101
|
Nabors LB, Portnow J, Ahluwalia M, Baehring J, Brem H, Brem S, Butowski N, Campian JL, Clark SW, Fabiano AJ, Forsyth P, Hattangadi-Gluth J, Holdhoff M, Horbinski C, Junck L, Kaley T, Kumthekar P, Loeffler JS, Mrugala MM, Nagpal S, Pandey M, Parney I, Peters K, Puduvalli VK, Robins I, Rockhill J, Rusthoven C, Shonka N, Shrieve DC, Swinnen LJ, Weiss S, Wen PY, Willmarth NE, Bergman MA, Darlow SD. Central Nervous System Cancers, Version 3.2020, NCCN Clinical Practice Guidelines in Oncology. J Natl Compr Canc Netw 2020; 18:1537-1570. [PMID: 33152694 DOI: 10.6004/jnccn.2020.0052] [Citation(s) in RCA: 286] [Impact Index Per Article: 57.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The NCCN Guidelines for Central Nervous System (CNS) Cancers focus on management of adult CNS cancers ranging from noninvasive and surgically curable pilocytic astrocytomas to metastatic brain disease. The involvement of an interdisciplinary team, including neurosurgeons, radiation therapists, oncologists, neurologists, and neuroradiologists, is a key factor in the appropriate management of CNS cancers. Integrated histopathologic and molecular characterization of brain tumors such as gliomas should be standard practice. This article describes NCCN Guidelines recommendations for WHO grade I, II, III, and IV gliomas. Treatment of brain metastases, the most common intracranial tumors in adults, is also described.
Collapse
Affiliation(s)
| | | | - Manmeet Ahluwalia
- 3Case Comprehensive Cancer Center/University Hospitals Seidman Cancer Center and Cleveland Clinic Taussig Cancer Institute
| | | | - Henry Brem
- 5The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins
| | - Steven Brem
- 6Abramson Cancer Center at the University of Pennsylvania
| | | | - Jian L Campian
- 8Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine
| | | | | | | | | | | | - Craig Horbinski
- 13Robert H. Lurie Comprehensive Cancer Center of Northwestern University
| | - Larry Junck
- 14University of Michigan Rogel Cancer Center
| | | | - Priya Kumthekar
- 13Robert H. Lurie Comprehensive Cancer Center of Northwestern University
| | | | | | | | - Manjari Pandey
- 19St. Jude Children's Research Hospital/The University of Tennessee Health Science Center
| | | | | | - Vinay K Puduvalli
- 21The Ohio State University Comprehensive Cancer Center - James Cancer Hospital and Solove Research Institute
| | - Ian Robins
- 22University of Wisconsin Carbone Cancer Center
| | - Jason Rockhill
- 23Fred Hutchinson Cancer Research Center/Seattle Cancer Care Alliance
| | | | | | | | - Lode J Swinnen
- 5The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins
| | | | | | | | | | | |
Collapse
|
102
|
Lin L, Cai J, Tan Z, Meng X, Li R, Li Y, Jiang C. Mutant IDH1 Enhances Temozolomide Sensitivity via Regulation of the ATM/CHK2 Pathway in Glioma. Cancer Res Treat 2020; 53:367-377. [PMID: 33070553 PMCID: PMC8053882 DOI: 10.4143/crt.2020.506] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 10/12/2020] [Indexed: 12/17/2022] Open
Abstract
PURPOSE Isocitrate dehydrogenase 1 (IDH1) mutations are the most common genetic abnormalities in low-grade gliomas and secondary glioblastomas. Glioma patients with these mutations had better clinical outcomes. However, the effect of IDH1 mutation on drug sensitivity is still under debate. Materials and Methods IDH1-R132H mutant cells were established by lentivirus. IDH1-R132H protein expression was confirmed by western blot. The expression of ataxia telangiectasia mutated (ATM) signaling pathway and apoptosis-related proteins were detected by immunofluorescence and western blot. Temozolomide (TMZ) induced cell apoptosis was detected by flow cytometry. Tumor cell proliferation was detected by Cell Counting Kit-8. In vivo nude mice were used to confirm the in vitro roles of IDH1 mutation. RESULTS We established glioma cell lines that expressed IDH1-R132H mutation stably. We found that TMZ inhibited glioma cells proliferation more significantly in IDH1 mutant cells compared to wild type. The IC50 of TMZ in IDH1-R132H mutant group was less than half that of wild-type group (p < 0.01). TMZ significantly induced more DNA damage (quantification of γH2AX expression in IDH1 mutation vs. wild type, p < 0.05) and apoptosis (quantification of AnnexinV+propidium iodide-cells in IDH1 mutation versus wild type, p < 0.01) in IDH1 mutant gliomas compared to wild-type gliomas. The ATM-associated DNA repair signal was impaired in IDH1 mutant cells. Inhibiting the ATM/checkpoint kinase 2DNA repair pathway further sensitized IDH1 mutant glioma cells to chemotherapy. We found that IDH1 mutation significantly inhibited tumor growth in vivo (the tumor size was analyzed statistically, p < 0.05). Moreover, we confirmed that gliomas with IDH1 mutation were more sensitive to TMZ in vivo compared to wild type significantly and the results were consistent with the in vitro experiment. CONCLUSION These results provide evidence that combination of TMZ and ATM inhibitor enhances the antitumor effect in IDH1 mutant gliomas.
Collapse
Affiliation(s)
- Lin Lin
- Department of Neurosurgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jinquan Cai
- Department of Neurosurgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zixiao Tan
- Department of Neurosurgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiangqi Meng
- Department of Neurosurgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ruiyan Li
- Department of Neurosurgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yang Li
- Department of Neurosurgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chuanlu Jiang
- Department of Neurosurgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
103
|
Is chemotherapy alone an option as initial treatment for low-grade oligodendrogliomas? Curr Opin Neurol 2020; 33:707-715. [DOI: 10.1097/wco.0000000000000866] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
104
|
Giambattista J, Omene E, Souied O, Hsu FH. Modern Treatments for Gliomas Improve Outcome. CURRENT CANCER THERAPY REVIEWS 2020. [DOI: 10.2174/1573394715666191017153045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Glioma is the most common type of tumor in the central nervous system (CNS). Diagnosis
is through history, physical examination, radiology, histology and molecular profiles. Magnetic
resonance imaging is a standard workup for all CNS tumors. Multidisciplinary team management
is strongly recommended. The management of low-grade gliomas is still controversial
with regards to early surgery, radiotherapy, chemotherapy, or watchful waiting watchful waiting.
Patients with suspected high-grade gliomas should undergo an assessment by neurosurgeons for
the consideration of maximum safe resection to achieve optimal tumor debulking, and to provide
adequate tissue for histologic and molecular diagnosis. Post-operative radiotherapy and/or chemotherapy
are given depending on disease grade and patient performance. Glioblastoma are mostly
considered incurable. Treatment approaches in the elderly, pediatric population and recurrent
gliomas are discussed with the latest updates in the literature. Treatment considerations include
performance status, neurocognitive functioning, and co-morbidities. Important genetic mutations,
clinical trials and guidelines are summarized in this review.
Collapse
Affiliation(s)
| | - Egiroh Omene
- Vancouver Cancer Centre, BC Cancer Agency, Columbia, Vancouver, BC, Canada
| | - Osama Souied
- Vancouver Cancer Centre, BC Cancer Agency, Columbia, Vancouver, BC, Canada
| | - Fred H.C. Hsu
- Vancouver Cancer Centre, BC Cancer Agency, Columbia, Vancouver, BC, Canada
| |
Collapse
|
105
|
Zhao Y, Feng F, Guo QH, Wang YP, Zhao R. Role of succinate dehydrogenase deficiency and oncometabolites in gastrointestinal stromal tumors. World J Gastroenterol 2020; 26:5074-5089. [PMID: 32982110 PMCID: PMC7495036 DOI: 10.3748/wjg.v26.i34.5074] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/14/2020] [Accepted: 08/21/2020] [Indexed: 02/06/2023] Open
Abstract
Gastrointestinal stromal tumors (GISTs) are the most common mesenchymal tumors of the gastrointestinal tract. At the molecular level, GISTs can be categorized into two groups based on the causative oncogenic mutations. Approximately 85% of GISTs are caused by gain-of-function mutations in the tyrosine kinase receptor KIT or platelet-derived growth factor receptor alpha (PDGFRA). The remaining GISTs, referred to as wild-type (WT) GISTs, are often deficient in succinate dehydrogenase complex (SDH), a key metabolic enzyme complex in the tricarboxylic acid (TCA) cycle and electron transport chain. SDH deficiency leads to the accumulation of succinate, a metabolite produced by the TCA cycle. Succinate inhibits α-ketoglutarate-dependent dioxygenase family enzymes, which comprise approximately 60 members and regulate key aspects of tumorigenesis such as DNA and histone demethylation, hypoxia responses, and m6A mRNA modification. For this reason, succinate and metabolites with similar structures, such as D-2-hydroxyglutarate and fumarate, are considered oncometabolites. In this article, we review recent advances in the understanding of how metabolic enzyme mutations and oncometabolites drive human cancer with an emphasis on SDH mutations and succinate in WT GISTs.
Collapse
Affiliation(s)
- Yue Zhao
- Department of Gastroenterology, the First Hospital of Lanzhou University, Key Laboratory for Gastrointestinal Disease of Gansu Province, Lanzhou 730000, Gansu Province, China
| | - Fei Feng
- Department of Ultrasound, the First Hospital of Lanzhou University, Lanzhou 730000, Gansu Province, China
| | - Qing-Hong Guo
- Department of Gastroenterology, the First Hospital of Lanzhou University, Key Laboratory for Gastrointestinal Disease of Gansu Province, Lanzhou 730000, Gansu Province, China
| | - Yu-Ping Wang
- Department of Gastroenterology, the First Hospital of Lanzhou University, Key Laboratory for Gastrointestinal Disease of Gansu Province, Lanzhou 730000, Gansu Province, China
| | - Rui Zhao
- Department of Biochemistry and Molecular Genetics, School of Medicine, the University of Alabama at Birmingham, Birmingham, AL 35294, United States
| |
Collapse
|
106
|
Ahn JW, Park Y, Kang SJ, Hwang SJ, Cho KG, Lim J, Kwack K. CeRNA Network Analysis Representing Characteristics of Different Tumor Environments Based on 1p/19q Codeletion in Oligodendrogliomas. Cancers (Basel) 2020; 12:cancers12092543. [PMID: 32906679 PMCID: PMC7564449 DOI: 10.3390/cancers12092543] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 08/29/2020] [Accepted: 09/04/2020] [Indexed: 12/16/2022] Open
Abstract
Simple Summary Oligodendroglioma (OD) is a subtype of glioma occurring in the central nervous system. The 1p/19q codeletion is a prognostic marker of OD with an isocitrate dehydrogenase (IDH) mutation and is associated with a clinically favorable overall survival (OS). The long non-coding RNAs (lncRNAs) protects the mRNA from degradation by binding with the same miRNA by acting as a competitive endogenous RNA (ceRNA). Recently, although there is an increasing interest in lncRNAs on glioma studies, however, studies regarding their effects on OD and the 1p/19q codeletion remain limited. In our study, we performed in silico analyses using low-grade gliomas from datasets obtained from The Cancer Genome Atlas to investigate the effects of ceRNA with 1p/19q codeletion on ODs. We constructed 16 coding RNA–miRNA–lncRNA networks and the ceRNA network participated in ion channel activity, insulin secretion, and collagen network and extracellular matrix (ECM) changes. In conclusion, our results can provide insights into the possibility in the different tumor microenvironments and OS following 1p/19q codeletion through changes in the ceRNA network. Abstract Oligodendroglioma (OD) is a subtype of glioma occurring in the central nervous system. The 1p/19q codeletion is a prognostic marker of OD with an isocitrate dehydrogenase (IDH) mutation and is associated with a clinically favorable overall survival (OS); however, the exact underlying mechanism remains unclear. Long non-coding RNAs (lncRNAs) have recently been suggested to regulate carcinogenesis and prognosis in cancer patients. Here, we performed in silico analyses using low-grade gliomas from datasets obtained from The Cancer Genome Atlas to investigate the effects of ceRNA with 1p/19q codeletion on ODs. Thus, we selected modules of differentially expressed genes that were closely related to 1p/19q codeletion traits using weighted gene co-expression network analysis and constructed 16 coding RNA–miRNA–lncRNA networks. The ceRNA network participated in ion channel activity, insulin secretion, and collagen network and extracellular matrix (ECM) changes. In conclusion, ceRNAs with a 1p/19q codeletion can create different tumor microenvironments via potassium ion channels and ECM composition changes; furthermore, differences in OS may occur. Moreover, if extrapolated to gliomas, our results can provide insights into the consequences of identical gene expression, indicating the possibility of tracking different biological processes in different subtypes of glioma.
Collapse
Affiliation(s)
- Ju Won Ahn
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam 13488, Korea; (J.W.A.); (Y.P.); (S.J.K.)
| | - YoungJoon Park
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam 13488, Korea; (J.W.A.); (Y.P.); (S.J.K.)
| | - Su Jung Kang
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam 13488, Korea; (J.W.A.); (Y.P.); (S.J.K.)
| | - So Jung Hwang
- Department of Neurosurgery, Bundang CHA Medical Center, CHA University School of Medicine, Seongnam 13496, Korea; (S.J.H.); (K.G.C.)
| | - Kyung Gi Cho
- Department of Neurosurgery, Bundang CHA Medical Center, CHA University School of Medicine, Seongnam 13496, Korea; (S.J.H.); (K.G.C.)
| | - JaeJoon Lim
- Department of Neurosurgery, Bundang CHA Medical Center, CHA University School of Medicine, Seongnam 13496, Korea; (S.J.H.); (K.G.C.)
- Correspondence: (J.L.); (K.K.); Tel.: +82-031-780-5688 (J.L.); +82-031-725-7141 (K.K.)
| | - KyuBum Kwack
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam 13488, Korea; (J.W.A.); (Y.P.); (S.J.K.)
- Correspondence: (J.L.); (K.K.); Tel.: +82-031-780-5688 (J.L.); +82-031-725-7141 (K.K.)
| |
Collapse
|
107
|
Caccese M, Padovan M, D'Avella D, Chioffi F, Gardiman MP, Berti F, Busato F, Bellu L, Bergo E, Zoccarato M, Fassan M, Zagonel V, Lombardi G. Anaplastic Astrocytoma: State of the art and future directions. Crit Rev Oncol Hematol 2020; 153:103062. [PMID: 32717623 DOI: 10.1016/j.critrevonc.2020.103062] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 06/17/2020] [Accepted: 07/12/2020] [Indexed: 01/05/2023] Open
Abstract
Anaplastic Astrocytoma(AA) is a malignant, diffusely infiltrating, primary brain tumor. According to the WHO 2016 classification of central-nervous-system tumors, AA has been described as a glial tumor with no co-deletion of 1p/19q, and is divided into IDH mutated tumor, characterized by better prognosis, and IDH wild-type form, with worse prognosis. The standard of care is maximal safe resection followed by radiotherapy and chemotherapy with temozolomide. Several efforts have been made to evaluate, according to molecular selection, which is the best post-surgical treatment. At recurrence, the treatment remains challenging and some trials are ongoing to evaluate new potential drugs, alone or in combination with chemotherapy. We performed a description of the status of the art on diagnosis, molecular characteristics and treatment of AA. In particular, we focused our details on new drugs; indeed, a deeper knowledge of the molecular characteristics of gliomas could lead to to development of active personalized treatments according with precision medicine.
Collapse
Affiliation(s)
- Mario Caccese
- Department of Oncology, Oncology 1, Veneto Institute of Oncology - IRCCS, Padua, Italy; Clinical and Experimental Oncology and Immunology PhD Program, Department of Surgery, Oncology and Gastroenterology, University of Padua, Padua, Italy.
| | - Marta Padovan
- Department of Oncology, Oncology 1, Veneto Institute of Oncology - IRCCS, Padua, Italy
| | - Domenico D'Avella
- Accademic Neurosurgery, Department of Neurosciences, University of Padua Medical School, Padua, Italy
| | - Franco Chioffi
- Department of Neurosurgery, Padua University Hospital, Padua, Italy
| | - Marina Paola Gardiman
- Surgical Pathology Unit, Department of Medicine (DIMED), University Hospital of Padua, Padua, Italy
| | - Franco Berti
- Radiation Therapy and Nuclear Medicine Unit, Veneto Institute of Oncology - IRCCS, Padua, Italy
| | - Fabio Busato
- Radiation Therapy and Nuclear Medicine Unit, Veneto Institute of Oncology - IRCCS, Padua, Italy
| | - Luisa Bellu
- Radiation Therapy and Nuclear Medicine Unit, Veneto Institute of Oncology - IRCCS, Padua, Italy
| | - Eleonora Bergo
- Department of Oncology, Oncology 1, Veneto Institute of Oncology - IRCCS, Padua, Italy
| | - Marco Zoccarato
- Department of Neurology, Ospedale S. Antonio, Azienda Ospedaliera Di Padova, Padua, Italy
| | - Matteo Fassan
- Surgical Pathology Unit, Department of Medicine (DIMED), University Hospital of Padua, Padua, Italy
| | - Vittorina Zagonel
- Department of Oncology, Oncology 1, Veneto Institute of Oncology - IRCCS, Padua, Italy
| | - Giuseppe Lombardi
- Department of Oncology, Oncology 1, Veneto Institute of Oncology - IRCCS, Padua, Italy
| |
Collapse
|
108
|
Miller JJ, Loebel F, Juratli TA, Tummala SS, Williams EA, Batchelor TT, Arrillaga-Romany I, Cahill DP. Accelerated progression of IDH mutant glioma after first recurrence. Neuro Oncol 2020; 21:669-677. [PMID: 30668823 DOI: 10.1093/neuonc/noz016] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Isocitrate dehydrogenase (IDH) mutant gliomas are a distinct subtype, reflected in the World Health Organization (WHO) 2016 revised diagnostic criteria. To inform IDH-targeting trial design, we sought to characterize outcomes exclusively within IDH mutant gliomas. METHODS We retrospectively analyzed 275 IDH mutant glioma patients treated at our institution. Progression was determined using low-grade glioma criteria from Response Assessment in Neuro-Oncology. We calculated survival statistics with the Kaplan-Meier method, and survival proportions were correlated with molecular, histologic, and clinical factors. RESULTS During a median follow-up of 6.4 years, 44 deaths (7.6%) and 149 first progression (PFS1) events (54.1%) were observed. Median PFS1 was 5.7 years (95% CI: 4.7-6.4) and OS was 18.7 years (95% CI: 12.2 y-not reached). Consistent with prior studies, we observed an association of grade, molecular diagnosis, and treatment with PFS1. Following the first progressive episode, 79 second progression events occurred during a median follow-up period of 4.1 years. Median PFS following an initial progressive event (PFS2) was accelerated at 3.1 years (95% CI: 2.1-4.1). PFS2 was a surrogate prognostic marker, identifying patients with poorer overall survival. CONCLUSION We report outcomes in a large cohort of IDH mutant glioma, providing a well-characterized historical control population for future clinical trial design. Notably, the interval between first and second recurrence (PFS2, 3.0 y) is shorter than time from diagnosis to first recurrence (PFS1, 5.7 y), evidence that these tumors clinically degenerate from an indolent course to an accelerated malignant phase. Thus, PFS2 represents a relevant outcome for trials investigating drug efficacy at recurrence.
Collapse
Affiliation(s)
- Julie J Miller
- Stephen E. and Catherine Pappas Center for Neuro-Oncology, Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts.,Translational Neuro-Oncology Laboratory, Massachusetts General Hospital, Boston, Massachusetts
| | - Franziska Loebel
- Department of Neurosurgery, Charité University Hospital Berlin, Berlin, Germany
| | - Tareq A Juratli
- Translational Neuro-Oncology Laboratory, Massachusetts General Hospital, Boston, Massachusetts.,Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts
| | - Shilpa S Tummala
- Translational Neuro-Oncology Laboratory, Massachusetts General Hospital, Boston, Massachusetts.,Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts
| | - Erik A Williams
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts
| | - Tracy T Batchelor
- Stephen E. and Catherine Pappas Center for Neuro-Oncology, Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts.,Division of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts
| | - Isabel Arrillaga-Romany
- Stephen E. and Catherine Pappas Center for Neuro-Oncology, Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts
| | - Daniel P Cahill
- Translational Neuro-Oncology Laboratory, Massachusetts General Hospital, Boston, Massachusetts.,Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts
| |
Collapse
|
109
|
Horbinski C, Ligon KL, Brastianos P, Huse JT, Venere M, Chang S, Buckner J, Cloughesy T, Jenkins RB, Giannini C, Stupp R, Nabors LB, Wen PY, Aldape KJ, Lukas RV, Galanis E, Eberhart CG, Brat DJ, Sarkaria JN. The medical necessity of advanced molecular testing in the diagnosis and treatment of brain tumor patients. Neuro Oncol 2020; 21:1498-1508. [PMID: 31276167 DOI: 10.1093/neuonc/noz119] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Accurate pathologic diagnoses and molecularly informed treatment decisions for a wide variety of cancers depend on robust clinical molecular testing that uses genomic, epigenomic, and transcriptomic-based tools. Nowhere is this more essential than in the workup of brain tumors, as emphasized by the incorporation of molecular criteria into the 2016 World Health Organization classification of central nervous system tumors and the updated official guidelines of the National Comprehensive Cancer Network. Despite the medical necessity of molecular testing in brain tumors, access to and utilization of molecular diagnostics is still highly variable across institutions, and a lack of reimbursement for such testing remains a significant obstacle. The objectives of this review are (i) to identify barriers to adoption of molecular testing in brain tumors, (ii) to describe the current molecular tools recommended for the clinical evaluation of brain tumors, and (iii) to summarize how molecular data are interpreted to guide clinical care, so as to improve understanding and justification for their coverage in the routine workup of adult and pediatric brain tumor cases.
Collapse
Affiliation(s)
- Craig Horbinski
- Department of Pathology, Northwestern University, Chicago, Illinois.,Department of Neurological Surgery, Northwestern University, Chicago, Illinois
| | - Keith L Ligon
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts
| | | | - Jason T Huse
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Monica Venere
- Department of Radiation Oncology and the Comprehensive Cancer Center, Ohio State University, Columbus, Ohio
| | - Susan Chang
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California
| | - Jan Buckner
- Department of Oncology, Mayo Clinic, Rochester, Minnesota
| | - Timothy Cloughesy
- Department of Neurology, University of California Los Angeles, Los Angeles, California
| | - Robert B Jenkins
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Caterina Giannini
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Roger Stupp
- Department of Neurological Surgery, Northwestern University, Chicago, Illinois.,Department of Neurology, Northwestern University, Chicago, Illinois
| | - L Burt Nabors
- Department of Neurology, University of Alabama Birmingham, Birmingham, Alabama
| | - Patrick Y Wen
- Center for Neuro-Oncology, Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| | - Kenneth J Aldape
- Center for Cancer Research, Laboratory of Pathology, National Cancer Institute, Bethesda, Maryland
| | - Rimas V Lukas
- Department of Neurology, Northwestern University, Chicago, Illinois
| | | | - Charles G Eberhart
- Department of Neurology, Northwestern University, Chicago, Illinois.,Department of Pathology, Johns Hopkins, Baltimore, Maryland.,Department of Ophthalmology, Johns Hopkins, Baltimore, Maryland
| | - Daniel J Brat
- Department of Pathology, Northwestern University, Chicago, Illinois
| | - Jann N Sarkaria
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
110
|
Appay R, Dehais C, Maurage CA, Alentorn A, Carpentier C, Colin C, Ducray F, Escande F, Idbaih A, Kamoun A, Marie Y, Mokhtari K, Tabouret E, Trabelsi N, Uro-Coste E, Delattre JY, Figarella-Branger D. CDKN2A homozygous deletion is a strong adverse prognosis factor in diffuse malignant IDH-mutant gliomas. Neuro Oncol 2020; 21:1519-1528. [PMID: 31832685 DOI: 10.1093/neuonc/noz124] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The 2016 World Health Organization (WHO) classification of central nervous system tumors stratifies isocitrate dehydrogenase (IDH)-mutant gliomas into 2 major groups depending on the presence or absence of 1p/19q codeletion. However, the grading system remains unchanged and it is now controversial whether it can be still applied to this updated molecular classification. METHODS In a large cohort of 911 high-grade IDH-mutant gliomas from the French national POLA network (including 428 IDH-mutant gliomas without 1p/19q codeletion and 483 anaplastic oligodendrogliomas, IDH-mutant and 1p/19q codeleted), we investigated the prognostic value of the cyclin-dependent kinase inhibitor 2A (CDKN2A) gene homozygous deletion as well as WHO grading criteria (mitoses, microvascular proliferation, and necrosis). In addition, we searched for other retinoblastoma pathway gene alterations (CDK4 amplification and RB1 homozygous deletion) in a subset of patients. CDKN2A homozygous deletion was also searched in an independent series of 40 grade II IDH-mutant gliomas. RESULTS CDKN2A homozygous deletion was associated with dismal outcome among IDH-mutant gliomas lacking 1p/19q codeletion (P < 0.0001 for progression-free survival and P = 0.004 for overall survival) as well as among anaplastic oligodendrogliomas, IDH-mutant + 1p/19q codeleted (P = 0.002 for progression-free survival and P < 0.0001 for overall survival) in univariate and multivariate analysis including age, extent of surgery, adjuvant treatment, microvascular proliferation, and necrosis. In both groups, the presence of microvascular proliferation and/or necrosis remained of prognostic value only in cases lacking CDKN2A homozygous deletion. CDKN2A homozygous deletion was not recorded in grade II gliomas. CONCLUSIONS Our study pointed out the utmost relevance of CDKN2A homozygous deletion as an adverse prognostic factor in the 2 broad categories of IDH-mutant gliomas stratified on 1p/19q codeletion and suggests that the grading of these tumors should be refined.
Collapse
Affiliation(s)
- Romain Appay
- Department of Pathological Anatomy and Neuropathology, Timone Hospital, Public Assistance-Marseille Hospitals (APHM), Marseille, France.,Aix-Marseille University, Scientific Research National Center (CNRS), Institute of Neurophysiopathology, Marseille, France
| | - Caroline Dehais
- Department of Neurology 2-Mazarin, Public Assistance-Paris Hospitals (APHP), University Hospital Pitié Salpêtrière-Charles Foix, Paris, France
| | - Claude-Alain Maurage
- Department of Neurology 2-Mazarin, Public Assistance-Paris Hospitals (APHP), University Hospital Pitié Salpêtrière-Charles Foix, Paris, France
| | - Agusti Alentorn
- Department of Neurology 2-Mazarin, Public Assistance-Paris Hospitals (APHP), University Hospital Pitié Salpêtrière-Charles Foix, Paris, France
| | - Catherine Carpentier
- Sorbonne University, National Institute of Health and Medical Research (Inserm), CNRS, Brain and Spinal Cord Institute, University Hospitals of Pitié Salpêtrière-Charles Foix, Department of Neurology 2-Mazarin, Paris, France
| | - Carole Colin
- Aix-Marseille University, Scientific Research National Center (CNRS), Institute of Neurophysiopathology, Marseille, France
| | - François Ducray
- Department of Neuro-Oncology, Civil Hospices of Lyon, Pierre Wertheimer Hospital, Bron, France.,Department of Cancer Cell Plasticity, Cancer Research Center of Lyon, Lyon, France
| | - Fabienne Escande
- Department of Pathology, Lille University Hospital, Lille, France
| | - Ahmed Idbaih
- Department of Neurology 2-Mazarin, Public Assistance-Paris Hospitals (APHP), University Hospital Pitié Salpêtrière-Charles Foix, Paris, France.,Sorbonne University, National Institute of Health and Medical Research (Inserm), CNRS, Brain and Spinal Cord Institute, University Hospitals of Pitié Salpêtrière-Charles Foix, Department of Neurology 2-Mazarin, Paris, France
| | - Aurélie Kamoun
- Tumor Identity Card Program, National League Against Cancer, Paris, France
| | - Yannick Marie
- Sorbonne University, National Institute of Health and Medical Research (Inserm), CNRS, Brain and Spinal Cord Institute, University Hospitals of Pitié Salpêtrière-Charles Foix, Department of Neurology 2-Mazarin, Paris, France
| | - Karima Mokhtari
- Sorbonne University, National Institute of Health and Medical Research (Inserm), CNRS, Brain and Spinal Cord Institute, University Hospitals of Pitié Salpêtrière-Charles Foix, Department of Neurology 2-Mazarin, Paris, France.,Department of Neurology, Raymond Escourolle Neuropathology Service, University Hospitals of Pitié Salpêtrière-Charles Foix, APHP, Paris, France
| | - Emeline Tabouret
- Aix-Marseille University, Scientific Research National Center (CNRS), Institute of Neurophysiopathology, Marseille, France.,Department of Neuro-Oncology, Timone Hospital, APHM, Marseille, France
| | - Nesrine Trabelsi
- Sorbonne University, National Institute of Health and Medical Research (Inserm), CNRS, Brain and Spinal Cord Institute, University Hospitals of Pitié Salpêtrière-Charles Foix, Department of Neurology 2-Mazarin, Paris, France
| | - Emmanuelle Uro-Coste
- Department of Pathological Anatomy and Histology-Cytology, Rangueil Hospital, Toulouse, France.,Center for Research in Cancerology, Inserm U1037, University of Toulouse, Toulouse, France
| | - Jean-Yves Delattre
- Aix-Marseille University, Scientific Research National Center (CNRS), Institute of Neurophysiopathology, Marseille, France.,Sorbonne University, National Institute of Health and Medical Research (Inserm), CNRS, Brain and Spinal Cord Institute, University Hospitals of Pitié Salpêtrière-Charles Foix, Department of Neurology 2-Mazarin, Paris, France
| | - Dominique Figarella-Branger
- Department of Pathological Anatomy and Neuropathology, Timone Hospital, Public Assistance-Marseille Hospitals (APHM), Marseille, France.,Aix-Marseille University, Scientific Research National Center (CNRS), Institute of Neurophysiopathology, Marseille, France
| | | |
Collapse
|
111
|
Lebrun L, Meléndez B, Blanchard O, De Nève N, Van Campenhout C, Lelotte J, Balériaux D, Riva M, Brotchi J, Bruneau M, De Witte O, Decaestecker C, D’Haene N, Salmon I. Clinical, radiological and molecular characterization of intramedullary astrocytomas. Acta Neuropathol Commun 2020; 8:128. [PMID: 32771057 PMCID: PMC7414698 DOI: 10.1186/s40478-020-00962-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 06/08/2020] [Indexed: 01/12/2023] Open
Abstract
Intramedullary astrocytomas (IMAs) are rare tumors, and few studies specific to the molecular alterations of IMAs have been performed. Recently, KIAA1549-BRAF fusions and the H3F3A p.K27M mutation have been described in low-grade (LG) and high-grade (HG) IMAs, respectively. In the present study, we collected clinico-radiological data and performed targeted next-generation sequencing for 61 IMAs (26 grade I pilocytic, 17 grade II diffuse, 3 LG, 3 grade III and 12 grade IV) to identify KIAA1549-BRAF fusions and mutations in 33 genes commonly implicated in gliomas and the 1p/19q regions. One hundred seventeen brain astrocytomas were analyzed for comparison. While we did not observe a difference in clinico-radiological features between LG and HG IMAs, we observed significantly different overall survival (OS) and event-free survival (EFS). Multivariate analysis showed that the tumor grade was associated with better OS while EFS was strongly impacted by tumor grade and surgery, with higher rates of disease progression in cases in which only biopsy could be performed. For LG IMAs, EFS was only impacted by surgery and not by grade. The most common mutations found in IMAs involved TP53, H3F3A p.K27M and ATRX. As in the brain, grade I pilocytic IMAs frequently harbored KIAA1549-BRAF fusions but with different fusion types. Non-canonical IDH mutations were observed in only 2 grade II diffuse IMAs. No EGFR or TERT promoter alterations were found in IDH wild-type grade II diffuse IMAs. These latter tumors seem to have a good prognosis, and only 2 cases underwent anaplastic evolution. All of the HG IMAs presented at least one molecular alteration, with the most frequent one being the H3F3A p.K27M mutation. The H3F3A p.K27M mutation showed significant associations with OS and EFS after multivariate analysis. This study emphasizes that IMAs have distinct clinico-radiological, natural evolution and molecular landscapes from brain astrocytomas.
Collapse
|
112
|
Rahman R, Ventz S, Fell G, Vanderbeek AM, Trippa L, Alexander BM. Divining responder populations from survival data. Ann Oncol 2020; 30:1005-1013. [PMID: 30860592 DOI: 10.1093/annonc/mdz087] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Biomarkers that predict treatment response are the foundation of precision medicine in clinical decision-making and have the potential to significantly improve the efficiency of clinical trials. Such biomarkers may be identified before clinical testing but many trials enroll unselected populations. We hypothesized that time-varying treatment effects in unselected trials may result from identifiable responder subpopulations that may have associated biomarkers. MATERIALS AND METHODS We first simulated scenarios of clinical trials with biomarker populations of varying prevalence and prognostic and predictive associations to illustrate the impact of subgroup-specific effects on overall population estimates. To show a real-world example of time-dependent treatment effects resulting from a prognostic and predictive biomarker, we re-analyzed data from a published clinical trial (RTOG, Radiation Therapy Oncology Group, 9402). We then demonstrated a quantitative framework to fit survival data from clinical trials using statistical models incorporating known estimates of biomarker prevalence and prognostic value to prioritize predictive biomarker hypotheses. RESULTS Our simulation studies demonstrate how biomarker subgroups that are both predictive and prognostic can manifest as time-dependent treatment effects in overall populations. RTOG 9402 provides a representative example where 1p/19q co-deletion and IDH mutation biomarker-specific effects led to time-varying treatment effects and a considerable deviation from proportional hazards in the overall trial population. Finally, using biomarker data from The Cancer Genome Atlas, we were able to generate statistical models that correctly identified and prioritized a commonly used biomarker through retrospective analysis of published clinical trial data. CONCLUSIONS Biomarkers that are both predictive and prognostic can result in characteristic changes in survival results. Retrospectively analyzing survival data from clinical trials may highlight potential indications for which an underlying predictive biomarker may be found.
Collapse
Affiliation(s)
- R Rahman
- Department of Radiation Oncology, Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston; Department of Radiation Oncology, Harvard Medical School, Boston
| | - S Ventz
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston
| | - G Fell
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston
| | - A M Vanderbeek
- Department of Biostatistics, Columbia University Mailman School of Public Health, New York, USA
| | - L Trippa
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston
| | - B M Alexander
- Department of Radiation Oncology, Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston; Department of Radiation Oncology, Harvard Medical School, Boston.
| |
Collapse
|
113
|
Schiff D, Van den Bent M, Vogelbaum MA, Wick W, Miller CR, Taphoorn M, Pope W, Brown PD, Platten M, Jalali R, Armstrong T, Wen PY. Recent developments and future directions in adult lower-grade gliomas: Society for Neuro-Oncology (SNO) and European Association of Neuro-Oncology (EANO) consensus. Neuro Oncol 2020; 21:837-853. [PMID: 30753579 DOI: 10.1093/neuonc/noz033] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The finding that most grades II and III gliomas harbor isocitrate dehydrogenase (IDH) mutations conveying a relatively favorable and fairly similar prognosis in both tumor grades highlights that these tumors represent a fundamentally different entity from IDH wild-type gliomas exemplified in most glioblastoma. Herein we review the most recent developments in molecular neuropathology leading to reclassification of these tumors based upon IDH and 1p/19q status, as well as the potential roles of methylation profiling and deletional analysis of cyclin-dependent kinase inhibitor 2A and 2B. We discuss the epidemiology, clinical manifestations, benefit of surgical resection, and neuroimaging features of lower-grade gliomas as they relate to molecular subtype, including advanced imaging techniques such as 2-hydroxyglutarate magnetic resonance spectroscopy and amino acid PET scanning. Recent, ongoing, and planned studies of radiation therapy and both cytotoxic and targeted chemotherapies are summarized, including both small molecule and immunotherapy approaches specifically targeting the mutant IDH protein.
Collapse
Affiliation(s)
- David Schiff
- Department of Neurology, University of Virginia, Charlottesville, Virginia
| | - Martin Van den Bent
- Department of Neurology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | | | - Wolfgang Wick
- Divison of Neuro-Oncology, German Cancer Research Center, Heidelberg, Germany
| | - C Ryan Miller
- Pathology and Lab Medicine, University of North Carolina, Chapel Hill, North Carolina
| | - Martin Taphoorn
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| | - Whitney Pope
- Section of Neuroradiology, UCLA, Los Angeles, California
| | - Paul D Brown
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota
| | - Michael Platten
- Department of Neurology, Mannheim University Hospital, Mannheim, Germany
| | | | - Terri Armstrong
- Neuro-Oncology Branch, National Institute of Health, Bethesda, Maryland
| | - Patrick Y Wen
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| |
Collapse
|
114
|
Milano MT, Chan MD, Minniti G, Hattangadi-Gluth JA, Redmond KJ, Soltys SG. The IMPACT of Molecular Grading of Gliomas on Contemporary Clinical Practice. Int J Radiat Oncol Biol Phys 2020; 107:859-862. [PMID: 32698972 DOI: 10.1016/j.ijrobp.2020.05.043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 05/23/2020] [Indexed: 11/25/2022]
Affiliation(s)
- Michael T Milano
- Department of Radiation Oncology, University of Rochester, Rochester, New York.
| | - Michael D Chan
- Department of Radiation Oncology, Wake Forest Baptist Medical Center, Winston-Salem, North Carolina
| | - Giuseppe Minniti
- Department of Medicine, Surgery and Neuroscience, University of Siena, Italy
| | - Jona A Hattangadi-Gluth
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California
| | - Kristin J Redmond
- Department of Radiation Oncology and Molecular Radiation Sciences, The Johns Hopkins University, Baltimore, Maryland
| | - Scott G Soltys
- Department of Radiation Oncology, Stanford University, Stanford, California
| |
Collapse
|
115
|
Bell EH, Zhang P, Shaw EG, Buckner JC, Barger GR, Bullard DE, Mehta MP, Gilbert MR, Brown PD, Stelzer KJ, McElroy JP, Fleming JL, Timmers CD, Becker AP, Salavaggione AL, Liu Z, Aldape K, Brachman DG, Gertler SZ, Murtha AD, Schultz CJ, Johnson D, Laack NN, Hunter GK, Crocker IR, Won M, Chakravarti A. Comprehensive Genomic Analysis in NRG Oncology/RTOG 9802: A Phase III Trial of Radiation Versus Radiation Plus Procarbazine, Lomustine (CCNU), and Vincristine in High-Risk Low-Grade Glioma. J Clin Oncol 2020; 38:3407-3417. [PMID: 32706640 DOI: 10.1200/jco.19.02983] [Citation(s) in RCA: 137] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
PURPOSE NRG Oncology/RTOG 9802 (ClinicalTrials.gov Identifier: NCT00003375) is a practice-changing study for patients with WHO low-grade glioma (LGG, grade II), as it was the first to demonstrate a survival benefit of adjuvant chemoradiotherapy over radiotherapy. This post hoc study sought to determine the prognostic and predictive impact of the WHO-defined molecular subgroups and corresponding molecular alterations within NRG Oncology/RTOG 9802. METHODS IDH1/2 mutations were determined by immunohistochemistry and/or deep sequencing. A custom Ion AmpliSeq panel was used for mutation analysis. 1p/19q codeletion and MGMT promoter methylation were determined by copy-number arrays and/or Illumina 450K array, respectively. Progression-free survival (PFS) and overall survival (OS) were estimated using the Kaplan-Meier method. Hazard ratios (HRs) were calculated using the Cox proportional hazard model and tested using the log-rank test. Multivariable analyses (MVAs) were performed incorporating treatment and common prognostic factors as covariates. RESULTS Of the eligible patients successfully profiled for the WHO-defined molecular groups (n = 106/251), 26 (24%) were IDH-wild type, 43 (41%) were IDH-mutant/non-codeleted, and 37(35%) were IDH-mutant/codeleted. MVAs demonstrated that WHO subgroup was a significant predictor of PFS after adjustment for clinical variables and treatment. Notably, treatment with postradiation chemotherapy (PCV; procarbazine, lomustine (CCNU), and vincristine) was associated with longer PFS (HR, 0.32; P = .003; HR, 0.13; P < .001) and OS (HR, 0.38; P = .013; HR, 0.21; P = .029) in the IDH-mutant/non-codeleted and IDH-mutant/codeleted subgroups, respectively. In contrast, no significant difference in either PFS or OS was observed with the addition of PCV in the IDH-wild-type subgroup. CONCLUSION This study is the first to report the predictive value of the WHO-defined diagnostic classification in a set of uniformly treated patients with LGG in a clinical trial. Importantly, this post hoc analysis supports the notion that patients with IDH-mutant high-risk LGG regardless of codeletion status receive benefit from the addition of PCV.
Collapse
Affiliation(s)
| | - Peixin Zhang
- NRG Oncology Statistics and Data Management Center, Philadelphia, PA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Ziyan Liu
- The Ohio State University, Columbus, OH
| | - Kenneth Aldape
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | | - Minhee Won
- NRG Oncology Statistics and Data Management Center, Philadelphia, PA
| | | |
Collapse
|
116
|
DeCordova S, Shastri A, Tsolaki AG, Yasmin H, Klein L, Singh SK, Kishore U. Molecular Heterogeneity and Immunosuppressive Microenvironment in Glioblastoma. Front Immunol 2020; 11:1402. [PMID: 32765498 PMCID: PMC7379131 DOI: 10.3389/fimmu.2020.01402] [Citation(s) in RCA: 199] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 06/01/2020] [Indexed: 12/14/2022] Open
Abstract
Glioblastoma (GBM) is the most aggressive primary brain tumor in adults, with a poor prognosis, despite surgical resection combined with radio- and chemotherapy. The major clinical obstacles contributing to poor GBM prognosis are late diagnosis, diffuse infiltration, pseudo-palisading necrosis, microvascular proliferation, and resistance to conventional therapy. These challenges are further compounded by extensive inter- and intra-tumor heterogeneity and the dynamic plasticity of GBM cells. The complex heterogeneous nature of GBM cells is facilitated by the local inflammatory tumor microenvironment, which mostly induces tumor aggressiveness and drug resistance. An immunosuppressive tumor microenvironment of GBM provides multiple pathways for tumor immune evasion. Infiltrating immune cells, mostly tumor-associated macrophages, comprise much of the non-neoplastic population in GBM. Further understanding of the immune microenvironment of GBM is essential to make advances in the development of immunotherapeutics. Recently, whole-genome sequencing, epigenomics and transcriptional profiling have significantly helped improve the prognostic and therapeutic outcomes of GBM patients. Here, we discuss recent genomic advances, the role of innate and adaptive immune mechanisms, and the presence of an established immunosuppressive GBM microenvironment that suppresses and/or prevents the anti-tumor host response.
Collapse
Affiliation(s)
- Syreeta DeCordova
- Biosciences, College of Health and Life Sciences, Brunel University London, London, United Kingdom
| | - Abhishek Shastri
- Central and North West London NHS Foundation Trust, London, United Kingdom
| | - Anthony G Tsolaki
- Biosciences, College of Health and Life Sciences, Brunel University London, London, United Kingdom
| | - Hadida Yasmin
- Immunology and Cell Biology Laboratory, Department of Zoology, Cooch Behar Panchanan Barma University, Cooch Behar, India
| | - Lukas Klein
- Department of Gastroenterology and Gastroenterology Oncology, University Medical Centre, Göttingen, Germany
| | - Shiv K Singh
- Department of Gastroenterology and Gastroenterology Oncology, University Medical Centre, Göttingen, Germany
| | - Uday Kishore
- Biosciences, College of Health and Life Sciences, Brunel University London, London, United Kingdom
| |
Collapse
|
117
|
Nagashima H, Lee CK, Tateishi K, Higuchi F, Subramanian M, Rafferty S, Melamed L, Miller JJ, Wakimoto H, Cahill DP. Poly(ADP-ribose) Glycohydrolase Inhibition Sequesters NAD + to Potentiate the Metabolic Lethality of Alkylating Chemotherapy in IDH-Mutant Tumor Cells. Cancer Discov 2020; 10:1672-1689. [PMID: 32606138 DOI: 10.1158/2159-8290.cd-20-0226] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 05/31/2020] [Accepted: 06/24/2020] [Indexed: 11/16/2022]
Abstract
NAD+ is an essential cofactor metabolite and is the currency of metabolic transactions critical for cell survival. Depending on tissue context and genotype, cancer cells have unique dependencies on NAD+ metabolic pathways. PARPs catalyze oligomerization of NAD+ monomers into PAR chains during cellular response to alkylating chemotherapeutics, including procarbazine or temozolomide. Here we find that, in endogenous IDH1-mutant tumor models, alkylator-induced cytotoxicity is markedly augmented by pharmacologic inhibition or genetic knockout of the PAR breakdown enzyme PAR glycohydrolase (PARG). Both in vitro and in vivo, we observe that concurrent alkylator and PARG inhibition depletes freely available NAD+ by preventing PAR breakdown, resulting in NAD+ sequestration and collapse of metabolic homeostasis. This effect reversed with NAD+ rescue supplementation, confirming the mechanistic basis of cytotoxicity. Thus, alkylating chemotherapy exposes a genotype-specific metabolic weakness in tumor cells that can be exploited by PARG inactivation. SIGNIFICANCE: Oncogenic mutations in the isocitrate dehydrogenase genes IDH1 or IDH2 initiate diffuse gliomas of younger adulthood. Strategies to maximize the effectiveness of chemotherapy in these tumors are needed. We discover alkylating chemotherapy and concurrent PARG inhibition exploits an intrinsic metabolic weakness within these cancer cells to provide genotype-specific benefit.See related commentary by Pirozzi and Yan, p. 1629.This article is highlighted in the In This Issue feature, p. 1611.
Collapse
Affiliation(s)
- Hiroaki Nagashima
- Translational Neuro-Oncology Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts.,Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Christine K Lee
- Translational Neuro-Oncology Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts.,Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Kensuke Tateishi
- Department of Neurosurgery, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Fumi Higuchi
- Department of Neurosurgery, Dokkyo Medical University, Mibu, Tochigi, Japan
| | - Megha Subramanian
- Translational Neuro-Oncology Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Seamus Rafferty
- Translational Neuro-Oncology Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Lisa Melamed
- Translational Neuro-Oncology Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Julie J Miller
- Translational Neuro-Oncology Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts. .,Division of Neuro-Oncology, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Hiroaki Wakimoto
- Translational Neuro-Oncology Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts. .,Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Daniel P Cahill
- Translational Neuro-Oncology Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts. .,Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
118
|
Shee K, Chambers M, Hughes EG, Almiron DA, Deharvengt SJ, Green D, Lefferts JA, Andrew AS, Hickey WF, Tsongalis GJ. Molecular genetic profiling reveals novel association between FLT3 mutation and survival in glioma. J Neurooncol 2020; 148:473-480. [PMID: 32583303 DOI: 10.1007/s11060-020-03567-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 06/16/2020] [Indexed: 10/24/2022]
Abstract
INTRODUCTION Recent molecular characterization of gliomas has uncovered somatic gene variation and DNA methylation changes that are associated with etiology, prognosis, and therapeutic response. Here we describe genomic profiling of gliomas assessed for associations between genetic mutations and patient outcomes, including overall survival (OS) and recurrence-free survival (RFS). METHODS Mutations in a 50-gene cancer panel, 1p19q co-deletion, and MGMT promoter methylation (MGMT methylation) status were obtained from tumor tissue of 293 glioma patients. Multivariable regression models for overall survival (OS) and recurrence-free survival (RFS) were constructed for MGMT methylation, 1p19q co-deletion, and gene mutations controlling for age, treatment status, and WHO grade. RESULTS Mutational profiles of gliomas significantly differed based on WHO Grade, such as high prevalence of BRAF V600E, IDH1, and PTEN mutations in WHO Grade I, II/III, and IV tumors, respectively. In multivariate regression analysis, MGMT methylation and IDH1 mutations were significantly associated with improved OS (HR = 0.44, p = 0.0004 and HR = 0.21, p = 0.007, respectively), while FLT3 and TP53 mutations were significantly associated with poorer OS (HR = 19.46, p < 0.0001 and HR = 1.67, p = 0.014, respectively). MGMT methylation and IDH1 mutations were the only significant alterations associated with improved RFS in the model (HR = 0.42, p < 0.0001 and HR = 0.37, p = 0.002, respectively). These factors were then included in a combined model, which significantly exceeded the predictive value of the base model alone (age, surgery, radiation, chemo, grade) (likelihood ratio test OS p = 1.64 × 10-8 and RFS p = 3.80 × 10-7). CONCLUSIONS This study highlights the genomic landscape of gliomas in a single-institution cohort and identifies a novel association between FLT3 mutation and OS in gliomas.
Collapse
Affiliation(s)
- Kevin Shee
- Geisel School of Medicine At Dartmouth, Hanover, NH, Germany.
| | - Meagan Chambers
- Geisel School of Medicine At Dartmouth, Hanover, NH, Germany
| | - Edward G Hughes
- Department of Pathology and Laboratory Medicine, Dartmouth-Hitchcock Medical Center, 03756, Lebanon, NH, Germany
| | | | - Sophie J Deharvengt
- Geisel School of Medicine At Dartmouth, Hanover, NH, Germany.,Department of Pathology and Laboratory Medicine, Dartmouth-Hitchcock Medical Center, 03756, Lebanon, NH, Germany
| | - Donald Green
- Department of Pathology and Laboratory Medicine, Dartmouth-Hitchcock Medical Center, 03756, Lebanon, NH, Germany
| | - Joel A Lefferts
- Geisel School of Medicine At Dartmouth, Hanover, NH, Germany.,Department of Pathology and Laboratory Medicine, Dartmouth-Hitchcock Medical Center, 03756, Lebanon, NH, Germany
| | - Angeline S Andrew
- Geisel School of Medicine At Dartmouth, Hanover, NH, Germany.,Department of Neurology, Dartmouth-Hitchcock Medical Center, Lebanon, NH, Germany
| | - William F Hickey
- Geisel School of Medicine At Dartmouth, Hanover, NH, Germany.,Department of Pathology and Laboratory Medicine, Dartmouth-Hitchcock Medical Center, 03756, Lebanon, NH, Germany
| | - Gregory J Tsongalis
- Geisel School of Medicine At Dartmouth, Hanover, NH, Germany. .,Department of Pathology and Laboratory Medicine, Dartmouth-Hitchcock Medical Center, 03756, Lebanon, NH, Germany.
| |
Collapse
|
119
|
|
120
|
Dimou J, Kelly J. The biological and clinical basis for early referral of low grade glioma patients to a surgical neuro-oncologist. J Clin Neurosci 2020; 78:20-29. [PMID: 32381393 DOI: 10.1016/j.jocn.2020.04.119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 03/24/2020] [Accepted: 04/26/2020] [Indexed: 12/15/2022]
Abstract
The discovery of IDH1/2 (isocitrate dehydrogenase) mutation in large scale, genomewide mutational analyses of gliomas has led to profound developments in understanding tumourigenesis, and restructuring of the classification of both high and low grade gliomas. Owing to this progress made in the recognition of molecular markers which predict tumour behavior and treatment response, the increasing importance of adjuvant treatments such as chemo- and radiotherapy, and the tremendous advances in surgical technique and intraoperative monitoring which have facilitated superior extents of resection whilst preserving neurological functioning and quality of life, contemporary management of low grade glioma (LGG) has switched from a passive, observant approach to a more active, interventional one. Furthermore, this has implications for the manner in which patients with incidentally discovered and/or asymptomatic LGG are managed, and this review of the biological behaviour of LGG, as well as its clinical investigation and management, should act as a timely reminder to all clinicians of the importance of referring LGG patients early to a surgical neuro-oncologist who is not only familiar and acquainted with the vagaries of this disease process, but who, in addition, is devoted to delivering care to these patients with the support of a multi-disciplinary clinical decision-making unit, comprising medical neuro-oncologists, radiation oncologists and allied health professionals.
Collapse
Affiliation(s)
- James Dimou
- Department of Neurosurgery, University of Calgary, Alberta, Canada.
| | - John Kelly
- Department of Neurosurgery, University of Calgary, Alberta, Canada
| |
Collapse
|
121
|
Tunneling Nanotubes and Tumor Microtubes in Cancer. Cancers (Basel) 2020; 12:cancers12040857. [PMID: 32244839 PMCID: PMC7226329 DOI: 10.3390/cancers12040857] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 03/18/2020] [Indexed: 12/11/2022] Open
Abstract
Intercellular communication among cancer cells and their microenvironment is crucial to disease progression. The mechanisms by which communication occurs between distant cells in a tumor matrix remain poorly understood. In the last two decades, experimental evidence from different groups proved the existence of thin membranous tubes that interconnect cells, named tunneling nanotubes, tumor microtubes, cytonemes or membrane bridges. These highly dynamic membrane protrusions are conduits for direct cell-to-cell communication, particularly for intercellular signaling and transport of cellular cargo over long distances. Tunneling nanotubes and tumor microtubes may play an important role in the pathogenesis of cancer. They may contribute to the resistance of tumor cells against treatments such as surgery, radio- and chemotherapy. In this review, we present the current knowledge about the structure and function of tunneling nanotubes and tumor microtubes in cancer and discuss the therapeutic potential of membrane tubes in cancer treatment.
Collapse
|
122
|
Wu H, Lu H, Xiao W, Yang J, Du H, Shen Y, Qu H, Jia B, Manna SK, Ramachandran M, Xue X, Ma Z, Xu X, Wang Z, He Y, Lam KS, Zawadzki RJ, Li Y, Lin TY. Sequential Targeting in Crosslinking Nanotheranostics for Tackling the Multibarriers of Brain Tumors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1903759. [PMID: 32078198 PMCID: PMC7148201 DOI: 10.1002/adma.201903759] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 01/06/2020] [Indexed: 05/20/2023]
Abstract
The efficacy of therapeutics for brain tumors is seriously hampered by multiple barriers to drug delivery, including severe destabilizing effects in the blood circulation, the blood-brain barrier/blood-brain tumor barrier (BBB/BBTB), and limited tumor uptake. Here, a sequential targeting in crosslinking (STICK) nanodelivery strategy is presented to circumvent these important physiological barriers to improve drug delivery to brain tumors. STICK nanoparticles (STICK-NPs) can sequentially target BBB/BBTB and brain tumor cells with surface maltobionic acid (MA) and 4-carboxyphenylboronic acid (CBA), respectively, and simultaneously enhance nanoparticle stability with pH-responsive crosslinkages formed by MA and CBA in situ. STICK-NPs exhibit prolonged circulation time (17-fold higher area under curve) than the free agent, allowing increased opportunities to transpass the BBB/BBTB via glucose-transporter-mediated transcytosis by MA. The tumor acidic environment then triggers the transformation of the STICK-NPs into smaller nanoparticles and reveals a secondary CBA targeting moiety for deep tumor penetration and enhanced uptake in tumor cells. STICK-NPs significantly inhibit tumor growth and prolong the survival time with limited toxicity in mice with aggressive and chemoresistant diffuse intrinsic pontine glioma. This formulation tackles multiple physiological barriers on-demand with a simple and smart STICK design. Therefore, these features allow STICK-NPs to unleash the potential of brain tumor therapeutics to improve their treatment efficacy.
Collapse
Affiliation(s)
- Hao Wu
- Department of Biochemistry and Molecular Medicine, University of California Davis, Sacramento, CA, 95817, USA
| | - Hongwei Lu
- Department of Biochemistry and Molecular Medicine, University of California Davis, Sacramento, CA, 95817, USA
| | - Wenwu Xiao
- Department of Biochemistry and Molecular Medicine, University of California Davis, Sacramento, CA, 95817, USA
| | - Jinfan Yang
- Department of Biochemistry and Molecular Medicine, University of California Davis, Sacramento, CA, 95817, USA
| | - Hongxu Du
- Department of Biochemistry and Molecular Medicine, University of California Davis, Sacramento, CA, 95817, USA
| | - Yingbin Shen
- Department of Biochemistry and Molecular Medicine, University of California Davis, Sacramento, CA, 95817, USA
| | - Haijing Qu
- Department of Biochemistry and Molecular Medicine, University of California Davis, Sacramento, CA, 95817, USA
| | - Bei Jia
- Department of Biochemistry and Molecular Medicine, University of California Davis, Sacramento, CA, 95817, USA
| | - Suman K Manna
- UC Davis RISE Eye-Pod Laboratory, Department of Cell Biology and Human Anatomy, University of California Davis, Davis, CA, 95616, USA
| | - Mythili Ramachandran
- Department of Biochemistry and Molecular Medicine, University of California Davis, Sacramento, CA, 95817, USA
| | - Xiangdong Xue
- Department of Biochemistry and Molecular Medicine, University of California Davis, Sacramento, CA, 95817, USA
| | - Zhao Ma
- Department of Biochemistry and Molecular Medicine, University of California Davis, Sacramento, CA, 95817, USA
| | - Xiaobao Xu
- Department of Biochemistry and Molecular Medicine, University of California Davis, Sacramento, CA, 95817, USA
| | - Zhongling Wang
- Department of Biochemistry and Molecular Medicine, University of California Davis, Sacramento, CA, 95817, USA
| | - Yixuan He
- Department of Internal Medicine, School of Medicine, University of California Davis, Sacramento, CA, 95817, USA
| | - Kit S Lam
- Department of Biochemistry and Molecular Medicine, University of California Davis, Sacramento, CA, 95817, USA
| | - Robert J Zawadzki
- UC Davis RISE Eye-Pod Laboratory, Department of Cell Biology and Human Anatomy, University of California Davis, Davis, CA, 95616, USA
| | - Yuanpei Li
- Department of Biochemistry and Molecular Medicine, University of California Davis, Sacramento, CA, 95817, USA
| | - Tzu-Yin Lin
- Department of Internal Medicine, School of Medicine, University of California Davis, Sacramento, CA, 95817, USA
| |
Collapse
|
123
|
Bai J, Varghese J, Jain R. Adult Glioma WHO Classification Update, Genomics, and Imaging: What the Radiologists Need to Know. Top Magn Reson Imaging 2020; 29:71-82. [PMID: 32271284 DOI: 10.1097/rmr.0000000000000234] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Recent advances in the understanding of the genetic makeup of gliomas have led to a paradigm shift in the diagnosis and classification of these tumors. Driven by these changes, the World Health Organization (WHO) introduced an update to its classification system of central nervous system (CNS) tumors in 2016. The updated glioma classification system incorporates molecular markers into tumor subgrouping, which has been shown to better correlate with tumor biology and behavior as well as patient prognosis than the previous purely histology-based classification system. Familiarity with this new classification scheme, the individual molecular markers, and corresponding imaging findings is critical for the radiologists who play an important role in diagnostic and surveillance imaging of patients with CNS tumors. The goals of this article are to review these updates to the WHO classification of CNS tumors with a focus on adult gliomas, provide an overview of key genomic markers of gliomas, and review imaging features pertaining to various genomic subgroups of adult gliomas.
Collapse
Affiliation(s)
- James Bai
- Department of Radiology, New York University Langone Health, New York, NY
| | - Jerrin Varghese
- Department of Radiology, New York University Langone Health, New York, NY
| | - Rajan Jain
- Department of Radiology, New York University Langone Health, New York, NY
- Department of Neurosurgery, New York University Langone Health, New York, NY
| |
Collapse
|
124
|
Vergara GA, Eugenio GC, Malheiros SMF, Victor EDS, Weinlich R. RIPK3 is a novel prognostic marker for lower grade glioma and further enriches IDH mutational status subgrouping. J Neurooncol 2020; 147:587-594. [PMID: 32222932 DOI: 10.1007/s11060-020-03473-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 03/23/2020] [Indexed: 01/22/2023]
Abstract
PURPOSE Necroptosis is a necrotic-like cell death pathway in which Receptor-interacting serine/threonine-protein kinase 3 (RIPK3) plays a central role and may induce inflammation and immunity. Lower RIPK3 levels have been correlated with a poor prognosis in breast and colorectal cancer patients. Instead, in gliomas, the most prevalent among central nervous system cancers, necrosis concurs with a more aggressive and lethal outcome, suggesting that, in these cases, necrotic-like pathways may be linked to worse prognoses. Lower-grade gliomas (LGG) exhibit highly diverse clinical behaviors, ranging from slow-paced growth to fast progression to glioblastoma yet patient outcomes cannot be fully predicted through the available markers. To date, IDH mutational status is the most broadly used prognostic marker, albeit several candidates have been proposed to refine LGG subgrouping. Here, we aimed to assess RIPK3 role as a prognostic marker for LGG patients, independently of or in combination with IDH. METHODS Using publicly available discovery (513 patients) and validation (134 patients) cohorts, we performed Kaplan Meier survival analysis and uni- and multivariate Cox regression models. RESULTS RIPK3 is an independent prognostic marker in LGG patients, even when controlled by age and molecular or histological diagnostic criteria. Contrary to what was previously reported for other cancers, high RIPK3 expression levels correlates with an increased risk of death. Importantly, RIPK3 expression levels further split both the mutant and wild-type IDH patients into distinct risk groups. CONCLUSION RIPK3 expression levels can be used in combination with IDH mutational status to better subgroup LGG patients regarding overall survival.
Collapse
Affiliation(s)
| | | | - Suzana Maria Fleury Malheiros
- Hospital Israelita Albert Einstein, São Paulo, Brazil.,Departamento de Neurologia/Neurocirurgia, Universidade Federal de São Paulo, Av. Albert Einstein, 627, São Paulo, SP, 05652-900, Brazil
| | | | | |
Collapse
|
125
|
Behling F, Barrantes-Freer A, Behnes CL, Stockhammer F, Rohde V, Adel-Horowski A, Rodríguez-Villagra OA, Barboza MA, Brück W, Lehmann U, Stadelmann C, Hartmann C. Expression of Olig2, Nestin, NogoA and AQP4 have no impact on overall survival in IDH-wildtype glioblastoma. PLoS One 2020; 15:e0229274. [PMID: 32160197 PMCID: PMC7065747 DOI: 10.1371/journal.pone.0229274] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 02/03/2020] [Indexed: 11/29/2022] Open
Abstract
Despite many years of research efforts and clinical trials the prognosis of patients diagnosed with glioblastoma remains very poor. The oligodendrocyte transcription factor 2 (Olig2) was identified as a marker for glioma stem cells, which are believed to be responsible for glioma recurrence and therapy resistance. In this retrospective analysis we assessed the prognostic value of oligodendroglial and glioma stem cell markers in 113 IDH-wildtype glioblastomas. Immunohistochemical staining for Olig2, NogoA, AQP4 and Nestin was performed in combination with sequencing of IDH1 and IDH2 as well as promotor methylation analysis of the MGMT gene. Even though differences in overall survival according to Olig2 expression were observed, univariate and multivariate survival analysis did not reveal a firm significant prognostic impact of Olig2, NogoA, AQP4 or Nestin expression. Additionally, no differences in the expression of these markers depending on clinical status, age or gender were found. The established independent prognostic factors age<65, Karnofsky Performance Status> = 70 and methylated MGMT gene promoter were significant in the multivariate analysis. In conclusion expression of oligodendroglial and glioma stem cell markers do not have an independent prognostic effect in IDH-wildtype glioblastoma.
Collapse
Affiliation(s)
- Felix Behling
- Institute of Neuropathology, University Medical Center Goettingen, Goettingen, Germany
- Department of Neurosurgery, University Hospital Tuebingen, Tuebingen, Germany
- Center for CNS Tumors, Comprehensive Cancer Center Tuebingen-Stuttgart, University Hospital Tuebingen, Tuebingen, Germany
| | - Alonso Barrantes-Freer
- Institute of Neuropathology, University Medical Center Goettingen, Goettingen, Germany
- Department of Neuropathology, Leipzig University Medicine, Leipzig, Germany
| | - Carl Ludwig Behnes
- Institute of Pathology, University Medical Center Goettingen, Goettingen, Germany
| | - Florian Stockhammer
- Department of Neurosurgery, University Medical Center Goettingen, Goettingen, Germany
| | - Veit Rohde
- Department of Neurosurgery, University Medical Center Goettingen, Goettingen, Germany
| | - Antonia Adel-Horowski
- Department of Neurosurgery, University Medical Center Goettingen, Goettingen, Germany
| | - Odir Antonio Rodríguez-Villagra
- Neuroscience Research Center, University of Costa Rica, San José, Costa Rica
- Institute for Psychological Research, University of Costa Rica, San José, Costa Rica
| | - Miguel Angel Barboza
- Neurosciences Department, Hospital Dr. Rafael A. Calderón Guardia, CCSS, University of Costa Rica, San José, Costa Rica
| | - Wolfgang Brück
- Institute of Neuropathology, University Medical Center Goettingen, Goettingen, Germany
| | - Ulrich Lehmann
- Institute of Pathology, Hannover Medical School, Hannover, Germany
| | - Christine Stadelmann
- Institute of Neuropathology, University Medical Center Goettingen, Goettingen, Germany
| | - Christian Hartmann
- Department of Neuropathology, Institute of Pathology, Hannover Medical School, Hannover, Germany
- * E-mail:
| |
Collapse
|
126
|
Khurana R, Rath S, Singh HB, Rastogi M, Nanda SS, Chauhan A, Kaif M, Hussain N. Correlation of Molecular Markers in High Grade Gliomas with Response to Chemo-Radiation. Asian Pac J Cancer Prev 2020; 21:755-760. [PMID: 32212804 PMCID: PMC7437325 DOI: 10.31557/apjcp.2020.21.3.755] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND The standard of care in high grade glioma (HGG) is maximal safe surgical resection followed by adjuvant radiotherapy (RT) with/without chemotherapy. For anaplastic gliomas, studies have shown use of procarbazine, lomustine, vincristine (PCV) improves overall survival (OS) and progression free survival (PFS). Currently, there is substantial evidence that molecular markers strongly predict prognosis and response to treatment. METHODS Between January 2016 to January 2018, 42 patients were accrued and followed up till April 2019. The primary end points were to correlate molecular markers with response to therapy in terms of OS and PFS in HGG. The secondary end point was to evaluate frequency of 1p/19q codeletion, IDH 1 mutation, ATRX deletion and p53 in HGG patients. RESULTS The median age was 46 years (range 18-67) with M:F ratio 30:12. The frequency of IDH1 mutation,1p/19q codeletion, p53 mutation and ATRX mutation were 42.8%, 16.6%, 42.8% and 14.2% respectively. All the seven patients with 1p/19q codeletion had IDH1 mutation. Median follow up was 22 months. The 20-months PFS for different mutations were as follows; IDH1-mutated vs wild type: 53.6% vs 29.8%; p-0.035, 1p/19q codeleted vs non-codeleted: 85.7% vs 62.3%; p-0.011, p53 wild type vs mutated 32.1% vs 35.6%; p-0.035 and ATRX lost vs retained: 55.6% vs 53.3%; p- 0.369. The 20-months OS for IDH1 mutated vs wild type: 82.4% vs 30.6%; p-0.014, 1p/19q codeleted vs non-codeleted: 85.7% vs 65.8%; p-0.104, p53 wild-type vs mutated 45.5% vs 73.9%; p-0.036 and ATRX lost vs retained: 100% vs 60.3%; p-0.087. CONCLUSION Codeletion of 1p/19q with IDH1 mutation in HGG is associated with a significantly favourable PFS. However, larger studies with longer follow up are required to evaluate OS and PFS in all the molecular subgroups.
Collapse
Affiliation(s)
- Rohini Khurana
- Department of Radiation Oncology, Dr Ram Manohar Lohia Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Satyajeet Rath
- Department of Radiation Oncology, Dr Ram Manohar Lohia Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Harikesh Bahadur Singh
- Department of Radiation Oncology, Dr Ram Manohar Lohia Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Madhup Rastogi
- Department of Radiation Oncology, Dr Ram Manohar Lohia Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Sambit Swarup Nanda
- Department of Radiation Oncology, Dr Ram Manohar Lohia Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Abhishek Chauhan
- Department of Radiodiagnosis, Dr Ram Manohar Lohia Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Mohammad Kaif
- Department of Neurosurgery, Dr Ram Manohar Lohia Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Nuzhat Hussain
- Department of Pathology, Dr Ram Manohar Lohia Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| |
Collapse
|
127
|
van den Bent MJ, Mellinghoff IK, Bindra RS. Gray Areas in the Gray Matter: IDH1/2 Mutations in Glioma. Am Soc Clin Oncol Educ Book 2020; 40:1-8. [PMID: 32186930 PMCID: PMC7673204 DOI: 10.1200/edbk_280967] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Since the first discovery of isocitrate dehydrogenase (IDH) mutations in cancer, considerable progress has been made in our understanding of their contribution to cancer development. For glioma, this has helped to identify two diagnostic groups of tumors (oligodendroglioma and astrocytoma IDHmt) with distinct clinical characteristics and that are now diagnosed by the presence of the IDH mutations. The metabolic changes occurring as the consequence of the altered substrate affinity of the mutant IDH protein results in a cascade of intracellular changes, also inducing a relative sensitivity to chemotherapy and radiotherapy compared with IDHwt tumors. Pharmacologic blockade of the mutant enzyme with first-in-class inhibitors has been efficacious for the treatment of IDH-mutant acute myeloid leukemia (AML) and is currently being evaluated in phase III trials for IDH-mutant glioma (INDIGO) and cholangiocarcinoma (ClarIDHy). It seems likely that acquired resistance to mutant IDH inhibitors will eventually emerge, and combination therapies to augment the antitumor activity of mutant IDH inhibitors have already been initiated. Approaches to exploit, rather than inhibit, the unique metabolism of IDH-mutant cancer cells have emerged from laboratory studies and are now also being tested in the clinic. Results of these clinical trials are eagerly awaited and will likely provide new key insights and direction of the treatment of IDH-mutant human cancer.
Collapse
Affiliation(s)
- Martin J. van den Bent
- Department of Neurology, Brain Tumor Center at Erasmus MC Cancer Institute, Rotterdam, Netherlands
| | - Ingo K. Mellinghoff
- Human Oncology and Pathogenesis Program, Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Pharmacology, Weill Cornell Medical College, New York, NY
| | - Ranjit S. Bindra
- Departments of Therapeutic Radiology and Pathology, Yale School of Medicine, New Haven, CT
- Brain Tumor Center, Yale Cancer Center, New Haven, CT
| |
Collapse
|
128
|
Clinical impact of revisions to the WHO classification of diffuse gliomas and associated future problems. Int J Clin Oncol 2020; 25:1004-1009. [PMID: 32020379 DOI: 10.1007/s10147-020-01628-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 01/27/2020] [Indexed: 10/25/2022]
Abstract
The publication of the 2016 World Health Organization Classification of Tumors of the Central Nervous System (2016 WHO CNS) represented a major change in the classification of brain tumors. It is essential to determine the IDH and 1p/19q statuses of diffuse gliomas to ensure that the final diagnosis is accurate. The integrated diagnostic method outlined in the 2016 WHO CNS has enabled more precise prediction of the prognoses of diffuse gliomas. However, there are further two points that need to be addressed when planning future clinical trials. The first is the problems with the WHO grading system for diffuse gliomas. The second is that examinations for IDH mutations and 1p/19q co-deletion are not sufficient on their own to accurately predict the prognosis of diffuse glioma patients. Risk of an IDH-mut diffuse glioma should be evaluated based on a combination of clinical factors (age and the resection rate), molecular factors (the presence/absence of CDKN2A deletion), and histological factors (morphology and the mitotic index). Glioblastoma (GBM) have also been classified according to their IDH status; however, the frequency of IDH gene mutations is only 5-10% in GBM. Other molecular markers such as MGMT methylation, pTERT mutations and EGFR amplification could be more important to predict clinical outcome. Therefore, the next revision of the classification of diffuse gliomas will propose a detailed classification based on additional markers. In the near future, treatments for diffuse gliomas will be chosen according to the molecular profile of each tumor.
Collapse
|
129
|
Avila S, Smani DA, Koay EJ. Radiation dose escalation for locally advanced unresectable intrahepatic and extrahepatic cholangiocarcinoma. Chin Clin Oncol 2020; 9:10. [PMID: 32008331 PMCID: PMC7277074 DOI: 10.21037/cco.2019.12.05] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 12/05/2019] [Indexed: 12/19/2022]
Abstract
Intrahepatic cholangiocarcinoma (IHCC) and extrahepatic cholangiocarcinoma (EHCC) remain challenging diseases to treat. The majority of patients present with advanced disease, and the tumors often cause life-threatening biliary obstruction and vascular compromise of the liver. Local control (LC) of these tumors has the potential to prolong life for patients. While escalated-dose radiation therapy (EDRT) has been demonstrated to be an effective, safe option to achieve LC of IHCC, data for EHCC suggest that EDRT with current techniques has limitations, often due to dose-limiting bowel structures in close proximity to the extrahepatic biliary system. Here we review the results of EDRT for IHCC and EHCC and point to potential directions to combine radiotherapy with novel agents. The molecular characterization of cholangiocarcinoma has particularly opened new avenues for clinical investigations of targeted therapies with EDRT and may point to ways to achieve both systemic and LC benefits for patients.
Collapse
Affiliation(s)
- Santiago Avila
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Danyal A Smani
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Eugene J Koay
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
130
|
van Lent DI, van Baarsen KM, Snijders TJ, Robe PAJT. Radiological differences between subtypes of WHO 2016 grade II-III gliomas: a systematic review and meta-analysis. Neurooncol Adv 2020; 2:vdaa044. [PMID: 32642698 PMCID: PMC7236393 DOI: 10.1093/noajnl/vdaa044] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Isocitrate dehydrogenase (IDH) mutation and 1p/19q-codeletion are oncogenetic alterations with a positive prognostic value for diffuse gliomas, especially grade II and III. Some studies have suggested differences in biological behavior as reflected by radiological characteristics. In this paper, the literature regarding radiological characteristics in grade II and III glioma subtypes was systematically evaluated and a meta-analysis was performed. METHODS Studies that addressed the relationship between conventional radiological characteristics and IDH mutations and/or 1p/19q-codeletions in newly diagnosed, grade II and III gliomas of adult patients were included. The "3-group analysis" compared radiological characteristics between the WHO 2016 glioma subtypes (IDH-mutant astrocytoma, IDH-wildtype astrocytoma, and oligodendroglioma), and the "2-group analysis" compared radiological characteristics between 1p/19q-codeleted gliomas and 1p/19q-intact gliomas. RESULTS Fourteen studies (3-group analysis: 670 cases, 2-group analysis: 1042 cases) were included. IDH-mutated astrocytomas showed more often sharp borders and less frequently contrast enhancement compared to IDH-wildtype astrocytomas. 1p/19q-codeleted gliomas had less frequently sharp borders, but showed a heterogeneous aspect, calcification, cysts, and edema more frequently. For the 1p/19q-codeleted gliomas, a sensitivity of 96% was found for heterogeneity and a specificity of 88.1% for calcification. CONCLUSIONS Significant differences in conventional radiological characteristics exist between the WHO 2016 glioma subtypes, which may reflect differences in biological behavior. However, the diagnostic value of the independent radiological characteristics is insufficient to reliably predict the molecular genetic subtype.
Collapse
Affiliation(s)
- Djuno I van Lent
- Department of Neurology and Neurosurgery, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Kirsten M van Baarsen
- Department of Neurology and Neurosurgery, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Neuro-Oncology, Princess Maxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Tom J Snijders
- Department of Neurology and Neurosurgery, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Pierre A J T Robe
- Department of Neurology and Neurosurgery, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
131
|
Biedermann J, Preussler M, Conde M, Peitzsch M, Richter S, Wiedemuth R, Abou-El-Ardat K, Krüger A, Meinhardt M, Schackert G, Leenders WP, Herold-Mende C, Niclou SP, Bjerkvig R, Eisenhofer G, Temme A, Seifert M, Kunz-Schughart LA, Schröck E, Klink B. Mutant IDH1 Differently Affects Redox State and Metabolism in Glial Cells of Normal and Tumor Origin. Cancers (Basel) 2019; 11:cancers11122028. [PMID: 31888244 PMCID: PMC6966450 DOI: 10.3390/cancers11122028] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/13/2019] [Accepted: 12/05/2019] [Indexed: 01/07/2023] Open
Abstract
IDH1R132H (isocitrate dehydrogenase 1) mutations play a key role in the development of low-grade gliomas. IDH1wt converts isocitrate to α-ketoglutarate while reducing nicotinamide adenine dinucleotide phosphate (NADP+), whereas IDH1R132H uses α-ketoglutarate and NADPH to generate the oncometabolite 2-hydroxyglutarate (2-HG). While the effects of 2-HG have been the subject of intense research, the 2-HG independent effects of IDH1R132H are still ambiguous. The present study demonstrates that IDH1R132H expression but not 2-HG alone leads to significantly decreased tricarboxylic acid (TCA) cycle metabolites, reduced proliferation, and enhanced sensitivity to irradiation in both glioblastoma cells and astrocytes in vitro. Glioblastoma cells, but not astrocytes, showed decreased NADPH and NAD+ levels upon IDH1R132H transduction. However, in astrocytes IDH1R132H led to elevated expression of the NAD-synthesizing enzyme nicotinamide phosphoribosyltransferase (NAMPT). These effects were not 2-HG mediated. This suggests that IDH1R132H cells utilize NAD+ to restore NADP pools, which only astrocytes could compensate via induction of NAMPT. We found that the expression of NAMPT is lower in patient-derived IDH1-mutant glioma cells and xenografts compared to IDH1-wildtype models. The Cancer Genome Atlas (TCGA) data analysis confirmed lower NAMPT expression in IDH1-mutant versus IDH1-wildtype gliomas. We show that the IDH1 mutation directly affects the energy homeostasis and redox state in a cell-type dependent manner. Targeting the impairments in metabolism and redox state might open up new avenues for treating IDH1-mutant gliomas.
Collapse
Affiliation(s)
- Julia Biedermann
- Institute for Clinical Genetics, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany; (J.B.); (M.P.); (K.A.-E.-A.); (A.K.); (E.S.)
| | - Matthias Preussler
- Institute for Clinical Genetics, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany; (J.B.); (M.P.); (K.A.-E.-A.); (A.K.); (E.S.)
| | - Marina Conde
- Department of Neurosurgery, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; (M.C.); (R.W.); (G.S.); (A.T.)
| | - Mirko Peitzsch
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; (M.P.); (S.R.); (G.E.)
| | - Susan Richter
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; (M.P.); (S.R.); (G.E.)
| | - Ralf Wiedemuth
- Department of Neurosurgery, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; (M.C.); (R.W.); (G.S.); (A.T.)
| | - Khalil Abou-El-Ardat
- Institute for Clinical Genetics, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany; (J.B.); (M.P.); (K.A.-E.-A.); (A.K.); (E.S.)
| | - Alexander Krüger
- Institute for Clinical Genetics, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany; (J.B.); (M.P.); (K.A.-E.-A.); (A.K.); (E.S.)
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, 01307 Dresden, Germany;
- National Center for Tumor Diseases (NCT), Partner site Dresden, 01307 Dresden, Germany;
- German Cancer Consortium (DKTK), Dresden, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Matthias Meinhardt
- Institute for Pathology, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany;
| | - Gabriele Schackert
- Department of Neurosurgery, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; (M.C.); (R.W.); (G.S.); (A.T.)
- National Center for Tumor Diseases (NCT), Partner site Dresden, 01307 Dresden, Germany;
- German Cancer Consortium (DKTK), Dresden, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - William P. Leenders
- Department of Biochemistry, Radboud University Medical Center, 6525 Nijmegen, The Netherlands;
| | - Christel Herold-Mende
- Experimental Neurosurgery, Department of Neurosurgery, University Hospital Heidelberg, 69120 Heidelberg, Germany;
| | - Simone P. Niclou
- Department of Oncology, NorLux Neuro-Oncology Laboratory, Luxembourg Institute of Health (LIH), L-1526 Luxembourg, Luxembourg; (S.P.N.); (R.B.)
- Department of Biomedicine, University of Bergen, 5020 Bergen, Norway
| | - Rolf Bjerkvig
- Department of Oncology, NorLux Neuro-Oncology Laboratory, Luxembourg Institute of Health (LIH), L-1526 Luxembourg, Luxembourg; (S.P.N.); (R.B.)
- Department of Biomedicine, University of Bergen, 5020 Bergen, Norway
| | - Graeme Eisenhofer
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; (M.P.); (S.R.); (G.E.)
- Department of Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Achim Temme
- Department of Neurosurgery, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; (M.C.); (R.W.); (G.S.); (A.T.)
- National Center for Tumor Diseases (NCT), Partner site Dresden, 01307 Dresden, Germany;
- German Cancer Consortium (DKTK), Dresden, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Michael Seifert
- National Center for Tumor Diseases (NCT), Partner site Dresden, 01307 Dresden, Germany;
- Institute for Medical Informatics and Biometry, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Leoni A. Kunz-Schughart
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, 01307 Dresden, Germany;
- National Center for Tumor Diseases (NCT), Partner site Dresden, 01307 Dresden, Germany;
| | - Evelin Schröck
- Institute for Clinical Genetics, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany; (J.B.); (M.P.); (K.A.-E.-A.); (A.K.); (E.S.)
- National Center for Tumor Diseases (NCT), Partner site Dresden, 01307 Dresden, Germany;
- German Cancer Consortium (DKTK), Dresden, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Barbara Klink
- Institute for Clinical Genetics, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany; (J.B.); (M.P.); (K.A.-E.-A.); (A.K.); (E.S.)
- National Center for Tumor Diseases (NCT), Partner site Dresden, 01307 Dresden, Germany;
- German Cancer Consortium (DKTK), Dresden, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- National Center of Genetics (NCG), Laboratoire national de santé (LNS), L-3555 Dudelange, Luxembourg
- Correspondence: ; Tel.: +352-28100-418; Fax: +352-28100-441
| |
Collapse
|
132
|
Yin N, Xie T, Zhang H, Chen J, Yu J, Liu F. IDH1-R132H mutation radiosensitizes U87MG glioma cells via epigenetic downregulation of TIGAR. Oncol Lett 2019; 19:1322-1330. [PMID: 31966064 PMCID: PMC6956398 DOI: 10.3892/ol.2019.11148] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 08/16/2019] [Indexed: 12/01/2022] Open
Abstract
Isocitrate dehydrogenase 1 (IDH1) is the most frequently mutated gene in World Health Organization grade II–III and secondary glioma. The majority of IDH1 mutation cases involve the substitution from arginine to histidine at codon 132 (IDH1-R132H). Although the oncogenic role of IDH1-R132H has been confirmed, patients with IDH1-R132H brain tumors exhibit a better response to radiotherapy compared with those with wild-type (WT) IDH1. In the present study, the potential mechanism of radiosensitization mediated by IDH1-R132H was investigated by overexpressing IDH1-R132H in U87MG glioma cells. The results demonstrated decreased clonogenic capacity of IDH1-R132H-expressing cells, as well as delayed repair of DNA double-strand breaks compared with IDH1-WT. Data from The Cancer Genome Atlas were analyzed, which demonstrated that the expression of TP53-induced glycolysis and apoptosis regulator (TIGAR) was lower in patients with glioma harboring IDH1 mutations compared with that in patients with IDH1-WT. TIGAR-knockdown increases the radiosensitivity of glioma cells; in U87MG cells, IDH1-R132H suppressed TIGAR expression. Chromatin immunoprecipitation assays revealed increased levels of repressive H3K9me3 markers at the TIGAR promoter in IDH1-R132H compared with IDH1-WT. These data indicated that IDH1-R132H may overcome radioresistance in glioma cells through epigenetic suppression of TIGAR expression. However, these favorable effects were not observed in U87MG glioma stem-like cells. The results of the present study provide an improved understanding of the functionality of IDH1 mutations in glioma cells, which may improve the therapeutic efficacy of radiotherapy.
Collapse
Affiliation(s)
- Narui Yin
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, Jiangsu 215123, P.R. China.,Department of Radiobiology, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection, Suzhou, Jiangsu 215123, P.R. China.,Department of Radiobiology, Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection, Suzhou, Jiangsu 215123, P.R. China
| | - Ting Xie
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, Jiangsu 215123, P.R. China.,Department of Radiobiology, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection, Suzhou, Jiangsu 215123, P.R. China.,Department of Radiobiology, Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection, Suzhou, Jiangsu 215123, P.R. China
| | - Haowen Zhang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, Jiangsu 215123, P.R. China.,Department of Radiobiology, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection, Suzhou, Jiangsu 215123, P.R. China.,Department of Radiobiology, Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection, Suzhou, Jiangsu 215123, P.R. China
| | - Jian Chen
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, Jiangsu 215123, P.R. China.,Department of Radiobiology, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection, Suzhou, Jiangsu 215123, P.R. China.,Department of Radiobiology, Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection, Suzhou, Jiangsu 215123, P.R. China
| | - Jiahua Yu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, Jiangsu 215123, P.R. China.,Department of Radiobiology, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection, Suzhou, Jiangsu 215123, P.R. China.,Department of Radiobiology, Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection, Suzhou, Jiangsu 215123, P.R. China
| | - Fenju Liu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, Jiangsu 215123, P.R. China.,Department of Radiobiology, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection, Suzhou, Jiangsu 215123, P.R. China.,Department of Radiobiology, Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection, Suzhou, Jiangsu 215123, P.R. China
| |
Collapse
|
133
|
18F-Fluorocholine PET/CT in the Prediction of Molecular Subtypes and Prognosis for Gliomas. Clin Nucl Med 2019; 44:e548-e558. [PMID: 31306196 DOI: 10.1097/rlu.0000000000002715] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
AIM To study the association of metabolic features of F-fluorocholine in gliomas with histopathological and molecular parameters, progression-free survival (PFS) and overall survival (OS). METHODS Prospective multicenter and nonrandomized study (Functional and Metabolic Glioma Analysis). Patients underwent a basal F-fluorocholine PET/CT and were included after histological confirmation of glioma. Histological and molecular profile was assessed: grade, Ki-67, isocitrate dehydrogenase status and 1p/19q codeletion. Patients underwent standard treatment after surgery or biopsy, depending on their clinical situation. Overall survival and PFS were obtained after follow-up. After tumor segmentation of PET images, SUV and volume-based variables, sphericity, surface, coefficient of variation, and multilesionality were obtained. Relations of metabolic variables with histological, molecular profile and prognosis were evaluated using Pearson χ and t test. Receiver operator caracteristic curves were used to obtain the cutoff of PET variables. Survival analysis was performed using Kaplan-Meier and Cox regression analysis. RESULTS Forty-five patients were assessed; 38 were diagnosed as having high-grade gliomas. Significant differences of SUV-based variables with isocitrate dehydrogenase status, tumor grade, and Ki-67 were found. Tumor grade, Ki-67, SUVmax, and SUVmean were related to progression. Kaplan-Meier analysis revealed significant associations of SUVmax, SUVmean, and multilesionaly with OS and PFS. SUVmean, sphericity, and multilesionality were independent predictors of OS and PFS in Cox regression analysis. CONCLUSIONS Metabolic information obtained from F-fluorocholine PET of patients with glioma may be useful in the prediction of tumor biology and patient prognosis.
Collapse
|
134
|
McDuff SGR, Dietrich J, Atkins KM, Oh KS, Loeffler JS, Shih HA. Radiation and chemotherapy for high-risk lower grade gliomas: Choosing between temozolomide and PCV. Cancer Med 2019; 9:3-11. [PMID: 31701682 PMCID: PMC6943166 DOI: 10.1002/cam4.2686] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 10/06/2019] [Accepted: 10/07/2019] [Indexed: 11/07/2022] Open
Abstract
Purpose The majority of patients with high‐risk lower grade gliomas (LGG) are treated with single‐agent temozolomide (TMZ) and radiotherapy despite three randomized trials showing a striking overall survival benefit with adjuvant procarbazine, lomustine, and vincristine (PCV) chemotherapy and radiotherapy. This article aims to evaluate the evidence and rationale for the widespread use of TMZ instead of PCV for high‐risk LGG. Methods and Materials We conducted a literature search utilizing PubMed for articles investigating the combination of radiotherapy and chemotherapy for high‐risk LGG and analyzed the results of these studies. Results For patients with IDH mutant 1p/19q codeleted LGG tumors, there is limited evidence to support the use of TMZ. In medically fit patients with codeleted disease, existing data demonstrate a large survival benefit for PCV as compared to adjuvant radiation therapy alone. For patients with non‐1p/19q codeleted LGG, early data from the CATNON study supports inclusion of adjuvant TMZ for 12 months. Subset analyses of the RTOG 9402 and EORTC 26951 do not demonstrate a survival benefit for adjuvant PCV for non‐1p/19q codeleted gliomas, however secondary analyses of RTOG 9802 and RTOG 9402 demonstrated survival benefit in any IDH mutant lower grade gliomas, regardless of 1p/19q codeletion status. Conclusions At present, we conclude that current evidence does not support the widespread use of TMZ over PCV for all patients with high‐risk LGG, and we instead recommend tailoring chemotherapy recommendation based on IDH status, favoring adjuvant PCV for patients with any IDH mutant tumors, both those that harbor 1p/19q codeletion and those non‐1p/19q codeleted. Given the critical role radiation plays in the treatment of LGG, radiation oncologists should be actively involved in discussions regarding chemotherapy choice in order to optimize treatment for their patients.
Collapse
Affiliation(s)
- Susan G R McDuff
- Department of Radiation Oncology, Duke Cancer Center, Medicine Circle, Durham, NC, USA
| | - Jorg Dietrich
- Department of Neurology, Division of Neuro-Oncology, Massachusetts General Hospital, Boston, MA, USA
| | - Katelyn M Atkins
- Department of Radiation Oncology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Kevin S Oh
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA, USA
| | - Jay S Loeffler
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA, USA
| | - Helen A Shih
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
135
|
Hwang K, Kim TM, Park CK, Chang JH, Jung TY, Kim JH, Nam DH, Kim SH, Yoo H, Hong YK, Kim EY, Lee DE, Joo J, Kim YJ, Choe G, Choi BS, Kang SG, Kim JH, Kim CY. Concurrent and Adjuvant Temozolomide for Newly Diagnosed Grade III Gliomas without 1p/19q Co-deletion: A Randomized, Open-Label, Phase 2 Study (KNOG-1101 Study). Cancer Res Treat 2019; 52:505-515. [PMID: 31671938 PMCID: PMC7176949 DOI: 10.4143/crt.2019.421] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Accepted: 10/26/2019] [Indexed: 11/22/2022] Open
Abstract
Purpose We investigated the efficacy of temozolomide during and after radiotherapy in Korean adults with anaplastic gliomas without 1p/19q co-deletion. Materials and Methods This was a randomized, open-label, phase 2 study and notably the first multicenter trial for Korean grade III glioma patients. Eligible patients were aged 18 years or older and had newly diagnosed non-co-deleted anaplastic glioma with an Eastern Cooperative Oncology Group performance status of 0-2. Patients were randomized 1:1 to receive radiotherapy alone (60 Gy in 30 fractions of 2 Gy) (control group, n=44) or to receive radiotherapy with concurrent temozolomide (75 mg/m2/day) followed by adjuvant temozolomide (150-200 mg/m2/day for 5 days during six 28-day cycles) (treatment group, n=40). The primary end-point was 2-year progression-free survival (PFS). Seventy patients (83.3%) were available for the analysis of the isocitrate dehydrogenase 1 gene (IDH1) mutation status. Results The two-year PFS was 42.2% in the treatment group and 37.2% in the control group. Overall survival (OS) did not reach to significant difference between the groups. In multivariable analysis, age was a significant risk factor for PFS (hazard ratio [HR], 2.08; 95% confidence interval [CI], 1.04 to 4.16). The IDH1 mutation was the only significant prognostic factor for PFS (HR, 0.28; 95% CI, 0.13 to 0.59) and OS (HR, 0.19; 95% CI, 0.07 to 0.50). Adverse events over grade 3 were seen in 16 patients (40.0%) in the treatment group and were reversible. Conclusion Concurrent and adjuvant temozolomide in Korean adults with newly diagnosed non-co- deleted anaplastic gliomas showed improved 2-year PFS. The survival benefit of this regimen needs further analysis with long-term follow-up at least more than 10 years.
Collapse
Affiliation(s)
- Kihwan Hwang
- Department of Neurosurgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Tae Min Kim
- Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Chul-Kee Park
- Department of Neurosurgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Jong Hee Chang
- Department of Neurosurgery, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Tae-Young Jung
- Department of Neurosurgery, Chonnam National University Hwasun Hospital, Hwasun, Korea
| | - Jin Hee Kim
- Department of Radiation Oncology, Keimyung University Dongsan Medical Center, Keimyung University School of Medicine, Daegu, Korea
| | - Do-Hyun Nam
- Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Se-Hyuk Kim
- Department of Neurosurgery, Ajou University Hospital, Ajou University School of Medicine, Suwon, Korea
| | - Heon Yoo
- Department of Neuro-Oncology Clinic, Center for Specific Organs Cancer, National Cancer Center Hospital, National Cancer Center, Goyang, Korea
| | - Yong-Kil Hong
- Department of Neurosurgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Eun-Young Kim
- Department of Neurosurgery, Inha University Hospital, Inha University School of Medicine, Incheon, Korea
| | - Dong-Eun Lee
- Division of Cancer Epidemiology and Management, Research Institute, National Cancer Center, Goyang, Korea
| | - Jungnam Joo
- Division of Cancer Epidemiology and Management, Research Institute, National Cancer Center, Goyang, Korea
| | - Yu Jung Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Gheeyoung Choe
- Department of Pathology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Byung Se Choi
- Department of Radiology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Seok-Gu Kang
- Department of Neurosurgery, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Jeong Hoon Kim
- Department of Neurological Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Chae-Yong Kim
- Department of Neurosurgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| |
Collapse
|
136
|
Cagney DN, Sul J, Huang RY, Ligon KL, Wen PY, Alexander BM. The FDA NIH Biomarkers, EndpointS, and other Tools (BEST) resource in neuro-oncology. Neuro Oncol 2019; 20:1162-1172. [PMID: 29294069 DOI: 10.1093/neuonc/nox242] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
In early 2016, the FDA and the National Institutes of Health (NIH) published the first version of the glossary included in the Biomarkers, EndpointS, and other Tools (BEST) resource.1 The BEST glossary was constructed to harmonize and clarify terms used in translational science and medical product development and to provide a common language used for communication by those agencies. It is considered a "living" document that will be updated in the future. This review will discuss the main biomarker and clinical outcome categories contained in the BEST glossary as they apply to neuro-oncology, as well as the overlapping and hierarchical relationships among them.
Collapse
Affiliation(s)
- Daniel N Cagney
- Department of Radiation Oncology, Dana-Farber/Brigham and Women's Cancer Center, Harvard Medical School, Boston, Massachusetts
| | - Joohee Sul
- Office of Hematology and Oncology Products, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland
| | - Raymond Y Huang
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Keith L Ligon
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Patrick Y Wen
- Center For Neuro-Oncology, Dana-Farber/Brigham and Women's Cancer Center, Harvard Medical School, Boston, Massachusetts
| | - Brian M Alexander
- Department of Radiation Oncology, Dana-Farber/Brigham and Women's Cancer Center, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
137
|
Cerebrospinal fluid VEGF levels and angiogenic capacity as potential prognostic markers in patients with gliomas: a pilot study. J Neurooncol 2019; 145:233-239. [PMID: 31624989 DOI: 10.1007/s11060-019-03314-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 10/03/2019] [Indexed: 01/17/2023]
Abstract
INTRODUCTION Gliomas are tumors of the central nervous system. Despite new classifications, they are still divided in low and high-grade gliomas, being the latter of greater malignancy. The degree of malignancy is directly related with the angiogenic activity in tumoral tissues. We measured VEGF concentrations and angiogenic capacity in cerebrospinal fluid (CSF) from patients with high and low-grade gliomas. The purpose of this study was to find a biomarker that contributes in the differential diagnosis and prognosis of gliomas. METHODS CSF was obtained from 19 individuals: 8 with low-grade gliomas, 6 with high-grade gliomas and 5 controls. VEGF concentration in CSF was measured by ELISA and the angiogenic capacity was measured by chick chorioallantoic membrane (CAM) test. RESULTS The VEGF concentration was higher in patients with high-grade gliomas, compared to patients with low-grade gliomas and controls (2860 pg/mL ± 975 vs. 182.6 ± 37.1 and 47.4 ± 0.4, respectively). On the other hand, CSF from patients with high-grade gliomas generated a higher microvascular density (MVD) than patients with low-grade gliomas and controls (13.23 ± 0.6 vessels/9000μm2 vs. 9.3 ± 0.3 and 7.92 ± 0.2, respectively). Interestingly, there was not statistical differences in both VEGF levels and angiogenic capacity in patients with low-grade gliomas and controls. CONCLUSION Together VEGF levels and angiogenic capacity in CSF can be used as a biological marker of gliomas malignancy.
Collapse
|
138
|
The oncometabolite 2-hydroxyglutarate produced by mutant IDH1 sensitizes cells to ferroptosis. Cell Death Dis 2019; 10:755. [PMID: 31591388 PMCID: PMC6779886 DOI: 10.1038/s41419-019-1984-4] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 08/30/2019] [Accepted: 09/12/2019] [Indexed: 01/20/2023]
Abstract
Ferroptosis is a non-apoptotic form of cell death characterized by the iron-dependent lipid peroxidation and is implicated in several human pathologies, such as tissue ischemia, neurodegeneration, and cancer. Ferroptosis appears to be high cell-context dependent and the regulation of ferroptosis by physiological or pathological conditions are unclear. Here, we report that tumor-derived IDH1 mutation sensitizes cells to ferroptosis. Deletion of the mutant IDH1 allele in IDH1 heterozygous tumor cells or pharmacological inhibition of mutant IDH1 to produce the oncometabolite D-2-hydroxyglutarate (D-2-HG) confers resistance to erastin-induced ferroptosis. Conversely, ectopic expression of mutant IDH1 or treatment of cells with cell-permeable D-2-HG promotes the accumulation of lipid reactive oxygen species (ROS) and subsequently ferroptosis. Mechanistically, mutant IDH1 reduces the protein level of the glutathione peroxidase 4 (GPX4), a key enzyme in removing lipid ROS and ferroptosis, and promotes depletion of glutathione. Our results uncover a new role of mutant IDH1 and 2-HG in ferroptosis.
Collapse
|
139
|
Philip B, Yu DX, Silvis MR, Shin CH, Robinson JP, Robinson GL, Welker AE, Angel SN, Tripp SR, Sonnen JA, VanBrocklin MW, Gibbons RJ, Looper RE, Colman H, Holmen SL. Mutant IDH1 Promotes Glioma Formation In Vivo. Cell Rep 2019; 23:1553-1564. [PMID: 29719265 PMCID: PMC6032974 DOI: 10.1016/j.celrep.2018.03.133] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 02/23/2018] [Accepted: 03/29/2018] [Indexed: 02/08/2023] Open
Abstract
Isocitrate dehydrogenase 1 (IDH1) is the most commonly mutated gene in grade II–III glioma and secondary glioblastoma (GBM). A causal role for IDH1R132H in gliomagenesis has been proposed, but functional validation in vivo has not been demonstrated. In this study, we assessed the role of IDH1R132H in glioma development in the context of clinically relevant cooperating genetic alterations in vitro and in vivo. Immortal astrocytes expressing IDH1R132H exhibited elevated (R)-2-hydroxyglutarate levels, reduced NADPH, increased proliferation, and anchorage-independent growth. Although not sufficient on its own, IDH1R132H cooperated with PDGFA and loss of Cdkn2a, Atrx, and Pten to promote glioma development in vivo. These tumors resembled pro-neural human mutant IDH1 GBM genetically, histologically, and functionally. Our findings support the hypothesis that IDH1R132H promotes glioma development. This model enhances our understanding of the biology of IDH1R132H-driven gliomas and facilitates testing of therapeutic strategies designed to combat this deadly disease.
Collapse
Affiliation(s)
- Beatrice Philip
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, UT 84112, USA; Department of Surgery, University of Utah Health Sciences Center, Salt Lake City, UT 84112, USA
| | - Diana X Yu
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, UT 84112, USA; Department of Surgery, University of Utah Health Sciences Center, Salt Lake City, UT 84112, USA
| | - Mark R Silvis
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, UT 84112, USA; Department of Surgery, University of Utah Health Sciences Center, Salt Lake City, UT 84112, USA
| | - Clifford H Shin
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, UT 84112, USA; Department of Oncological Sciences, University of Utah Health Sciences Center, Salt Lake City, UT 84112, USA
| | - James P Robinson
- Hormel Institute, University of Minnesota, 801 16(th) Avenue NE, Austin, MN 55912, USA
| | - Gemma L Robinson
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, UT 84112, USA; Department of Surgery, University of Utah Health Sciences Center, Salt Lake City, UT 84112, USA
| | - Adam E Welker
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, UT 84112, USA
| | - Stephanie N Angel
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, UT 84112, USA; Department of Surgery, University of Utah Health Sciences Center, Salt Lake City, UT 84112, USA
| | - Sheryl R Tripp
- ARUP Institute for Clinical and Experimental Pathology, Salt Lake City, UT 84108, USA
| | - Joshua A Sonnen
- ARUP Institute for Clinical and Experimental Pathology, Salt Lake City, UT 84108, USA; Department of Pathology, University of Utah Health Sciences Center, Salt Lake City, UT 84112, USA
| | - Matthew W VanBrocklin
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, UT 84112, USA; Department of Surgery, University of Utah Health Sciences Center, Salt Lake City, UT 84112, USA; Department of Oncological Sciences, University of Utah Health Sciences Center, Salt Lake City, UT 84112, USA
| | - Richard J Gibbons
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Ryan E Looper
- Department of Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Howard Colman
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, UT 84112, USA; Department of Neurosurgery, University of Utah Health Sciences Center, Salt Lake City, UT 84112, USA
| | - Sheri L Holmen
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, UT 84112, USA; Department of Surgery, University of Utah Health Sciences Center, Salt Lake City, UT 84112, USA; Department of Oncological Sciences, University of Utah Health Sciences Center, Salt Lake City, UT 84112, USA.
| |
Collapse
|
140
|
Choi S, Yu Y, Grimmer MR, Wahl M, Chang SM, Costello JF. Temozolomide-associated hypermutation in gliomas. Neuro Oncol 2019; 20:1300-1309. [PMID: 29452419 DOI: 10.1093/neuonc/noy016] [Citation(s) in RCA: 137] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Low-grade gliomas cause considerable morbidity and most will recur after initial therapy. At recurrence, low-grade gliomas can undergo transformation to high-grade gliomas (grade III or grade IV), which are associated with worse prognosis. Temozolomide (TMZ) provides survival benefit in patients with glioblastomas, but its value in patients with low-grade gliomas is less clear. A subset of TMZ-treated, isocitrate dehydrogenase‒mutant, low-grade astrocytomas recur as more malignant tumors with thousands of de novo, coding mutations bearing a signature of TMZ-induced hypermutation. Preliminary studies raise the hypothesis that TMZ-induced hypermutation may contribute to malignant transformation, although with highly variable latency. On the other hand, hypermutated gliomas have radically altered genomes that present new opportunities for therapeutic intervention. In light of these findings and the immunotherapy clinical trials they inspired, how do patients and providers approach the risks and benefits of TMZ therapy? This review discusses what is known about the mechanisms and consequences of TMZ-induced hypermutation and outstanding questions regarding its clinical significance.
Collapse
Affiliation(s)
- Serah Choi
- Department of Radiation Oncology, University of California San Francisco, San Francisco, California
| | - Yao Yu
- Department of Radiation Oncology, University of California San Francisco, San Francisco, California
| | - Matthew R Grimmer
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California
| | - Michael Wahl
- Samaritan Pastega Regional Cancer Center, Corvallis, Oregon
| | - Susan M Chang
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California
| | - Joseph F Costello
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California
| |
Collapse
|
141
|
Berghoff A, van den Bent M. How I treat anaplastic glioma without 1p/19q codeletion. ESMO Open 2019; 4:e000534. [PMID: 31555489 PMCID: PMC6735673 DOI: 10.1136/esmoopen-2019-000534] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/20/2019] [Accepted: 06/22/2019] [Indexed: 11/04/2022] Open
Abstract
Anaplastic astrocytoma without 1p/19q codeletion is a rare primary central nervous system tumour occurring primarily in middle-aged adults and associated with a median survival of 5-10 years. The major corner stone of treatment is maximal safe neurosurgical resection, followed by radiotherapy and chemotherapy. Several clinical trials addressed the optimal adjuvant treatment; however, interpretation has been challenged by the recent molecular marker-based reclassification of tumour. The interim study of the CATNON trial strongly suggests the addition of 12 adjuvant cycles of temozolomide in addition to radiotherapy after maximal safe resection in patients with anaplastic astrocytoma without 1p/19q codeletion. Based on more recently presented data from the second interim analysis of the CATNON trial and from the molecular analysis, benefit from temozolomide during and after radiotherapy is limited to patients with isocitrate dehydrogenase-mutated anaplastic astrocytoma. Given the small patient number in the single subgroups and the so far missing neurocognitive and quality of life data, more mature analyses needs to be awaited to draw final conclusions on the application of concurrent temozolomide treatment for the daily routine in patients who already are scheduled for adjuvant temozolomide. Further molecular analysis is ongoing to define personalised treatment approaches in patients with anaplastic astrocytoma.
Collapse
Affiliation(s)
| | - Martin van den Bent
- Brain Tumor Center, Erasmus MC Cancer Institute, Rotterdam, The Netherlands.
| |
Collapse
|
142
|
van der Voort SR, Incekara F, Wijnenga MM, Kapas G, Gardeniers M, Schouten JW, Starmans MP, Nandoe Tewarie R, Lycklama GJ, French PJ, Dubbink HJ, van den Bent MJ, Vincent AJ, Niessen WJ, Klein S, Smits M. Predicting the 1p/19q Codeletion Status of Presumed Low-Grade Glioma with an Externally Validated Machine Learning Algorithm. Clin Cancer Res 2019; 25:7455-7462. [DOI: 10.1158/1078-0432.ccr-19-1127] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 06/12/2019] [Accepted: 09/06/2019] [Indexed: 11/16/2022]
|
143
|
Affiliation(s)
- Matthias Holdhoff
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland
| |
Collapse
|
144
|
Li J, Xue Y, Wenger A, Sun Y, Wang Z, Zhang C, Zhang Y, Fekete B, Rydenhag B, Jakola AS, Jiang T, Carén H, Fan X. Individual Assignment of Adult Diffuse Gliomas into the EM/PM Molecular Subtypes Using a TaqMan Low-Density Array. Clin Cancer Res 2019; 25:7068-7077. [PMID: 31481507 DOI: 10.1158/1078-0432.ccr-19-0299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 06/24/2019] [Accepted: 08/23/2019] [Indexed: 11/16/2022]
Abstract
PURPOSE We aimed to develop a diagnostic platform to capture the transcriptomic resemblance of individual adult diffuse gliomas of WHO grades II to IV to neural development and the genomic signature associated with glioma progression. EXPERIMENTAL DESIGN Based on the EM/PM classification scheme, we designed a RT-PCR-based TaqMan low-density array (TLDA) containing 44 classifier and 4 reference genes. Samples of a training dataset (GSE48865), characterized by RNA-sequencing, were utilized to optimize the TLDA design and to develop a support vector machine (SVM)-based prediction model. Complemented with Sanger sequencing for IDH1/2, and low coverage whole genome sequencing (WGS), the TLDA and SVM prediction model were tested in a validation (31 gliomas) and a test (121 gliomas) dataset. RESULTS Independent of morphologically defined subtypes and grades, gliomas can be individually assigned into the EM and PM glioma subtypes with the respective areas under ROC curves at 0.86 and 0.85 in the validation dataset. The EM gliomas showed a medium overall survival (OS) of 15.6 months, whereas the medium OS for PM gliomas was not reached (HR = 3.55; 95% confidence interval, 1.96-6.45). The EM and PM gliomas showed distinct patterns of genomic alterations, with IDH mutation and 1p19q codeletion in the PM gliomas and gain of chromosome 7/loss of chromosome 10 in the EM gliomas. Extensive chromosomal abnormalities marked the progression of PM gliomas. CONCLUSIONS The integration of EM/PM subtyping, IDH sequencing, and low coverage WGS may improve the risk stratification and selection of treatment regimens for patients with glioma.
Collapse
Affiliation(s)
- Jiuyi Li
- Beijing Key Laboratory of Gene Resource and Molecular Development, Laboratory of Neuroscience and Brain Development, Beijing Normal University, Beijing, China
| | - Yang Xue
- Beijing Key Laboratory of Gene Resource and Molecular Development, Laboratory of Neuroscience and Brain Development, Beijing Normal University, Beijing, China
| | - Anna Wenger
- Sahlgrenska Cancer Center, Department of Pathology and Genetics, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Yingyu Sun
- Beijing Key Laboratory of Gene Resource and Molecular Development, Laboratory of Neuroscience and Brain Development, Beijing Normal University, Beijing, China
| | - Zheng Wang
- Department of Neurosurgery, Sahlgrenska University Hospital, Gothenburg, Sweden.,Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Chuanbao Zhang
- Department of Neurosurgery, Sahlgrenska University Hospital, Gothenburg, Sweden.,Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yunqiu Zhang
- Beijing Key Laboratory of Gene Resource and Molecular Development, Laboratory of Neuroscience and Brain Development, Beijing Normal University, Beijing, China
| | - Boglarka Fekete
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Bertil Rydenhag
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Asgeir Store Jakola
- Department of Neurosurgery, Sahlgrenska University Hospital, Gothenburg, Sweden.,Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Tao Jiang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China. .,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Chinese Glioma Cooperative Group (CGCG)
| | - Helena Carén
- Sahlgrenska Cancer Center, Department of Pathology and Genetics, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| | - Xiaolong Fan
- Beijing Key Laboratory of Gene Resource and Molecular Development, Laboratory of Neuroscience and Brain Development, Beijing Normal University, Beijing, China. .,Chinese Glioma Cooperative Group (CGCG)
| |
Collapse
|
145
|
Wang KY, Chen MM, Malayil Lincoln CM. Adult Primary Brain Neoplasm, Including 2016 World Health Organization Classification. Radiol Clin North Am 2019; 57:1147-1162. [PMID: 31582041 DOI: 10.1016/j.rcl.2019.07.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In 2016, the World Health Organization (WHO) central nervous system (CNS) classification scheme incorporated molecular parameters in addition to traditional microscopic features for the first time. Molecular markers add a level of objectivity that was previously missing for tumor categories heavily dependent on microscopic observation for pathologic diagnosis. This article provides a brief discussion of the major 2016 updates to the WHO CNS classification scheme and reviews typical MR imaging findings of adult primary CNS neoplasms, including diffuse infiltrating gliomas, ependymal tumors, neuronal/glioneuronal tumors, pineal gland tumors, meningiomas, nerve sheath tumors, solitary fibrous tumors, and lymphoma.
Collapse
Affiliation(s)
- Kevin Yuqi Wang
- Department of Radiology, Baylor College of Medicine, One Baylor Plaza, MS360, Houston, TX 77030, USA
| | - Melissa M Chen
- Department of Diagnostic Radiology, Division of Diagnostic Imaging, The University of Texas MD Anderson Cancer Center, 1400 Pressler Street, Unit 1482, Houston, TX 77030, USA
| | | |
Collapse
|
146
|
Fomchenko EI, Erson-Omay EZ, Zhao A, Bindra RS, Huttner A, Fulbright RK, Moliterno J. DNMT3A co-mutation in an IDH1-mutant glioblastoma. Cold Spring Harb Mol Case Stud 2019; 5:mcs.a004119. [PMID: 31371348 PMCID: PMC6672028 DOI: 10.1101/mcs.a004119] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 05/07/2019] [Indexed: 11/24/2022] Open
Abstract
Glioblastomas are highly aggressive, infiltrative, and genetically heterogeneous primary brain tumors that arise de novo or secondarily progress over time from low-grade tumors. Along with well-established signature mutational profiles, emerging research suggests that the epigenetic tumor landscape plays an important role in gliomagenesis via transcriptional regulation, DNA methylation, and histone modifications. The pursuit of targeted therapeutic approaches, based not only on expression profiles but also on somatic mutations, is fundamental to the effort of improving survival in patients with glioblastoma. Here, we describe a missense DNMT3A p.P904S mutation in an IDH1-mutant glioblastoma. Although never previously reported in gliomas, this mutation is predicted to be pathogenic and has been reported in several other malignancies. Our report suggests that elucidating epigenetic control is important to understanding glioblastoma biology and may likely unveil targets potentially important to glioblastoma treatment in an effort to improve survival.
Collapse
Affiliation(s)
- Elena I Fomchenko
- Department of Neurosurgery, Yale School of Medicine, New Haven, Connecticut 06520, USA
| | - E Zeynep Erson-Omay
- Department of Neurosurgery, Yale School of Medicine, New Haven, Connecticut 06520, USA
| | - Amy Zhao
- Department of Neurosurgery, Yale School of Medicine, New Haven, Connecticut 06520, USA
| | - Ranjit S Bindra
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, Connecticut 06520, USA
| | - Anita Huttner
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut 06520, USA
| | - Robert K Fulbright
- Department of Radiology, Yale School of Medicine, New Haven, Connecticut 06520, USA
| | - Jennifer Moliterno
- Department of Neurosurgery, Yale School of Medicine, New Haven, Connecticut 06520, USA
| |
Collapse
|
147
|
Franceschi E, Mura A, Lamberti G, De Biase D, Tosoni A, Di Battista M, Argento C, Visani M, Paccapelo A, Bartolini S, Brandes AA. Concordance between RTOG and EORTC prognostic criteria in low-grade gliomas. Future Oncol 2019; 15:2595-2601. [PMID: 31339049 DOI: 10.2217/fon-2019-0093] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 06/05/2019] [Indexed: 02/08/2023] Open
Abstract
Aim: European Organization for Research and Treatment of Cancer (EORTC) and the Radiation Therapy Oncology Group (RTOG) criteria are used to choose treatment in low-grade gliomas. However, no data exist on their concordance. Methods: Low-grade glioma patients treated at our institution from 1998 to 2015 and assessable for both RTOG and EORTC criteria were included to analyze their concordance. Surgery extension, postsurgical treatments, molecular characteristics (IDH mutation, MGMT methylation and 1p/19q codeletion) were recorded. Results: We included 99 patients. The concordance was low (50.5%; K = 0.127; p = 0.021) but for two subgroups: EORTC high-risk patients were also RTOG high-risk patients (concordance: 97.5%) and RTOG low-risk patients were also EORTC low-risk patients (concordance: 90.9%). Conclusion: The concordance between RTOG and EORTC criteria is low. Thus, clinical trials adopting different risk criteria are not comparable.
Collapse
Affiliation(s)
- Enrico Franceschi
- Department of Medical Oncology, Azienda USL/IRCCS Institute of Neurological Sciences, Bologna, Italy
| | - Antonella Mura
- Department of Medical Oncology, Azienda USL/IRCCS Institute of Neurological Sciences, Bologna, Italy
| | - Giuseppe Lamberti
- Department of Medical Oncology, Azienda USL/IRCCS Institute of Neurological Sciences, Bologna, Italy
| | - Dario De Biase
- Department of Pharmacy & Biotechnology - Molecular Diagnostic Unit, Azienda USL di Bologna, University of Bologna, Bologna, Italy
| | - Alicia Tosoni
- Department of Medical Oncology, Azienda USL/IRCCS Institute of Neurological Sciences, Bologna, Italy
| | - Monica Di Battista
- Department of Medical Oncology, Azienda USL/IRCCS Institute of Neurological Sciences, Bologna, Italy
| | - Chiara Argento
- Department of Medical Oncology, Azienda USL/IRCCS Institute of Neurological Sciences, Bologna, Italy
| | - Michela Visani
- Department of Experimental, Diagnostic & Specialty Medicine - Molecular Diagnostic Unit, Azienda USL di Bologna, University of Bologna, Bologna, Italy
| | - Alexandro Paccapelo
- Department of Medical Oncology, Azienda USL/IRCCS Institute of Neurological Sciences, Bologna, Italy
| | - Stefania Bartolini
- Department of Medical Oncology, Azienda USL/IRCCS Institute of Neurological Sciences, Bologna, Italy
| | - Alba Ariela Brandes
- Department of Medical Oncology, Azienda USL/IRCCS Institute of Neurological Sciences, Bologna, Italy
| |
Collapse
|
148
|
Penas-Prado M, de Groot J. CATNON interim results: another triumph of upfront chemotherapy in glioma. Neuro Oncol 2019; 19:1287-1288. [PMID: 28922864 DOI: 10.1093/neuonc/nox124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Marta Penas-Prado
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - John de Groot
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
149
|
Osswald M, Jung E, Wick W, Winkler F. Tunneling nanotube‐like structures in brain tumors. Cancer Rep (Hoboken) 2019. [DOI: 10.1002/cnr2.1181] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- Matthias Osswald
- Neurology Clinic and National Center for Tumor DiseasesUniversity Hospital Heidelberg Heidelberg Germany
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ) Heidelberg Germany
| | - Erik Jung
- Neurology Clinic and National Center for Tumor DiseasesUniversity Hospital Heidelberg Heidelberg Germany
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ) Heidelberg Germany
| | - Wolfgang Wick
- Neurology Clinic and National Center for Tumor DiseasesUniversity Hospital Heidelberg Heidelberg Germany
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ) Heidelberg Germany
| | - Frank Winkler
- Neurology Clinic and National Center for Tumor DiseasesUniversity Hospital Heidelberg Heidelberg Germany
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ) Heidelberg Germany
| |
Collapse
|
150
|
Back M, Jayamanne D, Brazier D, Newey A, Bailey D, Schembri G, Hsiao E, Khasraw M, Wong M, Kastelan M, Brown C, Wheeler H. Pattern of failure in anaplastic glioma patients with an IDH1/2 mutation. Strahlenther Onkol 2019; 196:31-39. [PMID: 31028406 DOI: 10.1007/s00066-019-01467-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 03/29/2019] [Indexed: 12/27/2022]
Abstract
PURPOSE The current study aimed to assess patterns of failure (PoF) in anaplastic glioma (AG) patients managed with intensity-modulated radiation therapy (IMRT) and their relationship to molecular subtype. METHODS The outcomes of AG patients managed between 2008 and 2014 and entered into a prospective database were assessed, including PoF. AG was initially defined using the WHO 2007 classification, but for analysis, patients were subsequently recategorised based on WHO 2016 as anaplastic oligodendroglioma (AOD), astrocytoma isocitrate dehydrogenase (IDH) mutant (AAmut) or astrocytoma IDH wildtype (AAwt). Management involved IMRT and temozolomide (TMZ), including from 2011 patients with an IDH mutation (IDHmut) planned with 18F-fluoroethyltyrosine (FET) and 18F-fluorodeoxyglucose (FDG) positron-emission tomography (PET). PoF was local, marginal or distant in relation to the IMRT volume. Relapse-free survival (RFS) was calculated from the start of IMRT. RESULTS A total of 156 patients were assessed, with median follow-up of 5.1 years. Of these patients, 75% were IDHmut, 44% were managed at first or later relapse and 73% received TMZ. Relapse occurred in 68 patients, with 6‑year RFS of 75.0, 48.8 and 2.5% for AOD, AAmut and AAwt, respectively (p < 0.001). There was a component of local relapse in 63%, of marginal relapse in 19% and of distant relapse in 37% of relapses. Isolated local, marginal and distant relapse was evident in 51, 9 and 22%, respectively. A distant relapse pattern was more frequent in IDHmut compared to IDHwt patients (26% vs. 45%, p = 0.005), especially within the first 2 years post-IMRT. In multivariate analysis, distant relapse remained associated with AAmut (p < 0.002) and delayed IMRT until the second relapse (p < 0.001). CONCLUSION Although patients with IDH-mutated AG have improved outcomes, there was a higher proportion of distant relapses occurring during the 2 years after IMRT.
Collapse
Affiliation(s)
- M Back
- Department of Radiation Oncology, Northern Sydney Cancer Centre, Royal North Shore Hospital, St Leonards Sydney NSW 2065, Sydney, Australia.
- Central Coast Cancer Centre, Gosford Hospital, Gosford, Australia.
- Genesis Cancer Care, Sydney, Australia.
- Sydney Medical School, University of Sydney, Sydney, Australia.
- The Brain Cancer Group, Sydney, Australia.
| | - D Jayamanne
- Department of Radiation Oncology, Northern Sydney Cancer Centre, Royal North Shore Hospital, St Leonards Sydney NSW 2065, Sydney, Australia
- Central Coast Cancer Centre, Gosford Hospital, Gosford, Australia
| | - D Brazier
- Department of Radiation Oncology, Northern Sydney Cancer Centre, Royal North Shore Hospital, St Leonards Sydney NSW 2065, Sydney, Australia
- Sydney Medical School, University of Sydney, Sydney, Australia
| | - A Newey
- Department of Radiation Oncology, Northern Sydney Cancer Centre, Royal North Shore Hospital, St Leonards Sydney NSW 2065, Sydney, Australia
- Sydney Medical School, University of Sydney, Sydney, Australia
| | - D Bailey
- Department of Nuclear Medicine, Royal North Shore Hospital, Sydney, Australia
- Faculty of Health Sciences, University of Sydney, Sydney, Australia
| | - G Schembri
- The Brain Cancer Group, Sydney, Australia
| | - E Hsiao
- Department of Nuclear Medicine, Royal North Shore Hospital, Sydney, Australia
| | - M Khasraw
- Department of Radiation Oncology, Northern Sydney Cancer Centre, Royal North Shore Hospital, St Leonards Sydney NSW 2065, Sydney, Australia
- Sydney Medical School, University of Sydney, Sydney, Australia
- The Brain Cancer Group, Sydney, Australia
- NHMRC Clinical Trials Centre, University of Sydney, Sydney, Australia
| | - M Wong
- Central Coast Cancer Centre, Gosford Hospital, Gosford, Australia
| | - M Kastelan
- Department of Radiation Oncology, Northern Sydney Cancer Centre, Royal North Shore Hospital, St Leonards Sydney NSW 2065, Sydney, Australia
- The Brain Cancer Group, Sydney, Australia
| | - C Brown
- Department of Radiation Oncology, Northern Sydney Cancer Centre, Royal North Shore Hospital, St Leonards Sydney NSW 2065, Sydney, Australia
- NHMRC Clinical Trials Centre, University of Sydney, Sydney, Australia
| | - H Wheeler
- Department of Radiation Oncology, Northern Sydney Cancer Centre, Royal North Shore Hospital, St Leonards Sydney NSW 2065, Sydney, Australia
- Sydney Medical School, University of Sydney, Sydney, Australia
- The Brain Cancer Group, Sydney, Australia
| |
Collapse
|