101
|
Ben-Batalla I, Vargas-Delgado ME, von Amsberg G, Janning M, Loges S. Influence of Androgens on Immunity to Self and Foreign: Effects on Immunity and Cancer. Front Immunol 2020; 11:1184. [PMID: 32714315 PMCID: PMC7346249 DOI: 10.3389/fimmu.2020.01184] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 05/13/2020] [Indexed: 12/17/2022] Open
Abstract
It is well-known that sex hormones can directly and indirectly influence immune cell function. Different studies support a suppressive role of androgens on different components of the immune system by decreasing antibody production, T cell proliferation, NK cytotoxicity, and stimulating the production of anti-inflammatory cytokines. Androgen receptors have also been detected in many different cells of hematopoietic origin leading to direct effects of their ligands on the development and function of the immune system. The immunosuppressive properties of androgens could contribute to gender dimorphisms in autoimmune and infectious disease and thereby also hamper immune surveillance of tumors. Consistently, females generally are more prone to autoimmunity, while relatively less susceptible to infections, and have lower incidence and mortality of the majority of cancers compared to males. Some studies show that androgen deprivation therapy (ADT) can induce expansion of naïve T cells and increase T-cell responses. Emerging clinical data also reveal that ADT might enhance the efficacy of various immunotherapies including immune checkpoint blockade. In this review, we will discuss the potential role of androgens and their receptors in the immune responses in the context of different diseases. A particular focus will be on cancer, highlighting the effect of androgens on immune surveillance, tumor biology and on the efficacy of anti-cancer therapies including emerging immune therapies.
Collapse
Affiliation(s)
- Isabel Ben-Batalla
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald Comprehensive Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Tumor Biology, Center of Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - María Elena Vargas-Delgado
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald Comprehensive Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Tumor Biology, Center of Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Gunhild von Amsberg
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald Comprehensive Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Melanie Janning
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald Comprehensive Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Tumor Biology, Center of Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Division of Personalized Medical Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Personalized Oncology, University Hospital Mannheim, Mannheim, Germany
| | - Sonja Loges
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald Comprehensive Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Tumor Biology, Center of Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Division of Personalized Medical Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Personalized Oncology, University Hospital Mannheim, Mannheim, Germany
| |
Collapse
|
102
|
Abstract
For decades, the treatment of advanced prostate cancer was mainly based on the manipulation of the androgen receptor-controlled proliferation pathway. Chemotherapy only played an additional important role with the advent of taxanes. The progress in translational research in recent years has led to innovations in the therapeutic environment. With the decoding of the homologous repair deficiency (HRD) machinery and its ability to be influenced by PARP inhibitors, targeted therapies moved into the therapeutic focus for selected patients. The first positive phase III study for PARP inhibitors is already available. In addition, immunotherapy for the treatment of prostate cancer, which is now widely used in oncology, is also making progress; both checkpoint inhibitors and bispecific antibodies have shown clinically useful activities. Cellular therapies such as CAR T cells, which are directed against prostate-specific membrane antigen (PSMA), are still at an early stage of development. In this review, the authors provide a summary of the basic principles and clinical development of these new therapies.
Collapse
|
103
|
Immunotherapy in Prostate Cancer. Cancers (Basel) 2020; 12:cancers12071752. [PMID: 32630247 PMCID: PMC7409298 DOI: 10.3390/cancers12071752] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 06/24/2020] [Accepted: 06/28/2020] [Indexed: 01/03/2023] Open
Abstract
Immunotherapy encompasses a wide range of therapies to engage the immune system to target malignancies. In recent years, immunotherapy has made a major impact on treatment of metastatic cancer and has altered standard of care for many tumor types. However, predicting and understanding responses across tumor types has been challenging. While some metastatic cancers have shown dramatic responses to immunotherapy, such as melanoma, lung cancer, and renal cell carcinoma, prostate cancer has generally failed to show a significant response. However, small series of prostate cancer patients have shown impressive responses to cellular and immunotherapy. This review summarizes the current data for immunotherapy’s use in prostate cancer, as well as how currently available data might help predict patient responses to immunotherapy. Specifically, we will review vaccine-based therapies, immune checkpoint inhibitors, and future directions that are actively being explored.
Collapse
|
104
|
Schijns V, Fernández-Tejada A, Barjaktarović Ž, Bouzalas I, Brimnes J, Chernysh S, Gizurarson S, Gursel I, Jakopin Ž, Lawrenz M, Nativi C, Paul S, Pedersen GK, Rosano C, Ruiz-de-Angulo A, Slütter B, Thakur A, Christensen D, Lavelle EC. Modulation of immune responses using adjuvants to facilitate therapeutic vaccination. Immunol Rev 2020; 296:169-190. [PMID: 32594569 PMCID: PMC7497245 DOI: 10.1111/imr.12889] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/30/2020] [Accepted: 05/20/2020] [Indexed: 12/14/2022]
Abstract
Therapeutic vaccination offers great promise as an intervention for a diversity of infectious and non-infectious conditions. Given that most chronic health conditions are thought to have an immune component, vaccination can at least in principle be proposed as a therapeutic strategy. Understanding the nature of protective immunity is of vital importance, and the progress made in recent years in defining the nature of pathological and protective immunity for a range of diseases has provided an impetus to devise strategies to promote such responses in a targeted manner. However, in many cases, limited progress has been made in clinical adoption of such approaches. This in part results from a lack of safe and effective vaccine adjuvants that can be used to promote protective immunity and/or reduce deleterious immune responses. Although somewhat simplistic, it is possible to divide therapeutic vaccine approaches into those targeting conditions where antibody responses can mediate protection and those where the principal focus is the promotion of effector and memory cellular immunity or the reduction of damaging cellular immune responses as in the case of autoimmune diseases. Clearly, in all cases of antigen-specific immunotherapy, the identification of protective antigens is a vital first step. There are many challenges to developing therapeutic vaccines beyond those associated with prophylactic diseases including the ongoing immune responses in patients, patient heterogeneity, and diversity in the type and stage of disease. If reproducible biomarkers can be defined, these could allow earlier diagnosis and intervention and likely increase therapeutic vaccine efficacy. Current immunomodulatory approaches related to adoptive cell transfers or passive antibody therapy are showing great promise, but these are outside the scope of this review which will focus on the potential for adjuvanted therapeutic active vaccination strategies.
Collapse
Affiliation(s)
- Virgil Schijns
- Wageningen University, Cell Biology & Immunology and, ERC-The Netherlands, Schaijk, Landerd campus, The Netherlands
| | - Alberto Fernández-Tejada
- Chemical Immunology Lab, Center for Cooperative Research in Biosciences, CIC bioGUNE, Biscay, Spain.,Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Žarko Barjaktarović
- Agency for Medicines and Medical Devices of Montenegro, Podgorica, Montenegro
| | - Ilias Bouzalas
- Hellenic Agricultural Organization-DEMETER, Veterinary Research Institute, Thessaloniki, Greece
| | | | - Sergey Chernysh
- Laboratory of Insect Biopharmacology and Immunology, Department of Entomology, Saint-Petersburg State University, Saint-Petersburg, Russia
| | | | | | - Žiga Jakopin
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Maria Lawrenz
- Vaccine Formulation Institute (CH), Geneva, Switzerland
| | - Cristina Nativi
- Department of Chemistry, University of Florence, Florence, Italy
| | | | | | | | - Ane Ruiz-de-Angulo
- Chemical Immunology Lab, Center for Cooperative Research in Biosciences, CIC bioGUNE, Biscay, Spain
| | - Bram Slütter
- Div. BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | | | | | - Ed C Lavelle
- Adjuvant Research Group, School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
105
|
UV Light-inactivated HSV-1 Stimulates Natural Killer Cell-induced Killing of Prostate Cancer Cells. J Immunother 2020; 42:162-174. [PMID: 30933043 DOI: 10.1097/cji.0000000000000261] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Herein we demonstrate that ultraviolet light-inactivated Herpes Simplex Virus-1 (UV-HSV-1) stimulates peripheral blood mononuclear cells (PBMCs) to lyse both androgen-sensitive and androgen-independent prostate cancer (PrCA) cell lines, but not the benign prostatic hyperplastic epithelial cell line, BPH-1, and is 1000-10,000-fold more potent at stimulating this killing than ultraviolet light-inactivated Vesicular Stomatitis Virus, adenovirus, reovirus or cytomegalovirus. Among PBMCs, natural killer (NK) cells appear to be a major cell type involved in this killing and UV-HSV-1 appears to directly and potently stimulate NK cell expression of CD69, degranulation, cytokine production, and migration to IL-8 in PC3 conditioned medium. We also found that UV-HSV-1 stimulates glycolysis in PBMCs and NK cells, and that 2-deoxyglucose and the protein kinase C inhibitor, Go6976, and the NFκB inhibitor, Bay 11-7082, all abrogate UV-HSV-1 activated killing of PC3 cells by PBMCs and NK cells. Using neutralizing anti-Toll-like receptor 2 (TLR2) we found that UV-HSV-1, like HSV-1, activates NK cells via TLR2. Taken together, these results are consistent with Toll-like receptor 2 ligands on UV-HSV-1 stimulating TLR2 on NK cells to activate protein kinase C, leading to enhanced glycolysis and NFκB activation, both of which play a critical role in this anti-PrCA innate immune response. Importantly, UV-HSV-1 synergizes with IL-15 to increase the cytolytic activity of PBMCs against PC3 cells and there was considerable donor-to-donor variation in killing ability. These results support the preclinical development of UV-HSV-1 as an adjuvant, in combination with IL-15, for cell infusions of healthy, preselected NK cells to treat PrCA.
Collapse
|
106
|
Claps M, Mennitto A, Guadalupi V, Sepe P, Stellato M, Zattarin E, Gillessen SS, Sternberg CN, Berruti A, De Braud FGM, Verzoni E, Procopio G. Immune-checkpoint inhibitors and metastatic prostate cancer therapy: Learning by making mistakes. Cancer Treat Rev 2020; 88:102057. [PMID: 32574991 DOI: 10.1016/j.ctrv.2020.102057] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 06/06/2020] [Accepted: 06/08/2020] [Indexed: 12/21/2022]
Abstract
Despite advances in metastatic prostate cancer therapy, expected survival for patients in the castration-resistant phase of disease is poor. Immune-checkpoints inhibitors significantly prolonged life expectancy in some solid tumors and have been evaluated also in advanced stage prostate cancer. The majority of data available derive from preliminary phase I and II trials evaluating CTLA-4 and PD-1 as monotherapy or in combination with each other, vaccines, radiotherapy or targeted/hormonal therapy, achieving only limited benefits in terms of biochemical and radiologic responses. There are many reasons that may explain why prostate cancer responds poorly to modern immunotherapies, such as its characteristic low tumor mutational burden or immune-suppressive tumor microenvironment. The present review summarizes the results obtained treating advanced prostate cancer patients with immune-checkpoints inhibitors and analyzes potential mechanisms of both resistance and sensitivity, in order to hypothesize possible avenues of special interest for future research.
Collapse
Affiliation(s)
- Mélanie Claps
- Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Alessia Mennitto
- Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Valentina Guadalupi
- Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Pierangela Sepe
- Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Marco Stellato
- Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Emma Zattarin
- Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Sommer Silke Gillessen
- Oncology Institute of Southern Switzerland, Bellinzona, Switzerland; Faculty of Bio Medical Sciences, Università della Svizzera Italiana, Lugano, Switzerland; Division of Cancer Science, University of Manchester, Manchester, UK
| | - Cora N Sternberg
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York-Presbyterian, New York, United States
| | - Alfredo Berruti
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, Medical Oncology Unit, Università degli Studi di Brescia, ASST Spedali Civili, Brescia, Italy
| | - Filippo Guglielmo Maria De Braud
- Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy; Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Elena Verzoni
- Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Giuseppe Procopio
- Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy.
| |
Collapse
|
107
|
Terrível M, Gromicho C, Matos AM. Oncolytic viruses: what to expect from their use in cancer treatment. Microbiol Immunol 2020; 64:477-492. [PMID: 31663631 DOI: 10.1111/1348-0421.12753] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 10/18/2019] [Accepted: 10/23/2019] [Indexed: 02/06/2023]
Abstract
Oncolytic viruses are biologic agents able to selectively infect and destroy cancer cells while sparing the normal ones. Furthermore, they also stimulate the host immune system to combat the tumor growth and to promote tumor removal. This review thoroughly describes different types of viruses developed for targeting specific cancers, as well as the strategies to improve the efficacy and safety of oncolytic virotherapy. It also explores how their potential as anticancer agents may be enhanced through combination with other traditional therapies, such as chemotherapy or more recent approaches, such as checkpoint inhibitors. There are many oncolytic viruses currently being tested in clinical trials for the treatment of various types of cancer, suggesting that this approach could become the near future of the oncology field.
Collapse
Affiliation(s)
| | | | - Ana Miguel Matos
- Laboratory of Microbiology, Faculty of Pharmacy, Centre on Chemical Processes Engineering and Forest Products (CIEPQF), University of Coimbra, Portugal
| |
Collapse
|
108
|
Gridelli C, Ciuleanu T, Domine M, Szczesna A, Bover I, Cobo M, Kentepozidis N, Zarogoulidis K, Kalofonos C, Kazarnowisz A, Korozan M, de Las Penas R, Majem M, Chella A, Griesinger F, Bournakis E, Sadjadian P, Kotsakis A, Chinet T, Syrigos KN, Correale P, Gallou C, Jamet JM, Vetsika EK, Kosmatopoulos K, Georgoulias V. Clinical activity of a htert (vx-001) cancer vaccine as post-chemotherapy maintenance immunotherapy in patients with stage IV non-small cell lung cancer: final results of a randomised phase 2 clinical trial. Br J Cancer 2020; 122:1461-1466. [PMID: 32210365 PMCID: PMC7217860 DOI: 10.1038/s41416-020-0785-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 02/13/2020] [Accepted: 02/24/2020] [Indexed: 12/30/2022] Open
Abstract
Background The cancer vaccine Vx-001, which targets the universal tumour antigen TElomerase Reverse Transcriptase (TERT), can mount specific Vx-001/TERT572 CD8 + cytotoxic T cells; this immune response is associated with improved overall survival (OS) in patients with advanced/metastatic non-small cell lung cancer (NSCLC). Methods A randomised, double blind, phase 2b trial, in HLA-A*201-positive patients with metastatic, TERT-expressing NSCLC, who did not progress after first-line platinum-based chemotherapy were randomised to receive either Vx-001 or placebo. The primary endpoint of the trial was OS. Results Two hundred and twenty-one patients were randomised and 190 (101 and 89 patients in the placebo and the Vx-001 arm, respectively) were analysed for efficacy. There was not treatment-related toxicity >grade 2. The study did not meet its primary endpoint (median OS 11.3 and 14.3 months for the placebo and the Vx-001, respectively; p = 0.86) whereas the median Time to Treatment Failure (TTF) was 3.5 and 3.6 months, respectively. Disease control for >6months was observed in 30 (33.7%) and 26 (25.7%) patients treated with Vx-001 and placebo, respectively. There was no documented objective CR or PR. Long lasting TERT-specific immune response was observed in 29.2% of vaccinated patients who experienced a significantly longer OS compared to non-responders (21.3 and 13.4 months, respectively; p = 0.004). Conclusion Vx-001 could induce specific CD8+ immune response but failed to meet its primary endpoint. Subsequent studies have to be focused on the identification and treatment of subgroups of patients able to mount an effective immunological response to Vx-001. Clinical trial registration NCT01935154
Collapse
Affiliation(s)
| | | | | | | | | | - Manuel Cobo
- Hospital Regional Universitario Málaga, Instituto de Investigaciones Biomédicas (IBIMA), Málaga, Spain
| | | | | | | | | | | | | | | | | | | | | | | | - Athanasios Kotsakis
- Dpt of Medical Oncology, University General Hospital of Larissa, Larissa, Greece
| | | | | | | | | | | | | | | | | | | |
Collapse
|
109
|
Cha HR, Lee JH, Ponnazhagan S. Revisiting Immunotherapy: A Focus on Prostate Cancer. Cancer Res 2020; 80:1615-1623. [PMID: 32066566 DOI: 10.1158/0008-5472.can-19-2948] [Citation(s) in RCA: 145] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 12/30/2019] [Accepted: 02/12/2020] [Indexed: 12/31/2022]
Abstract
Therapeutic interventions to harness the immune system against tumor cells have provided mixed results in the past for several solid tumors and hematologic malignancies. However, immunotherapy has advanced considerably over the last decade and is becoming an integral combination for treating patients with advanced solid tumors. In particular, prostate cancer immunotherapy has shown modest efficacy for patients in the past. With several key discoveries on immune mechanisms and advanced molecular diagnostic platforms recently, immunotherapy is re-emerging as a viable option for prostate cancer, especially castration-resistant prostate cancer (CRPC), to stimulate antitumor immunity. Combination of patient-tailored immunotherapy and immune checkpoint blockers with conventional cytotoxic agents and androgen receptor-targeted therapies should move the field forward. With a recent adaptation that the application of immune checkpoint inhibitors has been successful in the treatment of more than a dozen solid tumors, including melanoma, lymphoma, liver, cervical, gastrointestinal, and breast cancers, it is a timely endeavor to harness immunotherapy for prostate cancer. Here, we provide an account on the progression of immunotherapy with new discoveries and precision approaches for tumors, in particular CRPC, from mechanistic standpoint to emerging limitations and future directions.
Collapse
Affiliation(s)
- Ha-Ram Cha
- Department of Pathology, The University of Alabama at Birmingham, Birmingham, Alabama.,McWhorter School of Pharmacy, Samford University, Birmingham, Alabama
| | - Joo Hyoung Lee
- Department of Pathology, The University of Alabama at Birmingham, Birmingham, Alabama.,PharmAbcine Inc., Yuseong-gu Daejeon, Republic of Korea
| | | |
Collapse
|
110
|
Prokhnevska N, Emerson DA, Kissick HT, Redmond WL. Immunological Complexity of the Prostate Cancer Microenvironment Influences the Response to Immunotherapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1210:121-147. [PMID: 31900908 DOI: 10.1007/978-3-030-32656-2_7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Prostate cancer is one of the most common cancers in men and a leading cause of cancer-related death. Recent advances in the treatment of advanced prostate cancer, including the use of more potent and selective inhibitors of the androgen signaling pathway, have provided significant clinical benefit for men with metastatic castration-resistant prostate cancer (mCRPC). However, most patients develop progressive lethal disease, highlighting the need for more effective treatments. One such approach is immunotherapy, which harness the power of the patient's immune system to identify and destroy cancer cells through the activation of cytotoxic CD8 T cells specific for tumor antigens. Although immunotherapy, particularly checkpoint blockade, can induce significant clinical responses in patients with solid tumors or hematological malignancies, minimal efficacy has been observed in men with mCRPC. In the current review, we discuss our current understanding of the immunological complexity of the immunosuppressive prostate cancer microenvironment, preclinical models of prostate cancer, and recent advances in immunotherapy clinical trials to improve outcomes for men with mCRPC.
Collapse
Affiliation(s)
| | - Dana A Emerson
- Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR, USA.,Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, OR, USA
| | | | - William L Redmond
- Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, OR, USA.
| |
Collapse
|
111
|
Bovine papillomavirus prostate cancer antigen virus-like particle vaccines are efficacious in advanced cancers in the TRAMP mouse spontaneous prostate cancer model. Cancer Immunol Immunother 2020; 69:641-651. [DOI: 10.1007/s00262-020-02493-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 01/18/2020] [Indexed: 12/11/2022]
|
112
|
Cancer immunotherapy through the prism of adaptation: Will Achilles catch the tortoise? Med Hypotheses 2020; 137:109545. [PMID: 31952020 DOI: 10.1016/j.mehy.2019.109545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 12/14/2019] [Accepted: 12/31/2019] [Indexed: 11/23/2022]
Abstract
There is no secret that despite the rapid development of new methods of cancer therapy, we still are not able to completely destroy the tumor. Every time we attack the tumor, the tumor neutralizes our attempts. Carcinogenesis can be presented as a tree whose branches are different pro-tumor mechanisms and whose trunk is a biological phenomenon that "feeds" those branches. A tree can be destroyed in two ways: either by cutting a branch for a branch without a guarantee that new branches will not grow, or cutting down the trunk and letting the branches wither away. To cut down the trunk, it is necessary to understand the nature of the biological phenomenon, which helps the tumor to avoid attack by the immune system, drugs and immunotherapy. The clue is that the pro-tumor mechanisms are united by one goal - to increase the resistance of the tumor cell to immune factors and drugs. A phenomenon that improves cell resistance is well known in biology - adaptation. If the immunity does not immediately destroy the tumor cell, the cell begins to adapt to it. Our hypothesis is that short range adaptation to immune factors plays a role in the formation of tumor tolerance for immunity and immunotherapy. This gives rise to the idea of reducing the survival of tumor cells by disrupting adaptation mechanisms. Indeed, "turning off" the immune system for a period of time before therapy and applying immunotherapy only to tumor cells that have lost their increased resistance could be a new approach to increase the effectiveness of immunotherapy.
Collapse
|
113
|
Current Landscape of Immunotherapy in Genitourinary Malignancies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1244:107-147. [DOI: 10.1007/978-3-030-41008-7_6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
114
|
Badal S, Aiken W, Morrison B, Valentine H, Bryan S, Gachi A, Ragin C. Disparities in prostate cancer incidence and mortality rates: Solvable or not? Prostate 2020; 80:3-16. [PMID: 31702061 PMCID: PMC8378246 DOI: 10.1002/pros.23923] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 10/18/2019] [Indexed: 12/21/2022]
Abstract
Prostate cancer (PCa) is recognized as a disease possessing not only great variation in its geographic and racial distribution but also tremendous variation in its potential to cause morbidity and death and it, therefore, ought not to be considered a homogenous disease entity. Morbidity and death from PCa are disproportionately higher in men of African ancestry (MAA) who are generally observed to have more aggressive disease and worse outcomes following treatment compared to men of European ancestry (MEA). The higher rates of PCa among MAA relative to MEA appear to be multifactorial and related to inherent differences in biological aggressiveness; a continued lack of awareness of the disease and methods of prevention; a lower prevalence of screen-detected PCa; comparatively lower access to quality healthcare as well as systemic and institutionalized disparities in the administration of optimal care to MAA in developed countries such as the United States of America where high-quality care is available. Even when access to quality healthcare is assured in equal access settings, it appears that MAA still have worse outcomes after PCa treatment stage-for-stage and grade-for-grade compared to MEA, suggesting that, inherent racial, ethnic and biological differences are paramount in predicting poor outcomes. This review has explored the different contributing factors to the current disparities in PCa incidence and mortality rates with emphasis on the incongruence in how research has been conducted in understanding the disease towards developing therapies.
Collapse
Affiliation(s)
- Simone Badal
- Department of Basic Medical Sciences, Faculty of Medical Sciences, University of the West Indies, Kingston, Jamaica
| | - William Aiken
- Department of Surgery, Faculty of Medical Sciences, University of the West Indies, Kingston, Jamaica
| | - Belinda Morrison
- Department of Surgery, Faculty of Medical Sciences, University of the West Indies, Kingston, Jamaica
| | - Henkel Valentine
- Department of Basic Medical Sciences, Faculty of Medical Sciences, University of the West Indies, Kingston, Jamaica
| | - Sophia Bryan
- Department of Basic Medical Sciences, Faculty of Medical Sciences, University of the West Indies, Kingston, Jamaica
| | - Andrew Gachi
- Department of pathology, Aga Khan University Hospital, 3 Avenue, Parklands, Nairobi, Kenya
| | - Camille Ragin
- Cancer Prevention and Control Program, Fox Chase Cancer Center, Philadelphia, PA, USA
- African Caribbean Cancer Consortium
| |
Collapse
|
115
|
Abstract
The second most common type of tumor worldwide is prostate cancer (PCa). Certain genetic factors contribute to a risk of developing PCa of as much as 40%. BRCA1 and BRCA2 mutations have linked with an increased risk for breast, ovarian, and PCa. However, BRCA2 is the most common gene found altered in early-onset of PCa in males younger than 65. BRCA2 mutation has a higher chance of developing an advanced stage of the disease, resulting in short survival time. This review aimed to describe the genetic changes in BRCA2 that contribute to the risk of PCa, to define its role in the early diagnosis in a man with a strong family history, and to outline the purpose of genetic testing and counseling. Also, the review summarizes the impact of BRCA2 gene mutation in localized PCa, and the treatment strategies have used for PCa patients with a BRCA2 modification.
Collapse
Affiliation(s)
- Noor N Junejo
- Department of Urology, King Faisal Specialist Hospital and Research Centre, Riyadh, Kingdom of Saudi Arabia. E-mail.
| | | |
Collapse
|
116
|
Wang Q, Li P, Wu W. A systematic analysis of immune genes and overall survival in cancer patients. BMC Cancer 2019; 19:1225. [PMID: 31842801 PMCID: PMC6915928 DOI: 10.1186/s12885-019-6414-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 11/29/2019] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Overall survival (OS) is a key endpoint measure in the management of patients with cancer. Immunotherapy has become a dominant strategy in cancer therapy. To investigate the relationship between OS and the immune system, we assessed the role of immune genes in OS in 8648 patients across 22 cancer types. METHODS Gene expression data and clinical information were collected from The Cancer Genome Atlas (TCGA) and cBioPortal. Survival analysis was performed with a Cox proportional hazards regression model. RESULTS (1) The number of prognostic genes, prognostic immune genes (PIGs) and the hazard ratio (HR) of PIGs in different cancer types all varied greatly; (2) KEGG pathway enrichment analyses indicated that the prognostic genes of 6 cancer types were significantly enriched in multiple (≥5) immune system-related pathways. Of the PIGs in these 6 cancer types, we screened 48 common PIGs in at least 5 cancer types. Eleven out of the 48 PIGs were found to participate in the T cell receptor (TCR) signaling pathway according to the STRING database. Among these genes, ZAP70, CD3E, CD3G, CD3D, and CD247 were part of the TCR 'signal-triggering module'; (3) High expression of the PIGs involved in the TCR signaling pathway was associated with improved OS in 5 cancer types (breast invasive carcinoma (BRCA), cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC), head and neck squamous cell carcinoma (HNSC), lung adenocarcinoma (LUAD), and sarcoma (SARC)), but was associated with decreased OS in brain lower-grade glioma (LGG). CONCLUSIONS The TCR signaling pathway played a distinct role in the OS of these 6 cancer types.
Collapse
Affiliation(s)
- Qian Wang
- Center for Public Health Informatics, School of Public Health, Xinxiang Medical University, Xinxiang, Henan, People's Republic of China
| | - Pan Li
- Center for Public Health Informatics, School of Public Health, Xinxiang Medical University, Xinxiang, Henan, People's Republic of China.
| | - Weidong Wu
- Center for Public Health Informatics, School of Public Health, Xinxiang Medical University, Xinxiang, Henan, People's Republic of China.
| |
Collapse
|
117
|
Affiliation(s)
- Lindsey R Baden
- From the Centers for Disease Control and Prevention, Atlanta (I.K.D.)
| | - Inger K Damon
- From the Centers for Disease Control and Prevention, Atlanta (I.K.D.)
| |
Collapse
|
118
|
Šamija I, Fröbe A. CHALLENGES IN MANIPULATING IMMUNE SYSTEM TO TREAT PROSTATE CANCER. Acta Clin Croat 2019; 58:76-81. [PMID: 34975203 PMCID: PMC8693557 DOI: 10.20471/acc.2019.58.s2.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
First cancer vaccine that was approved for routine therapy was sipuleucel-T for treatment of patients with metastatic castration resistant prostate cancer. However, other immunotherapy drugs evaluated in prostate cancer, particularly immune checkpoint inhibitors, have failed to show therapeutic effect. There are several potential explanations for lack of response of prostate cancer to these drugs. These explanations, which are related to specific genetic (e.g. low mutational burden) and immunological (e.g. immunosuppressive tumor immune microenvironment) background of prostate cancer are discussed in this review. Also, new therapeutic strategies to overcome prostate cancer immunotherapy resistance and to select subgroups of patients that could benefit from immunotherapy are outlined.
Collapse
|
119
|
Kumar C, Bagga J, Chiliveru S, Kohli S, Bharadwaj A, Jain M, Inamdar S, Sharan B. Substantial remission of prostate adenocarcinoma with dendritic cell therapy APCEDEN ® in combination with chemotherapy. Future Sci OA 2019; 5:FSO435. [PMID: 31827897 PMCID: PMC6900976 DOI: 10.2144/fsoa-2019-0086] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Of the most prevalent solid tumors with advanced disease, prostate and ovarian cancer and non-small cell lung carcinoma have the fewest therapeutic options. Herein, we report the case of a 63-year-old male with metastatic prostate adenocarcinoma showing substantial remission post-administration of personalized dendritic cell-based vaccine APCEDEN® in combination with chemotherapeutic drug Mitoxantrone. Therapeutic response displayed an interesting clinical correlation validated by PET scan images showing decreased fluorodeoxyglucose (FDG) avidity in the prostate gland, reduced skeletal metastases further established by the drop in serum Prostate Specific Antigen (PSA) levels and expression of immune assessment markers (IFN-γ, Tregs, neutrophil lymphocyte ratio and platelet lymphocyte ratio). This case demonstrates the potential efficacy of dendritic cell immunotherapy, showing a potent antitumor activity by enhancing the host immune responses, and improving quality of life. Prostate adenocarcinoma is the most common cancer and second leading cause of cancer-related death in men. Advanced cancers have very few therapeutic options. Understanding of the immune system has led to the development of novel personalized vaccines as an emerging and efficient treatment modality for cancer. This case study describes the substantial remission of advanced prostate cancer after receiving the personalized dendritic cell therapy APCEDEN in combination with the chemotherapy drug mitoxantrone, even after the patient’s previous failed treatment history of standard hormonal, chemo- and radiotherapy regimens. This case stands as an interesting example of combination therapy for cancer benefiting the patient.
Collapse
Affiliation(s)
| | | | | | | | | | - Minish Jain
- Medical Oncology, Ruby Hall Clinic, Pune, India
| | | | | |
Collapse
|
120
|
Krasniqi E, Barchiesi G, Pizzuti L, Mazzotta M, Venuti A, Maugeri-Saccà M, Sanguineti G, Massimiani G, Sergi D, Carpano S, Marchetti P, Tomao S, Gamucci T, De Maria R, Tomao F, Natoli C, Tinari N, Ciliberto G, Barba M, Vici P. Immunotherapy in HER2-positive breast cancer: state of the art and future perspectives. J Hematol Oncol 2019; 12:111. [PMID: 31665051 PMCID: PMC6820969 DOI: 10.1186/s13045-019-0798-2] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 09/25/2019] [Indexed: 02/08/2023] Open
Abstract
Breast cancer (BC) is a complex disease with primary or acquired incurability characteristics in a significant part of patients. Immunotherapeutical agents represent an emerging option for breast cancer treatment, including the human epidermal growth factor 2 positive (HER2+) subtype. The immune system holds the ability to spontaneously implement a defensive response against HER2+ BC cells through complex mechanisms which can be exploited to modulate this response for obtaining a clinical benefit. Initial immune system modulating strategies consisted mostly in vaccine therapies, which are still being investigated and improved. However, the entrance of trastuzumab into the scenery of HER2+ BC treatment was the real game changing event, which embodied a dominant immune-mediated mechanism. More recently, the advent of the immune checkpoint inhibitors has caused a new paradigm shift for immuno-oncology, with promising initial results also for HER2+ BC. Breast cancer has been traditionally considered poorly immunogenic, being characterized by relatively low tumor mutation burden (TMB). Nevertheless, recent evidence has revealed high tumor infiltrating lymphocytes (TILs) and programmed cell death-ligand 1 (PD-L1) expression in a considerable proportion of HER2+ BC patients. This may translate into a higher potential to elicit anti-cancer response and, therefore, wider possibilities for the use and implementation of immunotherapy in this subset of BC patients. We are herein presenting and critically discussing the most representative evidence concerning immunotherapy in HER2+ BC cancer, both singularly and in combination with therapeutic agents acting throughout HER2-block, immune checkpoint inhibition and anti-cancer vaccines. The reader will be also provided with hints concerning potential future projection of the most promising immutherapeutic agents and approaches for the disease of interest.
Collapse
Affiliation(s)
- E Krasniqi
- Division of Medical Oncology 2, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi, 53-00144, Rome, Italy
| | - G Barchiesi
- Division of Medical Oncology 2, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi, 53-00144, Rome, Italy
| | - L Pizzuti
- Division of Medical Oncology 2, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi, 53-00144, Rome, Italy
| | - M Mazzotta
- Department of Clinical and Molecular Medicine, "Sapienza" University of Rome, Azienda Ospedaliera Sant'Andrea, Rome, Italy
| | - A Venuti
- HPV-UNIT, UOSD Tumor Immunology and Immunotherapy, Department of Research, Advanced Diagnostic and Technological Innovation (RIDAIT), Translational Research Functional Departmental Area, IRCSS Regina Elena National Cancer Institute, Rome, Italy
| | - M Maugeri-Saccà
- Division of Medical Oncology 2, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi, 53-00144, Rome, Italy
| | - G Sanguineti
- Department of Radiation Oncology, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - G Massimiani
- Division of Medical Oncology 2, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi, 53-00144, Rome, Italy
| | - D Sergi
- Division of Medical Oncology 2, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi, 53-00144, Rome, Italy
| | - S Carpano
- Division of Medical Oncology 2, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi, 53-00144, Rome, Italy
| | - P Marchetti
- Department of Clinical and Molecular Medicine, "Sapienza" University of Rome, Azienda Ospedaliera Sant'Andrea, Rome, Italy.,Medical Oncology Unit B, Policlinico Umberto I, Rome, Italy
| | - S Tomao
- Department of Radiological, Oncological and Anatomo-Pathological Sciences, Policlinico Umberto I, 'Sapienza' University of Rome, Rome, Italy
| | - T Gamucci
- Medical Oncology, Sandro Pertini Hospital, Rome, Italy
| | - R De Maria
- Institute of General Pathology, Catholic University of the Sacred Heart, Rome, Italy.,Department of Medical Oncology, Policlinico Universitario "A. Gemelli", Rome, Italy
| | - F Tomao
- Department of Gynecology-Obstetrics and Urology, "Sapienza" University of Rome, Rome, Italy
| | - C Natoli
- Department of Medical, Oral and Biotechnological Sciences and Center of Aging Science & Translational Medicine (CeSI-MeT), G. d'Annunzio University, Chieti, Italy
| | - N Tinari
- Department of Medical, Oral and Biotechnological Sciences and Center of Aging Science & Translational Medicine (CeSI-MeT), G. d'Annunzio University, Chieti, Italy
| | - G Ciliberto
- Scientific Direction, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - M Barba
- Division of Medical Oncology 2, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi, 53-00144, Rome, Italy.
| | - P Vici
- Division of Medical Oncology 2, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi, 53-00144, Rome, Italy
| |
Collapse
|
121
|
Biological and therapeutic advances in the pursuit of effective immunotherapy for prostate cancer. Curr Opin Urol 2019; 30:30-35. [PMID: 31609776 DOI: 10.1097/mou.0000000000000682] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW The successful development of effective cancer immunotherapy, in particular immune checkpoint inhibitors, has changed the treatment paradigm of many tumor types. In light of the limited efficacy of checkpoint inhibitors demonstrated in recent clinical trials in refractory prostate cancer, this review highlights important recent and ongoing studies that are shaping the pursuit of effective immunotherapy for prostate cancer. RECENT FINDINGS We review two overarching themes with respect to recent studies of prostate cancer immunotherapy: evolving therapeutic strategies and novel biological findings, including the landscape of predictive biomarkers of immunotherapy response. SUMMARY Novel and combinatorial immunotherapy strategies are being implemented across the clinical spectrum of prostate cancer. Greater understanding of complex tumor-immune interactions and the determinants of therapy response in prostate cancer is an area of intense investigation, and will inform both translational and clinical immuno-oncology research in the field.
Collapse
|
122
|
Zhao J, Chen Y, Ding ZY, Liu JY. Safety and Efficacy of Therapeutic Cancer Vaccines Alone or in Combination With Immune Checkpoint Inhibitors in Cancer Treatment. Front Pharmacol 2019; 10:1184. [PMID: 31680963 PMCID: PMC6798079 DOI: 10.3389/fphar.2019.01184] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 09/13/2019] [Indexed: 02/05/2023] Open
Abstract
Therapeutic cancer vaccines have proven to seldom induce dramatic clinical response when used alone, and therefore, they are being studied in combination with additional treatment modalities to achieve optimal treatment activities. Growing preclinical data show that combining vaccines and immune checkpoint inhibitors (ICIs) can prime intensified immunogenicity and modulate immunosuppressive tumor microenvironment. Herein, we focus on the safety and efficacy of approved and promising cancer vaccines alone or combined with ICIs in the treatment of several malignancies. Generally, the majority of clinical trials support the concept of synergy that combination therapy of vaccines and ICIs holds maximized potential to improve clinical outcomes. Importantly, the combination has acceptable safety and minimal additional toxicity compared with single-agent vaccines or ICIs. Additionally, the potential strategies of combining personalized tumor vaccines with ICIs will become priority option and future direction of vaccine development and application and the urgent need to develop effective biomarkers to screen appropriate patient populations and predict response to combination therapy.
Collapse
Affiliation(s)
- Jing Zhao
- Department of Biotherapy, Cancer Center, and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China
- Sichuan Clinical Research Center of Biotherapy, West China Hospital of Sichuan University, Chengdu, China
| | - Ye Chen
- Department of Biotherapy, Cancer Center, and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China
- Sichuan Clinical Research Center of Biotherapy, West China Hospital of Sichuan University, Chengdu, China
| | - Zhen-Yu Ding
- Department of Biotherapy, Cancer Center, and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China
- Sichuan Clinical Research Center of Biotherapy, West China Hospital of Sichuan University, Chengdu, China
| | - Ji-Yan Liu
- Department of Biotherapy, Cancer Center, and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China
- Sichuan Clinical Research Center of Biotherapy, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
123
|
Boettcher AN, Usman A, Morgans A, VanderWeele DJ, Sosman J, Wu JD. Past, Current, and Future of Immunotherapies for Prostate Cancer. Front Oncol 2019; 9:884. [PMID: 31572678 PMCID: PMC6749031 DOI: 10.3389/fonc.2019.00884] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 08/27/2019] [Indexed: 12/22/2022] Open
Abstract
Prostate cancer (PCa) is the most common cancer in men, and the second leading cause of cancer related death in men in Western countries. The standard therapy for metastatic PCa is androgen suppression therapy (AST). Men undergoing AST eventually develop metastatic castration-resistant prostate cancer (mCRPC), of which there are limited treatment options available. Immunotherapy has presented substantial benefits for many types of cancer, but only a marginal benefit for mCRPC, at least in part, due to the immunosuppressive tumor microenvironment (TME). Current clinical trials are investigating monotherapies or combination therapies involving adoptive cellular therapy, viral, DNA vaccines, oncolytic viruses, and immune checkpoint inhibitors (ICI). Immunotherapies are also being combined with chemotherapy, radiation, and AST. Additionally, preclinical investigations show promise with the recent description of alternative ways to circumvent the immunosuppressive nature of the prostate tumor microenvironment, including harnessing the immune stimulatory NKG2D pathway, inhibiting myeloid derived suppressor cells, and utilizing immunomodulatory oncolytic viruses. Herein we provide an overview of recent preclinical and clinical developments in cancer immunotherapies and discuss the perspectives for future immunotherapies in PCa.
Collapse
Affiliation(s)
- Adeline N. Boettcher
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Ahmed Usman
- Department of Hematology and Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Alicia Morgans
- Department of Hematology and Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - David J. VanderWeele
- Department of Hematology and Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Jeffrey Sosman
- Department of Hematology and Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Jennifer D. Wu
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
124
|
Zarrabi K, Paroya A, Wu S. Emerging therapeutic agents for genitourinary cancers. J Hematol Oncol 2019; 12:89. [PMID: 31484560 PMCID: PMC6727406 DOI: 10.1186/s13045-019-0780-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 08/21/2019] [Indexed: 12/11/2022] Open
Abstract
The treatment of genitourinary malignancies has dramatically evolved over recent years. Renal cell carcinoma, urothelial carcinoma of the bladder, and prostate adenocarcinoma are the most commonly encountered genitourinary malignancies and represent a heterogeneous population of cancers, in both histology and approach to treatment. However, all three cancers have undergone paradigm shifts in their respective therapeutic landscapes due to a greater understanding of their underlying molecular mechanisms and oncogenic drivers. The advance that has gained the most recent traction has been the advent of immunotherapies, particularly immune checkpoint inhibitors. Immunotherapy has increased overall survival and even provided durable responses in the metastatic setting in some patients. The early success of immune checkpoint inhibitors has led to further drug development with the emergence of novel agents which modulate the immune system within the tumor microenvironment. Notwithstanding immunotherapy, investigators are also developing novel agents tailored to a variety of targets including small-molecule tyrosine kinase inhibitors, mTOR inhibitors, and novel fusion proteins to name a few. Erdafitinib has become the first targeted therapy approved for metastatic bladder cancer. Moreover, the combination therapy of immune checkpoint inhibitors with targeted agents such as pembrolizumab or avelumab with axitinib has demonstrated both safety and efficacy and just received FDA approval for their use. We are in an era of rapid progression in drug development with multiple exciting trials and ongoing pre-clinical studies. We highlight many of the promising new emerging therapies that will likely continue to improve outcomes in patients with genitourinary malignancies.
Collapse
Affiliation(s)
- Kevin Zarrabi
- Department of Medicine, Stony Brook University Hospital, 9447 SUNY, Stony Brook, NY 11794-9447 USA
| | - Azzam Paroya
- Department of Medicine, Stony Brook University Hospital, 9447 SUNY, Stony Brook, NY 11794-9447 USA
| | - Shenhong Wu
- Department of Medicine, Stony Brook University Hospital, 9447 SUNY, Stony Brook, NY 11794-9447 USA
- Division of Hematology/Oncology, Department of Medicine, Northport VA Medical Center, Northport, NY USA
| |
Collapse
|
125
|
Immunotherapy in Metastatic Castration-Resistant Prostate Cancer: Past and Future Strategies for Optimization. Curr Urol Rep 2019; 20:64. [PMID: 31482315 DOI: 10.1007/s11934-019-0931-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
PURPOSE OF REVIEW To date, prostate cancer has been poorly responsive to immunotherapy. In the current review, we summarize and discuss the current literature on the use of vaccine therapy and checkpoint inhibitor immunotherapy in metastatic castration-resistant prostate cancer (mCRPC). RECENT FINDINGS Sipuleucel-T currently remains the only FDA-approved immunotherapeutic agent for prostate cancer. Single-agent phase 3 vaccine trials with GVAX and PROSTVAC have failed to demonstrate survival benefit to date. Clinical trials using combination approaches, including combination PROSTVAC along with a neoantigen vaccine and checkpoint inhibitor immunotherapy, are ongoing. Checkpoint inhibitor monotherapy clinical trials have demonstrated limited efficacy in advanced prostate cancer, and combination approaches and molecular patient selection are currently under investigation. The optimal use of vaccine therapy and checkpoint inhibitor immunotherapy in metastatic castration-resistant prostate cancer remains to be determined. Ongoing clinical trials will continue to inform future clinical practice.
Collapse
|
126
|
Olson B, Patnaik A. Utilizing precision medicine to modulate the prostate tumor microenvironment and enhance immunotherapy. Urol Oncol 2019; 37:535-542. [PMID: 30503851 PMCID: PMC8725604 DOI: 10.1016/j.urolonc.2018.11.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 10/31/2018] [Accepted: 11/06/2018] [Indexed: 12/25/2022]
Abstract
The last two decades of cancer research have seen two major advancements in our ability to treat cancer: precision medicine and immunotherapy. While these approaches have shown striking anticancer efficacy in numerous malignancies, they have not shown similar success and applicability in advanced prostate cancer patients. The fields of precision medicine and immunotherapy have come to realize that targeted therapies are capable of not only inhibiting tumor cell growth, but also promoting antitumor immunity by modulating the tumor microenvironment. Here we examine how personalized medicine can be used to target the tumor immune microenvironment in prostate cancer, with the goal of enhancing clinical responses to immunotherapy.
Collapse
Affiliation(s)
- Brian Olson
- Department of Hematology and Medical Oncology and Department of Urology, Emory University, Atlanta, GA.
| | - Akash Patnaik
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, IL
| |
Collapse
|
127
|
Richardsen E, Andersen S, Al-Saad S, Rakaee M, Nordby Y, Pedersen MI, Ness N, Ingebriktsen LM, Fassina A, Taskén KA, Mills IG, Donnem T, Bremnes RM, Busund LT. Low Expression of miR-424-3p is Highly Correlated with Clinical Failure in Prostate Cancer. Sci Rep 2019; 9:10662. [PMID: 31337863 PMCID: PMC6650397 DOI: 10.1038/s41598-019-47234-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 07/15/2019] [Indexed: 01/16/2023] Open
Abstract
Prostate cancer (PC) is a highly heterogenous disease and one of the leading causes of mortality in developed countries. Recently, studies have shown that expression of immune checkpoint proteins are directly or indirectly repressed by microRNAs (miRs) in many types of cancers. The great advantages of using miRs based therapy is the capacity of these short transcripts to target multiple molecules for the same- or different pathways with synergistic immune inhibition effects. miR-424 has previously been described as a biomarker of poor prognosis in different types of cancers. miR-424 is also found to target both the CTLA-4/CD80- and PD-1/PD-L1 axis. In the present study, the clinical significance of miR-424-3p expression in PC tissue was evaluated. Naïve radical prostatectomy specimens from 535 patients was used for tissue microarray construction. In situ hybridization was used to evaluate the expression of miR-424-3p and immunohistochemistry was used for CTLA-4 protein detection. In univariate- and multivariate analyses, low expression of miR-424-3p was significant associated with clinical failure-free survival, (p = 0.004) and p = 0.018 (HR:0.44, CI95% 0.22-0.87). Low expression of miR-424-3p also associated strongly with aggressive phenotype of PC. This highlight the importance of miR-424-3p as potential target for therapeutic treatment in prostate cancer.
Collapse
Affiliation(s)
- E Richardsen
- Translational Cancer Research Group, Institute of Medical Biology, UiT The Arctic University of Norway, Tromso, Norway. .,Department of Clinical Pathology, University Hospital of North Norway, Tromso, Norway.
| | - S Andersen
- Translational Cancer Research Group, Institute of Clinical Medicine, UiT The Arctic University of Norway, Tromso, Norway.,Department of Oncology, University Hospital of North Norway, Tromso, Norway
| | - S Al-Saad
- Translational Cancer Research Group, Institute of Medical Biology, UiT The Arctic University of Norway, Tromso, Norway.,Department of Clinical Pathology, University Hospital of North Norway, Tromso, Norway
| | - M Rakaee
- Translational Cancer Research Group, Institute of Medical Biology, UiT The Arctic University of Norway, Tromso, Norway
| | - Y Nordby
- Translational Cancer Research Group, Institute of Clinical Medicine, UiT The Arctic University of Norway, Tromso, Norway.,Department of Urology, University Hospital of North Norway, Tromso, Norway
| | - M I Pedersen
- Translational Cancer Research Group, Institute of Medical Biology, UiT The Arctic University of Norway, Tromso, Norway
| | - N Ness
- Translational Cancer Research Group, Institute of Medical Biology, UiT The Arctic University of Norway, Tromso, Norway
| | - L M Ingebriktsen
- Translational Cancer Research Group, Institute of Medical Biology, UiT The Arctic University of Norway, Tromso, Norway
| | - A Fassina
- Department of Medicine, University of Padua, 35121, Padova, Italy
| | - K A Taskén
- Institute of Cancer Research, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - I G Mills
- Centre for Cancer Research and Cell Biology, Queen's University of Belfast, Belfast, UK.,Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - T Donnem
- Translational Cancer Research Group, Institute of Clinical Medicine, UiT The Arctic University of Norway, Tromso, Norway.,Department of Oncology, University Hospital of North Norway, Tromso, Norway
| | - R M Bremnes
- Translational Cancer Research Group, Institute of Clinical Medicine, UiT The Arctic University of Norway, Tromso, Norway.,Department of Oncology, University Hospital of North Norway, Tromso, Norway
| | - L T Busund
- Translational Cancer Research Group, Institute of Medical Biology, UiT The Arctic University of Norway, Tromso, Norway.,Department of Clinical Pathology, University Hospital of North Norway, Tromso, Norway
| |
Collapse
|
128
|
Cordes LM, Gulley JL, Madan RA. Perspectives on the clinical development of immunotherapy in prostate cancer. Asian J Androl 2019; 20:253-259. [PMID: 29582792 PMCID: PMC5952479 DOI: 10.4103/aja.aja_9_18] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Despite impressive survival benefits with immunotherapy in patients with various solid tumors, the full potential of these agents in prostate cancer has yet to be realized. Sipuleucel-T demonstrated a survival benefit in this population, indicating that prostate cancer is an immunoresponsive disease; however, these results have not been matched by other agents. A large trial with ipilimumab in prostate cancer failed to meet its primary objective, and small trials with PD-1/PD-L1 inhibitors did not yield a significant improvement in overall response. However, several late-stage clinical trials are underway with other vaccines in prostate cancer. Reports of clinical benefit with immunotherapies, particularly when used in combination or a select population, have provided the framework to develop sound clinical trials. Understanding immunogenic modulation, antigen spread, biomarkers, and DNA-repair defects will also help mold future strategies. Through rational patient selection and evidence-based combination approaches, patients with prostate cancer may soon derive durable survival benefits with immunotherapies.
Collapse
Affiliation(s)
- Lisa M Cordes
- Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA.,Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - James L Gulley
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ravi A Madan
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
129
|
Zhang Y, Quan L, Du L. The 100 top-cited studies in cancer immunotherapy. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:2282-2292. [PMID: 31169039 DOI: 10.1080/21691401.2019.1623234] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Yonggang Zhang
- Department of Periodical Press and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, PR China
- Chinese Evidence-based Medicine Center, West China Hospital, Sichuan University, Chengdu, PR China
| | - Liuliu Quan
- West China School of Medicine, Sichuan University, Chengdu, PR China
| | - Liang Du
- Department of Periodical Press and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, PR China
- Chinese Evidence-based Medicine Center, West China Hospital, Sichuan University, Chengdu, PR China
| |
Collapse
|
130
|
Hong H, Wang Q, Li J, Liu H, Meng X, Zhang H. Aging, Cancer and Immunity. J Cancer 2019; 10:3021-3027. [PMID: 31281479 PMCID: PMC6590045 DOI: 10.7150/jca.30723] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 04/23/2019] [Indexed: 12/31/2022] Open
Abstract
Cancers are being frequently diagnosed in the elderly. Immunosenescence which refers to the gradual deterioration of the immune system brought on by natural age advancement, has been the key cross center in the increasing frequency and severity of cancer, aging and immunity. Monoclonal antibodies targeting immune checkpoint molecules CTLA-4, PD-1 or PD-L1 are the promising anticancer therapeutics in multiple cancer subtypes generating remarkable and long-lasting clinical responses. These immune checkpoint blockers (ICBs)have already obtained approval for the treatment of patients with metastatic melanoma, advanced/refractory non-small cell lung cancer and renal cell cancer. ICBs can not only enhance immune responses against cancer cells but can also lead to inflammatory side effects called immune-related adverse events (irAEs). As none or only a small number of older patients were enrolled in most ICBs studies, it remains difficult to confirm the impacts of ICBs on the elderly. We could expect that clinical specificity of older patients (co-medications, comorbidities and reduced functional reserve) and immunosenescence may affect the efficacy of ICBs and tolerance in this population. However, the results from meta-analysis on the efficacy of ICBs are very encouraging and suggesting that the older patients will benefit from the ICBs revolution in oncology without increased toxicity.
Collapse
Affiliation(s)
- Hong Hong
- Department of Geriatrics, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Qi Wang
- Department of Geriatrics, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Jing Li
- Department of Geriatrics, The First Hospital of China Medical University, Shenyang, 110001, China.,Division of Geriatrics, Department of Medicine, Johns Hopkins University, Baltimore, Maryland, 21224, USA.,Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences of China Medical University Shenyang, 110022, P.R. China
| | - Hans Liu
- Division of Geriatrics, Department of Medicine, Johns Hopkins University, Baltimore, Maryland, 21224, USA
| | - Xin Meng
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences of China Medical University Shenyang, 110022, P.R. China
| | - Haiyan Zhang
- Department of Geriatrics, The First Hospital of China Medical University, Shenyang, 110001, China
| |
Collapse
|
131
|
Saad F, Shore N, Zhang T, Sharma S, Cho HK, Jacobs IA. Emerging therapeutic targets for patients with advanced prostate cancer. Cancer Treat Rev 2019; 76:1-9. [DOI: 10.1016/j.ctrv.2019.03.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 03/15/2019] [Accepted: 03/18/2019] [Indexed: 02/06/2023]
|
132
|
Hossain MK, Nahar K, Donkor O, Apostolopoulos V. Immune-based therapies for metastatic prostate cancer: an update. Immunotherapy 2019; 10:283-298. [PMID: 29421982 DOI: 10.2217/imt-2017-0123] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Prostate cancer (PC) is a common malignancy among elderly males and is noncurable once it becomes metastatic. In recent years, a number of antigen-delivery systems have emerged as viable and promising immunotherapeutic agents against PC. The approval of sipuleucel-T by the US FDA for the treatment of males with asymptomatic or minimally symptomatic castrate resistant PC was a landmark in cancer immunotherapy, making this the first approved immunotherapeutic. A number of vaccines are under clinical investigation, each having its own set of advantages and disadvantages. Here, we discuss the basic technologies underlying these different delivery modes, we discuss the completed and current human clinical trials, as well as the use of vaccines in combination with immune checkpoint inhibitors.
Collapse
Affiliation(s)
| | - Kamrun Nahar
- Vetafarm Pty Ltd, Wagga Wagga, NSW, 2650, Australia
| | - Osaana Donkor
- Centre for Chronic Disease, College of Health & Biomedicine, Victoria University, Melbourne, Australia
| | - Vasso Apostolopoulos
- Centre for Chronic Disease, College of Health & Biomedicine, Victoria University, Melbourne, Australia
| |
Collapse
|
133
|
Abstract
With the spotlight on cancer immunotherapy and the expanding use of immune checkpoint inhibitors, strategies to improve the response rate and duration of current cancer immunotherapeutics are highly sought. In that sense, investigators around the globe have been putting spurs on the development of effective cancer vaccines in humans after decades of efforts that led to limited clinical success. In more than three decades of research in pursuit of targeted and personalized immunotherapy, several platforms have been incorporated into the list of cancer vaccines from live viral or bacterial agents harboring antigens to synthetic peptides with the hope of stronger and durable immune responses that will tackle cancers better. Unlike adoptive cell therapy, cancer vaccines can take advantage of using a patient's entire immune system that can include more than engineered receptors or ligands in developing antigen-specific responses. Advances in molecular technology also secured the use of genetically modified genes or proteins of interest to enhance the chance of stronger immune responses. The formulation of vaccines to increase chances of immune recognition such as nanoparticles for peptide delivery is another area of great interest. Studies indicate that cancer vaccines alone may elicit tumor-specific cellular or humoral responses in immunologic assays and even regression or shrinkage of the cancer in select trials, but novel strategies, especially in combination with other cancer therapies, are under study and are likely to be critical to achieve and optimize reliable objective responses and survival benefit. In this review, cancer vaccine platforms with different approaches to deliver tumor antigens and boost immunity are discussed with the intention of summarizing what we know and what we need to improve in the clinical trial setting.
Collapse
Affiliation(s)
- Hoyoung M. Maeng
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jay A. Berzofsky
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
134
|
Abstract
Immunotherapy with agents that block immune checkpoints is a mainstay of therapy for several common tumor types; so far, prostate cancer is not among those treated using this method. The observed lack of activity in prostate cancer is not due to a lack of testing; several agents have been evaluated both alone and in combination. Although several combination strategies show some promise, it appears likely that a greater understanding of the prostate cancer tumor microenvironment and baseline immune response will be required to optimize future treatment strategies.
Collapse
Affiliation(s)
- Nicholas J Venturini
- Division of Hematology and Oncology, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York 10032
| | - Charles G Drake
- Division of Hematology and Oncology, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York 10032
- Department of Urology, Columbia Medical Center, New York, New York 10032
| |
Collapse
|
135
|
Malone S, Shayegan B, Basappa NS, Chi K, Conter HJ, Hamilton RJ, Hotte SJ, Saad F, So AI, Park-Wyllie L, Hew H, McLeod D, Gotto G. Management algorithms for metastatic prostate cancer. Can Urol Assoc J 2019; 14:50-60. [PMID: 31039111 DOI: 10.5489/cuaj.5840] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Prostate cancer poses a significant lifetime risk to Canadian men. Treatment for metastatic prostatic cancer (mPCa) is an area of ongoing research with a lack of up-to-date clinical guidance. The multidisciplinary Canadian Genitourinary Research Consortium (GURC) determined that additional guidance focusing on management of mPCa was warranted. METHODS The most up-to-date guidelines, consensus statements, and emerging phase 3 trials were identified and used to inform development of algorithms by a multidisciplinary genitourinary oncology panel outlining recommendations for the management of mPCa. RESULTS A single pan-Canadian guideline and five national and international guidelines or consensus statements published since 2015 were identified, along with two new phase 3 trials and one additional randomized comparison. Iterative GURC discussions led to the development of two mPCa algorithms: the first addressing management of newly diagnosed metastatic castration-sensitive prostate cancer (mCSPC) patients and the second addressing treatment of patients with metastatic castration-resistant prostate cancer (mCRPC). For newly diagnosed mCSPC patients with high-volume/high-risk disease, either docetaxel or abiraterone acetate and prednisone (AAP) added to androgen-deprivation therapy (ADT) is recommended. The addition of radiotherapy to ADT is suggested for those with low-volume disease and/or AAP to ADT for low-volume or low-risk disease. For first-line mCRPC, androgen receptor-axis-targeted (ARAT) therapy is recommended for most patients, while sequencing with docetaxel, radium-223, ARAT therapy, and/or cabazitaxel is recommended for later lines of therapy. CONCLUSIONS Two treatment algorithms were developed for the management of mPC and can be used by multidisciplinary specialist teams to guide treatment.
Collapse
Affiliation(s)
- Shawn Malone
- The Ottawa Hospital, University of Ottawa, Ottawa, ON, Canada
| | - Bobby Shayegan
- Juravinski Cancer Centre, McMaster University, Hamilton, ON, Canada
| | - Naveen S Basappa
- Cross Cancer Institute, University of Alberta, Edmonton, AB, Canada
| | - Kim Chi
- BC Cancer Agency, Vancouver, BC, Canada
| | - Henry J Conter
- William Osler Health System, University of Western Ontario, Brampton, ON, Canada
| | - Robert J Hamilton
- Princess Margaret Cancer Centre, University of Toronto, Toronto, ON, Canada
| | | | - Fred Saad
- Centre Hospitalier de l'Université de Montréal, Montreal, QC, Canada
| | - Alan I So
- Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, Canada
| | | | - Huong Hew
- Medical Affairs, Janssen Inc., Toronto, ON, Canada
| | | | | |
Collapse
|
136
|
Lee GT, Srivastava A, Kwon YS, Kim IY. Immune reaction by cytoreductive prostatectomy. AMERICAN JOURNAL OF CLINICAL AND EXPERIMENTAL UROLOGY 2019; 7:64-79. [PMID: 31139701 PMCID: PMC6526355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 04/22/2019] [Indexed: 06/09/2023]
Abstract
Prostate cancer (PCa) is the most common non-cutaneous cancer among men and the second leading cause of male cancer deaths in the United States. With no effective cure for advanced disease, the survival rates of castration-resistant disease and metastatic disease remains poor. Treatment via hormonal manipulation, immunotherapy, and chemotherapy remain marginally effective, indicating the need for novel treatment strategies. Cytoreductive prostatectomy (CRP) has grown as a treatment modality for metastatic castration resistant prostate cancer (mCRPC) and an emerging body of literature has demonstrated its survival benefits. In this review, we hope to further explore immunologic changes after CRP and the resultant effects on oncologic outcomes. Conclusively, the data and technical considerations of CRS evolve, CRS may continue to expand treat various type of metastatic cancer. Still, there are little reports about immunological changed after CRP. However, based on technical improvement, CRP and combinational immunotherapy are developing treatments of metastatic disease.
Collapse
Affiliation(s)
- Geun Taek Lee
- Section of Urologic Oncology, Rutgers Cancer Institute of New Jersey, and Division of Urology, Rutgers Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey New Brunswick, NJ, USA
| | - Arnav Srivastava
- Section of Urologic Oncology, Rutgers Cancer Institute of New Jersey, and Division of Urology, Rutgers Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey New Brunswick, NJ, USA
| | - Young Suk Kwon
- Section of Urologic Oncology, Rutgers Cancer Institute of New Jersey, and Division of Urology, Rutgers Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey New Brunswick, NJ, USA
| | - Isaac Yi Kim
- Section of Urologic Oncology, Rutgers Cancer Institute of New Jersey, and Division of Urology, Rutgers Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey New Brunswick, NJ, USA
| |
Collapse
|
137
|
Leduc C, Quoix E. [Vaccines for the treatment of non-small cell lung cancer]. Rev Mal Respir 2019; 36:415-425. [PMID: 30902445 DOI: 10.1016/j.rmr.2018.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 05/31/2018] [Indexed: 11/26/2022]
Abstract
Antigen-specific immunotherapy also known as cancer vaccination offers a novel approach for the treatment of non-small cell lung cancer patients. It relies on specific priming of the immune system in order to provoke or increase adaptive antitumor immune response against the vaccine component. Several molecules have been developed in lung cancer, based on whole-tumor cells, dendritic cells, peptides, recombinant proteins, or viral vectors. The aim of this review is to describe the mechanism of action of these vaccines and the results of the main clinical studies.
Collapse
Affiliation(s)
- C Leduc
- Service de pneumologie, CHRU de Strasbourg, Strasbourg, France
| | - E Quoix
- Service de pneumologie, CHRU de Strasbourg, Strasbourg, France.
| |
Collapse
|
138
|
Mougel A, Terme M, Tanchot C. Therapeutic Cancer Vaccine and Combinations With Antiangiogenic Therapies and Immune Checkpoint Blockade. Front Immunol 2019; 10:467. [PMID: 30923527 PMCID: PMC6426771 DOI: 10.3389/fimmu.2019.00467] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 02/21/2019] [Indexed: 12/12/2022] Open
Abstract
Considering the high importance of immune surveillance and immune escape in the evolution of cancer, the development of immunotherapeutic strategies has become a major field of research in recent decades. The considerable therapeutic breakthrough observed when targeting inhibitory immune checkpoint molecules has highlighted the need to find approaches enabling the induction and proper activation of an immune response against cancer. In this context, therapeutic vaccination, which can induce a specific immune response against tumor antigens, is an important approach to consider. However, this strategy has its advantages and limits. Considering its low clinical efficacy, approaches combining therapeutic cancer vaccine strategies with other immunotherapies or targeted therapies have been emphasized. This review will list different cancer vaccines, with an emphasis on their targets. We highlight the results and limits of vaccine strategies and then describe strategies that combine therapeutic vaccines and antiangiogenic therapies or immune checkpoint blockade. Antiangiogenic therapies and immune checkpoint blockade are of proven clinical efficacy for some indications, but are limited by toxicity and the development of resistance. Their combination with therapeutic vaccines could be a way to improve therapeutic outcome by specifically stimulating the immune system and considering a global approach to tumor microenvironment remodeling.
Collapse
Affiliation(s)
- Alice Mougel
- PARCC (Paris-Cardiovascular Research Center), INSERM U970, Paris, France.,UFR Science du Vivant, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Magali Terme
- PARCC (Paris-Cardiovascular Research Center), INSERM U970, Paris, France.,Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Corinne Tanchot
- PARCC (Paris-Cardiovascular Research Center), INSERM U970, Paris, France
| |
Collapse
|
139
|
Curran CS, Rasooly A, He M, Prickril B, Thurin M, Sharon E. Report on the NCI Microbial-Based Cancer Therapy Conference. Cancer Immunol Res 2019; 6:122-126. [PMID: 29437145 DOI: 10.1158/2326-6066.cir-17-0748] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The National Cancer Institute Inaugural Microbial-Based Cancer Therapy Conference was held in Bethesda, Maryland, on July 11-12, 2017. This interdisciplinary forum included industry leaders, academic investigators, and regulatory officers involved in the development of microbial-based therapies for the treatment of cancer. The aim of the meeting was to discuss the potential of virus- and bacteria-based therapies to halt tumorigenesis and induce immune responses in cancers where conventional therapy is inadequate. This summary highlights topics and viewpoints raised by the presenters and discussants and should not be viewed as the conclusions or recommendations of the workshop as a whole. Cancer Immunol Res; 6(2); 122-6. ©2017 AACR.
Collapse
Affiliation(s)
- Colleen S Curran
- Critical Care Medicine Department, Clinical Center, NIH, Bethesda, Maryland
| | - Avraham Rasooly
- Office of Cancer Complementary and Alternative Medicine, Division of Cancer Treatment and Diagnosis, NCI, NIH, Bethesda, Maryland
| | - Min He
- Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, NCI, NIH, Bethesda, Maryland
| | - Ben Prickril
- Office of Cancer Complementary and Alternative Medicine, Division of Cancer Treatment and Diagnosis, NCI, NIH, Bethesda, Maryland
| | - Magdelena Thurin
- Cancer Diagnosis Program, Division of Cancer Treatment and Diagnosis, NCI, NIH, Bethesda, Maryland
| | - Elad Sharon
- Cancer Therapy Evaluation Program, Division of Cancer Treatment and Diagnosis, NCI, NIH, Bethesda, Maryland.
| |
Collapse
|
140
|
Viral Replicative Capacity, Antigen Availability via Hematogenous Spread, and High T FH:T FR Ratios Drive Induction of Potent Neutralizing Antibody Responses. J Virol 2019; 93:JVI.01795-18. [PMID: 30626686 DOI: 10.1128/jvi.01795-18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 12/19/2018] [Indexed: 01/10/2023] Open
Abstract
Live viral vaccines elicit protective, long-lived humoral immunity, but the underlying mechanisms through which this occurs are not fully elucidated. Generation of affinity matured, long-lived protective antibody responses involve close interactions between T follicular helper (TFH) cells, germinal center (GC) B cells, and T follicular regulatory (TFR) cells. We postulated that escalating concentrations of antigens from replicating viruses or live vaccines, spread through the hematogenous route, are essential for the induction and maintenance of long-lived protective antibody responses. Using replicating and poorly replicating or nonreplicating orthopox and influenza A viruses, we show that the magnitude of TFH cell, GC B cell, and neutralizing antibody responses is directly related to virus replicative capacity. Further, we have identified that both lymphoid and circulating TFH:TFR cell ratios during the peak GC response can be used as an early predictor of protective, long-lived antibody response induction. Finally, administration of poorly or nonreplicating viruses to allow hematogenous spread generates significantly stronger TFH:TFR ratios and robust TFH, GC B cell and neutralizing antibody responses.IMPORTANCE Neutralizing antibody response is the best-known correlate of long-term protective immunity for most of the currently licensed clinically effective viral vaccines. However, the host immune and viral factors that are critical for the induction of robust and durable antiviral humoral immune responses are not well understood. Our study provides insight into the dynamics of key cellular mediators of germinal center reaction during live virus infections and the influence of viral replicative capacity on the magnitude of antiviral antibody response and effector function. The significance of our study lies in two key findings. First, the systemic spread of even poorly replicating or nonreplicating viruses to mimic the spread of antigens from replicating viruses due to escalating antigen concentration is fundamental to the induction of durable antibody responses. Second, the TFH:TFR ratio may be used as an early predictor of protective antiviral humoral immune responses long before memory responses are generated.
Collapse
|
141
|
Gulley JL, Borre M, Vogelzang NJ, Ng S, Agarwal N, Parker CC, Pook DW, Rathenborg P, Flaig TW, Carles J, Saad F, Shore ND, Chen L, Heery CR, Gerritsen WR, Priou F, Langkilde NC, Novikov A, Kantoff PW. Phase III Trial of PROSTVAC in Asymptomatic or Minimally Symptomatic Metastatic Castration-Resistant Prostate Cancer. J Clin Oncol 2019; 37:1051-1061. [PMID: 30817251 PMCID: PMC6494360 DOI: 10.1200/jco.18.02031] [Citation(s) in RCA: 169] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
PURPOSE PROSTVAC, a viral vector–based immunotherapy, prolonged median overall survival (OS) by 8.5 months versus placebo in metastatic castration-resistant prostate cancer in a phase II study. This phase III study further investigated those findings. PATIENTS AND METHODS Patients were randomly assigned to PROSTVAC (Arm V; n = 432), PROSTVAC plus granulocyte-macrophage colony-stimulating factor (Arm VG; n = 432), or placebo (Arm P; n = 433), stratified by prostate-specific antigen (less than 50 ng/mL v 50 ng/mL or more) and lactate dehydrogenase (less than 200 v 200 U/L or more). Primary end point was OS. Secondary end points were patients alive without events (AWE)—namely, radiographic progression, pain progression, chemotherapy initiation, or death—at 6 months and safety. The study design was a superiority trial of PROSTVAC (Arm V or Arm VG) versus Arm P. Three interim analyses were planned. RESULTS At the third interim analysis, criteria for futility were met and the trial was stopped early. Neither active treatment had an effect on median OS (Arm V, 34.4 months; hazard ratio, 1.01; 95% CI, 0.84 to 1.20; P = .47; Arm VG, 33.2 months; hazard ratio, 1.02; 95% CI, 0.86 to 1.22; P = .59; Arm P, 34.3 months). Likewise, AWE at 6 months was similar (Arm V, 29.4%; odds ratio, 0.96; 95% CI, 0.71 to 1.29; Arm VG, 28.0%; odds ratio, 0.89; 95% CI, 0.66 to 1.20; placebo, 30.3%). Adverse events were similar for the treatment and placebo groups, with the most common being injection site reactions (62% to 72%) and fatigue (21% to 24%). Arrhythmias were the most common cardiac-related events (1.4% to 3.5%). There were no reports of either myocarditis or pericarditis. Serious treatment-related events occurred in less than 1% of all patients. CONCLUSION Whereas PROSTVAC was safe and well tolerated, it had no effect on OS or AWE in metastatic castration-resistant prostate cancer. Combination therapy is currently being explored in clinical trials.
Collapse
Affiliation(s)
| | | | | | - Siobhan Ng
- 4 St John of God Subiaco Hospital, Subiaco, Western Australia, Australia
| | - Neeraj Agarwal
- 5 University of Utah Huntsman Cancer Institute, Salt Lake City, UT
| | | | - David W Pook
- 7 Monash Medical Centre, Bentleigh, Victoria, Australia
| | | | | | - Joan Carles
- 10 Vall d'Hebron Institute of Oncology, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Fred Saad
- 11 Centre Hospitalier de l'Université de Montréal, Montréal, Quebec, Canada
| | - Neal D Shore
- 12 Carolina Urologic Research Center, Myrtle Beach, SC
| | | | | | | | - Frank Priou
- 15 Centre Hospitalier Départemental, La Roche sur Yon, France
| | | | - Andrey Novikov
- 17 North-Western State Medical University, Saint Petersburg, Russia
| | | |
Collapse
|
142
|
Song D, Zhang J, Wang Y, Hu J, Xu S, Xu Y, Shen H, Wen X, Sun Z. Comparative study of the binding mode between cytochrome P450 17A1 and prostate cancer drugs in the absence of haem iron. J Biomol Struct Dyn 2019; 37:4161-4170. [PMID: 30431391 DOI: 10.1080/07391102.2018.1540360] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
According to the X-ray crystal structures of CYP17A1 (including its complexes with inhibitors), it is shown that a hydrogen bond exists between CYP17A1 and its inhibitors (such as abiraterone and TOK-001). Previous short MD simulations (50 ns) suggested that the binding of abiraterone to CYP17A1 is stronger than that of TOK-001. In this work, by carrying out long atomistic MD simulations (200 ns) of CYP17A1 and its complexes with abiraterone and TOK-001, we observed a binding mode between CYP17A1 and abiraterone, which is different from the binding mode between CYP17A1 and TOK-001. In the case of abiraterone binding, the unfilled volume in the active site cavity increases the freedom of movement of abiraterone within CYP17A1, leading to the collective motions of the helices G and B' as well as the breaking of hydrogen bond existing between the 3β-OH group of abiraterone and N202 of CYP17A1. However, the unfilled volume in the active site cavity can be occupied by the benzimidazole ring of TOK-001, restraining the motion of TOK-001. By pulling the two inhibitors (abiraterone and TOK-001) out of the binding pocket in CYP17A1, we discovered that abiraterone and TOK-001 were moved from their binding sites to the surface of protein similarly through the channels formed by the helices G and B'. In addition, based on the free energy calculations, one can see that it is energetically favorable for the two inhibitors (abiraterone and TOK-001) to enter into the binding pocket in CYP17A1.
Collapse
Affiliation(s)
- Dalong Song
- Guizhou University , Guiyang , Guizhou Province , PR China.,Department of Urology, Guizhou Provincial People's Hospital , Guiyang , Guizhou Province , PR China
| | - Jihua Zhang
- Guizhou Provincial Key Laboratory of Computational Nano-Material Science, Guizhou Education University , Guiyang , Guizhou Province , PR China
| | - Yuanlin Wang
- Department of Urology, Guizhou Provincial People's Hospital , Guiyang , Guizhou Province , PR China
| | - Jianxin Hu
- Department of Urology, Guizhou Provincial People's Hospital , Guiyang , Guizhou Province , PR China
| | - Shuxiong Xu
- Department of Urology, Guizhou Provincial People's Hospital , Guiyang , Guizhou Province , PR China
| | - Yuangao Xu
- Department of Urology, Guizhou Provincial People's Hospital , Guiyang , Guizhou Province , PR China
| | - Hujun Shen
- Guizhou Provincial Key Laboratory of Computational Nano-Material Science, Guizhou Education University , Guiyang , Guizhou Province , PR China
| | - Xiaopeng Wen
- Guizhou University , Guiyang , Guizhou Province , PR China
| | - Zhaolin Sun
- Department of Urology, Guizhou Provincial People's Hospital , Guiyang , Guizhou Province , PR China
| |
Collapse
|
143
|
Guo ZS, Lu B, Guo Z, Giehl E, Feist M, Dai E, Liu W, Storkus WJ, He Y, Liu Z, Bartlett DL. Vaccinia virus-mediated cancer immunotherapy: cancer vaccines and oncolytics. J Immunother Cancer 2019; 7:6. [PMID: 30626434 PMCID: PMC6325819 DOI: 10.1186/s40425-018-0495-7] [Citation(s) in RCA: 209] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 12/26/2018] [Indexed: 12/11/2022] Open
Abstract
Cancer vaccines and oncolytic immunotherapy are promising treatment strategies with potential to provide greater clinical benefit to patients with advanced-stage cancer. In particular, recombinant vaccinia viruses (VV) hold great promise as interventional agents. In this article, we first summarize the current understanding of virus biology and viral genes involved in host-virus interactions to further improve the utility of these agents in therapeutic applications. We then discuss recent findings from basic and clinical studies using VV as cancer vaccines and oncolytic immunotherapies. Despite encouraging results gleaned from translational studies in animal models, clinical trials implementing VV vectors alone as cancer vaccines have yielded largely disappointing results. However, the combination of VV vaccines with alternate forms of standard therapies has resulted in superior clinical efficacy. For instance, combination regimens using TG4010 (MVA-MUC1-IL2) with first-line chemotherapy in advanced-stage non-small cell lung cancer or combining PANVAC with docetaxel in the setting of metastatic breast cancer have clearly provided enhanced clinical benefits to patients. Another novel cancer vaccine approach is to stimulate anti-tumor immunity via STING activation in Batf3-dependent dendritic cells (DC) through the use of replication-attenuated VV vectors. Oncolytic VVs have now been engineered for improved safety and superior therapeutic efficacy by arming them with immune-stimulatory genes or pro-apoptotic molecules to facilitate tumor immunogenic cell death, leading to enhanced DC-mediated cross-priming of T cells recognizing tumor antigens, including neoantigens. Encouraging translational and early phase clinical results with Pexa-Vec have matured into an ongoing global phase III trial for patients with hepatocellular carcinoma. Combinatorial approaches, most notably those using immune checkpoint blockade, have produced exciting pre-clinical results and warrant the development of innovative clinical studies. Finally, we discuss major hurdles that remain in the field and offer some perspectives regarding the development of next generation VV vectors for use as cancer therapeutics.
Collapse
Affiliation(s)
- Zong Sheng Guo
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA.
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| | - Binfeng Lu
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Zongbi Guo
- Fujian Tianjian Pharmaceutical Co. Ltd., Sanming, Fujian, China
| | - Esther Giehl
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Mathilde Feist
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Enyong Dai
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Weilin Liu
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Walter J Storkus
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Yukai He
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Zuqiang Liu
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - David L Bartlett
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
144
|
Update on Systemic Prostate Cancer Therapies: Management of Metastatic Castration-resistant Prostate Cancer in the Era of Precision Oncology. Eur Urol 2019; 75:88-99. [DOI: 10.1016/j.eururo.2018.03.028] [Citation(s) in RCA: 252] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Accepted: 03/23/2018] [Indexed: 11/19/2022]
|
145
|
Abstract
There have been a number of recent developments in the treatment of castration-resistant prostate cancer which seek to exploit the hormonal axis. Still, the castration-resistant prostate cancer remains a major challenge since this is the lethal and incurable phenotype which results in tens of thousands of deaths every year. There has been emerging interest in utilizing anticancer immunotherapy in prostate cancer, especially since the development of sipuleucel-T. Several other prostate cancer therapeutic vaccines including autologous and allogeneic vaccines, as well as viral vector-based vaccines, have demonstrated promising results in early trials. The checkpoint inhibitors which have shown some dramatic results in other cancers are now being studied in advanced prostate cancer setting. Studies are examining the therapeutic effects for both CTLA-4 inhibitors and PD-1/PD-L1 inhibitors. It appears that definitions and measurements of response used in cytotoxic therapies may not be valid in determining response to immunotherapy. Early reports suggest that combination therapies, either concurrent or sequential, may be needed to achieve the desired response against advanced prostate cancer.
Collapse
Affiliation(s)
- Adam Schatz
- Division of Urology, Albany Medical College, Albany, NY 12054, USA
| | - Badar M Mian
- Division of Urology, Albany Medical College, Albany, NY 12054, USA
| |
Collapse
|
146
|
Nuhn P, De Bono JS, Fizazi K, Freedland SJ, Grilli M, Kantoff PW, Sonpavde G, Sternberg CN, Yegnasubramanian S, Antonarakis ES. Update on Systemic Prostate Cancer Therapies: Management of Metastatic Castration-resistant Prostate Cancer in the Era of Precision Oncology. Eur Urol 2019. [DOI: 10.1016/j.eururo.2018.03.028 [internet]] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
147
|
Farashi S, Kryza T, Clements J, Batra J. Post-GWAS in prostate cancer: from genetic association to biological contribution. Nat Rev Cancer 2019; 19:46-59. [PMID: 30538273 DOI: 10.1038/s41568-018-0087-3] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Genome-wide association studies (GWAS) have been successful in deciphering the genetic component of predisposition to many human complex diseases including prostate cancer. Germline variants identified by GWAS progressively unravelled the substantial knowledge gap concerning prostate cancer heritability. With the beginning of the post-GWAS era, more and more studies reveal that, in addition to their value as risk markers, germline variants can exert active roles in prostate oncogenesis. Consequently, current research efforts focus on exploring the biological mechanisms underlying specific susceptibility loci known as causal variants by applying novel and precise analytical methods to available GWAS data. Results obtained from these post-GWAS analyses have highlighted the potential of exploiting prostate cancer risk-associated germline variants to identify new gene networks and signalling pathways involved in prostate tumorigenesis. In this Review, we describe the molecular basis of several important prostate cancer-causal variants with an emphasis on using post-GWAS analysis to gain insight into cancer aetiology. In addition to discussing the current status of post-GWAS studies, we also summarize the main molecular mechanisms of potential causal variants at prostate cancer risk loci and explore the major challenges in moving from association to functional studies and their implication in clinical translation.
Collapse
Affiliation(s)
- Samaneh Farashi
- Cancer Program, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
- Australian Prostate Cancer Research Centre - Queensland, Queensland University of Technology, Translational Research Institute, Woolloongabba, Queensland, Australia
| | - Thomas Kryza
- Cancer Program, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
- Australian Prostate Cancer Research Centre - Queensland, Queensland University of Technology, Translational Research Institute, Woolloongabba, Queensland, Australia
| | - Judith Clements
- Cancer Program, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
- Australian Prostate Cancer Research Centre - Queensland, Queensland University of Technology, Translational Research Institute, Woolloongabba, Queensland, Australia
| | - Jyotsna Batra
- Cancer Program, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia.
- Australian Prostate Cancer Research Centre - Queensland, Queensland University of Technology, Translational Research Institute, Woolloongabba, Queensland, Australia.
| |
Collapse
|
148
|
Jansen CS, Prokhnevska N, Kissick HT. The requirement for immune infiltration and organization in the tumor microenvironment for successful immunotherapy in prostate cancer. Urol Oncol 2018; 37:543-555. [PMID: 30446449 DOI: 10.1016/j.urolonc.2018.10.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 10/01/2018] [Accepted: 10/03/2018] [Indexed: 12/14/2022]
Abstract
Immunotherapy-particularly immune checkpoint blockade-has seen great success in many tumor types. However, checkpoint-based therapies have not demonstrated high levels of success in prostate cancer, and there is much to be learned from both the successes and failures of these treatments. Here we review the evidence that composition of infiltrating immune cells in the tumor microenvironment is fundamental to the response to immunotherapy. Additionally, we discuss the emerging idea that the organization of these immune cells may also be crucial to this response. In prostate cancer, the composition and organization of the tumor immune microenvironment are preeminent topics of discussion and areas of important future investigation.
Collapse
Affiliation(s)
| | | | - Haydn T Kissick
- Department of Urology, Emory University, Atlanta, GA; Department of Microbiology and Immunology, Emory University, Atlanta, GA.
| |
Collapse
|
149
|
Kissick HT. Is It Possible to Develop Cancer Vaccines to Neoantigens, What Are the Major Challenges, and How Can These Be Overcome? Neoantigens as Vaccine Targets for Cancer. Cold Spring Harb Perspect Biol 2018; 10:cshperspect.a033704. [PMID: 29254981 DOI: 10.1101/cshperspect.a033704] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Recent work by several groups has undoubtedly shown that we can produce cancer vaccines targeting neoantigens. However, each vaccine is essentially a single-use, patient-specific product, making this approach resource-intensive. For this reason, it is important to ask whether this approach will be any more successful than what has been attempted during the last 30 years using vaccines targeting self-epitopes. Here, we discuss what might be expected from neoantigen vaccines based on our experience in chronic viral infections, and how this new approach may be applied to cancer immunotherapy.
Collapse
Affiliation(s)
- Haydn T Kissick
- Departments of Urology and Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia 30322
| |
Collapse
|
150
|
Gevaert T, Montironi R, Lopez-Beltran A, Van Leenders G, Allory Y, De Ridder D, Claessens F, Kockx M, Akand M, Joniau S, Netto G, Libbrecht L. Genito-urinary genomics and emerging biomarkers for immunomodulatory cancer treatment. Semin Cancer Biol 2018; 52:216-227. [DOI: 10.1016/j.semcancer.2017.10.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 10/04/2017] [Accepted: 10/06/2017] [Indexed: 01/01/2023]
|