101
|
Amaral PP, Neyt C, Wilkins SJ, Askarian-Amiri ME, Sunkin SM, Perkins AC, Mattick JS. Complex architecture and regulated expression of the Sox2ot locus during vertebrate development. RNA (NEW YORK, N.Y.) 2009; 15:2013-2027. [PMID: 19767420 PMCID: PMC2764477 DOI: 10.1261/rna.1705309] [Citation(s) in RCA: 173] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2009] [Accepted: 08/18/2009] [Indexed: 05/28/2023]
Abstract
The Sox2 gene is a key regulator of pluripotency embedded within an intron of a long noncoding RNA (ncRNA), termed Sox2 overlapping transcript (Sox2ot), which is transcribed in the same orientation. However, this ncRNA remains uncharacterized. Here we show that Sox2ot has multiple transcription start sites associated with genomic features that indicate regulated expression, including highly conserved elements (HCEs) and chromatin marks characteristic of gene promoters. To identify biological processes in which Sox2ot may be involved, we analyzed its expression in several developmental systems, compared to expression of Sox2. We show that Sox2ot is a stable transcript expressed in mouse embryonic stem cells, which, like Sox2, is down-regulated upon induction of embryoid body (EB) differentiation. However, in contrast to Sox2, Sox2ot is up-regulated during EB mesoderm-lineage differentiation. In adult mouse, Sox2ot isoforms were detected in tissues where Sox2 is expressed, as well as in different tissues, supporting independent regulation of expression of the ncRNA. Sox2dot, an isoform of Sox2ot transcribed from a distal HCE located >500 kb upstream of Sox2, was detected exclusively in the mouse brain, with enrichment in regions of adult neurogenesis. In addition, Sox2ot isoforms are transcribed from HCEs upstream of Sox2 in other vertebrates, including in several regions of the human brain. We also show that Sox2ot is dynamically regulated during chicken and zebrafish embryogenesis, consistently associated with central nervous system structures. These observations provide insight into the structure and regulation of the Sox2ot gene, and suggest conserved roles for Sox2ot orthologs during vertebrate development.
Collapse
Affiliation(s)
- Paulo P Amaral
- ARC Special Research Centre for Functional and Applied Genomics, Institute for Molecular Bioscience, The University of Queensland, St Lucia,QLD 4072, Australia
| | | | | | | | | | | | | |
Collapse
|
102
|
Abstract
The anterior pituitary gland is a central regulator of growth, reproduction and homeostasis. The development of the pituitary gland depends on the sequential temporal and spatial expression of transcription factors and signalling molecules. Naturally occurring and transgenic murine models have demonstrated a role for many of these molecules in the aetiology of congenital hypopituitarism. These include the transcription factors HESX1, PROP1, POU1F1, LHX3, LHX4, PITX1, PITX2, OTX2, SOX2 and SOX3. Mutations in any of the genes involved in pituitary development may result in congenital hypopituitarism, which manifests as the deficiency in one or more pituitary hormones. The phenotype can be highly variable and may consist of isolated hypopituitarism, or more complex disorders such as septo-optic dysplasia (SOD) and holoprosencephaly. Neonates with congenital hypopituitarism may present with non-specific symptoms, with or without associated developmental defects such as ocular, midline and genital abnormalities. Alternatively, they may be initially asymptomatic but at risk of developing pituitary hormone deficiencies over time. The overall incidence of mutations in known transcription factors in patients with hypopituitarism is low, indicating that many genes remain to be identified. Their characterization will further elucidate the pathogenesis of this complex condition and will shed light on normal pituitary development.
Collapse
|
103
|
Agathocleous M, Iordanova I, Willardsen MI, Xue XY, Vetter ML, Harris WA, Moore KB. A directional Wnt/beta-catenin-Sox2-proneural pathway regulates the transition from proliferation to differentiation in the Xenopus retina. Development 2009; 136:3289-99. [PMID: 19736324 PMCID: PMC2739145 DOI: 10.1242/dev.040451] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2009] [Indexed: 01/01/2023]
Abstract
Progenitor cells in the central nervous system must leave the cell cycle to become neurons and glia, but the signals that coordinate this transition remain largely unknown. We previously found that Wnt signaling, acting through Sox2, promotes neural competence in the Xenopus retina by activating proneural gene expression. We now report that Wnt and Sox2 inhibit neural differentiation through Notch activation. Independently of Sox2, Wnt stimulates retinal progenitor proliferation and this, when combined with the block on differentiation, maintains retinal progenitor fates. Feedback inhibition by Sox2 on Wnt signaling and by the proneural transcription factors on Sox2 mean that each element of the core pathway activates the next element and inhibits the previous one, providing a directional network that ensures retinal cells make the transition from progenitors to neurons and glia.
Collapse
Affiliation(s)
- Michalis Agathocleous
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | | | | | | | | | | | | |
Collapse
|
104
|
Brinkmeier ML, Davis SW, Carninci P, MacDonald JW, Kawai J, Ghosh D, Hayashizaki Y, Lyons RH, Camper SA. Discovery of transcriptional regulators and signaling pathways in the developing pituitary gland by bioinformatic and genomic approaches. Genomics 2009; 93:449-60. [PMID: 19121383 PMCID: PMC2935795 DOI: 10.1016/j.ygeno.2008.11.010] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2007] [Revised: 11/13/2008] [Accepted: 11/24/2008] [Indexed: 01/15/2023]
Abstract
We report a catalog of the mouse embryonic pituitary gland transcriptome consisting of five cDNA libraries including wild type tissue from E12.5 and E14.5, Prop1(df/df) mutant at E14.5, and two cDNA subtractions: E14.5 WT-E14.5 Prop1(df/df) and E14.5 WT-E12.5 WT. DNA sequence information is assembled into a searchable database with gene ontology terms representing 12,009 expressed genes. We validated coverage of the libraries by detecting most known homeobox gene transcription factor cDNAs. A total of 45 homeobox genes were detected as part of the pituitary transcriptome, representing most expected ones, which validated library coverage, and many novel ones, underscoring the utility of this resource as a discovery tool. We took a similar approach for signaling-pathway members with novel pituitary expression and found 157 genes related to the BMP, FGF, WNT, SHH and NOTCH pathways. These genes are exciting candidates for regulators of pituitary development and function.
Collapse
Affiliation(s)
- Michelle L. Brinkmeier
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109-0618, USA
| | - Shannon W. Davis
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109-0618, USA
| | - Piero Carninci
- Omics Science Center, RIKEN Yokohama Institute, Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - James W. MacDonald
- Affymetrix and cDNA Microarray Core Facility, University of Michigan Cancer Center, Ann Arbor, MI 48109-0946, USA
| | - Jun Kawai
- Omics Science Center, RIKEN Yokohama Institute, Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Debashis Ghosh
- Department of Biostatistics, School of Public Health, University of Michigan
| | - Yoshihide Hayashizaki
- Omics Science Center, RIKEN Yokohama Institute, Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Robert H. Lyons
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, 48109-0638, USA
| | - Sally A. Camper
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109-0618, USA
| |
Collapse
|
105
|
Ma Y, Qi X, Du J, Song S, Feng D, Qi J, Zhu Z, Zhang X, Xiao H, Han Z, Hao X. Identification of candidate genes for human pituitary development by EST analysis. BMC Genomics 2009; 10:109. [PMID: 19284880 PMCID: PMC2664823 DOI: 10.1186/1471-2164-10-109] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2008] [Accepted: 03/15/2009] [Indexed: 11/29/2022] Open
Abstract
Background The pituitary is a critical neuroendocrine gland that is comprised of five hormone-secreting cell types, which develops in tandem during the embryonic stage. Some essential genes have been identified in the early stage of adenohypophysial development, such as PITX1, FGF8, BMP4 and SF-1. However, it is likely that a large number of signaling molecules and transcription factors essential for determination and terminal differentiation of specific cell types remain unidentified. High-throughput methods such as microarray analysis may facilitate the measurement of gene transcriptional levels, while Expressed sequence tag (EST) sequencing, an efficient method for gene discovery and expression level analysis, may no-redundantly help to understand gene expression patterns during development. Results A total of 9,271 ESTs were generated from both fetal and adult pituitaries, and assigned into 961 gene/EST clusters in fetal and 2,747 in adult pituitary by homology analysis. The transcription maps derived from these data indicated that developmentally relevant genes, such as Sox4, ST13 and ZNF185, were dominant in the cDNA library of fetal pituitary, while hormones and hormone-associated genes, such as GH1, GH2, POMC, LHβ, CHGA and CHGB, were dominant in adult pituitary. Furthermore, by using RT-PCR and in situ hybridization, Sox4 was found to be one of the main transcription factors expressed in fetal pituitary for the first time. It was expressed at least at E12.5, but decreased after E17.5. In addition, 40 novel ESTs were identified specifically in this tissue. Conclusion The significant changes in gene expression in both tissues suggest a distinct and dynamic switch between embryonic and adult pituitaries. All these data along with Sox4 should be confirmed to further understand the community of multiple signaling pathways that act as a cooperative network that regulates maturation of the pituitary. It was also suggested that EST sequencing is an efficient means of gene discovery.
Collapse
Affiliation(s)
- Yueyun Ma
- Center for Clinical Laboratory Medicine of PLA, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, PR China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
106
|
Pedace L, Castori M, Binni F, Pingi A, Grammatico B, Scommegna S, Majore S, Grammatico P. A novel heterozygous SOX2 mutation causing anophthalmia/microphthalmia with genital anomalies. Eur J Med Genet 2009; 52:273-6. [PMID: 19254784 DOI: 10.1016/j.ejmg.2009.02.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2008] [Accepted: 02/11/2009] [Indexed: 10/21/2022]
Abstract
Anophthalmia/microphthalmia is a rare developmental craniofacial defect, which recognizes a wide range of causes, including chromosomal abnormalities, single-gene mutations as well as environmental factors. Heterozygous mutations in the SOX2 gene are the most common monogenic form of anophthalmia/microphthalmia, as they are reported in up to 10-15% cases. Here, we describe a sporadic patient showing bilateral anophthalmia/microphthalmia and micropenis caused by a novel mutation (c.59_60insGG) in the SOX2 gene. Morphological and endocrinological evaluations excluded any anomaly of the hypothalamus-pituitary axis. Our finding supports the hypothesis that SOX2 is particularly prone to slipped-strand mispairing, which results in a high frequency of point deletions/insertions.
Collapse
|
107
|
Alcock J, Lowe J, England T, Bath P, Sottile V. Expression of Sox1, Sox2 and Sox9 is maintained in adult human cerebellar cortex. Neurosci Lett 2009; 450:114-6. [PMID: 19061938 DOI: 10.1016/j.neulet.2008.11.047] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2008] [Revised: 11/09/2008] [Accepted: 11/16/2008] [Indexed: 02/01/2023]
Abstract
Neural stem cells (NSCs) have been found to reside in defined areas of the vertebrate brain, where they can be identified by the expression of specific markers such as Sox1, Sox2 and Sox9. In the mouse, expression of Sox1, Sox2 and Sox9 genes has recently been reported outside of these recognised NSC niches, in the Purkinje cell layer of the adult cerebellum. The present study establishes that expression of these marker genes is also found in the human cerebellum beyond the maturation phase. Expression of Sox1, Sox2 and Sox9 was detected at the mRNA level in both foetal and adult cerebellum samples, suggesting that the maintenance of these markers in adult tissue is also observed in the human cerebellum. Expression of these markers was further confirmed at the protein level on human tissue sections, as Sox1, Sox2 and Sox9 expression was detected in the Purkinje cell layer of the adult cerebellum. The present study demonstrates that Sox1 and Sox2 are expressed in the human adult cerebellum, outside of the characterised NSC niches.
Collapse
Affiliation(s)
- Joelle Alcock
- Wolfson Centre of Stem cell, Tissue Engineering and Modelling (STEM), The University of Nottingham, United Kingdom
| | | | | | | | | |
Collapse
|
108
|
Castinetti F, Reynaud R, Saveanu A, Quentien MH, Albarel F, Enjalbert A, Barlier A, Brue T. Congenital pituitary hormone deficiencies: role of LHX3/LHX4 genes. Expert Rev Endocrinol Metab 2008; 3:751-760. [PMID: 30764064 DOI: 10.1586/17446651.3.6.751] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
LHX3 and LHX4 are LIM domain transcription factors involved in the early steps of pituitary organogenesis. They are necessary for the proper differentiation of Rathke's pouch that gives rise to the anterior pituitary lobe. Mutations of these transcription factors are involved in congenital hypopituitarism: to date, nine mutations of LHX3 have been reported, responsible for variable pituitary hormone deficiencies and extrapituitary manifestations, including limited neck rotation. By contrast, only five LHX4 mutations have been reported, responsible for variable hormone deficiencies, and pituitary/intracranial abnormalities. Future investigations will aim to better understand human pituitary organogenesis and to shed light on the interspecies differences in the roles of these transcription factors.
Collapse
Affiliation(s)
- Frederic Castinetti
- a Centre de Recherche en Neurobiologie et Neurophysiologie de Marseille (CRN2M), UMR6231, Faculté de Médecine Nord, Centre National de la Recherche Scientifique, Université de la Méditerranée and Centre de Référence des Déficits Hypophysaires, Hôpital de la Timone, Assistance Publique Hôpitaux de Marseille, 13385 Marseille, France
| | - Rachel Reynaud
- a Centre de Recherche en Neurobiologie et Neurophysiologie de Marseille (CRN2M), UMR6231, Faculté de Médecine Nord, Centre National de la Recherche Scientifique, Université de la Méditerranée and Centre de Référence des Déficits Hypophysaires, Hôpital de la Timone, Assistance Publique Hôpitaux de Marseille, 13385 Marseille, France
| | - Alexandru Saveanu
- b Centre de Recherche en Neurobiologie et Neurophysiologie de Marseille (CRN2M), UMR6231, Faculté de Médecine Nord, Centre National de la Recherche Scientifique, Université de la Méditerranée and Centre de Référence des Déficits Hypophysaires, Hôpital de la Timone, Assistance Publique Hôpitaux de Marseille, 13385 Marseille, France and Laboratoire de Biochimie-Biologie Moléculaire, Hôpital Conception, Marseille, France
| | - Marie-Helene Quentien
- a Centre de Recherche en Neurobiologie et Neurophysiologie de Marseille (CRN2M), UMR6231, Faculté de Médecine Nord, Centre National de la Recherche Scientifique, Université de la Méditerranée and Centre de Référence des Déficits Hypophysaires, Hôpital de la Timone, Assistance Publique Hôpitaux de Marseille, 13385 Marseille, France
| | - Frederique Albarel
- a Centre de Recherche en Neurobiologie et Neurophysiologie de Marseille (CRN2M), UMR6231, Faculté de Médecine Nord, Centre National de la Recherche Scientifique, Université de la Méditerranée and Centre de Référence des Déficits Hypophysaires, Hôpital de la Timone, Assistance Publique Hôpitaux de Marseille, 13385 Marseille, France
| | - Alain Enjalbert
- b Centre de Recherche en Neurobiologie et Neurophysiologie de Marseille (CRN2M), UMR6231, Faculté de Médecine Nord, Centre National de la Recherche Scientifique, Université de la Méditerranée and Centre de Référence des Déficits Hypophysaires, Hôpital de la Timone, Assistance Publique Hôpitaux de Marseille, 13385 Marseille, France and Laboratoire de Biochimie-Biologie Moléculaire, Hôpital Conception, Marseille, France
| | - Anne Barlier
- b Centre de Recherche en Neurobiologie et Neurophysiologie de Marseille (CRN2M), UMR6231, Faculté de Médecine Nord, Centre National de la Recherche Scientifique, Université de la Méditerranée and Centre de Référence des Déficits Hypophysaires, Hôpital de la Timone, Assistance Publique Hôpitaux de Marseille, 13385 Marseille, France and Laboratoire de Biochimie-Biologie Moléculaire, Hôpital Conception, Marseille, France
| | - Thierry Brue
- c Centre de Recherche en neurobiologie et neurophysiologie de Marseille (CRN2M), UMR6231, Faculté de Médecine Nord, Centre National de la Recherche Scientifique, Université de la Méditerranée and Centre de Référence des déficits hypophysaires, Hôpital de la Timone, Assistance Publique Hôpitaux de Marseille, 13385 Marseille, France.
| |
Collapse
|