101
|
García-Fernández J, Fuente Freire MDL. Exosome-like systems: Nanotechnology to overcome challenges for targeted cancer therapies. Cancer Lett 2023; 561:216151. [PMID: 37001751 DOI: 10.1016/j.canlet.2023.216151] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/15/2023] [Accepted: 03/27/2023] [Indexed: 03/30/2023]
Abstract
Exosomes are natural extracellular nanovesicles (30-150 nm in diameter) with the ability to interact with and be taken up by specific cells. They are being explored as delivery systems and imaging agents for biomedical purposes owing to their biocompatibility, biostability in extracellular biofluids, and organotropic properties. However, their usefulness, efficacy, and clinical application are limited by certain critical parameters, including the need for more robust and reproducible manufacturing processes, characterization, quality control assessment, and clinical studies. Recently, exosome-like systems have emerged as alternatives for overcoming the limitations of natural exosomes. These systems are based on surface engineering approaches and nanoscale platforms that offer a deeper understanding and allow for more exhaustive standardization compared with natural exosomes. By combining the latest knowledge related to exosome research with the most promising developments in nanotechnology, exosome-like systems can be developed as a competitive approach for innovative targeted anti-cancer therapies. This review aims to provide a critical overview of the latest advances in designing and testing innovative exosome-like systems and the most promising modalities that can be translated into the clinic. Future perspectives and challenges in this field are discussed.
Collapse
|
102
|
Yefimova S, Onishchenko A, Klochkov V, Myasoedov V, Kot Y, Tryfonyuk L, Knigavko O, Maksimchuk P, Kökbaş U, Kalashnyk-Vakulenko Y, Arkatov A, Khanzhyn V, Prokopyuk V, Vyshnytska I, Tkachenko A. Rare-earth orthovanadate nanoparticles trigger Ca 2+-dependent eryptosis. NANOTECHNOLOGY 2023; 34:205101. [PMID: 36780664 DOI: 10.1088/1361-6528/acbb7f] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
Introduction. Rare-earth orthovanadate nanoparticles (ReVO4:Eu3+, Re = Gd, Y or La) are promising agents for photodynamic therapy of cancer due to their modifiable redox properties. However, their toxicity limits their application.Objective. The aim of this research was to elucidate pro-eryptotic effects of GdVO4:Eu3+and LaVO4:Eu3+nanoparticles with identification of underlying mechanisms of eryptosis induction and to determine their pharmacological potential in eryptosis-related diseases.Methods. Blood samples (n= 9) were incubated for 24 h with 0-10-20-40-80 mg l-1GdVO4:Eu3+or LaVO4:Eu3+nanoparticles, washed and used to prepare erythrocyte suspensions to analyze the cell membrane scrambling (annexin-V-FITC staining), cell shrinkage (forward scatter signaling), reactive oxygen species (ROS) generation through 2',7'-dichlorodihydrofluorescein diacetate (H2DCFDA) staining and intracellular Ca2+levels via FLUO4 AM staining by flow cytometry. Internalization of europium-enabled luminescent GdVO4:Eu3+and LaVO4:Eu3+nanoparticles was assessed by confocal laser scanning microscopy.Results.Both nanoparticles triggered eryptosis at concentrations of 80 mg l-1. ROS-mediated mechanisms were not involved in rare-earth orthovanadate nanoparticles-induced eryptosis. Elevated cytosolic Ca2+concentrations were revealed even at subtoxic concentrations of nanoparticles. LaVO4:Eu3+nanoparticles increased intracellular calcium levels in a more pronounced way compared with GdVO4:Eu3+nanoparticles. Our data disclose that the small-sized (15 nm) GdVO4:Eu3+nanoparticles were internalized after a 24 h incubation, while the large-sized (∼30 nm) LaVO4:Eu3+nanoparticles were localized preferentially around erythrocytes.Conclusions.Both internalized GdVO4:Eu3+and non-internalized LaVO4:Eu3+nanoparticles (80 mg l-1) promote eryptosis of erythrocytes after a 24 h exposurein vitrovia Ca2+signaling without involvement of oxidative stress. Eryptosis is a promising model for assessing nanotoxicity.
Collapse
Affiliation(s)
- Svetlana Yefimova
- Institute for Scintillation Materials, National Academy of Sciences of Ukraine, 60 Nauky ave, 61072 Kharkiv, Ukraine
| | - Anatolii Onishchenko
- Research Institute of Experimental and Clinical Medicine, Kharkiv National Medical University, 4 Nauky ave, 61022 Kharkiv, Ukraine
| | - Vladimir Klochkov
- Institute for Scintillation Materials, National Academy of Sciences of Ukraine, 60 Nauky ave, 61072 Kharkiv, Ukraine
| | - Valeriy Myasoedov
- Department of Medical Biology, Kharkiv National Medical University, 4 Nauky ave, 61022 Kharkiv, Ukraine
| | - Yurii Kot
- Department of Biochemistry, V.N. Karazin Kharkiv National University, 4 Svobody sq, 61022 Kharkiv , Ukraine
| | - Liliya Tryfonyuk
- Institute of Health, National University of Water and Environmental Engineering, 11 Soborna st,33000 Rivne, Ukraine
| | - Oleksandr Knigavko
- Department of Urology, Nephrology and Andrology, Kharkiv National Medical University, 195 Moskovsky ave, 61002 Kharkiv, Ukraine
| | - Pavel Maksimchuk
- Institute for Scintillation Materials, National Academy of Sciences of Ukraine, 60 Nauky ave, 61072 Kharkiv, Ukraine
| | - Umut Kökbaş
- Medical Biochemistry Department, Nevsehir Haci Bektas Veli University, 2000 Evler Mah. Zübeyde Hanım Cad. 50300 / Nevşehir, Turkey
| | - Yuliia Kalashnyk-Vakulenko
- Department of Otorhinolaryngology, Kharkiv National Medical University, 4 Nauky ave, 61022 Kharkiv, Ukraine
| | - Andrii Arkatov
- Department of Urology, Nephrology and Andrology, Kharkiv National Medical University, 195 Moskovsky ave, 61002 Kharkiv, Ukraine
| | - Vladyslav Khanzhyn
- Department of Urology, Nephrology and Andrology, Kharkiv National Medical University, 195 Moskovsky ave, 61002 Kharkiv, Ukraine
| | - Volodymyr Prokopyuk
- Department of Cryobiochemistry, Institute for Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine, 23 Pereyaslavskaya st, 61015 Kharkiv, Ukraine
| | - Iryna Vyshnytska
- Saint James School of Medicine, Albert Lake Drive, The Quarter, A-1 2640, Anguilla
| | - Anton Tkachenko
- Research Institute of Experimental and Clinical Medicine, Kharkiv National Medical University, 4 Nauky ave, 61022 Kharkiv, Ukraine
| |
Collapse
|
103
|
Alavi N, Maghami P, Fani Pakdel A, Rezaei M, Avan A. The advance anticancer role of polymeric core-shell ZnO nanoparticles containing oxaliplatin in colorectal cancer. J Biochem Mol Toxicol 2023; 37:e23325. [PMID: 36843533 DOI: 10.1002/jbt.23325] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 12/10/2022] [Accepted: 02/08/2023] [Indexed: 02/28/2023]
Abstract
We evaluated the activity of core-shell ZnO nanoparticles (ZnO-NPs@polymer shell) containing Oxaliplatin via polymerization through in vitro studies and in vivo mouse models of colorectal cancer. ZnO NPs were synthesized in situ when the polymerization step was completed by co-precipitation. Gadolinium coordinated-ZnONPs@polymer shell (ZnO-Gd NPs@polymer shell) was synthesized by exploiting Gd's oxophilicity (III). The biophysical properties of the NPs were studied using powder X-ray diffraction (PXRD), Fourier transforms infrared spectroscopy, Ultraviolet-visible spectroscopy (UV-Vis), field emission electron microscopy (FESEM), transmission electron microscopy (TEM), atomic force microscopy, dynamic light scattering, and z-potential. (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) (MTT) was used to determine the antiproliferative activity of ZnO-Gd-OXA. Moreover, a xenograft mouse model of colon cancer was exerted to survey its antitumor activity and effect on tumor growth. In the following, the model was also evaluated by histological staining (H-E; Hematoxylin & Eosin and trichrome staining) and gene expression analyses through the application of RT-PCR/ELISA, which included biochemical evaluation (MDA, thiols, SOD, CAT). The formation of ZnO NPs, which contained a crystallite size of 16.8 nm, was confirmed by the outcomes of the PXRD analysis. The Plate-like morphology and presence of Pt were obtained in EDX outcomes. TEM analysis displayed the attained ZnO NPs in a spherical shape and a diameter of 33 ± 8.5 nm, while the hydrodynamic sizes indicated that the particles were highly aggregated. The biological results demonstrated that ZnO-Gd-OXA inhibited tumor growth by inducing reactive oxygen species and inhibiting fibrosis, warranting further research on this novel colorectal cancer treatment agent.
Collapse
Affiliation(s)
- Negin Alavi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Parvaneh Maghami
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Azar Fani Pakdel
- Cancer Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Rezaei
- Medical Toxicology Research Center, University of Medical Sciences, Mashhad, Iran.,Department of Medical Biotechnology and Nanotechnology, School of Medicine, University of Medical Sciences, Mashhad, Iran.,Nanotechnology & Catalysis Research Centre, Institute of Postgraduate Studies, University Malaya, Kuala Lumpur, Malaysia
| | - Amir Avan
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran.,Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,College of Medicine, University of Warith Al-Anbiyaa, Karbala, Iraq.,Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
104
|
Xi H, Xu B, Fang A, Li X, Huang Z, Qin S, Xiao W, Li G, Tian M, Fan N, Song X. A cascade-responsive nanoplatform with tumor cell-specific drug burst release for chemotherapy. Acta Biomater 2023; 162:120-134. [PMID: 36828165 DOI: 10.1016/j.actbio.2023.02.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 01/22/2023] [Accepted: 02/14/2023] [Indexed: 02/25/2023]
Abstract
Most of the nanomedicines can reduce the side effects of anti-tumor chemical drugs but do not have good enough therapeutic efficacy, largely due to the sustained drug release profile. It might be a promising alternative strategy to develop a cascade-responsive nanoplatform against tumor with the burst release of chemotherapeutics based on the highly efficient tumor cell targeting delivery. In this work, we constructed innovative nanoparticles (PMP/WPH-NPs) consisting of two functional polymers. PMP contained the MMP-2 enzyme sensitive linker and disulfide bond, which could respond to the tumor-overexpressing enzyme MMP-2 and high-level glutathione. While WPH promoted tumor penetration and acid-responsive drug release by modifying cellular penetrating peptides and polymerizing L-histidine. PMP/WPH-NPs exhibited outstanding features including longer blood circulation time, promoted tumor-specific accumulation, enhanced tumor penetration and efficient escape from lysosomes. Subsequently, the model drug paclitaxel (PTX), widely used in the tumor chemotherapy, was encapsulated into PMP/WPH-NPs via an emulsion solvent evaporation method. Within a short period of time, PTX-PMP/WPH-NP in simulated tumor cellular microenvironment could release 8 times more PTX than that in the physiological environment, demonstrating a good potential in tumor cell-specific burst drug release. In addition, PTX-PMP/WPH-NPs exhibited stronger anti-tumor activity than PTX in vitro and in vivo, which also had good biocompatibility according to the hemolysis assay and H&E staining. In summary, our work has succeeded in designing an original polymeric nanoplatform for programmed burst drug release based on the tailored tumor targeting delivery system. This new approach would facilitate the clinical translation of more anti-tumor nanomedicines. STATEMENT OF SIGNIFICANCE: Biomaterials responsive to the tumor-specific stimulus has conventionally used in the targeted-delivery of anti-tumor drugs. However, the levels of common stimulus are not uniformly distributed and not high enough to effectively trigger drug release. In an effort to achieve a better specific drug release and promote the chemotherapeutic efficacy, we constructed a cascade responsive nanoplatform with tumor cell-specific drug burst release profile. The tailored biomaterial could overcome the bio-barriers in vivo and succeeded in the programmed burst drug release based on the tumor cell-specific delivery of chemotherapeutics.
Collapse
Affiliation(s)
- He Xi
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Bei Xu
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China; Department of Clinical Laboratory, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Aiping Fang
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xuan Li
- Department of Gastroenterology, Hospital of Chengdu Office of People's Government of Tibetan autonomous Region, Sichuan, China
| | - Zhiying Huang
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Shugang Qin
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Wen Xiao
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Guohong Li
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Miaomiao Tian
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Na Fan
- Sichuan University West China Hospital
| | - Xiangrong Song
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
105
|
Mendanha D, Vieira de Castro J, Casanova MR, Gimondi S, Ferreira H, Neves NM. Macrophage cell membrane infused biomimetic liposomes for glioblastoma targeted therapy. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2023; 49:102663. [PMID: 36773669 DOI: 10.1016/j.nano.2023.102663] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/11/2023]
Abstract
Glioblastoma (GBM) is a highly aggressive malignant brain tumor currently without an effective treatment. Inspired by the recent advances in cell membrane biomimetic nanocarriers and by the key role of macrophages in GBM pathology, we developed macrophage membrane liposomes (MML) for GBM targeting. For the first time, it was assessed the role of macrophage polarization states in the effectiveness of these drug delivery systems. Interestingly, we observed that MML derived from M2 macrophages (M2 MML) presents higher uptake and increased delivery of the anticarcinogenic drug doxorubicin compared to M1 macrophage-derived nanocarriers (M1 MML) and control liposomes (CL). Moreover, the lowest uptake by macrophages of MML reveals promising immune escaping properties. Notably, M2 macrophages unveiled a higher expression of integrin CD49d, a crucial protein involved in the bilateral communication of macrophages with tumor cells. Therefore, our findings suggest the potential of using M2 macrophage membranes to develop novel nanocarriers targeting GBM.
Collapse
Affiliation(s)
- D Mendanha
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, 4805-017 Braga, Guimarães, Portugal
| | - J Vieira de Castro
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, 4805-017 Braga, Guimarães, Portugal
| | - M R Casanova
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, 4805-017 Braga, Guimarães, Portugal
| | - S Gimondi
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, 4805-017 Braga, Guimarães, Portugal
| | - H Ferreira
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, 4805-017 Braga, Guimarães, Portugal
| | - N M Neves
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, 4805-017 Braga, Guimarães, Portugal.
| |
Collapse
|
106
|
Research Status and Prospect of Non-Viral Vectors Based on siRNA: A Review. Int J Mol Sci 2023; 24:ijms24043375. [PMID: 36834783 PMCID: PMC9962405 DOI: 10.3390/ijms24043375] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/01/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
Gene therapy has attracted much attention because of its unique mechanism of action, non-toxicity, and good tolerance, which can kill cancer cells without damaging healthy tissues. siRNA-based gene therapy can downregulate, enhance, or correct gene expression by introducing some nucleic acid into patient tissues. Routine treatment of hemophilia requires frequent intravenous injections of missing clotting protein. The high cost of combined therapy causes most patients to lack the best treatment resources. siRNA therapy has the potential of lasting treatment and even curing diseases. Compared with traditional surgery and chemotherapy, siRNA has fewer side effects and less damage to normal cells. The available therapies for degenerative diseases can only alleviate the symptoms of patients, while siRNA therapy drugs can upregulate gene expression, modify epigenetic changes, and stop the disease. In addition, siRNA also plays an important role in cardiovascular diseases, gastrointestinal diseases, and hepatitis B. However, free siRNA is easily degraded by nuclease and has a short half-life in the blood. Research has found that siRNA can be delivered to specific cells through appropriate vector selection and design to improve the therapeutic effect. The application of viral vectors is limited because of their high immunogenicity and low capacity, while non-viral vectors are widely used because of their low immunogenicity, low production cost, and high safety. This paper reviews the common non-viral vectors in recent years and introduces their advantages and disadvantages, as well as the latest application examples.
Collapse
|
107
|
Jiao Q, Liu B, Xu X, Huang T, Cao B, Wang L, Wang Q, Du A, Li J, Zhou B, Wang T. Biodegradable porous polymeric drug as a drug delivery system: alleviation of doxorubicin-induced cardiotoxicity via passive targeted release. RSC Adv 2023; 13:5444-5456. [PMID: 36793291 PMCID: PMC9923820 DOI: 10.1039/d2ra07410a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 02/04/2023] [Indexed: 02/15/2023] Open
Abstract
Doxorubicin (DOX) is an effective chemotherapeutic drug developed against a broad range of cancers, and its clinical applications are greatly restricted by the side effects of severe cardiotoxicity during tumour treatment. Herein, the DOX-loaded biodegradable porous polymeric drug, namely, Fc-Ma-DOX, which was stable in the circulation, but easy to compose in the acidic medium, was used as the drug delivery system avoiding the indiscriminate release of DOX. Fc-Ma was constructed via the copolymerization of 1,1'-ferrocenecarbaldehyde with d-mannitol (Ma) through the pH-sensitive acetal bonds. Echocardiography, biochemical parameters, pathological examination, and western blot results showed that DOX treatment caused increased myocardial injury and oxidative stress damage. In contrast, treatment with Fc-Ma-DOX significantly reduced myocardial injury and oxidative stress by DOX treatment. Notably, in the Fc-Ma-DOX treatment group, we observed a significant decrease in the uptake of DOX by H9C2 cells and a significant decrease in reactive oxygen species (ROS) production.
Collapse
Affiliation(s)
- Qiuhong Jiao
- Department of Cardiology, Affiliated Hospital of Weifang Medical University Weifang 261031 Shandong China
| | - Baoting Liu
- Department of Cardiology, Affiliated Hospital of Weifang Medical University Weifang 261031 Shandong China
| | - Xiufeng Xu
- Department of Geriatrics, Affiliated Hospital of Weifang Medical UniversityWeifang 261031ShandongChina
| | - Tao Huang
- Department of Cardiology, Affiliated Hospital of Weifang Medical University Weifang 261031 Shandong China
| | - Bufan Cao
- Department of Cardiology, Affiliated Hospital of Weifang Medical University Weifang 261031 Shandong China
| | - Lide Wang
- Department of Cardiology, Affiliated Hospital of Weifang Medical University Weifang 261031 Shandong China
| | - Qingguo Wang
- Department of Cardiology, Affiliated Hospital of Weifang Medical University Weifang 261031 Shandong China
| | - Ailing Du
- Department of Cardiology, Affiliated Hospital of Weifang Medical University Weifang 261031 Shandong China
| | - Jingtian Li
- Department of Cardiology, Affiliated Hospital of Weifang Medical University Weifang 261031 Shandong China
| | - Baolong Zhou
- School of Pharmacy, Weifang Medical University Weifang 261031 Shandong China
| | - Tao Wang
- Department of Cardiology, Affiliated Hospital of Weifang Medical University Weifang 261031 Shandong China
| |
Collapse
|
108
|
Khizar S, Alrushaid N, Alam Khan F, Zine N, Jaffrezic-Renault N, Errachid A, Elaissari A. Nanocarriers based novel and effective drug delivery system. Int J Pharm 2023; 632:122570. [PMID: 36587775 DOI: 10.1016/j.ijpharm.2022.122570] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/12/2022] [Accepted: 12/27/2022] [Indexed: 12/30/2022]
Abstract
Nanotechnology has ultimately come into the domain of drug delivery. Nanosystems for delivery of drugs are promptly emerging science utilizing different nanoparticles as carriers. Biocompatible and stable nanocarriers are novel diagnosis tools or therapy agents for explicitly targeting locates with controllable way. Nanocarriers propose numerous advantages to treat diseases via site-specific as well as targeted delivery of particular therapeutics. In recent times, there are number of outstanding nanocarriers use to deliver bio-, chemo-, or immuno- therapeutic agents to obtain effectual therapeutic reactions and to minimalize unwanted adverse-effects. Nanoparticles possess remarkable potential for active drug delivery. Moreover, conjugation of drugs with nanocarriers protects drugs from metabolic or chemical modifications, through their way to targeted cells and hence increased their bioavailability. In this review, various systems integrated with different types of nanocarriers (inorganic. organic, quantum dots, and carbon nanotubes) having different compositions, physical and chemical properties have been discussed for drug delivery applications.
Collapse
Affiliation(s)
- Sumera Khizar
- Univ Lyon, University Claude Bernard Lyon-1, CNRS, ISA-UMR 5280, F-69100 Lyon, France
| | - Noor Alrushaid
- Univ Lyon, University Claude Bernard Lyon-1, CNRS, ISA-UMR 5280, F-69100 Lyon, France; Department of Stem Cell Biology, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, Post Box No. 1982, Dammam 31441, Saudi Arabia
| | - Firdos Alam Khan
- Department of Stem Cell Biology, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, Post Box No. 1982, Dammam 31441, Saudi Arabia
| | - Nadia Zine
- Univ Lyon, University Claude Bernard Lyon-1, CNRS, ISA-UMR 5280, F-69100 Lyon, France
| | | | - Abdelhamid Errachid
- Univ Lyon, University Claude Bernard Lyon-1, CNRS, ISA-UMR 5280, F-69100 Lyon, France
| | - Abdelhamid Elaissari
- Univ Lyon, University Claude Bernard Lyon-1, CNRS, ISA-UMR 5280, F-69100 Lyon, France.
| |
Collapse
|
109
|
Hemmatpour H, Haddadi-Asl V, Burgers TCQ, Yan F, Stuart MCA, Reker-Smit C, Vlijm R, Salvati A, Rudolf P. Temperature-responsive and biocompatible nanocarriers based on clay nanotubes for controlled anti-cancer drug release. NANOSCALE 2023; 15:2402-2416. [PMID: 36651239 DOI: 10.1039/d2nr06801j] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Administration of temperature-responsive drug carriers that release anticancer drugs at high temperatures can benefit hyperthermia therapies because of the synergistic effect of anticancer drug molecules and high temperature on killing the cancer cells. In this study, we design and characterize a new temperature-responsive nanocarrier based on a naturally occurring and biocompatible clay mineral, halloysite nanotubes. Poly(N-isopropylacrylamide) brushes were grown on the surface of halloysite nanotubes using a combination of mussel-inspired dopamine polymerization and surface-initiated atom transfer radical polymerization. The chemical structure of the hybrid materials was investigated using X-ray photoelectron spectroscopy, thermogravimetric analysis and energy-dispersive X-ray spectroscopy. The hybrid material was shown to have a phase transition temperature of about 32 °C, corresponding to a 40 nm thick polymer layer surrounding the nanotubes. Cell studies suggested that grafting of poly(N-isopropylacrylamide) brushes on the polydopamine-modified halloysite nanotubes suppresses the cytotoxicity caused by the polydopamine interlayer and drug release studies on nanotubes loaded with doxorubicin showed that thanks to the poly(N-isopropylacrylamide) brushes a temperature-dependent drug release is observed. Finally, a fluorescent dye molecule was covalently attached to the polymer-grafted nanotubes and stimulated emission depletion nanoscopy was used to confirm the internalization of the nanotubes in HeLa cells.
Collapse
Affiliation(s)
- Hamoon Hemmatpour
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747AG Groningen, The Netherlands.
- Department of Polymer Engineering and Color Technology, Amirkabir University of Technology, P.O. Box 1587-4413, Tehran, Iran
| | - Vahid Haddadi-Asl
- Department of Polymer Engineering and Color Technology, Amirkabir University of Technology, P.O. Box 1587-4413, Tehran, Iran
| | - Thomas C Q Burgers
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747AG Groningen, The Netherlands.
| | - Feng Yan
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747AG Groningen, The Netherlands.
| | - Marc C A Stuart
- Electron Microscopy, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747AG Groningen, The Netherlands
| | - Catharina Reker-Smit
- Department of Nanomedicine & Drug Targeting, Groningen Research Institute of Pharmacy, University of Groningen, A. Deusinglaan 1, Groningen, 9713AV, The Netherlands
| | - Rifka Vlijm
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747AG Groningen, The Netherlands.
| | - Anna Salvati
- Department of Nanomedicine & Drug Targeting, Groningen Research Institute of Pharmacy, University of Groningen, A. Deusinglaan 1, Groningen, 9713AV, The Netherlands
| | - Petra Rudolf
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747AG Groningen, The Netherlands.
| |
Collapse
|
110
|
Kirpotin DB, Hayes ME, Noble CO, Huang ZR, Wani K, Moore D, Kesper K, Brien DO, Drummond DC. Drug Stability and Minimized Acid-/Drug-Catalyzed Phospholipid Degradation in Liposomal Irinotecan. J Pharm Sci 2023; 112:416-434. [PMID: 36462709 DOI: 10.1016/j.xphs.2022.11.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 12/05/2022]
Abstract
Therapeutics at or close to the nanoscale, such as liposomal irinotecan, offer significant promise for the treatment of solid tumors. Their potential advantage over the unencapsulated or free form of the drug is due in part to their altered biodistribution. For slow and sustained release, significant optimization of formulation is needed to achieve the required level of stability and allow long-term storage of the drug product. Gradient-based liposomal formulation of camptothecins such as irinotecan poses unique challenges owing to the camptothecin- and acid-catalyzed hydrolysis of phospholipid esters in the inner monolayer of the liposomal membrane. We demonstrated that a narrow set of conditions related to the external pH, temperature, intraliposomal concentration, identity of the drug-trapping agent, physical form of the drug inside the liposomes, and final drug load have a marked impact on the stability of the liposome phospholipid membrane. The physical form of the drug inside the liposome was shown to be an insoluble gel with an irinotecan-to-sulfate ratio approximating 1:1, reducing the potential for irinotecan-catalyzed phospholipid hydrolysis in the internal phospholipid monolayer. As a result of this work, a stable and active liposome formulation has been developed that maintains phospholipid chemical stability following long-term storage at 2-8°C.
Collapse
Affiliation(s)
| | | | | | | | - Kshitija Wani
- Merrimack Pharmaceuticals, Cambridge, MA, USA; Ipsen Pharmaceuticals, Cambridge, MA, USA
| | - Doug Moore
- Merrimack Pharmaceuticals, Cambridge, MA, USA
| | | | | | | |
Collapse
|
111
|
Advances in Oral Drug Delivery Systems: Challenges and Opportunities. Pharmaceutics 2023; 15:pharmaceutics15020484. [PMID: 36839807 PMCID: PMC9960885 DOI: 10.3390/pharmaceutics15020484] [Citation(s) in RCA: 101] [Impact Index Per Article: 50.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/20/2023] [Accepted: 01/25/2023] [Indexed: 02/05/2023] Open
Abstract
The oral route is the most preferred route for systemic and local drug delivery. However, the oral drug delivery system faces the harsh physiological and physicochemical environment of the gastrointestinal tract, which limits the bioavailability and targeted design of oral drug delivery system. Innovative pharmaceutical approaches including nanoparticulate formulations, biomimetic drug formulations, and microfabricated devices have been explored to optimize drug targeting and bioavailability. In this review, the anatomical factors, biochemical factors, and physiology factors that influence delivering drug via oral route are discussed and recent advance in conventional and novel oral drug delivery approaches for improving drug bioavailability and targeting ability are highlighted. We also address the challenges and opportunities of oral drug delivery systems in future.
Collapse
|
112
|
Dattani S, Li X, Lampa C, Lechuga-Ballesteros D, Barriscale A, Damadzadeh B, Jasti BR. A comparative study on micelles, liposomes and solid lipid nanoparticles for paclitaxel delivery. Int J Pharm 2023; 631:122464. [PMID: 36464111 DOI: 10.1016/j.ijpharm.2022.122464] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/13/2022] [Accepted: 11/27/2022] [Indexed: 12/03/2022]
Abstract
The purpose of this work was to compare the in vitro and in vivo characteristics of LDV-targeted lipid-based micelles, liposomes and solid lipid nanoparticles (SLN) to provide further insights into their therapeutic potential for clinical development. Micelles, liposomes and SLN were prepared using LDV peptide amphiphiles and palmitic acid-derived lipids using solvent evaporation, thin-film hydration and microfluidic mixing respectively. Nanocarriers were characterized for their physicochemical properties, paclitaxel loading efficiency, in vitro release behavior, stability in biological media as well as in vivo antitumor efficacy in melanoma xenograft model. TEM and DLS results confirmed the presence of paclitaxel-loaded nanosized micelles (6 to 12 nm), liposomes (123.31 ± 5.87 nm) and SLN (80.53 ± 5.37 nm). SLN demonstrated the slowest paclitaxel release rate and the highest stability in biological media compared to micelles and liposomes. Paclitaxel-loaded SLN demonstrated a statistically significant delay in tumor growth compared to mice treated with paclitaxel-loaded liposomes and paclitaxel-loaded micelles (p < 0.05). The results obtained in this study indicate the potential of SLN as drug delivery vehicles for anticancer therapy.
Collapse
Affiliation(s)
| | - Xiaoling Li
- University of the Pacific, Stockton, CA, USA
| | - Charina Lampa
- Inhalation Product Development, PT&D AstraZeneca LLC, South San Francisco, CA, USA
| | | | - Amanda Barriscale
- Inhalation Product Development, PT&D AstraZeneca LLC, South San Francisco, CA, USA
| | - Behzad Damadzadeh
- Inhalation Product Development, PT&D AstraZeneca LLC, South San Francisco, CA, USA
| | | |
Collapse
|
113
|
Abuelmakarem HS, Hamdy O, Sliem MA, El-Azab J, Ahmed WA. Early cancer detection using the fluorescent Ashwagandha chitosan nanoparticles combined with near-infrared light diffusion characterization: in vitro study. Lasers Med Sci 2023; 38:37. [PMID: 36627516 PMCID: PMC9832086 DOI: 10.1007/s10103-022-03678-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 10/18/2022] [Indexed: 01/12/2023]
Abstract
Early cancer diagnosis through characterizing light propagation and nanotechnology increases the survival rate. The present research is aimed at evaluating the consequence of using natural nanoparticles in cancer therapy and diagnosis. Colon cancer cells were differentiated from the normal cells via investigating light diffusion combined with the fluorescence effect of the Ashwagandha chitosan nanoparticles (Ash C NPs). Ionic gelation technique synthesized the Ash C NPs. High-resolution transmission electron microscope, dynamic light scattering, and zeta potential characterized Ash C NPs. Fourier transform infrared spectroscopy analyzed Ash C NPs, chitosan, and Ashwagandha root water extract. Moreover, the MTT assay evaluated the cytotoxicity of Ash C NPs under the action of near-infrared light (NIR) irradiation. The MTT assay outcomes were statistically analyzed by Bonferroni post hoc multiple two-group comparisons using one-way variance analysis (ANOVA). Based on the Monte-Carlo simulation technique, the spatially resolved steady-state diffusely reflected light from the cancerous and healthy cells is acquired. The diffuse equation reconstructed the optical fluence rate using the finite element technique. The fluorescent effect of the nanoparticles was observed when the cells were irradiated with NIR. The MTT assay revealed a decrease in the cell viability under the action of Ash C NPs with and without laser irradiation. Colon cancer and normal cells were differentiated based on the optical characterization after laser irradiation. The light diffusion equation was successfully resolved for the fluence rate on cells' surfaces showing different normal and cancer cells values. Ash C NPs appeared its fluorescent effect in the presence of NIR laser.
Collapse
Affiliation(s)
- Hala S Abuelmakarem
- System and Biomedical Engineering Department, The Higher Institute of Engineering, El Shoruk Academy, El-Shorouk, Egypt.
- Department of Engineering Applications of Lasers, National Institute of Laser Enhanced Sciences (NILES), Cairo University, Giza Governorate, Giza, 12613, Egypt.
| | - Omnia Hamdy
- Department of Engineering Applications of Lasers, National Institute of Laser Enhanced Sciences (NILES), Cairo University, Giza Governorate, Giza, 12613, Egypt
| | - Mahmoud A Sliem
- Department of Laser Applications in Metrology, Photochemistry and Agriculture (LAMPA), National Institute of Laser Enhanced Sciences (NILE), Cairo University, Giza, 12613, Egypt
- Chemistry Department, Faculty of Science, Taibah University, Al-Ula, Medina, Saudi Arabia
| | - Jala El-Azab
- Department of Engineering Applications of Lasers, National Institute of Laser Enhanced Sciences (NILES), Cairo University, Giza Governorate, Giza, 12613, Egypt
| | - Wafaa A Ahmed
- Cancer Biology Department, Biochemistry and Molecular Biology Unit, National Cancer Institute, Cairo University, Giza, Egypt
| |
Collapse
|
114
|
Pradhan R, Dey A, Taliyan R, Puri A, Kharavtekar S, Dubey SK. Recent Advances in Targeted Nanocarriers for the Management of Triple Negative Breast Cancer. Pharmaceutics 2023; 15:pharmaceutics15010246. [PMID: 36678877 PMCID: PMC9866847 DOI: 10.3390/pharmaceutics15010246] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/01/2023] [Accepted: 01/04/2023] [Indexed: 01/13/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is a life-threatening form of breast cancer which has been found to account for 15% of all the subtypes of breast cancer. Currently available treatments are significantly less effective in TNBC management because of several factors such as poor bioavailability, low specificity, multidrug resistance, poor cellular uptake, and unwanted side effects being the major ones. As a rapidly growing field, nano-therapeutics offers promising alternatives for breast cancer treatment. This platform provides a suitable pathway for crossing biological barriers and allowing sustained systemic circulation time and an improved pharmacokinetic profile of the drug. Apart from this, it also provides an optimized target-specific drug delivery system and improves drug accumulation in tumor cells. This review provides insights into the molecular mechanisms associated with the pathogenesis of TNBC, along with summarizing the conventional therapy and recent advances of different nano-carriers for the management of TNBC.
Collapse
Affiliation(s)
- Rajesh Pradhan
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani 333031, India
| | - Anuradha Dey
- Medical Research, R&D Healthcare Division, Emami Ltd., Kolkata 700056, India
| | - Rajeev Taliyan
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani 333031, India
- Correspondence: (R.T.); (S.K.D.); Tel.: +91-6378-364-745 (R.T.); +91-8239-703-734 (S.K.D.)
| | - Anu Puri
- RNA Structure and Design Section, RNA Biology Laboratory (RBL), Center for Cancer Research, National Cancer Institute—Frederick, Frederick, MD 21702, USA
| | - Sanskruti Kharavtekar
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani 333031, India
| | - Sunil Kumar Dubey
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani 333031, India
- Medical Research, R&D Healthcare Division, Emami Ltd., Kolkata 700056, India
- Correspondence: (R.T.); (S.K.D.); Tel.: +91-6378-364-745 (R.T.); +91-8239-703-734 (S.K.D.)
| |
Collapse
|
115
|
Naseer F, Ahmad T, Kousar K, Kakar S, Gul R, Anjum S, Shareef U. Formulation for the Targeted Delivery of a Vaccine Strain of Oncolytic Measles Virus (OMV) in Hyaluronic Acid Coated Thiolated Chitosan as a Green Nanoformulation for the Treatment of Prostate Cancer: A Viro-Immunotherapeutic Approach. Int J Nanomedicine 2023; 18:185-205. [PMID: 36643861 PMCID: PMC9838128 DOI: 10.2147/ijn.s386560] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/25/2022] [Indexed: 01/11/2023] Open
Abstract
Background Oncolytic viruses are reported as dynamite against cancer treatment nowadays. Methodology In the present work, a live attenuated oral measles vaccine (OMV) strain was used to formulate a polymeric surface-functionalized ligand-based nanoformulation (NF). OMV (half dose: not less than 500 TCID units; 0.25 mL) was encapsulated in thiolated chitosan and outermost coating with hyaluronic acid by ionic gelation method characterizing parameters was performed. Results and Discussion CD44 high expression was confirmed in prostatic adenocarcinoma (PRAD) by GEPIA which extracted data of normal and cancer tissue from GTEx and TCGA. Bioinformatics tools confirmed the viral hemagglutinin capsid protein interaction with human Caspase-I, NLRP3, and TNF-α and viral fusion protein interaction with COX-II and Caspase-I after successful delivery of MV encapsulated in NFs due to high affinity of hyaluronic acid with CD44 on the surface of prostate cancer cells. Particle size = 275.6 mm, PDI = 0.372, and ±11.5 zeta potential were shown by zeta analysis, while the thiolated group in NFs was confirmed by FTIR and Raman analysis. SEM and XRD showed a spherical smooth surface and crystalline nature, respectively, while TEM confirmed virus encapsulation within nanoparticles, which makes it very useful in targeted virus delivery systems. The virus was released from NFs in a sustained but continuous release pattern till 48 h. The encapsulated virus titer was calculated as 2.34×107 TCID50/mL units, which showed syncytia formation on post-day infection 7. Multiplicities of infection 0.1, 0.5, 1, 3, 5, 10, 15, and 20 of HA-coated OMV-loaded NFs as compared to MV vaccine on PC3 was inoculated with IC50 of 5.1 and 3.52, respectively, and growth inhibition was seen after 72 h via MTT assay which showed apoptotic cancer cell death. Conclusion Active targeted, efficacious, and sustained delivery of formulated oncolytic MV is a potent moiety in cancer treatment at lower doses with safe potential for normal prostate cells.
Collapse
Affiliation(s)
- Faiza Naseer
- Industrial Biotechnology, Atta-ur-Rehman School of Applied Biosciences, National University of Science and Technology, Islamabad, Pakistan
- Shifa College of Pharmaceutical Sciences, Shifa Tameer e Millat University, Islamabad, Pakistan
| | - Tahir Ahmad
- Industrial Biotechnology, Atta-ur-Rehman School of Applied Biosciences, National University of Science and Technology, Islamabad, Pakistan
| | - Kousain Kousar
- Industrial Biotechnology, Atta-ur-Rehman School of Applied Biosciences, National University of Science and Technology, Islamabad, Pakistan
| | - Salik Kakar
- Healthcare Biotechnology, Atta-ur-Rehman School of Applied Biosciences, National University of Science and Technology, Islamabad, Pakistan
| | - Rabia Gul
- Shifa College of Pharmaceutical Sciences, Shifa Tameer e Millat University, Islamabad, Pakistan
| | - Sadia Anjum
- Department of Biology, University of Hail, Hail, Saudia Arabia
| | - Usman Shareef
- Shifa College of Pharmaceutical Sciences, Shifa Tameer e Millat University, Islamabad, Pakistan
| |
Collapse
|
116
|
Huang Z, Hu H, Xian T, Xu Z, Tang D, Wang B, Zhang Y. Carrier-free nanomedicines self-assembled from palbociclib dimers and Ce6 for enhanced combined chemo-photodynamic therapy of breast cancer. RSC Adv 2023; 13:1617-1626. [PMID: 36688062 PMCID: PMC9827281 DOI: 10.1039/d2ra05932k] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 12/30/2022] [Indexed: 01/10/2023] Open
Abstract
Palbociclib is the world's first CDK4/6 kinase inhibitor to be marketed. However, it is not effective in the treatment of triple negative breast cancer (TNBC) due to the loss of retinoblastoma protein expression. Thus, combinatorial chemotherapy is indispensable for TNBC treatment. Herein, a carrier-free nanomedicine self-assembled from palbociclib dimers and Ce6 for enhanced combined chemo-photodynamic therapy of breast cancer is reported. The dimeric prodrug (Palb-TK-Palb) was synthesized by conjugating two palbociclib molecules to the connecting skeleton containing a ROS-responsive cleavable thioketal bond. The Palb-TK-Palb/Ce6 NP co-delivery nanoplatform was prepared through the self-assembly of Palb-TK-Palb, Ce6 and DSPE-PEG2000. This novel carrier-free formulation as an efficient therapeutic agent showed efficient therapeutic agent loading capacity, high cellular uptake and huge therapeutic performance against breast cancer cells. The results of in vitro antitumor activity and cell apoptosis demonstrated that Palb-TK-Palb/Ce6 NPs presented a better inhibitory effect on the growth of cancer cells due to the palbociclib and Ce6 co-delivery nanomedicine-mediated synergistic chemo-photodynamic therapy. The IC50 values of Palb-TK-Palb/Ce6 NPs in MDA-MB-231 cells were around 1-2 μM and 2 μM and the Palb-TK-Palb/Ce6 NPs showed an increase in apoptosis up to 91.9%. In general, the carrier-free nanomedicine self-assembled from palbociclib dimers and Ce6 provides options for combinatorial chemo-photodynamic therapy.
Collapse
Affiliation(s)
- Zheng Huang
- National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, College of Pharmacy & International Academy of Targeted Therapeutics and Innovation, Chongqing University of Arts and SciencesChongqing 402160China,Key Laboratory of Bio-theological Science and Technology of Ministry of Education, College of Bioengineering, Chongqing UniversityChongqing400045China
| | - Huaisong Hu
- National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, College of Pharmacy & International Academy of Targeted Therapeutics and Innovation, Chongqing University of Arts and SciencesChongqing 402160China
| | - Tong Xian
- National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, College of Pharmacy & International Academy of Targeted Therapeutics and Innovation, Chongqing University of Arts and SciencesChongqing 402160China
| | - Zhigang Xu
- National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, College of Pharmacy & International Academy of Targeted Therapeutics and Innovation, Chongqing University of Arts and SciencesChongqing 402160China
| | - Dianyong Tang
- National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, College of Pharmacy & International Academy of Targeted Therapeutics and Innovation, Chongqing University of Arts and SciencesChongqing 402160China
| | - Bochu Wang
- Key Laboratory of Bio-theological Science and Technology of Ministry of Education, College of Bioengineering, Chongqing UniversityChongqing400045China
| | - Yimei Zhang
- National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, College of Pharmacy & International Academy of Targeted Therapeutics and Innovation, Chongqing University of Arts and SciencesChongqing 402160China,Key Laboratory of Bio-theological Science and Technology of Ministry of Education, College of Bioengineering, Chongqing UniversityChongqing400045China
| |
Collapse
|
117
|
Le BQG, Doan TLH. Trend in biodegradable porous nanomaterials for anticancer drug delivery. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023:e1874. [PMID: 36597015 DOI: 10.1002/wnan.1874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 01/05/2023]
Abstract
In recent years, biodegradable nanomaterials have exhibited remarkable promise for drug administration to tumors due to their high drug-loading capacity, biocompatibility, biodegradability, and clearance. This review will discuss and summarize the trends in utilizing biodegradable nanomaterials for anticancer drug delivery, including biodegradable periodic mesoporous organosilicas (BPMOs) and metal-organic frameworks (MOFs). The distinct structure and features of BPMOs and MOFs will be initially evaluated, as well as their use as delivery vehicles for anticancer drug delivery applications. Then, the themes for the development of each material will be utilized to illustrate their drug delivery performance. Finally, the current obstacles and potential for future development as efficient drug delivery systems will be thoroughly reviewed. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Bao Quang Gia Le
- Center for Innovative Materials and Architectures, Ho Chi Minh City, Vietnam.,Vietnam National University-Ho Chi Minh City, Ho Chi Minh City, Vietnam.,Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | - Tan Le Hoang Doan
- Center for Innovative Materials and Architectures, Ho Chi Minh City, Vietnam.,Vietnam National University-Ho Chi Minh City, Ho Chi Minh City, Vietnam
| |
Collapse
|
118
|
Nanoparticles in Clinical Trials: Analysis of Clinical Trials, FDA Approvals and Use for COVID-19 Vaccines. Int J Mol Sci 2023; 24:ijms24010787. [PMID: 36614230 PMCID: PMC9821409 DOI: 10.3390/ijms24010787] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 12/28/2022] [Accepted: 12/30/2022] [Indexed: 01/04/2023] Open
Abstract
Nanoparticles are heterologous small composites that are usually between 1 and 100 nanometers in size. They are applied in many areas of medicine with one of them being drug delivery. Nanoparticles have a number of advantages as drug carriers which include reduced toxic effects, increased bioavailability, and their ability to be modified for specific tissues or cells. Due to the exciting development of nanotechnology concomitant with advances in biotechnology and medicine, the number of clinical trials devoted to nanoparticles for drug delivery is growing rapidly. Some nanoparticles, lipid-based types, in particular, played a crucial role in the developing and manufacturing of the two COVID-19 vaccines-Pfizer and Moderna-that are now being widely used. In this analysis, we provide a quantitative survey of clinical trials using nanoparticles during the period from 2002 to 2021 as well as the recent FDA-approved drugs (since 2016). A total of 486 clinical trials were identified using the clinicaltrials.gov database. The prevailing types of nanoparticles were liposomes (44%) and protein-based formulations (26%) during this period. The most commonly investigated content of the nanoparticles were paclitaxel (23%), metals (11%), doxorubicin (9%), bupivacaine and various vaccines (both were 8%). Among the FDA-approved nanoparticle drugs, polymeric (29%), liposomal (22%) and lipid-based (21%) drugs were the most common. In this analysis, we also discuss the differential development of the diverse groups of nanoparticles and their content, as well as the underlying factors behind the trends.
Collapse
|
119
|
Shi T, Sun M, Lu C, Meng F. Self-assembled nanoparticles: A new platform for revolutionizing therapeutic cancer vaccines. Front Immunol 2023; 14:1125253. [PMID: 36895553 PMCID: PMC9988954 DOI: 10.3389/fimmu.2023.1125253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 02/07/2023] [Indexed: 02/23/2023] Open
Abstract
Cancer vaccines have had some success in the past decade. Based on in-depth analysis of tumor antigen genomics, many therapeutic vaccines have already entered clinical trials for multiple cancers, including melanoma, lung cancer, and head and neck squamous cell carcinoma, which have demonstrated impressive tumor immunogenicity and antitumor activity. Recently, vaccines based on self-assembled nanoparticles are being actively developed as cancer treatment, and their feasibility has been confirmed in both mice and humans. In this review, we summarize recent therapeutic cancer vaccines based on self-assembled nanoparticles. We describe the basic ingredients for self-assembled nanoparticles, and how they enhance vaccine immunogenicity. We also discuss the novel design method for self-assembled nanoparticles that pose as a promising delivery platform for cancer vaccines, and the potential in combination with multiple therapeutic approaches.
Collapse
Affiliation(s)
- Tianyu Shi
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China.,The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Mengna Sun
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China.,The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Changchang Lu
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China.,The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Fanyan Meng
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China.,The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| |
Collapse
|
120
|
Kukulin VI, Bibikov AV, Tkalya EV, Ceccarelli M, Bodrenko IV. 7Be and 22Na radionuclides for a new therapy for cancer. Biomol Concepts 2023; 14:bmc-2022-0028. [PMID: 38167297 DOI: 10.1515/bmc-2022-0028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/18/2023] [Indexed: 01/05/2024] Open
Abstract
10B isotopes have been almost exclusively used in the neutron-capture radiation therapy (NCT) of cancer for decades. We have identified two other nuclides suitable for radiotherapy, which have ca. ten times larger cross section of absorption for neutrons and emit heavy charged particles. This would provide several key advantages for potential NCT, such as the possibility to use a lower nuclide concentration in the target tissues or a lower neutron irradiation flux. By detecting the characteristic γ radiation from the spontaneous decay of the radionuclides, one can image their biodistribution. These advantages could open up new possibilities for NCT applications as a safer and more efficient cancer therapy.
Collapse
Affiliation(s)
- Vladimir I Kukulin
- Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Leninskie gory, Moscow, Ru-119991, Russia
| | - Anton V Bibikov
- Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Leninskie gory, Moscow, Ru-119991, Russia
| | - Eugene V Tkalya
- P.N. Lebedev Physical Institute of the Russian Academy of Sciences, 119991, 53 Leninskiy pr., Moscow, Russia
- Nuclear Safety Institute of RAS, Bol'shaya Tulskaya 52, Moscow, 115191, Russia
| | - Matteo Ceccarelli
- Department of Physics, University of Cagliari, S.P. Monserrato-Sestu km 0.700, I-09042 Monserrato (CA), Italy
- Istituto Officina dei Materiali, CNR-IOM Cagliari, Cittadella Universitaria, Monserrato (CA) 09042-I, Italy
| | - Igor V Bodrenko
- Istituto Officina dei Materiali, CNR-IOM Cagliari, Cittadella Universitaria, Monserrato (CA) 09042-I, Italy
- Ecole Normale Sup´erieure, D´epartement de Chimie - Laboratoire PASTEUR, 24 Rue Lhomond, 75005 Paris, France
| |
Collapse
|
121
|
Awan UA, Naeem M, Saeed RF, Mumtaz S, Akhtar N. Smart Nanocarrier-Based Cancer Therapeutics. Cancer Treat Res 2023; 185:207-235. [PMID: 37306911 DOI: 10.1007/978-3-031-27156-4_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Considerable advances in the field of cancer have been made; however, these have not been translated into similar clinical progress which results in the high prevalence and increased cancer-related mortality rate worldwide. Available treatments have several challenges such as off-target side effects, non-specific long-term potential biodisruption, drug resistance, and overall inadequate response rates and high probability of recurrence. The limitations associated with independent cancer diagnosis and therapy can be minimized by an emerging interdisciplinary research field of nanotheranostics which include successful integration of diagnosis and therapy on a single agent using nanoparticles. This may offer a powerful tool in developing innovative strategies to enable "personalized medicine" for diagnosis and treatment of cancer. Nanoparticles have been proven to be powerful imaging tools or potent agents for cancer diagnosis, treatment, and prevention. The nanotheranostic provides minimally invasive in vivo visualization of drug biodistribution and accumulation at the target site with real-time monitoring of therapeutic outcome. This chapter intends to cover several important aspects and the advances in the field of nanoparticles-mediated cancer therapeutics including nanocarrier development, drug/gene delivery, intrinsically active nanoparticles, tumor microenvironment, and nanotoxicity. The chapter represents an overview of challenges associated with cancer treatment, rational for nanotechnology in cancer therapeutics, novel concepts of multifunctional nanomaterials for cancer therapy along with their classification and their clinical prospective in different cancers. A special focus is on the nanotechnology: regulatory perspective for drug development in cancer therapeutics. Obstacles hindering further development of nanomaterials-mediated cancer therapy are also discussed. In general, the objective of this chapter is to improve our perceptive in the design and development of nanotechnology for cancer therapeutics.
Collapse
Affiliation(s)
- Uzma Azeem Awan
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, Pakistan.
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, USA.
| | - Muhammad Naeem
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, Pakistan
| | - Rida Fatima Saeed
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, Pakistan
| | - Sara Mumtaz
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, Pakistan
| | - Nosheen Akhtar
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, Pakistan
| |
Collapse
|
122
|
Chen D, Liu X, Lu X, Tian J. Nanoparticle drug delivery systems for synergistic delivery of tumor therapy. Front Pharmacol 2023; 14:1111991. [PMID: 36874010 PMCID: PMC9978018 DOI: 10.3389/fphar.2023.1111991] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/02/2023] [Indexed: 02/18/2023] Open
Abstract
Nanoparticle drug delivery systems have proved anti-tumor effects; however, they are not widely used in tumor therapy due to insufficient ability to target specific sites, multidrug resistance to anti-tumor drugs, and the high toxicity of the drugs. With the development of RNAi technology, nucleic acids have been delivered to target sites to replace or correct defective genes or knock down specific genes. Also, synergistic therapeutic effects can be achieved for combined drug delivery, which is more effective for overcoming multidrug resistance of cancer cells. These combination therapies achieve better therapeutic effects than delivering nucleic acids or chemotherapeutic drugs alone, so the scope of combined drug delivery has also been expanded to three aspects: drug-drug, drug-gene, and gene-gene. This review summarizes the recent advances of nanocarriers to co-delivery agents, including i) the characterization and preparation of nanocarriers, such as lipid-based nanocarriers, polymer nanocarriers, and inorganic delivery carriers; ii) the advantages and disadvantages of synergistic delivery approaches; iii) the effectual delivery cases that are applied in the synergistic delivery systems; and iv) future perspectives in the design of nanoparticle drug delivery systems to co-deliver therapeutic agents.
Collapse
Affiliation(s)
- Daoyuan Chen
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| | - Xuecun Liu
- Shandong Boan Biotechnology Co., Ltd., Yantai, China
| | - Xiaoyan Lu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| | - Jingwei Tian
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| |
Collapse
|
123
|
Sahoo A, Mandal AK, Kumar M, Dwivedi K, Singh D. Prospective Challenges for Patenting and Clinical Trials of Anticancer Compounds from Natural Products: Coherent Review. Recent Pat Anticancer Drug Discov 2023; 18:470-494. [PMID: 36336805 DOI: 10.2174/1574892818666221104113703] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 07/24/2022] [Accepted: 09/14/2022] [Indexed: 11/09/2022]
Abstract
Cancer is a leading cause of morbidity and mortality worldwide. Each year, millions of people worldwide are diagnosed with cancer, and more than half of them die. Various conventional therapies for cancer, including chemotherapy and radiotherapy, have extreme side effects. Therefore, to minimize the global burden of lethal diseases like cancer, an effective and novel drug must be discovered. Its patent should be acquired to secure the novel medicament. The pharmacological potential of different natural products has made them popular in the healthcare and pharmaceutical industries. Various anticancer compounds are obtained from natural sources such as plants, microbes, and marine and terrestrial animals, including alkaloids, terpenoids, biophenols, enzymes, glycosides, etc. The term "natural products" is defined as the product of secondary or non-essential metabolic processes produced by living organisms (such as plants, invertebrates, and microorganisms). Although more precise definitions of NPs exist, they do not always meet consensus. Others define NPs as small molecules (excluding biomolecules) that emerge from the metabolic reaction. A handful of effective compounds are used currently from natural or analog moieties, and many more are in clinical studies. There is an excellent need for patenting molecules from natural products as the hit lead molecules are derived, isolated, and synthesized from natural products. However, these naturally occurring products may not be patentable under the law because they come from nature. This review highlights why natural products and compounds are hard to patent, under what patent law criteria we can patent these natural products and compounds, patent procedural guideline sources and why researchers prefer publication rather than a patent. Here, various patent scenarios of natural products and compounds for cancer have been given.
Collapse
Affiliation(s)
- Ankit Sahoo
- Department of Pharmaceutical Science, Shalom Institute of Health and Allied Sciences, Sam Higginbottom University of Agriculture Technology & Sciences, Prayagraj, Uttar Pradesh 211007, India
| | - Ashok Kumar Mandal
- Natural Product Research Laboratory, Thapathali, Kathmandu, Nepal, 44600
| | - Mayank Kumar
- Department of Pharmaceutical Chemistry, Aryakul College of Pharmacy and Research, Natkur, Lucknow, Uttar Pradesh-226002, India
| | - Khusbu Dwivedi
- Department of Pharmaceutics, Shambhunath Institute of Pharmacy Jhalwa, Prayagraj, Uttar Pradesh 211015, India
| | - Deepika Singh
- Department of Pharmaceutical Science, Shalom Institute of Health and Allied Sciences, Sam Higginbottom University of Agriculture Technology & Sciences, Prayagraj, Uttar Pradesh 211007, India
| |
Collapse
|
124
|
Hari SK, Gauba A, Shrivastava N, Tripathi RM, Jain SK, Pandey AK. Polymeric micelles and cancer therapy: an ingenious multimodal tumor-targeted drug delivery system. Drug Deliv Transl Res 2023; 13:135-163. [PMID: 35727533 DOI: 10.1007/s13346-022-01197-4] [Citation(s) in RCA: 70] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2022] [Indexed: 12/13/2022]
Abstract
Since the beginning of pharmaceutical research, drug delivery methods have been an integral part of it. Polymeric micelles (PMs) have emerged as multifunctional nanoparticles in the current technological era of nanocarriers, and they have shown promise in a range of scientific fields. They can alter the release profile of integrated pharmacological substances and concentrate them in the target zone due to their improved permeability and retention, making them more suitable for poorly soluble medicines. With their ability to deliver poorly soluble chemotherapeutic drugs, PMs have garnered considerable interest in cancer. As a result of their remarkable biocompatibility, improved permeability, and minimal toxicity to healthy cells, while also their capacity to solubilize a wide range of drugs in their micellar core, PMs are expected to be a successful treatment option for cancer therapy in the future. Their nano-size enables them to accumulate in the tumor microenvironment (TME) via the enhanced permeability and retention (EPR) effect. In this review, our major aim is to focus primarily on the stellar applications of PMs in the field of cancer therapeutics along with its mechanism of action and its latest advancements in drug and gene delivery (DNA/siRNA) for cancer, using various therapeutic strategies such as crossing blood-brain barrier, gene therapy, photothermal therapy (PTT), and immunotherapy. Furthermore, PMs can be employed as "smart drug carriers," allowing them to target specific cancer sites using a variety of stimuli (endogenous and exogenous), which improve the specificity and efficacy of micelle-based targeted drug delivery. All the many types of stimulants, as well as how the complex of PM and various anticancer drugs react to it, and their pharmacodynamics are also reviewed here. In conclusion, commercializing engineered micelle nanoparticles (MNPs) for application in therapy and imaging can be considered as a potential approach to improve the therapeutic index of anticancer drugs. Furthermore, PM has stimulated intense interest in research and clinical practice, and in light of this, we have also highlighted a few PMs that have previously been approved for therapeutic use, while the majority are still being studied in clinical trials for various cancer therapies.
Collapse
Affiliation(s)
- Sharath Kumar Hari
- Amity Institute of Microbial Technology, Amity University Uttar Pradesh, Noida, Uttar Pradesh, 201303, India
| | - Ankita Gauba
- Amity Institute of Microbial Technology, Amity University Uttar Pradesh, Noida, Uttar Pradesh, 201303, India
| | - Neeraj Shrivastava
- Amity Institute of Microbial Technology, Amity University Uttar Pradesh, Noida, Uttar Pradesh, 201303, India
| | - Ravi Mani Tripathi
- Amity Institute of Nanotechnology, Amity University Uttar Pradesh, Noida, Uttar Pradesh, 201303, India.
| | - Sudhir Kumar Jain
- School of Studies in Microbiology, Vikram University, Ujjain, Madhya Pradesh, 456010, India
| | - Akhilesh Kumar Pandey
- Department of Biological Sciences, Rani Durgavati University, Jabalpur, M.P, 482001, India.,Vikram University, Ujjain, Madhya Pradesh, 456010, India
| |
Collapse
|
125
|
Muacevic A, Adler JR, Das S, Rawat DK, Kharade V, Pasricha RK. Nanotechnology in Lung Cancer Therapeutics: A Narrative Review. Cureus 2023; 15:e34245. [PMID: 36855484 PMCID: PMC9968214 DOI: 10.7759/cureus.34245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/26/2023] [Indexed: 01/28/2023] Open
Abstract
To date, cancer continues to be one of the biggest challenges for medical science. Nanotechnology has enabled us to overcome some of the limitations of conventional treatment in lung cancer therapeutics. Recently, US Food and Drug Administration (FDA) has approved certain nanomedicines for clinical administration against lung cancer. This article presents a narrative review of approved nanomedicines in lung cancer with a special focus on the results of recently concluded and ongoing clinical trials. The limitations associated with using nanomaterials as anti-lung cancer therapeutic agents and the possible mechanisms to overcome these limitations are also discussed.
Collapse
Affiliation(s)
- Alexander Muacevic
- Radiotherapy, All India Institute of Medical Sciences, Bhopal, Bhopal, IND
| | - John R Adler
- Radiotherapy, All India Institute of Medical Sciences, Bhopal, Bhopal, IND
| | | | | | | | | |
Collapse
|
126
|
Novoselova MV, Shramova EI, Sergeeva OV, Shcherbinina EY, Perevoschikov SV, Melnikov P, Griaznova OY, Sergeev IS, Konovalova EV, Schulga AA, Proshkina GM, Zatsepin TS, Deyev SM, Gorin DA. Polymer/magnetite carriers functionalized by HER2-DARPin: Avoiding lysosomes during internalization and controlled toxicity of doxorubicin by focused ultrasound induced release. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2023; 47:102612. [PMID: 36243307 DOI: 10.1016/j.nano.2022.102612] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 09/08/2022] [Accepted: 09/25/2022] [Indexed: 11/05/2022]
Abstract
Nanomedicine has revolutionized the available treatment options during the last decade, but poor selectivity of targeted drug delivery and release is still poses a challenge. In this study, doxorubicin (DOX) and magnetite nanoparticles were encapsulated by freezing-induced loading, coated with polymeric shell bearing two bi-layers of polyarginine/dextran sulphate and finally modified with HER2-specific DARPin proteins. We demonstrated that the enhanced cellular uptake of these nanocarriers predominantly occurs by SKOV-3 (HER2+) cells, in comparison to CHO (HER2-) cells, together with the controlled DOX release using low intensity focused ultrasound (LIFU). In addition, a good ability of DARPin+ capsules to accumulate in the tumor and the possibility of combination therapy with LIFU were demonstrated. A relatively high sensitivity of the obtained nanocarriers to LIFU and their preferential interactions with mitochondria in cancer cells make these carriers promising candidates for cancer treatment, including novel approaches to overcome drug resistance.
Collapse
Affiliation(s)
- M V Novoselova
- Skolkovo Institute of Science and Technology, Moscow 121205, Russia.
| | - E I Shramova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russia
| | - O V Sergeeva
- Skolkovo Institute of Science and Technology, Moscow 121205, Russia.
| | - E Y Shcherbinina
- Skolkovo Institute of Science and Technology, Moscow 121205, Russia.
| | | | - P Melnikov
- V. Serbsky National Medical Research Center for Psychiatry and Narcology, Moscow 119034, Russia
| | - O Yu Griaznova
- Skolkovo Institute of Science and Technology, Moscow 121205, Russia; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russia.
| | - I S Sergeev
- Skolkovo Institute of Science and Technology, Moscow 121205, Russia
| | - E V Konovalova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russia
| | - A A Schulga
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russia
| | - G M Proshkina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russia.
| | - T S Zatsepin
- Lomonosov Moscow State University, Moscow 119991, Russia.
| | - S M Deyev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russia
| | - D A Gorin
- Skolkovo Institute of Science and Technology, Moscow 121205, Russia.
| |
Collapse
|
127
|
Ekinci M, dos Santos CC, Alencar LM, Akbaba H, Santos-Oliveira R, Ilem-Ozdemir D. Atezolizumab-Conjugated Poly(lactic acid)/Poly(vinyl alcohol) Nanoparticles as Pharmaceutical Part Candidates for Radiopharmaceuticals. ACS OMEGA 2022; 7:47956-47966. [PMID: 36591122 PMCID: PMC9798736 DOI: 10.1021/acsomega.2c05834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
The necessity of new drugs for lung cancer therapy and imaging is increasing each day. The development of new drugs that are capable of reaching the tumor with specificity and selectivity is required. In this direction, the design of nanoparticles for tumor therapy represents an important alternative. The aim of this study was to develop, characterize, and evaluate target-specific atezolizumab-conjugated poly(lactic acid)/poly(vinyl alcohol) (PLA/PVA) nanoparticles as pharmaceutical fragment candidates for new radiopharmaceuticals. For this purpose, PLA/PVA nanoparticle formulations were prepared by the double emulsification/solvent evaporation method with a high-speed homogenizer. A special focus was oriented to the selection of a suitable method for modification of the nanoparticle surface with a monoclonal antibody. For this purpose, atezolizumab was bound to the nanoparticles during the preparation by solvent evaporation or either by adsorption or covalent binding. PLA/PVA/atezolizumab nanoparticles are characterized by dynamic light scattering, Raman spectroscopy, scanning electron microscopy, and atomic force microscopy. An in vitro assay was performed to evaluate the antibody binding efficiency, stability, and cytotoxicity [A549 (lung cancer cell) and L929 (healthy fibroblast cell)]. The results showed that a spherical nanoparticle with a size of 230.6 ± 1.768 nm and a ζ potential of -2.23 ± 0.55 mV was produced. Raman spectroscopy demonstrated that the monoclonal antibody was entrapped in the nanoparticle. The high antibody binding efficiency (80.58%) demonstrated the efficacy of the nanosystem. The cytotoxic assay demonstrated the safety of the nanoparticle in L929 and the effect on A549. In conclusion, PLA/PVA/atezolizumab nanoparticles can be used as drug delivery systems for lung cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Meliha Ekinci
- Faculty of Pharmacy,
Department of Radiopharmacy, Ege University, Bornova, 35040 Izmir, Turkiye
| | | | | | - Hasan Akbaba
- Faculty of Pharmacy, Department of Pharmaceutical Biotechnology, Ege University, Bornova, Izmir 35040, Turkiye
| | - Ralph Santos-Oliveira
- Nuclear Engineering Institute, Laboratory of Synthesis
of Novel Radiopharmaceuticals and Nanoradiopharmacy, Brazilian Nuclear Energy Commission, Rio de Janeiro 222901-901, Brazil
- Laboratory of Nanoradiopharmaceuticals
and Radiopharmacy, State University of Rio
de Janeiro, Rio de Janeiro 20550-013, Brazil
| | - Derya Ilem-Ozdemir
- Faculty of Pharmacy,
Department of Radiopharmacy, Ege University, Bornova, 35040 Izmir, Turkiye
| |
Collapse
|
128
|
Afzal O, Altamimi ASA, Nadeem MS, Alzarea SI, Almalki WH, Tariq A, Mubeen B, Murtaza BN, Iftikhar S, Riaz N, Kazmi I. Nanoparticles in Drug Delivery: From History to Therapeutic Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4494. [PMID: 36558344 PMCID: PMC9781272 DOI: 10.3390/nano12244494] [Citation(s) in RCA: 125] [Impact Index Per Article: 41.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/04/2022] [Accepted: 12/14/2022] [Indexed: 05/25/2023]
Abstract
Current research into the role of engineered nanoparticles in drug delivery systems (DDSs) for medical purposes has developed numerous fascinating nanocarriers. This paper reviews the various conventionally used and current used carriage system to deliver drugs. Due to numerous drawbacks of conventional DDSs, nanocarriers have gained immense interest. Nanocarriers like polymeric nanoparticles, mesoporous nanoparticles, nanomaterials, carbon nanotubes, dendrimers, liposomes, metallic nanoparticles, nanomedicine, and engineered nanomaterials are used as carriage systems for targeted delivery at specific sites of affected areas in the body. Nanomedicine has rapidly grown to treat certain diseases like brain cancer, lung cancer, breast cancer, cardiovascular diseases, and many others. These nanomedicines can improve drug bioavailability and drug absorption time, reduce release time, eliminate drug aggregation, and enhance drug solubility in the blood. Nanomedicine has introduced a new era for drug carriage by refining the therapeutic directories of the energetic pharmaceutical elements engineered within nanoparticles. In this context, the vital information on engineered nanoparticles was reviewed and conferred towards the role in drug carriage systems to treat many ailments. All these nanocarriers were tested in vitro and in vivo. In the coming years, nanomedicines can improve human health more effectively by adding more advanced techniques into the drug delivery system.
Collapse
Affiliation(s)
- Obaid Afzal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Abdulmalik S A Altamimi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Muhammad Shahid Nadeem
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Aqsa Tariq
- Institute of Molecular Biology and Biotechnology (IMBB), The University of Lahore, Lahore 54000, Pakistan
| | - Bismillah Mubeen
- Institute of Molecular Biology and Biotechnology (IMBB), The University of Lahore, Lahore 54000, Pakistan
| | - Bibi Nazia Murtaza
- Department of Zoology, Abbottabad University of Science and Technology (AUST), Abbottabad 22310, Pakistan
| | - Saima Iftikhar
- School of Biological Sciences, University of Punjab, Lahore 54000, Pakistan
| | - Naeem Riaz
- Department of Pharmacy, COMSATS University, Abbottabad 22020, Pakistan
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
129
|
El Atat O, Naser R, Abdelkhalek M, Habib RA, El Sibai M. Molecular targeted therapy: A new avenue in glioblastoma treatment. Oncol Lett 2022; 25:46. [PMID: 36644133 PMCID: PMC9811647 DOI: 10.3892/ol.2022.13632] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 10/21/2022] [Indexed: 12/23/2022] Open
Abstract
Glioblastoma, also referred to as glioblastoma multiforme (GBM), is grade IV astrocytoma characterized by being fast-growing and the most aggressive brain tumor. In adults, it is the most prevalent type of malignant brain tumor. Despite the advancements in both diagnosis tools and therapeutic treatments, GBM is still associated with poor survival rate without any statistically significant improvement in the past three decades. Patient's genome signature is one of the key factors causing the development of this tumor, in addition to previous radiation exposure and other environmental factors. Researchers have identified genomic and subsequent molecular alterations affecting core pathways that trigger the malignant phenotype of this tumor. Targeting intrinsically altered molecules and pathways is seen as a novel avenue in GBM treatment. The present review shed light on signaling pathways and intrinsically altered molecules implicated in GBM development. It discussed the main challenges impeding successful GBM treatment, such as the blood brain barrier and tumor microenvironment (TME), the plasticity and heterogeneity of both GBM and TME and the glioblastoma stem cells. The present review also presented current advancements in GBM molecular targeted therapy in clinical trials. Profound and comprehensive understanding of molecular participants opens doors for innovative, more targeted and personalized GBM therapeutic modalities.
Collapse
Affiliation(s)
- Oula El Atat
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut 1102 2801, Lebanon
| | - Rayan Naser
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut 1102 2801, Lebanon
| | - Maya Abdelkhalek
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut 1102 2801, Lebanon
| | - Ralph Abi Habib
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut 1102 2801, Lebanon
| | - Mirvat El Sibai
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut 1102 2801, Lebanon,Correspondence to: Professor Mirvat El Sibai, Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Koraytem Street, Beirut 1102 2801, Lebanon, E-mail:
| |
Collapse
|
130
|
Current regulatory landscape of nanomaterials and nanomedicines: A global perspective. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.104118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
131
|
Zheng KH, Kroon J, Schoormans J, Gurney-Champion O, Meijer SL, Gisbertz SS, Hulshof MC, Vugts DJ, van Dongen GA, Coolen BF, Verberne HJ, Nederveen AJ, Stroes ES, van Laarhoven HW. 89Zr-Labeled High-Density Lipoprotein Nanoparticle PET Imaging Reveals Tumor Uptake in Patients with Esophageal Cancer. J Nucl Med 2022; 63:1880-1886. [PMID: 35738904 PMCID: PMC9730913 DOI: 10.2967/jnumed.121.263330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 04/18/2022] [Indexed: 01/11/2023] Open
Abstract
Nanomedicine holds promise for the delivery of therapeutic and imaging agents to improve cancer treatment outcomes. Preclinical studies have demonstrated that high-density lipoprotein (HDL) nanoparticles accumulate in tumor tissue on intravenous administration. Whether this HDL-based nanomedicine concept is feasible in patients is unexplored. Using a multimodal imaging approach, we aimed to assess tumor uptake of exogenously administered HDL nanoparticles in patients with esophageal cancer. Methods: The HDL mimetic CER-001 was radiolabeled using 89Zr to allow for PET/CT imaging. Patients with primary esophageal cancer staged T2 and above were recruited for serial 89Zr-HDL PET/CT imaging before starting chemoradiation therapy. In addition, patients underwent routine 18F-FDG PET/CT and 3-T MRI scanning (diffusion-weighted imaging/intravoxel incoherent motion imaging and dynamic contrast-enhanced MRI) to assess tumor glucose metabolism, tumor cellularity and microcirculation perfusion, and tumor vascular permeability. Tumor biopsies were analyzed for the expression of HDL scavenger receptor class B1 and macrophage marker CD68 using immunofluorescence staining. Results: Nine patients with adenocarcinoma or squamous cell carcinoma underwent all study procedures. After injection of 89Zr-HDL (39.2 ± 1.2 [mean ± SD] MBq), blood-pool SUVmean decreased over time (11.0 ± 1.7, 6.5 ± 0.6, and 3.3 ± 0.5 at 1, 24, and 72 h, respectively), whereas liver and spleen SUVmean remained relatively constant (4.1 ± 0.6, 4.0 ± 0.8, and 4.3 ± 0.8 at 1, 24, and 72 h, respectively, for the liver; 4.1 ± 0.3, 3.4 ± 0.3, and 3.1 ± 0.4 at 1, 24, and 72 h, respectively, for the spleen) and kidney SUVmean markedly increased over time (4.1 ± 0.9, 9.3 ± 1.4, and 9.6 ± 2.0 at 1, 24, and 72 h, respectively). Tumor uptake (SUVpeak) increased over time (3.5 ± 1.1 and 5.5 ± 2.1 at 1 and 24 h, respectively [P = 0.016]; 5.7 ± 1.4 at 72 h [P = 0.001]). The effective dose of 89Zr-HDL was 0.523 ± 0.040 mSv/MBq. No adverse events were observed after the administration of 89Zr-HDL. PET/CT and 3-T MRI measures of tumor glucose metabolism, tumor cellularity and microcirculation perfusion, and tumor vascular permeability did not correlate with tumor uptake of 89Zr-HDL, suggesting that a specific mechanism mediated the accumulation of 89Zr-HDL. Immunofluorescence staining of clinical biopsies demonstrated scavenger receptor class B1 and CD68 positivity in tumor tissue, establishing a potential cellular mechanism of action. Conclusion: To our knowledge, this was the first 89Zr-HDL study in human oncology. 89Zr-HDL PET/CT imaging demonstrated that intravenously administered HDL nanoparticles accumulated in tumors of patients with esophageal cancer. The administration of 89Zr-HDL was safe. These findings may support the development of HDL nanoparticles as a clinical delivery platform for drug agents. 89Zr-HDL imaging may guide drug development and serve as a biomarker for individualized therapy.
Collapse
Affiliation(s)
- Kang H. Zheng
- Department of Vascular Medicine, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Jeffrey Kroon
- Department of Experimental Vascular Medicine, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Jasper Schoormans
- Department of Biomedical Engineering and Physics, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Oliver Gurney-Champion
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Sybren L. Meijer
- Department of Pathology, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Suzanne S. Gisbertz
- Department of Surgery, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Maarten C.C.M. Hulshof
- Department of Radiotherapy, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Danielle J. Vugts
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, VU University, Amsterdam, The Netherlands; and
| | - Guus A.M.S. van Dongen
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, VU University, Amsterdam, The Netherlands; and
| | - Bram F. Coolen
- Department of Biomedical Engineering and Physics, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Hein J. Verberne
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Aart J. Nederveen
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Erik S.G. Stroes
- Department of Vascular Medicine, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Hanneke W.M. van Laarhoven
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
132
|
Masoudifar R, Pouyanfar N, Liu D, Ahmadi M, Landi B, Akbari M, Moayeri-Jolandan S, Ghorbani-Bidkorpeh F, Asadian E, Shahbazi MA. Surface engineered metal-organic frameworks as active targeting nanomedicines for mono- and multi-therapy. APPLIED MATERIALS TODAY 2022; 29:101646. [DOI: 10.1016/j.apmt.2022.101646] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
133
|
Voltà-Durán E, Sánchez JM, Parladé E, Serna N, Vazquez E, Unzueta U, Villaverde A. The Diphtheria Toxin Translocation Domain Impairs Receptor Selectivity in Cancer Cell-Targeted Protein Nanoparticles. Pharmaceutics 2022; 14:pharmaceutics14122644. [PMID: 36559138 PMCID: PMC9781143 DOI: 10.3390/pharmaceutics14122644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/20/2022] [Accepted: 11/23/2022] [Indexed: 12/02/2022] Open
Abstract
Protein-based materials intended as nanostructured drugs or drug carriers are progressively gaining interest in nanomedicine, since their structure, assembly and cellular interactivity can be tailored by recruiting functional domains. The main bottleneck in the development of deliverable protein materials is the lysosomal degradation that follows endosome maturation. This is especially disappointing in the case of receptor-targeted protein constructs, which, while being highly promising and in demand in precision medicines, enter cells via endosomal/lysosomal routes. In the search for suitable protein agents that might promote endosome escape, we have explored the translocation domain (TD) of the diphtheria toxin as a functional domain in CXCR4-targeted oligomeric nanoparticles designed for cancer therapies. The pharmacological interest of such protein materials could be largely enhanced by improving their proteolytic stability. The incorporation of TD into the building blocks enhances the amount of the material detected inside of exposed CXCR4+ cells up to around 25-fold, in absence of cytotoxicity. This rise cannot be accounted for by endosomal escape, since the lysosomal degradation of the new construct decreases only moderately. On the other hand, a significant loss in the specificity of the CXCR4-dependent cellular penetration indicates the unexpected role of the toxin segment as a cell-penetrating peptide in a dose-dependent and receptor-independent fashion. These data reveal that the diphtheria toxin TD displayed on receptor-targeted oligomeric nanoparticles partially abolishes the exquisite receptor specificity of the parental material and it induces nonspecific internalization in mammalian cells.
Collapse
Affiliation(s)
- Eric Voltà-Durán
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, Bellaterra, 08193 Barcelona, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Julieta M. Sánchez
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, Bellaterra, 08193 Barcelona, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
- Instituto de Investigaciones Biológicas y Tecnológicas (IIBYT), CONICET-Universidad Nacional de Córdoba, Av. Velez Sarsfield 1611, Córdoba X5016GCA, Argentina
| | - Eloi Parladé
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, Bellaterra, 08193 Barcelona, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Naroa Serna
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, Bellaterra, 08193 Barcelona, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Esther Vazquez
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, Bellaterra, 08193 Barcelona, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Ugutz Unzueta
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, Bellaterra, 08193 Barcelona, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
- Institut d’Investigació Biomèdica Sant Pau (IIB SANT PAU), Sant Quintí 77-79, 08041 Barcelona, Spain
- Josep Carreras Leukaemia Research Institute, 08025 Barcelona, Spain
- Correspondence: (U.U.); (A.V.)
| | - Antonio Villaverde
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, Bellaterra, 08193 Barcelona, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
- Correspondence: (U.U.); (A.V.)
| |
Collapse
|
134
|
Kumar H, Kumar J, Pani B, Kumar P. Multifunctional Folic acid‐coated and Doxorubicin Encapsulated Mesoporous Silica Nanocomposites (FA/DOX@Silica) for Cancer Therapeutics, Bioimaging and
invitro
Studies. ChemistrySelect 2022. [DOI: 10.1002/slct.202203113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Hemant Kumar
- Department of Chemistry Ramjas College University of Delhi Delhi 110007 India
- Department of Chemistry University of Delhi Delhi 110007 India
- Bhaskaracharya College of Applied Sciences Department of Chemistry University of Delhi Delhi 110075
| | - Jitender Kumar
- Department of Chemistry University of Delhi Delhi 110007 India
| | - Balaram Pani
- Bhaskaracharya College of Applied Sciences Department of Chemistry University of Delhi Delhi 110075
| | - Pramod Kumar
- Department of Chemistry& Chemical Science School of Physical & Material Sciences Central University of Himachal Pradesh Dharamshala 176215 India
| |
Collapse
|
135
|
Grebinyk A, Prylutska S, Grebinyk S, Ponomarenko S, Virych P, Chumachenko V, Kutsevol N, Prylutskyy Y, Ritter U, Frohme M. Drug delivery with a pH-sensitive star-like dextran-graft polyacrylamide copolymer. NANOSCALE ADVANCES 2022; 4:5077-5088. [PMID: 36504750 PMCID: PMC9680934 DOI: 10.1039/d2na00353h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 09/29/2022] [Indexed: 06/17/2023]
Abstract
The development of precision cancer medicine relies on novel formulation strategies for targeted drug delivery to increase the therapeutic outcome. Biocompatible polymer nanoparticles, namely dextran-graft-polyacrylamide (D-g-PAA) copolymers, represent one of the innovative non-invasive approaches for drug delivery applications in cancer therapy. In this study, the star-like D-g-PAA copolymer in anionic form (D-g-PAAan) was developed for pH-triggered targeted drug delivery of the common chemotherapeutic drugs - doxorubicin (Dox) and cisplatin (Cis). The initial D-g-PAA copolymer was synthesized by the radical graft polymerization method, and then alkaline-hydrolyzed to get this polymer in anionic form for further use for drug encapsulation. The acidification of the buffer promoted the release of loaded drugs. D-g-PAAan nanoparticles increased the toxic potential of the drugs against human and mouse lung carcinoma cells (A549 and LLC), but not against normal human lung cells (HEL299). The drug-loaded D-g-PAAan-nanoparticles promoted further oxidative stress and apoptosis induction in LLC cells. D-g-PAAan-nanoparticles improved Dox accumulation and drugs' toxicity in a 3D LLC multi-cellular spheroid model. The data obtained indicate that the strategy of chemotherapeutic drug encapsulation within the branched D-g-PAAan nanoparticle allows not only to realize pH-triggered drug release but also to potentiate its cytotoxic, prooxidant and proapoptotic effects against lung carcinoma cells.
Collapse
Affiliation(s)
- Anna Grebinyk
- Division Molecular Biotechnology and Functional Genomics, Technical University of Applied Sciences Wildau Hochschulring 1 15745 Wildau Germany
| | - Svitlana Prylutska
- National University of Life and Environmental Science of Ukraine Heroiv Oborony Str., 15 03041 Kyiv Ukraine
| | - Sergii Grebinyk
- Division Molecular Biotechnology and Functional Genomics, Technical University of Applied Sciences Wildau Hochschulring 1 15745 Wildau Germany
| | - Stanislav Ponomarenko
- Taras Shevchenko National University of Kyiv Volodymyrska Str., 64 01601 Kyiv Ukraine
| | - Pavlo Virych
- Taras Shevchenko National University of Kyiv Volodymyrska Str., 64 01601 Kyiv Ukraine
| | - Vasyl Chumachenko
- Taras Shevchenko National University of Kyiv Volodymyrska Str., 64 01601 Kyiv Ukraine
| | - Nataliya Kutsevol
- Taras Shevchenko National University of Kyiv Volodymyrska Str., 64 01601 Kyiv Ukraine
- Institute Charles Sadron 23 Rue du Loess 67200 Strasbourg France
| | - Yuriy Prylutskyy
- Taras Shevchenko National University of Kyiv Volodymyrska Str., 64 01601 Kyiv Ukraine
| | - Uwe Ritter
- Technical University of Ilmenau, Institute of Chemistry and Biotechnology Weimarer Str., 25 98693 Ilmenau Germany
| | - Marcus Frohme
- Division Molecular Biotechnology and Functional Genomics, Technical University of Applied Sciences Wildau Hochschulring 1 15745 Wildau Germany
| |
Collapse
|
136
|
Peña Q, Rodríguez-Calado S, Simaan AJ, Capdevila M, Bayón P, Palacios O, Lorenzo J, Iranzo O. Cell-penetrating peptide-conjugated copper complexes for redox-mediated anticancer therapy. Front Pharmacol 2022; 13:1060827. [PMID: 36467097 PMCID: PMC9714576 DOI: 10.3389/fphar.2022.1060827] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 10/28/2022] [Indexed: 09/12/2023] Open
Abstract
Metal-based chemotherapeutics like cisplatin are widely employed in cancer treatment. In the last years, the design of redox-active (transition) metal complexes, such as of copper (Cu), has attracted high interest as alternatives to overcome platinum-induced side-effects. However, several challenges are still faced, including optimal aqueous solubility and efficient intracellular delivery, and strategies like the use of cell-penetrating peptides have been encouraging. In this context, we previously designed a Cu(II) scaffold that exhibited significant reactive oxygen species (ROS)-mediated cytotoxicity. Herein, we build upon the promising Cu(II) redox-active metallic core and aim to potentiate its anticancer activity by rationally tailoring it with solubility- and uptake-enhancing functionalizations that do not alter the ROS-generating Cu(II) center. To this end, sulfonate, arginine and arginine-rich cell-penetrating peptide (CPP) derivatives have been prepared and characterized, and all the resulting complexes preserved the parent Cu(II) coordination core, thereby maintaining its reported redox capabilities. Comparative in vitro assays in several cancer cell lines reveal that while specific solubility-targeting derivatizations (i.e., sulfonate or arginine) did not translate into an improved cytotoxicity, increased intracellular copper delivery via CPP-conjugation promoted an enhanced anticancer activity, already detectable at short treatment times. Additionally, immunofluorescence assays show that the Cu(II) peptide-conjugate distributed throughout the cytosol without lysosomal colocalization, suggesting potential avoidance of endosomal entrapment. Overall, the systematic exploration of the tailored modifications enables us to provide further understanding on structure-activity relationships of redox-active metal-based (Cu(II)) cytotoxic complexes, which contributes to rationalize and improve the design of more efficient redox-mediated metal-based anticancer therapy.
Collapse
Affiliation(s)
- Quim Peña
- Departament de Química, Facultat de Ciències, Universitat Autònoma de Barcelona, Barcelona, Spain
- Aix Marseille University, CNRS, Centrale Marseille, ISm2, Marseille, France
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Faculty of Medicine, RWTH Aachen University Clinic, Aachen, Germany
| | - Sergi Rodríguez-Calado
- Department Bioquímica i Biologia Molecular, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - A. Jalila Simaan
- Aix Marseille University, CNRS, Centrale Marseille, ISm2, Marseille, France
| | - Mercè Capdevila
- Departament de Química, Facultat de Ciències, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Pau Bayón
- Departament de Química, Facultat de Ciències, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Oscar Palacios
- Departament de Química, Facultat de Ciències, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Julia Lorenzo
- Department Bioquímica i Biologia Molecular, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Olga Iranzo
- Aix Marseille University, CNRS, Centrale Marseille, ISm2, Marseille, France
| |
Collapse
|
137
|
Mobeen H, Safdar M, Fatima A, Afzal S, Zaman H, Mehdi Z. Emerging applications of nanotechnology in context to immunology: A comprehensive review. Front Bioeng Biotechnol 2022; 10:1024871. [PMID: 36619389 PMCID: PMC9815620 DOI: 10.3389/fbioe.2022.1024871] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/21/2022] [Indexed: 11/16/2022] Open
Abstract
Numerous benefits of nanotechnology are available in many scientific domains. In this sense, nanoparticles serve as the fundamental foundation of nanotechnology. Recent developments in nanotechnology have demonstrated that nanoparticles have enormous promise for use in almost every field of life sciences. Nanoscience and nanotechnology use the distinctive characteristics of tiny nanoparticles (NPs) for various purposes in electronics, fabrics, cosmetics, biopharmaceutical industries, and medicines. The exclusive physical, chemical, and biological characteristics of nanoparticles prompt different immune responses in the body. Nanoparticles are believed to have strong potential for the development of advanced adjuvants, cytokines, vaccines, drugs, immunotherapies, and theranostic applications for the treatment of targeted bacterial, fungal, viral, and allergic diseases and removal of the tumor with minimal toxicity as compared to macro and microstructures. This review highlights the medical and non-medical applications with a detailed discussion on enhanced and targeted natural and acquired immunity against pathogens provoked by nanoparticles. The immunological aspects of the nanotechnology field are beyond the scope of this Review. However, we provide updated data that will explore novel theragnostic immunological applications of nanotechnology for better and immediate treatment.
Collapse
Affiliation(s)
- Hifsa Mobeen
- Department of Allied Health Sciences, Superior University, Lahore, Pakistan
| | - Muhammad Safdar
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Asma Fatima
- Pakistan Institute of Quality Control, Superior University, Lahore, Pakistan
| | - Samia Afzal
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Hassan Zaman
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Zuhair Mehdi
- Centre for Applied Molecular Biology, University of the Punjab, Lahore, Pakistan
| |
Collapse
|
138
|
Sun CK, Wang YH, Chen YL, Lu TY, Chen HY, Pan SC, Chen PC, Liao MY, Yu J. Fabrication of an Au-doped Cu/Fe oxide-polymer core-shell nanoreactor with chemodynamic and photodynamic dual effects as potential cancer therapeutic agents. Sci Rep 2022; 12:18729. [PMID: 36333398 PMCID: PMC9636373 DOI: 10.1038/s41598-022-23002-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022] Open
Abstract
Nanoparticles are widely used in biomedical applications and cancer treatments due to their minute scale, multi-function, and long retention time. Among the various nanoparticles, the unique optical property derived from the localized surface plasmon resonance effect of metallic nanoparticles is a primary reason that metallic nanoparticles are researched and applied. Copper and Iron nanoparticles have the potential to generate hydroxyl radicals in excess H2O2 via Fenton or Fenton-like reactions. On the other hand, gold nanoparticles equipped with a photosensitizer can transfer the energy of photons to chemical energy and enhance the production of singlet oxygen, which is suitable for cancer treatment. With the actions of these two reactive oxygen species in the tumor microenvironment, cell apoptosis can further be induced. In this work, we first synthesized dual metal nanoparticles with poly[styrene-alt-(maleic acid, sodium salt)(Cu ferrite oxide-polymer) by a simple one-step hydrothermal reduction reaction. Then, gold(III) was reduced and doped into the structure, which formed a triple metal structure, Au-doped Cu ferrite nanoparticles (Au/Cu ferrite oxide-polymer NPs). The metal ratio of the product could be controlled by manipulating the Fe/Cu ratio of reactants and the sequence of addition of reactants. The core-shell structure was verified by transmission electron microscopy. Moreover, the hydroxyl radical and singlet oxygen generation ability of Au/Cu ferrite oxide-polymer was proved. The chemodynamic and photodynamic effect was measured, and the in vitro ROS generation was observed. Furthermore, the behavior of endocytosis by cancer cells could be controlled by the magnetic field. The result indicated that Au/Cu ferrite oxide-polymer core-shell nanoreactor is a potential agent for chemodynamic/photodynamic synergetic therapy.
Collapse
Affiliation(s)
- Chun-Kai Sun
- grid.19188.390000 0004 0546 0241Department of Chemical Engineering, National Taiwan University, Taipei, 10617 Taiwan
| | - Yin-Hsu Wang
- grid.19188.390000 0004 0546 0241Department of Chemical Engineering, National Taiwan University, Taipei, 10617 Taiwan
| | - Yu-Liang Chen
- grid.19188.390000 0004 0546 0241Department of Chemical Engineering, National Taiwan University, Taipei, 10617 Taiwan
| | - Ting-Yu Lu
- grid.266100.30000 0001 2107 4242Materials Science and Engineering Program, University of California San Diego, La Jolla, CA 92093 USA
| | - Hsi-Ying Chen
- grid.445052.20000 0004 0639 3773Department of Applied Chemistry, National Pingtung University, Pingtung, 90003 Taiwan
| | - Shih-Chin Pan
- grid.412087.80000 0001 0001 3889Department of Materials and Mineral Resources Engineering, Institute of Materials Science and Engineering, National Taipei University of Technology, Taipei, 10608 Taiwan
| | - Po-Chun Chen
- grid.412087.80000 0001 0001 3889Department of Materials and Mineral Resources Engineering, Institute of Materials Science and Engineering, National Taipei University of Technology, Taipei, 10608 Taiwan
| | - Mei-Yi Liao
- grid.445052.20000 0004 0639 3773Department of Applied Chemistry, National Pingtung University, Pingtung, 90003 Taiwan
| | - Jiashing Yu
- grid.19188.390000 0004 0546 0241Department of Chemical Engineering, National Taiwan University, Taipei, 10617 Taiwan
| |
Collapse
|
139
|
Hawthorne D, Pannala A, Sandeman S, Lloyd A. Sustained and targeted delivery of hydrophilic drug compounds: A review of existing and novel technologies from bench to bedside. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
140
|
Şenol Y, Kaplan O, Varan C, Demirtürk N, Öncül S, Fidan BB, Ercan A, Bilensoy E, Çelebier M. Pharmacometabolomic assessment of vitamin E loaded human serum albumin nanoparticles on HepG2 cancer cell lines. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.104017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
141
|
Zhong W, Yue K, Wang A, Zhang G, Wang J, Wang L, Wang H, Zhang H, Zhang X. Mechanisms of deformation and drug release of targeting polypeptides based on fibronectin induction. Colloids Surf B Biointerfaces 2022; 219:112836. [PMID: 36115264 DOI: 10.1016/j.colsurfb.2022.112836] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 09/04/2022] [Accepted: 09/07/2022] [Indexed: 10/31/2022]
Abstract
Polypeptide nano-carriers with deformation and sustained-release function have gained an attention in anti-tumor treatment. A multifunctional polypeptide with different motifs was discussed and the contribution of each motif to targeted drug release was analyzed by control studies. The transformation and drug release processes of polypeptides were investigated by molecular dynamics method to reveal their dynamics mechanism, and corresponding experiments were performed to verify the simulation results. We observed that the polypeptides could form NPs under the hydrophobic interaction between self-assembly motifs and the electrostatic repulsion between targeting motifs. Affected by the ligand-receptor interaction, the targeting motifs overcame the electrostatic repulsion to approach the ligand proteins, leading to the promotion of the binding of fibrous motifs and the transformation of NPs into NFs for better retention of drugs in the tumor tissues. In addition, the polypeptides with strong hydrophobicity exhibited excellent sustained-release efficiency. These insights allow drawing general conclusions contributed to the design of transformable polypeptide NPs: The decrease in the hydrophobicity of self-assembly motifs is beneficial for the enrichment of doxorubicin in tumor tissues, as well as the similar result can be obtained with the improvement of the hydrophobicity of fibrous motifs and the capability of target.
Collapse
Affiliation(s)
- Weishen Zhong
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Kai Yue
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Shunde Graduate School of University of Science and Technology Beijing, Shunde, Guangdong Province 528399, China.
| | - Anqi Wang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Genpei Zhang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Shunde Graduate School of University of Science and Technology Beijing, Shunde, Guangdong Province 528399, China
| | - Jiaqi Wang
- Department of Urology, the Fourth Hospital of Harbin Medical University, Heilongjiang Key Laboratory of Scientific Research in Urology, Harbin 150001, China; CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Lei Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Hao Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Hua Zhang
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Xinxin Zhang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Shunde Graduate School of University of Science and Technology Beijing, Shunde, Guangdong Province 528399, China
| |
Collapse
|
142
|
Dual-Functionalized Nanoliposomes Achieve a Synergistic Chemo-Phototherapeutic Effect. Int J Mol Sci 2022; 23:ijms232112817. [PMID: 36361615 PMCID: PMC9653560 DOI: 10.3390/ijms232112817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/17/2022] [Accepted: 10/19/2022] [Indexed: 11/16/2022] Open
Abstract
The enhancement of photodynamic therapy (PDT) effectiveness by combining it with other treatment modalities and improved drug delivery has become an interesting field in cancer research. We have prepared and characterized nanoliposomes containing the chemotherapeutic drug irinotecan (CPT11lip), the photodynamic agent protoporphyrin IX (PpIXlip), or their combination (CPT11-PpIXlip). The effects of individual and bimodal (chemo-phototherapeutic) treatments on HeLa cells have been studied by a combination of biological and photophysical studies. Bimodal treatments show synergistic cytotoxic effects on HeLa cells at relatively low doses of PpIX/PDT and CPT11. Mechanistic cell inactivation studies revealed mitotic catastrophe, apoptosis, and senescence contributions. The enhanced anticancer activity is due to a sustained generation of reactive oxygen species, which increases the number of double-strand DNA breaks. Bimodal chemo-phototherapeutic liposomes may have a very promising future in oncological therapy, potentially allowing a reduction in the CPT11 concentration required to achieve a therapeutic effect and overcoming resistance to individual cancer treatments.
Collapse
|
143
|
Aram E, Moeni M, Abedizadeh R, Sabour D, Sadeghi-Abandansari H, Gardy J, Hassanpour A. Smart and Multi-Functional Magnetic Nanoparticles for Cancer Treatment Applications: Clinical Challenges and Future Prospects. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12203567. [PMID: 36296756 PMCID: PMC9611246 DOI: 10.3390/nano12203567] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/16/2022] [Accepted: 09/27/2022] [Indexed: 05/14/2023]
Abstract
Iron oxide nanoparticle (IONPs) have become a subject of interest in various biomedical fields due to their magnetism and biocompatibility. They can be utilized as heat mediators in magnetic hyperthermia (MHT) or as contrast media in magnetic resonance imaging (MRI), and ultrasound (US). In addition, their high drug-loading capacity enabled them to be therapeutic agent transporters for malignancy treatment. Hence, smartening them allows for an intelligent controlled drug release (CDR) and targeted drug delivery (TDD). Smart magnetic nanoparticles (SMNPs) can overcome the impediments faced by classical chemo-treatment strategies, since they can be navigated and release drug via external or internal stimuli. Recently, they have been synchronized with other modalities, e.g., MRI, MHT, US, and for dual/multimodal theranostic applications in a single platform. Herein, we provide an overview of the attributes of MNPs for cancer theranostic application, fabrication procedures, surface coatings, targeting approaches, and recent advancement of SMNPs. Even though MNPs feature numerous privileges over chemotherapy agents, obstacles remain in clinical usage. This review in particular covers the clinical predicaments faced by SMNPs and future research scopes in the field of SMNPs for cancer theranostics.
Collapse
Affiliation(s)
- Elham Aram
- Department of Cancer Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Babol 47138-18981, Iran
- Department of Polymer Engineering, Faculty of Engineering, Golestan University, Gorgan 49188-88369, Iran
| | - Masome Moeni
- School of Chemical and Process Engineering, University of Leeds, Leeds LS2 9JT, UK
| | - Roya Abedizadeh
- Department of Cancer Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Babol 47138-18981, Iran
| | - Davood Sabour
- Department of Cancer Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Babol 47138-18981, Iran
| | - Hamid Sadeghi-Abandansari
- Department of Cancer Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Babol 47138-18981, Iran
- Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 16635-148, Iran
| | - Jabbar Gardy
- School of Chemical and Process Engineering, University of Leeds, Leeds LS2 9JT, UK
- Correspondence: (J.G.); (A.H.)
| | - Ali Hassanpour
- School of Chemical and Process Engineering, University of Leeds, Leeds LS2 9JT, UK
- Correspondence: (J.G.); (A.H.)
| |
Collapse
|
144
|
Martins SA, Santos J, Silva RDM, Rosa C, Cabo Verde S, Correia JDG, Melo R. How promising are HIV-1-based virus-like particles for medical applications. Front Cell Infect Microbiol 2022; 12:997875. [PMID: 36275021 PMCID: PMC9585283 DOI: 10.3389/fcimb.2022.997875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/23/2022] [Indexed: 11/26/2022] Open
Abstract
New approaches aimed at identifying patient-specific drug targets and addressing unmet clinical needs in the framework of precision medicine are a strong motivation for researchers worldwide. As scientists learn more about proteins that drive known diseases, they are better able to design promising therapeutic approaches to target those proteins. The field of nanotechnology has been extensively explored in the past years, and nanoparticles (NPs) have emerged as promising systems for target-specific delivery of drugs. Virus-like particles (VLPs) arise as auspicious NPs due to their intrinsic properties. The lack of viral genetic material and the inability to replicate, together with tropism conservation and antigenicity characteristic of the native virus prompted extensive interest in their use as vaccines or as delivery systems for therapeutic and/or imaging agents. Owing to its simplicity and non-complex structure, one of the viruses currently under study for the construction of VLPs is the human immunodeficiency virus type 1 (HIV-1). Typically, HIV-1-based VLPs are used for antibody discovery, vaccines, diagnostic reagent development and protein-based assays. This review will be centered on the use of HIV-1-based VLPs and their potential biomedical applications.
Collapse
Affiliation(s)
- Sofia A. Martins
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Joana Santos
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Rúben D. M. Silva
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Cátia Rosa
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Sandra Cabo Verde
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
- Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - João D. G. Correia
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
- Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Rita Melo
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
145
|
Bai X, Smith ZL, Wang Y, Butterworth S, Tirella A. Sustained Drug Release from Smart Nanoparticles in Cancer Therapy: A Comprehensive Review. MICROMACHINES 2022; 13:mi13101623. [PMID: 36295976 PMCID: PMC9611581 DOI: 10.3390/mi13101623] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 09/22/2022] [Accepted: 09/22/2022] [Indexed: 05/14/2023]
Abstract
Although nanomedicine has been highly investigated for cancer treatment over the past decades, only a few nanomedicines are currently approved and in the market; making this field poorly represented in clinical applications. Key research gaps that require optimization to successfully translate the use of nanomedicines have been identified, but not addressed; among these, the lack of control of the release pattern of therapeutics is the most important. To solve these issues with currently used nanomedicines (e.g., burst release, systemic release), different strategies for the design and manufacturing of nanomedicines allowing for better control over the therapeutic release, are currently being investigated. The inclusion of stimuli-responsive properties and prolonged drug release have been identified as effective approaches to include in nanomedicine, and are discussed in this paper. Recently, smart sustained release nanoparticles have been successfully designed to safely and efficiently deliver therapeutics with different kinetic profiles, making them promising for many drug delivery applications and in specific for cancer treatment. In this review, the state-of-the-art of smart sustained release nanoparticles is discussed, focusing on the design strategies and performances of polymeric nanotechnologies. A complete list of nanomedicines currently tested in clinical trials and approved nanomedicines for cancer treatment is presented, critically discussing advantages and limitations with respect to the newly developed nanotechnologies and manufacturing methods. By the presented discussion and the highlight of nanomedicine design criteria and current limitations, this review paper could be of high interest to identify key features for the design of release-controlled nanomedicine for cancer treatment.
Collapse
Affiliation(s)
- Xue Bai
- Division of Pharmacy and Optometry, School of Health Science, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Zara L. Smith
- Division of Pharmacy and Optometry, School of Health Science, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Yuheng Wang
- Division of Pharmacy and Optometry, School of Health Science, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Sam Butterworth
- Division of Pharmacy and Optometry, School of Health Science, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Annalisa Tirella
- Division of Pharmacy and Optometry, School of Health Science, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester M13 9PT, UK
- BIOtech-Center for Biomedical Technologies, Department of Industrial Engineering, University of Trento, Via delle Regole 101, 38123 Trento, Italy
- Correspondence:
| |
Collapse
|
146
|
Amaldoss MJN, Yang JL, Koshy P, Unnikrishnan A, Sorrell CC. Inorganic nanoparticle-based advanced cancer therapies: promising combination strategies. Drug Discov Today 2022; 27:103386. [PMID: 36182068 DOI: 10.1016/j.drudis.2022.103386] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 08/15/2022] [Accepted: 09/24/2022] [Indexed: 11/17/2022]
Abstract
Inorganic nanoparticles for drug delivery in cancer treatment offer many potential advantages because they can maximize therapeutic effect through targeting ligands while minimizing off-target side-effects through drug adsorption and infiltration. Although inorganic nanoparticles were introduced as drug carriers, they have emerged as having the capacity for combined therapeutic capabilities, including anticancer effects through cytotoxicity, suppression of oncogenes and cancer cell signaling pathway inhibition. The most promising advanced strategies for cancer therapy are as synergistic platforms for RNA interference (siRNA, miRNA, shRNA) and as synergistic drug delivery agents for the inhibition of cancer cell signaling pathways. The present work summarizes relevant current work, the promise of which is suggested by a projected compound annual growth rate of ∼20% for drug delivery alone.
Collapse
Affiliation(s)
- Maria John Newton Amaldoss
- Adult Cancer Program, Lowy Cancer Research Centre, Prince of Wales Clinical School, UNSW Sydney, Sydney, NSW 2052, Australia; School of Materials Science and Engineering, UNSW Sydney, Sydney, NSW 2052, Australia.
| | - Jia-Lin Yang
- Adult Cancer Program, Lowy Cancer Research Centre, Prince of Wales Clinical School, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Pramod Koshy
- School of Materials Science and Engineering, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Ashwin Unnikrishnan
- Adult Cancer Program, Lowy Cancer Research Centre, Prince of Wales Clinical School, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Charles C Sorrell
- School of Materials Science and Engineering, UNSW Sydney, Sydney, NSW 2052, Australia
| |
Collapse
|
147
|
Singh R, Prasad A, Kumar B, Kumari S, Sahu RK, Hedau ST. Potential of Dual Drug Delivery Systems: MOF as Hybrid Nanocarrier for Dual Drug Delivery in Cancer Treatment. ChemistrySelect 2022. [DOI: 10.1002/slct.202201288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ragini Singh
- Division of Molecular Oncology ICMR-National Institute of Cancer Prevention and Research I-7, Sector 39 Noida 201301 Gautam Budha Nagar, U.P. India
| | - Amrita Prasad
- Department of Chemistry Magadh Mahila College Patna University Patna Bihar. India
| | - Binayak Kumar
- Division of Molecular Oncology ICMR-National Institute of Cancer Prevention and Research I-7, Sector 39 Noida 201301 Gautam Budha Nagar, U.P. India
| | - Soni Kumari
- Division of Molecular Oncology ICMR-National Institute of Cancer Prevention and Research I-7, Sector 39 Noida 201301 Gautam Budha Nagar, U.P. India
| | - Ram Krishna Sahu
- Division of Molecular Oncology ICMR-National Institute of Cancer Prevention and Research I-7, Sector 39 Noida 201301 Gautam Budha Nagar, U.P. India
| | - Suresh T. Hedau
- Division of Molecular Oncology ICMR-National Institute of Cancer Prevention and Research I-7, Sector 39 Noida 201301 Gautam Budha Nagar, U.P. India
| |
Collapse
|
148
|
Bozzer S, Dal Bo M, Grimaldi MC, Toffoli G, Macor P. Nanocarriers as a Delivery Platform for Anticancer Treatment: Biological Limits and Perspectives in B-Cell Malignancies. Pharmaceutics 2022; 14:1965. [PMID: 36145713 PMCID: PMC9502742 DOI: 10.3390/pharmaceutics14091965] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/12/2022] [Accepted: 09/15/2022] [Indexed: 11/17/2022] Open
Abstract
Nanoparticle-based therapies have been proposed in oncology research using various delivery methods to increase selectivity toward tumor tissues. Enhanced drug delivery through nanoparticle-based therapies could improve anti-tumor efficacy and also prevent drug resistance. However, there are still problems to overcome, such as the main biological interactions of nanocarriers. Among the various nanostructures for drug delivery, drug delivery based on polymeric nanoparticles has numerous advantages for controlling the release of biological factors, such as the ability to add a selective targeting mechanism, controlled release, protection of administered drugs, and prolonging the circulation time in the body. In addition, the functionalization of nanoparticles helps to achieve the best possible outcome. One of the most promising applications for nanoparticle-based drug delivery is in the field of onco-hematology, where there are many already approved targeted therapies, such as immunotherapies with monoclonal antibodies targeting specific tumor-associated antigens; however, several patients have experienced relapsed or refractory disease. This review describes the major nanocarriers proposed as new treatments for hematologic cancer, describing the main biological interactions of these nanocarriers and the related limitations of their use as drug delivery strategies.
Collapse
Affiliation(s)
- Sara Bozzer
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Michele Dal Bo
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 33081 Aviano, Italy
| | | | - Giuseppe Toffoli
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 33081 Aviano, Italy
| | - Paolo Macor
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| |
Collapse
|
149
|
Macrophage-Targeted Punicalagin Nanoengineering to Alleviate Methotrexate-Induced Neutropenia: A Molecular Docking, DFT, and MD Simulation Analysis. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27186034. [PMID: 36144770 PMCID: PMC9505199 DOI: 10.3390/molecules27186034] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 09/01/2022] [Indexed: 12/05/2022]
Abstract
Punicalagin is the most bioactive pomegranate polyphenol with high antioxidant and free-radical scavenging activity and can potentially cure different ailments related to the cardiovascular system. The current research work was envisioned to predict the targeting efficiency of punicalagin (PG) nanoparticles to the macrophages, more specifically to bone marrow macrophages. For this, we selected mannose-decorated PLGA-punicalagin nanoparticles (Mn-PLGA-PG), and before formulating this nanocarrier in laboratory settings, we predicted the targeting efficiency of this nanocarrier by in silico analysis. The analysis proceeded with macrophage mannose receptors to be acquainted with the binding affinity and punicalagin-based nanocarrier interactions with this receptor. In silico docking studies of macrophage mannose receptors and punicalagin showed binding interactions on its surface. PG interacted with hydrogen bonds to the charged residue ASP668 and GLY666 and polar residue GLN760 of the Mn receptor. Mannose with a docking score of −5.811 Kcal/mol interacted with four hydrogen bonds and the mannose receptor of macrophage, and in PLGA, it showed a −4.334 Kcal/mol docking score. Further, the analysis proceeded with density functional theory analysis (DFT) and HOMO–LUMO analysis, followed by an extensive 100 ns molecular dynamics simulation to analyse the trajectories showing the slightest deviation and fluctuation. While analysing the ligand and protein interaction, a wonderful interaction was found among the atoms of the ligand and protein residues. This computational study confirms that this nanocarrier could be a promising lead molecule to regulate the incidence of drug-induced neutropenia. Furthermore, experimental validation is required before this can be stated with complete confidence or before human use.
Collapse
|
150
|
Wu S, Yang X. OEA loaded liposomes with the neuroprotective effect for stroke therapy. Front Chem 2022; 10:1014208. [PMID: 36157031 PMCID: PMC9493034 DOI: 10.3389/fchem.2022.1014208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 08/19/2022] [Indexed: 12/12/2022] Open
Abstract
With high mortality, stroke has become a serious threat to human health. Nevertheless, the strategy for stroke therapy is quite limited in the clinic till now. In this research, we prepared a novel neuroprotective nanoformulation (OEA Liposomes) via encapsulating endogenous N-oleoylethanolamine (OEA) in liposomes for intravenous administration. The formulation largely increased the solubility and bioavailability of OEA. Then the following systematic experiments stated the excellent neuroprotective effect of OEA Liposomes in vivo. The survival rate of the nanodrug group was largely increased to 75%, while that of the Middle Cerebral Artery Occlusion (MCAO) group was only 41.7%. And the severe neurological functional deficit of the MCAO rats was also significantly improved. What’s more, the OEA Liposomes could inhibit the apoptosis of neurons and the inflammation of reperfusion to a very slight level, indicating their outstanding neuroprotective effect. These results indicated that the OEA Liposomes have a great potential for clinic anti-stroke application.
Collapse
Affiliation(s)
- Shichao Wu
- Department of Nuclear Medicine, Xiangya Hosptal, Central South University, Changsha, Hunan, China
- Key Laboratory of Nanobiological Technology of National Health Commission, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiangrui Yang
- Department of Nuclear Medicine, Xiangya Hosptal, Central South University, Changsha, Hunan, China
- Key Laboratory of Nanobiological Technology of National Health Commission, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- *Correspondence: Xiangrui Yang,
| |
Collapse
|