H, Dong X, Zou X, Xu N, Yin Z. Comparative Transcriptome Profiling of mRNA and lncRNA of Ovaries in High and Low Egg Production Performance in Domestic Pigeons ( Columba livia). Front Genet 2021; 12:571325. [PMID: 33833772 PMCID: PMC8021926 DOI: 10.3389/fgene.2021.571325] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 03/01/2021] [Indexed: 12/22/2022] Open
Abstract
Egg production performance is one of the most important economic traits in pigeon industry. However, little is known regarding how egg production performance is regulated by long non-coding RNAs (lncRNAs) in pigeons. To evaluate the lncRNAs and mRNAs in ovaries associated with egg production performance in domestic pigeons, high-throughput RNA sequencing of ovaries between high and low egg production performance groups were performed and analyzed in this study. A total of 34,346 mRNAs and 24,601 lncRNAs were identified, including 14,525 known lncRNAs and 10,076 novel lncRNAs, of which 811 mRNAs and 148 lncRNAs (P < 0.05) were significantly differentially expressed (DE) between the groups of high and low egg production performance. GO and KEGG annotation analysis indicated that the target genes of DE lncRNAs and DE mRNAs were related to cell differentiation, ATP binding and methylation. Moreover, we found that FOXK2, a target gene of lncRNA MSTRG.7894.4, was involved in regulating estrogen receptors. Our study provided a catalog of lncRNAs and mRNAs associated with egg production performance, and they deserve further study to deepen the understanding of biological processes in the ovaries of pigeons.
Collapse
Affiliation(s)
- Haiguang Mao
- Animal Science College, Zhejiang University, Hangzhou, Zhejiang, China
- School of Biological and Chemical Engineering, Ningbo Tech University, Ningbo, Zhejiang, China
| | - Xiuli Xu
- Animal Science College, Zhejiang University, Hangzhou, Zhejiang, China
| | - Haiyue Cao
- Animal Science College, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xinyang Dong
- Animal Science College, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiaoting Zou
- Animal Science College, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ningying Xu
- Animal Science College, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhaozheng Yin
- Animal Science College, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
142
|
Jain P, Hussian S, Nishad J, Dubey H, Bisht DS, Sharma TR, Mondal TK. Identification and functional prediction of long non-coding RNAs of rice (Oryza sativa L.) at reproductive stage under salinity stress. Mol Biol Rep 2021; 48:2261-2271. [PMID: 33742326 DOI: 10.1007/s11033-021-06246-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 02/20/2021] [Indexed: 11/28/2022]
Abstract
Salinity adversely affects the yield and growth of rice (Oryza sativa L.) plants severely, particularly at reproductive stage. Long non-coding RNAs (lncRNAs) are key regulators of diverse molecular and cellular processes in plants. Till now, no systematic study has been reported for regulatory roles of lncRNAs in rice under salinity at reproductive stage. In this study, total 80 RNA-seq data of Horkuch (salt-tolerant) and IR-29 (salt-sensitive) genotypes of rice were used and found 1626 and 2208 transcripts as putative high confidence lncRNAs, among which 1529 and 2103 were found to be novel putative lncRNAs in root and leaf tissue respectively. In Horkuch and IR-29, 14 and 16 lncRNAs were differentially expressed in root tissue while 18 and 63 lncRNAs were differentially expressed in leaf tissue. Interaction analysis among the lncRNAs, miRNAs and corresponding mRNAs indicated that these modules are involved in different biochemical pathways e.g. phenyl propanoid pathway during salinity stress in rice. Interestingly, two differentially expressed lncRNAs such as TCONS_00008914 and TCONS_00008749 were found as putative target mimics of known rice miRNAs. This study indicates that lncRNAs are involved in salinity adaptation of rice at reproductive stage through certain biochemical pathways.
Collapse
Affiliation(s)
- Priyanka Jain
- ICAR- National Institute for Plant Biotechnology, LBS Centre, IARI Campus, Pusa, New Delhi, 110012, India
| | - Samreen Hussian
- ICAR- National Institute for Plant Biotechnology, LBS Centre, IARI Campus, Pusa, New Delhi, 110012, India
| | - Jyoti Nishad
- ICAR- National Institute for Plant Biotechnology, LBS Centre, IARI Campus, Pusa, New Delhi, 110012, India
| | - Himanshu Dubey
- ICAR- National Institute for Plant Biotechnology, LBS Centre, IARI Campus, Pusa, New Delhi, 110012, India
| | - Deepak Singh Bisht
- ICAR- National Institute for Plant Biotechnology, LBS Centre, IARI Campus, Pusa, New Delhi, 110012, India
| | - Tilak Raj Sharma
- ICAR- National Institute for Plant Biotechnology, LBS Centre, IARI Campus, Pusa, New Delhi, 110012, India
| | - Tapan Kumar Mondal
- ICAR- National Institute for Plant Biotechnology, LBS Centre, IARI Campus, Pusa, New Delhi, 110012, India.
| |
Collapse
|
143
|
Zheng W, Hu H, Lu Q, Jin P, Cai L, Hu C, Yang J, Dai L, Chen J. Genome-Wide Identification and Characterization of Long Noncoding RNAs Involved in Chinese Wheat Mosaic Virus Infection of Nicotiana benthamiana. BIOLOGY 2021; 10:biology10030232. [PMID: 33802832 PMCID: PMC8002735 DOI: 10.3390/biology10030232] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/23/2021] [Accepted: 03/11/2021] [Indexed: 12/30/2022]
Abstract
Simple Summary Recent studies have shown that a large number of long noncoding RNAs (lncRNAs) can regulate various biological processes in animals and plants. However, the roles of long non-coding RNAs (lncRNAs) in the interaction between plants and viruses is unclear, particularly for the Chinese wheat mosaic virus (CWMV) interaction. In this study, we used a deep RNA sequencing strategy to profile lncRNAs involved in the response to CWMV infection in Nicotiana benthamiana and analyzed differentially expressed lncRNAs that responded to CWMV infection, using a bioinformatics method. We identified 1175 new lncRNAs in N. benthamiana infected with CWMV, with 65 lncRNAs showing differential expression. These lncRNAs were mainly enriched in plant hormone signal transduction and other pathways according to GO and KEGG pathway enrichment analyses. In addition, differential expression of XLOC_006393 after CWMV infection may be the precursor of NbmiR168c, which can respond to CWMV infection by modulating the expression of its target gene NbAGO1. We believe that our study makes a significant contribution to the literature because these results provide a valuable resource for studying lncRNAs involved in CWMV infection and improving the understanding of the molecular mechanism of CWMV infection. Abstract Recent studies have shown that a large number of long noncoding RNAs (lncRNAs) can regulate various biological processes in animals and plants. Although lncRNAs have been identified in many plants, they have not been reported in the model plant Nicotiana benthamiana. Particularly, the role of lncRNAs in plant virus infection remains unknown. In this study, we identified lncRNAs in N. benthamiana response to Chinese wheat mosaic virus (CWMV) infection by RNA sequencing. A total of 1175 lncRNAs, including 65 differentially expressed lncRNAs, were identified during CWMV infection. We then analyzed the functions of some of these differentially expressed lncRNAs. Interestingly, one differentially expressed lncRNA, XLOC_006393, was found to participate in CWMV infection as a precursor to microRNAs in N. benthamiana. These results suggest that lncRNAs play an important role in the regulatory network of N. benthamiana in response to CWMV infection.
Collapse
Affiliation(s)
- Weiran Zheng
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China; (W.Z.); (H.H.); (Q.L.); (P.J.); (L.C.); (C.H.)
| | - Haichao Hu
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China; (W.Z.); (H.H.); (Q.L.); (P.J.); (L.C.); (C.H.)
- State Key Laboratory for Quality and Safety of Agro-Products, Institute of Plant Virology, Ningbo University, Ningbo 315211, China;
| | - Qisen Lu
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China; (W.Z.); (H.H.); (Q.L.); (P.J.); (L.C.); (C.H.)
- State Key Laboratory for Quality and Safety of Agro-Products, Institute of Plant Virology, Ningbo University, Ningbo 315211, China;
| | - Peng Jin
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China; (W.Z.); (H.H.); (Q.L.); (P.J.); (L.C.); (C.H.)
- State Key Laboratory for Quality and Safety of Agro-Products, Institute of Plant Virology, Ningbo University, Ningbo 315211, China;
| | - Linna Cai
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China; (W.Z.); (H.H.); (Q.L.); (P.J.); (L.C.); (C.H.)
- State Key Laboratory for Quality and Safety of Agro-Products, Institute of Plant Virology, Ningbo University, Ningbo 315211, China;
| | - Cailin Hu
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China; (W.Z.); (H.H.); (Q.L.); (P.J.); (L.C.); (C.H.)
- State Key Laboratory for Quality and Safety of Agro-Products, Institute of Plant Virology, Ningbo University, Ningbo 315211, China;
| | - Jian Yang
- State Key Laboratory for Quality and Safety of Agro-Products, Institute of Plant Virology, Ningbo University, Ningbo 315211, China;
| | - Liangying Dai
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China; (W.Z.); (H.H.); (Q.L.); (P.J.); (L.C.); (C.H.)
- Correspondence: (L.D.); (J.C.)
| | - Jianping Chen
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China; (W.Z.); (H.H.); (Q.L.); (P.J.); (L.C.); (C.H.)
- State Key Laboratory for Quality and Safety of Agro-Products, Institute of Plant Virology, Ningbo University, Ningbo 315211, China;
- Correspondence: (L.D.); (J.C.)
| |
Collapse
|
144
|
Naithani S, Dikeman D, Garg P, Al-Bader N, Jaiswal P. Beyond gene ontology (GO): using biocuration approach to improve the gene nomenclature and functional annotation of rice S-domain kinase subfamily. PeerJ 2021; 9:e11052. [PMID: 33777532 PMCID: PMC7971086 DOI: 10.7717/peerj.11052] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 02/11/2021] [Indexed: 12/13/2022] Open
Abstract
The S-domain subfamily of receptor-like kinases (SDRLKs) in plants is poorly characterized. Most members of this subfamily are currently assigned gene function based on the S-locus Receptor Kinase from Brassica that acts as the female determinant of self-incompatibility (SI). However, Brassica like SI mechanisms does not exist in most plants. Thus, automated Gene Ontology (GO) pipelines are not sufficient for functional annotation of SDRLK subfamily members and lead to erroneous association with the GO biological process of SI. Here, we show that manual bio-curation can help to correct and improve the gene annotations and association with relevant biological processes. Using publicly available genomic and transcriptome datasets, we conducted a detailed analysis of the expansion of the rice (Oryza sativa) SDRLK subfamily, the structure of individual genes and proteins, and their expression.The 144-member SDRLK family in rice consists of 82 receptor-like kinases (RLKs) (67 full-length, 15 truncated),12 receptor-like proteins, 14 SD kinases, 26 kinase-like and 10 GnK2 domain-containing kinases and RLKs. Except for nine genes, all other SDRLK family members are transcribed in rice, but they vary in their tissue-specific and stress-response expression profiles. Furthermore, 98 genes show differential expression under biotic stress and 98 genes show differential expression under abiotic stress conditions, but share 81 genes in common.Our analysis led to the identification of candidate genes likely to play important roles in plant development, pathogen resistance, and abiotic stress tolerance. We propose a nomenclature for 144 SDRLK gene family members based on gene/protein conserved structural features, gene expression profiles, and literature review. Our biocuration approach, rooted in the principles of findability, accessibility, interoperability and reusability, sets forth an example of how manual annotation of large-gene families can fill in the knowledge gap that exists due to the implementation of automated GO projections, thereby helping to improve the quality and contents of public databases.
Collapse
Affiliation(s)
- Sushma Naithani
- Botany and Plant Pathology, Oregon State University, Corvallis, OR, USA
| | - Daemon Dikeman
- Botany and Plant Pathology, Oregon State University, Corvallis, OR, USA
| | - Priyanka Garg
- Botany and Plant Pathology, Oregon State University, Corvallis, OR, USA
| | - Noor Al-Bader
- Botany and Plant Pathology, Oregon State University, Corvallis, OR, USA
| | - Pankaj Jaiswal
- Botany and Plant Pathology, Oregon State University, Corvallis, OR, USA
| |
Collapse
|
145
|
Tian P, Zhang X, Xia R, Liu Y, Wang M, Li B, Liu T, Shi J, Wing RA, Meyers BC, Chen M. Evolution and diversification of reproductive phased small interfering RNAs in Oryza species. THE NEW PHYTOLOGIST 2021; 229:2970-2983. [PMID: 33111313 DOI: 10.1111/nph.17035] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 10/12/2020] [Indexed: 05/20/2023]
Abstract
In grasses, two types of phased, small interfering RNAs (phasiRNAs) are expressed largely in young, developing anthers. They are 21 or 24 nucleotides (nt) in length and are triggered by miR2118 or miR2275, respectively. However, most of their functions and activities are not fully understood. We performed comparative genomic analysis of their source loci (PHAS) in five Oryza genomes and combined this with analysis of high-throughput sRNA and degradome datasets. In total, we identified 8216 21-PHAS and 626 24-PHAS loci. Local tandem and segmental duplications mainly contributed to the expansion and supercluster distribution of the 21-PHAS loci. Despite their relatively conserved genomic positions, PHAS sequences diverged rapidly, except for the miR2118/2275 target sites, which were under strong selection for conservation. We found that 21-nt phasiRNAs with a 5'-terminal uridine (U) demonstrated cis-cleavage at PHAS precursors, and these cis-acting sites were also variable among close species. miR2118 could trigger phasiRNA production from its own antisense transcript and the derived phasiRNAs might reversibly regulate miR2118 precursors. We hypothesised that successful initiation of phasiRNA biogenesis is conservatively maintained, while phasiRNA products diverged quickly and are not individually conserved. In particular, phasiRNA production is under the control of multiple reciprocal regulation mechanisms.
Collapse
Affiliation(s)
- Peng Tian
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Xuemei Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Rui Xia
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Yang Liu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Meijiao Wang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Bo Li
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Tieyan Liu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jinfeng Shi
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Rod A Wing
- Arizona Genomics Institute, BIO5 Institute and School of Plant Sciences, University of Arizona, Tucson, AZ, 85721, USA
| | - Blake C Meyers
- Division of Plant Sciences, 52 Agriculture Laboratory, University of Missouri, Columbia, Missouri, 65211, USA
- Donald Danforth Plant Science Center, 975 North Warson Road, St Louis, MO, 63132, USA
| | - Mingsheng Chen
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| |
Collapse
|
146
|
Zheng X, Chen Y, Zhou Y, Shi K, Hu X, Li D, Ye H, Zhou Y, Wang K. Full-length annotation with multistrategy RNA-seq uncovers transcriptional regulation of lncRNAs in cotton. PLANT PHYSIOLOGY 2021; 185:179-195. [PMID: 33631798 PMCID: PMC8133545 DOI: 10.1093/plphys/kiaa003] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 10/16/2020] [Indexed: 05/11/2023]
Abstract
Long noncoding RNAs (lncRNAs) are crucial factors during plant development and environmental responses. To build an accurate atlas of lncRNAs in the diploid cotton Gossypium arboreum, we combined Isoform-sequencing, strand-specific RNA-seq (ssRNA-seq), and cap analysis gene expression (CAGE-seq) with PolyA-seq and compiled a pipeline named plant full-length lncRNA to integrate multi-strategy RNA-seq data. In total, 9,240 lncRNAs from 21 tissue samples were identified. 4,405 and 4,805 lncRNA transcripts were supported by CAGE-seq and PolyA-seq, respectively, among which 6.7% and 7.2% had multiple transcription start sites (TSSs) and transcription termination sites (TTSs). We revealed that alternative usage of TSS and TTS of lncRNAs occurs pervasively during plant growth. Besides, we uncovered that many lncRNAs act in cis to regulate adjacent protein-coding genes (PCGs). It was especially interesting to observe 64 cases wherein the lncRNAs were involved in the TSS alternative usage of PCGs. We identified lncRNAs that are coexpressed with ovule- and fiber development-associated PCGs, or linked to GWAS single-nucleotide polymorphisms. We mapped the genome-wide binding sites of two lncRNAs with chromatin isolation by RNA purification sequencing. We also validated the transcriptional regulatory role of lnc-Ga13g0352 via virus-induced gene suppression assay, indicating that this lncRNA might act as a dual-functional regulator that either activates or inhibits the transcription of target genes.
Collapse
Affiliation(s)
- Xiaomin Zheng
- College of Life Sciences, Wuhan University, Wuhan 430000, China
| | - Yanjun Chen
- College of Life Sciences, Wuhan University, Wuhan 430000, China
| | - Yifan Zhou
- College of Life Sciences, Wuhan University, Wuhan 430000, China
| | - Keke Shi
- College of Life Sciences, Wuhan University, Wuhan 430000, China
| | - Xiao Hu
- College of Life Sciences, Wuhan University, Wuhan 430000, China
| | - Danyang Li
- College of Life Sciences, Wuhan University, Wuhan 430000, China
| | - Hanzhe Ye
- College of Life Sciences, Wuhan University, Wuhan 430000, China
| | - Yu Zhou
- College of Life Sciences, Wuhan University, Wuhan 430000, China
- Institute for Advanced Studies, Wuhan University, Wuhan 430000, China
| | - Kun Wang
- College of Life Sciences, Wuhan University, Wuhan 430000, China
- Author for communication:
| |
Collapse
|
147
|
Zhou C, Zhou H, Ma X, Yang H, Wang P, Wang G, Zheng L, Zhang Y, Liu X. Genome-Wide Identification and Characterization of Main Histone Modifications in Sorghum Decipher Regulatory Mechanisms Involved by mRNA and Long Noncoding RNA Genes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:2337-2347. [PMID: 33555853 DOI: 10.1021/acs.jafc.0c07035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Post-translational modifications of histones play an important chromatic role of a transcript activity in eukaryotes. Even though mRNA and long noncoding RNA (lncRNA) genes share similar biogenetic processes, these transcript classes may differ in many ways. However, knowledge about the crosstalk between histone methylations and the two types of sorghum genes is still ambiguous. In the present study, we reveal the genome-wide distribution of six histone modifications, namely, di- and trimethylation of H3K4 (H3K4me2 and H3K4me3), H3K27 (H3K27me2 and H3K27me3), and H3K36 (H3K36me2 and H3K36me3) in sorghum and analyze their functional relationships. Unlike other histone methylation, the codecoration of H3K4me3 and H3K36me3 is negatively associated with the production of lincRNAs in the context of active expression of mRNA genes. Our data demonstrated that H3K4me3 may act as a complementary component to H3K36me3 in the transcriptional regulatory process. Moreover, we observe that both H3K4me3 and H3K36me3 are involved in the negative-going regulation of plant lincRNA and mRNA genes. Our data provide a genome-wide landscape of histone methylation in sorghum, decrypt its reciprocity, and shed light on its transcriptional regulation roles in mRNA and lncRNA genes.
Collapse
Affiliation(s)
- Chao Zhou
- Key Laboratory of Three Gorges Regional Plant Genetics and Germplasm Enhancement (CTGU), Biotechnology Research Center, China Three Gorges University, Yichang 443002, China
| | - Hanlin Zhou
- Key Laboratory of Three Gorges Regional Plant Genetics and Germplasm Enhancement (CTGU), Biotechnology Research Center, China Three Gorges University, Yichang 443002, China
| | - Xueping Ma
- Laboratory of Medicinal Plant, Institute of Basic Medical Sciences, School of Basic Medicine, Biomedical Research Institute, Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan 442000, China
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan 442000, China
| | - Huilan Yang
- Institute for Interdisciplinary Research, Jianghan University, Wuhan 430056, China
| | - Ping Wang
- Institute for Interdisciplinary Research, Jianghan University, Wuhan 430056, China
| | - Guodong Wang
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Lanlan Zheng
- Laboratory of Medicinal Plant, Institute of Basic Medical Sciences, School of Basic Medicine, Biomedical Research Institute, Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan 442000, China
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan 442000, China
| | - Yonghong Zhang
- Laboratory of Medicinal Plant, Institute of Basic Medical Sciences, School of Basic Medicine, Biomedical Research Institute, Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan 442000, China
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan 442000, China
| | - Xiaoyun Liu
- Institute for Interdisciplinary Research, Jianghan University, Wuhan 430056, China
| |
Collapse
|
148
|
Bonidia RP, Sampaio LDH, Domingues DS, Paschoal AR, Lopes FM, de Carvalho ACPLF, Sanches DS. Feature extraction approaches for biological sequences: a comparative study of mathematical features. Brief Bioinform 2021; 22:6135010. [PMID: 33585910 DOI: 10.1093/bib/bbab011] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/13/2020] [Accepted: 01/07/2021] [Indexed: 11/14/2022] Open
Abstract
As consequence of the various genomic sequencing projects, an increasing volume of biological sequence data is being produced. Although machine learning algorithms have been successfully applied to a large number of genomic sequence-related problems, the results are largely affected by the type and number of features extracted. This effect has motivated new algorithms and pipeline proposals, mainly involving feature extraction problems, in which extracting significant discriminatory information from a biological set is challenging. Considering this, our work proposes a new study of feature extraction approaches based on mathematical features (numerical mapping with Fourier, entropy and complex networks). As a case study, we analyze long non-coding RNA sequences. Moreover, we separated this work into three studies. First, we assessed our proposal with the most addressed problem in our review, e.g. lncRNA and mRNA; second, we also validate the mathematical features in different classification problems, to predict the class of lncRNA, e.g. circular RNAs sequences; third, we analyze its robustness in scenarios with imbalanced data. The experimental results demonstrated three main contributions: first, an in-depth study of several mathematical features; second, a new feature extraction pipeline; and third, its high performance and robustness for distinct RNA sequence classification. Availability: https://github.com/Bonidia/FeatureExtraction_BiologicalSequences.
Collapse
Affiliation(s)
- Robson P Bonidia
- Department of Computer Science, Bioinformatics Graduate Program (PPGBIOINFO), Federal University of Technology - Paraná, UTFPR, Campus Cornélio Procópio, 86300-000, Brazil.,Institute of Mathematics and Computer Sciences, University of São Paulo - USP, São Carlos, 13566-590, Brazil
| | - Lucas D H Sampaio
- Department of Computer Science, Bioinformatics Graduate Program (PPGBIOINFO), Federal University of Technology - Paraná, UTFPR, Campus Cornélio Procópio, 86300-000, Brazil
| | - Douglas S Domingues
- Department of Computer Science, Bioinformatics Graduate Program (PPGBIOINFO), Federal University of Technology - Paraná, UTFPR, Campus Cornélio Procópio, 86300-000, Brazil.,Department of Botany, Institute of Biosciences, São Paulo State University (UNESP), Rio Claro 13506-900, Brazil
| | - Alexandre R Paschoal
- Department of Computer Science, Bioinformatics Graduate Program (PPGBIOINFO), Federal University of Technology - Paraná, UTFPR, Campus Cornélio Procópio, 86300-000, Brazil
| | - Fabrício M Lopes
- Department of Computer Science, Bioinformatics Graduate Program (PPGBIOINFO), Federal University of Technology - Paraná, UTFPR, Campus Cornélio Procópio, 86300-000, Brazil
| | - André C P L F de Carvalho
- Institute of Mathematics and Computer Sciences, University of São Paulo - USP, São Carlos, 13566-590, Brazil
| | - Danilo S Sanches
- Department of Computer Science, Bioinformatics Graduate Program (PPGBIOINFO), Federal University of Technology - Paraná, UTFPR, Campus Cornélio Procópio, 86300-000, Brazil
| |
Collapse
|
149
|
Integrated analysis of lncRNA and mRNA transcriptomes reveals the potential regulatory role of lncRNA in kiwifruit ripening and softening. Sci Rep 2021; 11:1671. [PMID: 33462344 PMCID: PMC7814023 DOI: 10.1038/s41598-021-81155-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 01/04/2021] [Indexed: 12/04/2022] Open
Abstract
Kiwifruit has gained increasing attention worldwide for its unique flavor and high nutritional value. Rapid softening after harvest greatly shortens its shelf-life and reduces the commercial value. Therefore, it is imperative and urgent to identify and clarify its softening mechanism. This study aimed to analyze and compare the long noncoding RNA (lncRNA) and mRNA expression patterns in ABA-treated (ABA) and room temperature (RT)-stored fruits with those in freshly harvested fruits (CK) as control. A total of 697 differentially expressed genes (DEGs) and 81 differentially expressed lncRNAs (DELs) were identified while comparing ABA with CK, and 458 DEGs and 143 DELs were detected while comparing RT with CK. The Kyoto Encyclopedia of Genes and Genomes analysis of the identified DEGs and the target genes of DELs revealed that genes involved in starch and sucrose metabolism, brassinosteroid biosynthesis, plant hormone signal transduction, and flavonoid biosynthesis accounted for a large part. The co-localization networks, including 38 DEGs and 31 DELs in ABA vs. CK, and 25 DEGs and 25 DELs in RT vs. CK, were also performed. Genes related to fruit ripening, such as genes encoding β-galactosidase, mannan endo-1,4-β-mannosidase, pectinesterase/pectinesterase inhibitor, and NAC transcription factor, were present in the co-localization network, suggesting that lncRNAs were involved in regulating kiwifruit ripening. Notably, several ethylene biosynthesis- and signaling-related genes, including one 1-aminocyclopropane-1-carboxylic acid oxidase gene and three ethylene response factor genes, were found in the co-localization network of ABA vs. CK, suggesting that the promoting effect of ABA on ethylene biosynthesis and fruit softening might be embodied by increasing the expression of these lncRNAs. These results may help understand the regulatory mechanism of lncRNAs in ripening and ABA-induced fruit softening of kiwifruit.
Collapse
|
150
|
Han Y, Zhao Y, Wang H, Zhang Y, Ding Q, Ma L. Identification of ceRNA and candidate genes related to fertility conversion of TCMS line YS3038 in wheat. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 158:190-207. [PMID: 33214039 DOI: 10.1016/j.plaphy.2020.10.037] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 10/28/2020] [Indexed: 06/11/2023]
Abstract
Previous studies have indicated that noncoding RNAs are important factors in gene functions. To explore the mechanism of male sterility of YS3038, the sterile genes were mapped, and based on previous work, the expression of long noncoding RNAs (lncRNAs), circular RNAs (circRNAs), and their target genes was studied. Weighted gene coexpression network analysis (WGCNA) and competitive endogenous RNA (ceRNA) analysis were further performed for differentially expressed noncoding RNAs and target genes. At last, the candidate genes were silenced by barley stripe mosaic virus-induced gene silencing (BSMV-VIGS) to prove their function. The sterile genes were mapped on chromosomes 1B and 6B based on chip mix pool analysis, and one major effect QTL (27.3190% variation) was found based on SSR primers. The WGCNA analysis revealed that the dark turquoise and steel blue modules were highly correlated with anther development and fertility conversion, respectively. The ceRNA analysis showed that a total of 184 RNAs interacted with each other, including 115 mRNAs, 55 microRNAs (miRNAs), eight circRNAs, and six lncRNAs. Finally, the seed setting rate of the plant was significantly decreased after fatty acyl-CoA reductase 5 silencing. This study provides breeders with a new option for the development of thermosensitive cytoplasmic male-sterile (TCMS) wheat lines, which will favor the sustainable development of two-line hybrid wheat.
Collapse
Affiliation(s)
- Yucui Han
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yue Zhao
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Hairong Wang
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yiyang Zhang
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Qin Ding
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Lingjian Ma
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|