101
|
|
102
|
|
103
|
de Carvalho M, Eisen A, Krieger C, Swash M. Motoneuron firing in amyotrophic lateral sclerosis (ALS). Front Hum Neurosci 2014; 8:719. [PMID: 25294995 PMCID: PMC4170108 DOI: 10.3389/fnhum.2014.00719] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 08/27/2014] [Indexed: 01/09/2023] Open
Abstract
Amyotrophic lateral sclerosis is an inexorably progressive neurodegenerative disorder involving the classical motor system and the frontal effector brain, causing muscular weakness and atrophy, with variable upper motor neuron signs and often an associated fronto-temporal dementia. The physiological disturbance consequent on the motor system degeneration is beginning to be well understood. In this review we describe aspects of the motor cortical, neuronal, and lower motor neuron dysfunction. We show how studies of the changes in the pattern of motor unit firing help delineate the underlying pathophysiological disturbance as the disease progresses. Such studies are beginning to illuminate the underlying disordered pathophysiological processes in the disease, and are important in designing new approaches to therapy and especially for clinical trials.
Collapse
Affiliation(s)
- Mamede de Carvalho
- Institute of Physiology and Institute of Molecular Medicine, Faculty of Medicine, University of Lisbon Lisbon, Portugal ; Department of Neurosciences, Hospital Santa Maria, Faculty of Medicine, University of Lisbon Lisbon, Portugal
| | - Andrew Eisen
- Emeritus Professor of Neurology, University of British Columbia Vancouver, BC, Canada
| | - Charles Krieger
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby BC, Canada ; Department of Medicine (Neurology), University of British Columbia, Vancouver BC, Canada
| | - Michael Swash
- Institute of Physiology and Institute of Molecular Medicine, Faculty of Medicine, University of Lisbon Lisbon, Portugal ; Department of Neurosciences, Hospital Santa Maria, Faculty of Medicine, University of Lisbon Lisbon, Portugal ; Institute of Neuroscience, Barts and The London School of Medicine, Queen Mary University of London London, UK
| |
Collapse
|
104
|
Menke RAL, Körner S, Filippini N, Douaud G, Knight S, Talbot K, Turner MR. Widespread grey matter pathology dominates the longitudinal cerebral MRI and clinical landscape of amyotrophic lateral sclerosis. ACTA ACUST UNITED AC 2014; 137:2546-55. [PMID: 24951638 PMCID: PMC4132644 DOI: 10.1093/brain/awu162] [Citation(s) in RCA: 150] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Menke/Koerner et al. use structural MRI to explore the extent of longitudinal changes in cerebral pathology in amyotrophic lateral sclerosis, and their relationship to clinical features. A characteristic white matter tract pathological signature is seen cross-sectionally, while cortical involvement dominates longitudinally. This has implications for the development of biomarkers for diagnosis versus therapeutic monitoring. Diagnosis, stratification and monitoring of disease progression in amyotrophic lateral sclerosis currently rely on clinical history and examination. The phenotypic heterogeneity of amyotrophic lateral sclerosis, including extramotor cognitive impairments is now well recognized. Candidate biomarkers have shown variable sensitivity and specificity, and studies have been mainly undertaken only cross-sectionally. Sixty patients with sporadic amyotrophic lateral sclerosis (without a family history of amyotrophic lateral sclerosis or dementia) underwent baseline multimodal magnetic resonance imaging at 3 T. Grey matter pathology was identified through analysis of T1-weighted images using voxel-based morphometry. White matter pathology was assessed using tract-based spatial statistics analysis of indices derived from diffusion tensor imaging. Cross-sectional analyses included group comparison with a group of healthy controls (n = 36) and correlations with clinical features, including regional disability, clinical upper motor neuron signs and cognitive impairment. Patients were offered 6-monthly follow-up MRI, and the last available scan was used for a separate longitudinal analysis (n = 27). In cross-sectional study, the core signature of white matter pathology was confirmed within the corticospinal tract and callosal body, and linked strongly to clinical upper motor neuron burden, but also to limb disability subscore and progression rate. Localized grey matter abnormalities were detected in a topographically appropriate region of the left motor cortex in relation to bulbar disability, and in Broca’s area and its homologue in relation to verbal fluency. Longitudinal analysis revealed progressive and widespread changes in the grey matter, notably including the basal ganglia. In contrast there was limited white matter pathology progression, in keeping with a previously unrecognized limited change in individual clinical upper motor neuron scores, despite advancing disability. Although a consistent core white matter pathology was found cross-sectionally, grey matter pathology was dominant longitudinally, and included progression in clinically silent areas such as the basal ganglia, believed to reflect their wider cortical connectivity. Such changes were significant across a range of apparently sporadic patients rather than being a genotype-specific effect. It is also suggested that the upper motor neuron lesion in amyotrophic lateral sclerosis may be relatively constant during the established symptomatic period. These findings have implications for the development of effective diagnostic versus therapeutic monitoring magnetic resonance imaging biomarkers. Amyotrophic lateral sclerosis may be characterized initially by a predominantly white matter tract pathological signature, evolving as a widespread cortical network degeneration.
Collapse
Affiliation(s)
- Ricarda A L Menke
- 1 Oxford Centre for Functional Magnetic Resonance of the Brain, University of Oxford, UK2 Nuffield Department of Clinical Neurosciences, University of Oxford, UK
| | - Sonja Körner
- 3 Department of Neurology, Hannover Medical School, Germany
| | - Nicola Filippini
- 1 Oxford Centre for Functional Magnetic Resonance of the Brain, University of Oxford, UK4 Department of Psychiatry, University of Oxford, UK
| | - Gwenaëlle Douaud
- 1 Oxford Centre for Functional Magnetic Resonance of the Brain, University of Oxford, UK2 Nuffield Department of Clinical Neurosciences, University of Oxford, UK
| | - Steven Knight
- 5 Oxford Centre for Magnetic Resonance Imaging Research, University of Oxford, UK
| | - Kevin Talbot
- 2 Nuffield Department of Clinical Neurosciences, University of Oxford, UK
| | - Martin R Turner
- 1 Oxford Centre for Functional Magnetic Resonance of the Brain, University of Oxford, UK2 Nuffield Department of Clinical Neurosciences, University of Oxford, UK5 Oxford Centre for Magnetic Resonance Imaging Research, University of Oxford, UK
| |
Collapse
|
105
|
Vucic S, Rothstein JD, Kiernan MC. Advances in treating amyotrophic lateral sclerosis: insights from pathophysiological studies. Trends Neurosci 2014; 37:433-42. [PMID: 24927875 DOI: 10.1016/j.tins.2014.05.006] [Citation(s) in RCA: 162] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Revised: 05/18/2014] [Accepted: 05/19/2014] [Indexed: 12/12/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is the most frequently occurring of the neuromuscular degenerative disorders, with a median survival time of 3-5 years. The pathophysiological mechanisms underlying ALS are multifactorial, with a complex interaction between genetic factors and molecular pathways. To date 16 genes and loci have been associated with ALS, with mutations in DNA/RNA-regulating genes including the recently described c9orf72 (chromosome 9 open reading frame 72) gene, suggesting an important role for dysregulation of RNA metabolism in ALS pathogenesis. Further, dysfunction of molecular pathways, including glutamate-mediated excitotoxicity, has been identified in sporadic and familial ALS, indicating the existence of a common pathogenic pathway. These pathophysiological insights have suggested novel therapeutic approaches, including stem cell and genetics-based strategies, providing hope for feasible treatment of ALS.
Collapse
Affiliation(s)
- Steve Vucic
- Westmead Clinical School, University of Sydney, Sydney, Australia; Neurosciences Research Australia, Sydney, Australia.
| | - Jeffrey D Rothstein
- Brain Science Institute, Robert Packard Center for Amyotrophic Lateral Sclerosis Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Matthew C Kiernan
- Neurosciences Research Australia, Sydney, Australia; Brain and Mind Research Institute, University of Sydney, Sydney, Australia
| |
Collapse
|
106
|
Alanazy MH, White C, Korngut L. Diagnostic yield and cost-effectiveness of investigations in patients presenting with isolated lower motor neuron signs. Amyotroph Lateral Scler Frontotemporal Degener 2014; 15:414-9. [DOI: 10.3109/21678421.2014.913635] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
107
|
Riku Y, Atsuta N, Yoshida M, Tatsumi S, Iwasaki Y, Mimuro M, Watanabe H, Ito M, Senda J, Nakamura R, Koike H, Sobue G. Differential motor neuron involvement in progressive muscular atrophy: a comparative study with amyotrophic lateral sclerosis. BMJ Open 2014; 4:e005213. [PMID: 24833696 PMCID: PMC4025414 DOI: 10.1136/bmjopen-2014-005213] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVE Progressive muscular atrophy (PMA) is a clinical diagnosis characterised by progressive lower motor neuron (LMN) symptoms/signs with sporadic adult onset. It is unclear whether PMA is simply a clinical phenotype of amyotrophic lateral sclerosis (ALS) in which upper motor neuron (UMN) signs are undetectable. To elucidate the clinicopathological features of patients with clinically diagnosed PMA, we studied consecutive autopsied cases. DESIGN Retrospective, observational. SETTING Autopsied patients. PARTICIPANTS We compared clinicopathological profiles of clinically diagnosed PMA and ALS using 107 consecutive autopsied patients. For clinical analysis, 14 and 103 patients were included in clinical PMA and ALS groups, respectively. For neuropathological evaluation, 13 patients with clinical PMA and 29 patients with clinical ALS were included. PRIMARY OUTCOME MEASURES Clinical features, UMN and LMN degeneration, axonal density in the corticospinal tract (CST) and immunohistochemical profiles. RESULTS Clinically, no significant difference between the prognosis of clinical PMA and ALS groups was shown. Neuropathologically, 84.6% of patients with clinical PMA displayed UMN and LMN degeneration. In the remaining 15.4% of patients with clinical PMA, neuropathological parameters that we defined as UMN degeneration were all negative or in the normal range. In contrast, all patients with clinical ALS displayed a combination of UMN and LMN system degeneration. CST axon densities were diverse in the clinical PMA group, ranging from low values to the normal range, but consistently lower in the clinical ALS group. Immunohistochemically, 85% of patients with clinical PMA displayed 43-kDa TAR DNA-binding protein (TDP-43) pathology, while 15% displayed fused-in-sarcoma (FUS)-positive basophilic inclusion bodies. All of the patients with clinical ALS displayed TDP-43 pathology. CONCLUSIONS PMA has three neuropathological background patterns. A combination of UMN and LMN degeneration with TDP-43 pathology, consistent with ALS, is the major pathological profile. The remaining patterns have LMN degeneration with TDP-43 pathology without UMN degeneration, or a combination of UMN and LMN degeneration with FUS-positive basophilic inclusion body disease.
Collapse
Affiliation(s)
- Yuichi Riku
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Naoki Atsuta
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Mari Yoshida
- Institute for Medical Science of Aging, Aichi Medical University, Aichi, Japan
| | - Shinsui Tatsumi
- Institute for Medical Science of Aging, Aichi Medical University, Aichi, Japan
| | - Yasushi Iwasaki
- Institute for Medical Science of Aging, Aichi Medical University, Aichi, Japan
| | - Maya Mimuro
- Institute for Medical Science of Aging, Aichi Medical University, Aichi, Japan
| | - Hirohisa Watanabe
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Mizuki Ito
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Jo Senda
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Ryoichi Nakamura
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Haruki Koike
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Gen Sobue
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
108
|
Camdessanché JP, Lenglet T. Place des explorations électrophysiologiques dans la sclérose latérale amyotrophique. Presse Med 2014; 43:563-8. [DOI: 10.1016/j.lpm.2014.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 03/21/2014] [Accepted: 03/24/2014] [Indexed: 10/25/2022] Open
|
109
|
Grapperon AM, Verschueren A, Duclos Y, Confort-Gouny S, Soulier E, Loundou AD, Guye M, Cozzone PJ, Pouget J, Ranjeva JP, Attarian S. Association between structural and functional corticospinal involvement in amyotrophic lateral sclerosis assessed by diffusion tensor MRI and triple stimulation technique. Muscle Nerve 2014; 49:551-7. [DOI: 10.1002/mus.23957] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 06/15/2013] [Accepted: 07/09/2013] [Indexed: 11/10/2022]
Affiliation(s)
- Aude-Marie Grapperon
- Department of Neurology and Neuromuscular Diseases; CHU La Timone; 264 rue Saint-Pierre 13385 Marseille France
| | - Annie Verschueren
- Department of Neurology and Neuromuscular Diseases; CHU La Timone; 264 rue Saint-Pierre 13385 Marseille France
| | - Yann Duclos
- Department of Neurology and Neuromuscular Diseases; CHU La Timone; 264 rue Saint-Pierre 13385 Marseille France
| | - Sylviane Confort-Gouny
- Biological and Medical Magnetic Resonance Center (CRMBM) and Center for Metabolic Exploration using Magnetic Resonance (CEMEREM) (UMR 7339); CHU La Timone; Marseilles France
| | - Elisabeth Soulier
- Biological and Medical Magnetic Resonance Center (CRMBM) and Center for Metabolic Exploration using Magnetic Resonance (CEMEREM) (UMR 7339); CHU La Timone; Marseilles France
| | - Anderson D. Loundou
- Department of Methodological Aid to Clinical Research; CHU La Timone; Marseilles France
| | - Maxime Guye
- Biological and Medical Magnetic Resonance Center (CRMBM) and Center for Metabolic Exploration using Magnetic Resonance (CEMEREM) (UMR 7339); CHU La Timone; Marseilles France
| | - Patrick J. Cozzone
- Biological and Medical Magnetic Resonance Center (CRMBM) and Center for Metabolic Exploration using Magnetic Resonance (CEMEREM) (UMR 7339); CHU La Timone; Marseilles France
| | - Jean Pouget
- Department of Neurology and Neuromuscular Diseases; CHU La Timone; 264 rue Saint-Pierre 13385 Marseille France
| | - Jean-Philippe Ranjeva
- Biological and Medical Magnetic Resonance Center (CRMBM) and Center for Metabolic Exploration using Magnetic Resonance (CEMEREM) (UMR 7339); CHU La Timone; Marseilles France
| | - Shahram Attarian
- Department of Neurology and Neuromuscular Diseases; CHU La Timone; 264 rue Saint-Pierre 13385 Marseille France
| |
Collapse
|
110
|
Ravits J, Appel S, Baloh RH, Barohn R, Brooks BR, Elman L, Floeter MK, Henderson C, Lomen-Hoerth C, Macklis JD, McCluskey L, Mitsumoto H, Przedborski S, Rothstein J, Trojanowski JQ, van den Berg LH, Ringel S. Deciphering amyotrophic lateral sclerosis: what phenotype, neuropathology and genetics are telling us about pathogenesis. Amyotroph Lateral Scler Frontotemporal Degener 2013; 14 Suppl 1:5-18. [PMID: 23678876 DOI: 10.3109/21678421.2013.778548] [Citation(s) in RCA: 132] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is characterized phenotypically by progressive weakness and neuropathologically by loss of motor neurons. Phenotypically, there is marked heterogeneity. Typical ALS has mixed upper motor neuron (UMN) and lower motor neuron (LMN) involvement. Primary lateral sclerosis has predominant UMN involvement. Progressive muscular atrophy has predominant LMN involvement. Bulbar and limb ALS have predominant regional involvement. Frontotemporal dementia has significant cognitive and behavioral involvement. These phenotypes can be so distinctive that they would seem to have differing biology. However, they cannot be distinguished, at least neuropathologically or genetically. In sporadic ALS (SALS), they are mostly characterized by ubiquitinated cytoplasmic inclusions of TDP-43. In familial ALS (FALS), where phenotypes are indistinguishable from SALS and similarly heterogeneous, each mutated gene has its own genetic and molecular signature. Overall, since the same phenotypes can have multiple causes including different gene mutations, there must be multiple molecular mechanisms causing ALS - and ALS is a syndrome. Since, however, multiple phenotypes can be caused by one single gene mutation, a single molecular mechanism can cause heterogeneity. What the mechanisms are remain unknown, but active propagation of the pathology neuroanatomically seems to be a principal component. Leading candidate mechanisms include RNA processing, cell-cell interactions between neurons and non-neuronal neighbors, focal seeding from a misfolded protein that has prion-like propagation, and fatal errors introduced during neurodevelopment of the motor system. If fundamental mechanisms could be identified and understood, ALS therapy could rationally target progression and stop the disease - a goal that seems increasingly achievable.
Collapse
Affiliation(s)
- John Ravits
- Department of Neurosciences, University of California, San Diego, La Jolla, California 92093, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
111
|
Pamphlett R, Kum Jew S. Heavy metals in locus ceruleus and motor neurons in motor neuron disease. Acta Neuropathol Commun 2013; 1:81. [PMID: 24330485 PMCID: PMC3878779 DOI: 10.1186/2051-5960-1-81] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 12/02/2013] [Indexed: 12/13/2022] Open
Abstract
Background The causes of sporadic amyotrophic lateral sclerosis (SALS) and other types of motor neuron disease (MND) remain largely unknown. Heavy metals have long been implicated in MND, and it has recently been shown that inorganic mercury selectively enters human locus ceruleus (LC) and motor neurons. We therefore used silver nitrate autometallography (AMG) to look for AMG-stainable heavy metals (inorganic mercury and bismuth) in LC and motor neurons of 24 patients with MND (18 with SALS and 6 with familial MND) and in the LC of 24 controls. Results Heavy metals in neurons were found in significantly more MND patients than in controls when comparing: (1) the presence of any versus no heavy metal-containing LC neurons (MND 88%, controls 42%), (2) the median percentage of heavy metal-containing LC neurons (MND 9.5%, control 0.0%), and (3) numbers of individuals with heavy metal-containing LC neurons in the upper half of the percentage range (MND 75%, controls 25%). In MND patients, 67% of remaining spinal motor neurons contained heavy metals; smaller percentages were found in hypoglossal, nucleus ambiguus and oculomotor neurons, but none in cortical motor neurons. The majority of MND patients had heavy metals in both LC and spinal motor neurons. No glia or other neurons, including neuromelanin-containing neurons of the substantia nigra, contained stainable heavy metals. Conclusions Uptake of heavy metals by LC and lower motor neurons appears to be fairly common in humans, though heavy metal staining in the LC, most likely due to inorganic mercury, was seen significantly more often in MND patients than in controls. The LC innervates many cell types that are affected in MND, and it is possible that MND is triggered by toxicant-induced interactions between LC and motor neurons.
Collapse
|
112
|
Song F, Chiang P, Ravits J, Loeb JA. Activation of microglial neuregulin1 signaling in the corticospinal tracts of ALS patients with upper motor neuron signs. Amyotroph Lateral Scler Frontotemporal Degener 2013; 15:77-83. [DOI: 10.3109/21678421.2013.853802] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
113
|
Vucic S, Ziemann U, Eisen A, Hallett M, Kiernan MC. Transcranial magnetic stimulation and amyotrophic lateral sclerosis: pathophysiological insights. J Neurol Neurosurg Psychiatry 2013; 84:1161-70. [PMID: 23264687 PMCID: PMC3786661 DOI: 10.1136/jnnp-2012-304019] [Citation(s) in RCA: 204] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a rapidly progressive neurodegenerative disorder of the motor neurons in the motor cortex, brainstem and spinal cord. A combination of upper and lower motor neuron dysfunction comprises the clinical ALS phenotype. Although the ALS phenotype was first observed by Charcot over 100 years ago, the site of ALS onset and the pathophysiological mechanisms underlying the development of motor neuron degeneration remain to be elucidated. Transcranial magnetic stimulation (TMS) enables non-invasive assessment of the functional integrity of the motor cortex and its corticomotoneuronal projections. To date, TMS studies have established motor cortical and corticospinal dysfunction in ALS, with cortical hyperexcitability being an early feature in sporadic forms of ALS and preceding the clinical onset of familial ALS. Taken together, a central origin of ALS is supported by TMS studies, with an anterograde transsynaptic mechanism implicated in ALS pathogenesis. Of further relevance, TMS techniques reliably distinguish ALS from mimic disorders, despite a compatible peripheral disease burden, thereby suggesting a potential diagnostic utility of TMS in ALS. This review will focus on the mechanisms underlying the generation of TMS measures used in assessment of cortical excitability, the contribution of TMS in enhancing the understanding of ALS pathophysiology and the potential diagnostic utility of TMS techniques in ALS.
Collapse
Affiliation(s)
- Steve Vucic
- Sydney Medical School Westmead, University of Sydney, Sydney, New South Wales, Australia.
| | | | | | | | | |
Collapse
|
114
|
Matamala JM, Núñez C, Lera L, Verdugo RJ, Sánchez H, Albala C, Castillo JL. Motor evoked potentials by transcranial magnetic stimulation in healthy elderly people. Somatosens Mot Res 2013; 30:201-5. [PMID: 23767989 DOI: 10.3109/08990220.2013.796922] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
INTRODUCTION Transcranial magnetic stimulation (TMS) is a non-invasive, safe, and painless method for evaluating the corticospinal pathway. The population of older adults is growing, along with the prevalence of neurological diseases common to this group. Latency and amplitude of motor evoked potentials (MEPs) vary among healthy subjects and no reference normal values for MEPs in healthy older adults are available. OBJECTIVE To create a reference value for MEPs by TMS for healthy older adults. METHODS Descriptive study in 36 healthy 70-year-old and older subjects. A 90-mm circular coil Magstim® magnetic stimulator was applied over Cz and Fz. Recording was done in the abductor pollicis brevis and tibialis anterior muscles, at rest and during sustained tonic contraction. Central motor conduction time (CMCT) was derived from MEP latency and peripheral motor conduction time (PMCT). Values were related to age, gender, standing height, and knee height. RESULTS Mean age was 73.3 ± 2.4 years (58% female). In the upper extremity, average MEP latency was 23.3 ± 1.9 ms at rest and 19.9 ± 1.9 ms during tonic contraction. In the lower extremity, average MEP latency was 30.6 ± 2.5 ms at rest and 27.2 ± 2.3 ms during tonic contraction. There was a significant correlation between MEP latency and standing height, greater in the lower extremities. Female gender appeared as an independent factor determining lower MEP latency, but not CMCT, in upper and lower extremities. CONCLUSION We have provided clinically useful reference values for MEPs by TMS in healthy adults older than 70 years of age. As in the younger population, standing height is important in defining normal MEPs. The difference between genders might be due to the lower height of women.
Collapse
Affiliation(s)
- José Manuel Matamala
- Department of Neurological Science, Faculty of Medicine, University of Chile , Santiago , Chile and
| | | | | | | | | | | | | |
Collapse
|
115
|
Kuźma-Kozakiewicz M, Jędrzejowska M, Kaźmierczak B. SMN1 gene duplications are more frequent in patients with progressive muscular atrophy. Amyotroph Lateral Scler Frontotemporal Degener 2013; 14:457-62. [PMID: 23477310 DOI: 10.3109/21678421.2013.771367] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Survival Motor Neuron 1 (SMN1) is a causative gene for autosomal recessive infantile and juvenile proximal spinal muscular atrophy. SMN1 duplications have recently been found to increase susceptibility to amyotrophic lateral sclerosis. The role of centromeric SMN copy (SMN2) has been postulated in progressive muscular atrophy (PMA). The aim of this study was to analyse the SMN1 and SMN2 copy number variations in patients with PMA. SMN1 and SMN2 genotype was studied in 87 patients with PMA, diagnosed at the Department of Neurology, Medical University of Warsaw, between 1992 and 2012 and in 600 healthy controls. Results demonstrated that three copies of SMN1 were found in 8.1% of PMA patients and in 24% of PMA patients with disease duration above 48 months compared to 4.6% of the general population. Patients with three SMN1 copies had a limb onset, lower median age of onset and longer disease duration compared to patients with two SMN1 copies. There were no significant differences in the SMN2 copy numbers. In conclusion, the increased copy number of SMN1 may be a susceptibility factor to PMA and influence the clinical phenotype.
Collapse
|
116
|
Mähler A, Mandel S, Lorenz M, Ruegg U, Wanker EE, Boschmann M, Paul F. Epigallocatechin-3-gallate: a useful, effective and safe clinical approach for targeted prevention and individualised treatment of neurological diseases? EPMA J 2013; 4:5. [PMID: 23418936 PMCID: PMC3585739 DOI: 10.1186/1878-5085-4-5] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 01/25/2013] [Indexed: 12/12/2022]
Abstract
Neurodegenerative disorders show an increasing prevalence in a number of highly developed countries. Often, these diseases require life-long treatment mostly with drugs which are costly and mostly accompanied by more or less serious side-effects. Their heterogeneous manifestation, severity and outcome pose the need for individualised treatment options. There is an intensive search for new strategies not only for treating but also for preventing these diseases. Green tea and green tea extracts seem to be such a promising and safe alternative. However, data regarding the beneficial effects and possible underlying mechanism, specifically in clinical trials, are rare and rather controversial or non-conclusive. This review outlines the existing evidence from preclinical studies (cell and tissue cultures and animal models) and clinical trials regarding preventive and therapeutic effects of epigallcatechin-3-gallate in neurodegenerative diseases and considers antioxidative vs. pro-oxidative properties of the tea catechin important for dosage recommendations.
Collapse
Affiliation(s)
- Anja Mähler
- Experimental and Clinical Research Center, a joint cooperation between the Charité University Medicine Berlin and Max Delbrueck Center for Molecular Medicine, Berlin, D-13125, Germany.
| | | | | | | | | | | | | |
Collapse
|
117
|
Stagg CJ, Knight S, Talbot K, Jenkinson M, Maudsley AA, Turner MR. Whole-brain magnetic resonance spectroscopic imaging measures are related to disability in ALS. Neurology 2013; 80:610-5. [PMID: 23325907 PMCID: PMC3590062 DOI: 10.1212/wnl.0b013e318281ccec] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Accepted: 09/26/2012] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To demonstrate the sensitivity of a recently developed whole-brain magnetic resonance spectroscopic imaging (MRSI) sequence to cerebral pathology and disability in amyotrophic lateral sclerosis (ALS), and compare with measures derived from diffusion tensor imaging. METHODS Whole-brain MRSI and diffusion tensor imaging were undertaken in 13 patients and 14 age-similar healthy controls. Mean N-acetylaspartate (NAA), fractional anisotropy, and mean diffusivity were extracted from the corticospinal tract, compared between groups, and then in relation to disability in the patient group. RESULTS Significant reductions in NAA were found along the course of the corticospinal tracts on whole-brain MRSI. There were also significant changes in fractional anisotropy (decreased) and mean diffusivity (increased) in the patient group, but only NAA showed a significant relationship with disability (r = 0.65, p = 0.01). CONCLUSION Whole-brain MRSI has potential as a quantifiable neuroimaging marker of disability in ALS. It offers renewed hope for a neuroimaging outcome measure with the potential for harmonization across multiple sites in the context of a therapeutic trial.
Collapse
Affiliation(s)
- Charlotte J Stagg
- Centre for Functional Magnetic Resonance of the Brain, University of Oxford, UK
| | | | | | | | | | | |
Collapse
|
118
|
|
119
|
Saris CGJ, Groen EJN, Koekkoek JAF, Veldink JH, Van Den Berg LH. Meta-analysis of gene expression profiling in amyotrophic lateral sclerosis: A comparison between transgenic mouse models and human patients. Amyotroph Lateral Scler Frontotemporal Degener 2013; 14:177-89. [DOI: 10.3109/21678421.2012.729842] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Christiaan G. J. Saris
- Department of Neurology, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, Utrecht
| | - Ewout J. N. Groen
- Department of Neurology, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, Utrecht
| | - Johan A. F. Koekkoek
- Department of Neurology, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, Utrecht
| | - Jan H. Veldink
- Department of Neurology, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, Utrecht
| | - Leonard H. Van Den Berg
- Department of Neurology, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, Utrecht
| |
Collapse
|
120
|
Van Langenhove T, van der Zee J, Van Broeckhoven C. The molecular basis of the frontotemporal lobar degeneration-amyotrophic lateral sclerosis spectrum. Ann Med 2012; 44:817-28. [PMID: 22420316 PMCID: PMC3529157 DOI: 10.3109/07853890.2012.665471] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Accepted: 02/07/2012] [Indexed: 01/21/2023] Open
Abstract
There is increasing evidence that frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS) represent a continuum of neurodegenerative diseases. FTLD is complicated by ALS in a significant proportion of patients, and neuropsychological studies have demonstrated frontotemporal dysfunction in up to 50% of ALS patients. More recently, advances in neuropathology and molecular genetics have started to disclose the biological basis for the observed clinical concurrence. TDP-43 and FUS have been discovered as key pathological proteins in both FTLD and ALS. The most recent discovery of a pathological hexanucleotide repeat expansion in the gene C9orf72 as a frequent cause of both FTLD and ALS has eventually confirmed the association of these two at first sight distinct neurodegenerative diseases. Mutations in the TARDBP, FUS, and VCP genes had previously been associated with different phenotypes of the FTLD-ALS spectrum, although in these cases one end of the spectrum predominates. Whilst on the one hand providing evidence for overlap, these discoveries have also highlighted that FTLD and ALS are etiologically diverse. In this review, we review the recent advances that support the existence of an FTLD-ALS spectrum, with particular emphasis on the molecular genetic aspect.
Collapse
Affiliation(s)
- Tim Van Langenhove
- Neurodegenerative Brain Diseases Group, Department of Molecular Genetics, VIB, Antwerpen, Belgium
| | | | | |
Collapse
|
121
|
van Blitterswijk M, Vlam L, van Es MA, van der Pol WL, Hennekam EAM, Dooijes D, Schelhaas HJ, van der Kooi AJ, de Visser M, Veldink JH, van den Berg LH. Genetic overlap between apparently sporadic motor neuron diseases. PLoS One 2012; 7:e48983. [PMID: 23155438 PMCID: PMC3498376 DOI: 10.1371/journal.pone.0048983] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Accepted: 10/03/2012] [Indexed: 11/18/2022] Open
Abstract
Progressive muscular atrophy (PMA) and amyotrophic lateral sclerosis (ALS) are devastating motor neuron diseases (MNDs), which result in muscle weakness and/or spasticity. We compared mutation frequencies in genes known to be associated with MNDs between patients with apparently sporadic PMA and ALS. A total of 261 patients with adult-onset sporadic PMA, patients with sporadic ALS, and control subjects of Dutch descent were obtained at national referral centers for neuromuscular diseases in The Netherlands. Sanger sequencing was used to screen these subjects for mutations in the coding regions of superoxide dismutase-1 (SOD1), angiogenin (ANG), fused in sarcoma/translated in liposarcoma (FUS/TLS), TAR DNA-binding protein 43 (TARDBP), and multivesicular body protein 2B (CHMP2B). In our cohort of PMA patients we identified two SOD1 mutations (p.D90A, p.I113T), one ANG mutation (p.K17I), one FUS/TLS mutation (p.R521H), one TARDBP mutation (p.N352S), and one novel CHMP2B mutation (p.R69Q). The mutation frequency of these genes was similar in sporadic PMA (2.7%) and ALS (2.0%) patients, and therefore, our findings demonstrate a genetic overlap between apparently sporadic PMA and ALS.
Collapse
Affiliation(s)
- Marka van Blitterswijk
- Department of Neurology, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, Utrecht, The Netherlands
- * E-mail:
| | - Lotte Vlam
- Department of Neurology, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Michael A. van Es
- Department of Neurology, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, Utrecht, The Netherlands
| | - W-Ludo van der Pol
- Department of Neurology, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Eric A. M. Hennekam
- Department of Medical Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Dennis Dooijes
- Department of Medical Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Helenius J. Schelhaas
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | - Anneke J. van der Kooi
- Department of Neurology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Marianne de Visser
- Department of Neurology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Jan H. Veldink
- Department of Neurology, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Leonard H. van den Berg
- Department of Neurology, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
122
|
Turner MR, Agosta F, Bede P, Govind V, Lulé D, Verstraete E. Neuroimaging in amyotrophic lateral sclerosis. Biomark Med 2012; 6:319-37. [PMID: 22731907 DOI: 10.2217/bmm.12.26] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The catastrophic system failure in amyotrophic lateral sclerosis is characterized by progressive neurodegeneration within the corticospinal tracts, brainstem nuclei and spinal cord anterior horns, with an extra-motor pathology that has overlap with frontotemporal dementia. The development of computed tomography and, even more so, MRI has brought insights into neurological disease, previously only available through post-mortem study. Although largely research-based, radionuclide imaging has continued to provide mechanistic insights into neurodegenerative disorders. The evolution of MRI to use advanced sequences highly sensitive to cortical and white matter structure, parenchymal metabolites and blood flow, many of which are now applicable to the spinal cord as well as the brain, make it a uniquely valuable tool for the study of a multisystem disorder such as amyotrophic lateral sclerosis. This comprehensive review considers the full range of neuroimaging techniques applied to amyotrophic lateral sclerosis over the last 25 years, the biomarkers they have revealed and future developments.
Collapse
Affiliation(s)
- Martin R Turner
- Nuffield Department of Clinical Neurosciences, Oxford University, UK.
| | | | | | | | | | | |
Collapse
|
123
|
Fisher KM, Zaaimi B, Williams TL, Baker SN, Baker MR. Beta-band intermuscular coherence: a novel biomarker of upper motor neuron dysfunction in motor neuron disease. Brain 2012; 135:2849-64. [PMID: 22734124 PMCID: PMC3437020 DOI: 10.1093/brain/aws150] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
In motor neuron disease, the focus of therapy is to prevent or slow neuronal degeneration with neuroprotective pharmacological agents; early diagnosis and treatment are thus essential. Incorporation of needle electromyographic evidence of lower motor neuron degeneration into diagnostic criteria has undoubtedly advanced diagnosis, but even earlier diagnosis might be possible by including tests of subclinical upper motor neuron disease. We hypothesized that beta-band (15–30 Hz) intermuscular coherence could be used as an electrophysiological marker of upper motor neuron integrity in such patients. We measured intermuscular coherence in eight patients who conformed to established diagnostic criteria for primary lateral sclerosis and six patients with progressive muscular atrophy, together with 16 age-matched controls. In the primary lateral sclerosis variant of motor neuron disease, there is selective destruction of motor cortical layer V pyramidal neurons and degeneration of the corticospinal tract, without involvement of anterior horn cells. In progressive muscular atrophy, there is selective degeneration of anterior horn cells but a normal corticospinal tract. All patients with primary lateral sclerosis had abnormal motor-evoked potentials as assessed using transcranial magnetic stimulation, whereas these were similar to controls in progressive muscular atrophy. Upper and lower limb intermuscular coherence was measured during a precision grip and an ankle dorsiflexion task, respectively. Significant beta-band coherence was observed in all control subjects and all patients with progressive muscular atrophy tested, but not in the patients with primary lateral sclerosis. We conclude that intermuscular coherence in the 15–30 Hz range is dependent on an intact corticospinal tract but persists in the face of selective anterior horn cell destruction. Based on the distributions of coherence values measured from patients with primary lateral sclerosis and control subjects, we estimated the likelihood that a given measurement reflects corticospinal tract degeneration. Therefore, intermuscular coherence has potential as a quantitative test of subclinical upper motor neuron involvement in motor neuron disease.
Collapse
Affiliation(s)
- Karen M Fisher
- Institute of Neuroscience, University of Newcastle upon Tyne, Newcastle upon Tyne, NE2 4HH, UK
| | | | | | | | | |
Collapse
|
124
|
Brettschneider J, Toledo JB, Van Deerlin VM, Elman L, McCluskey L, Lee VMY, Trojanowski JQ. Microglial activation correlates with disease progression and upper motor neuron clinical symptoms in amyotrophic lateral sclerosis. PLoS One 2012; 7:e39216. [PMID: 22720079 PMCID: PMC3375234 DOI: 10.1371/journal.pone.0039216] [Citation(s) in RCA: 197] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Accepted: 05/17/2012] [Indexed: 01/29/2023] Open
Abstract
Background/Aims We evaluated clinicopathological correlates of upper motor neuron (UMN) damage in amyotrophic lateral sclerosis (ALS), and analyzed if the presence of the C9ORF72 repeat expansion was associated with alterations in microglial inflammatory activity. Methods Microglial pathology was assessed by IHC with 2 different antibodies (CD68, Iba1), myelin loss by Kluver-Barrera staining and myelin basic protein (MBP) IHC, and axonal loss by neurofilament protein (TA51) IHC, performed on 59 autopsy cases of ALS including 9 cases with C9ORF72 repeat expansion. Results Microglial pathology as depicted by CD68 and Iba1 was significantly more extensive in the corticospinal tract (CST) of ALS cases with a rapid progression of disease. Cases with C9ORF72 repeat expansion showed more extensive microglial pathology in the medulla and motor cortex which persisted after adjusting for disease duration in a logistic regression model. Higher scores on the clinical UMN scale correlated with increasing microglial pathology in the cervical CST. TDP-43 pathology was more extensive in the motor cortex of cases with rapid progression of disease. Conclusions This study demonstrates that microglial pathology in the CST of ALS correlates with disease progression and is linked to severity of UMN deficits.
Collapse
Affiliation(s)
- Johannes Brettschneider
- Center for Neurodegenerative Disease Research, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America.
| | | | | | | | | | | | | |
Collapse
|
125
|
Aridegbe T, Kandler R, Walters SJ, Walsh T, Shaw PJ, McDermott CJ. The natural history of motor neuron disease: assessing the impact of specialist care. Amyotroph Lateral Scler Frontotemporal Degener 2012; 14:13-9. [PMID: 22642305 DOI: 10.3109/17482968.2012.690419] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Many centres in the UK care for patients with motor neuron disease (MND) in a multidisciplinary clinic (MDC). It has been demonstrated that such care results in better prognosis for survival than care from a general neurology clinic (GNC). Whether this is due to higher use of disease-modifying interventions or an independent factor of attendance at a specialist clinic has not been established. Hence, we performed a retrospective review of hospital notes of patients with MND who were diagnosed and followed up in a GNC between 1998 and 2002 and in an MDC between 2006 and 2010. Overall, 162 patients attended a GNC, and 255 attended the MDC. The median survival from diagnosis was 19 months for patients who attended the MDC, compared to 11 months for those attending the GNC (hazard ratio 0.51, 95% CI 0.41-0.64). The Cox hazards model identified attendance at an MDC as an independently positive prognostic factor (HR 1.93, 95% CI 1.37-2.72, p < 0.001). We concluded that care at an MDC improves survival. While this effect is augmented by the increased use of riluzole, NIV and PEG, the data suggest that coordinated care independently improves the prognosis of MND patients.
Collapse
Affiliation(s)
- Tomi Aridegbe
- Academic Neurology Unit, Sheffield Institute for Translational Neuroscience, University of Sheffield, South Yorkshire, UK
| | | | | | | | | | | |
Collapse
|
126
|
|
127
|
Kwan JY, Jeong SY, Van Gelderen P, Deng HX, Quezado MM, Danielian LE, Butman JA, Chen L, Bayat E, Russell J, Siddique T, Duyn JH, Rouault TA, Floeter MK. Iron accumulation in deep cortical layers accounts for MRI signal abnormalities in ALS: correlating 7 tesla MRI and pathology. PLoS One 2012; 7:e35241. [PMID: 22529995 PMCID: PMC3328441 DOI: 10.1371/journal.pone.0035241] [Citation(s) in RCA: 204] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Accepted: 03/11/2012] [Indexed: 11/21/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder characterized by cortical and spinal motor neuron dysfunction. Routine magnetic resonance imaging (MRI) studies have previously shown hypointense signal in the motor cortex on T2-weighted images in some ALS patients, however, the cause of this finding is unknown. To investigate the utility of this MR signal change as a marker of cortical motor neuron degeneration, signal abnormalities on 3T and 7T MR images of the brain were compared, and pathology was obtained in two ALS patients to determine the origin of the motor cortex hypointensity. Nineteen patients with clinically probable or definite ALS by El Escorial criteria and 19 healthy controls underwent 3T MRI. A 7T MRI scan was carried out on five ALS patients who had motor cortex hypointensity on the 3T FLAIR sequence and on three healthy controls. Postmortem 7T MRI of the brain was performed in one ALS patient and histological studies of the brains and spinal cords were obtained post-mortem in two patients. The motor cortex hypointensity on 3T FLAIR images was present in greater frequency in ALS patients. Increased hypointensity correlated with greater severity of upper motor neuron impairment. Analysis of 7T T2*-weighted gradient echo imaging localized the signal alteration to the deeper layers of the motor cortex in both ALS patients. Pathological studies showed increased iron accumulation in microglial cells in areas corresponding to the location of the signal changes on the 3T and 7T MRI of the motor cortex. These findings indicate that the motor cortex hypointensity on 3T MRI FLAIR images in ALS is due to increased iron accumulation by microglia.
Collapse
Affiliation(s)
- Justin Y Kwan
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, United States of America.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
128
|
Lactate dyscrasia: a novel explanation for amyotrophic lateral sclerosis. Neurobiol Aging 2012; 33:569-81. [DOI: 10.1016/j.neurobiolaging.2010.04.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2009] [Revised: 04/09/2010] [Accepted: 04/13/2010] [Indexed: 12/11/2022]
|
129
|
White matter pathology in ALS and lower motor neuron ALS variants: a diffusion tensor imaging study using tract-based spatial statistics. J Neurol 2012; 259:1848-59. [PMID: 22349938 DOI: 10.1007/s00415-012-6420-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Revised: 01/10/2012] [Accepted: 01/11/2012] [Indexed: 10/28/2022]
Abstract
The aim of this work was to investigate white-matter microstructural changes within and outside the corticospinal tract in classical amyotrophic lateral sclerosis (ALS) and in lower motor neuron (LMN) ALS variants by means of diffusion tensor imaging (DTI). We investigated 22 ALS patients and 21 age-matched controls utilizing a whole-brain approach with a 1.5-T scanner for DTI. The patient group was comprised of 15 classical ALS- and seven LMN ALS-variant patients (progressive muscular atrophy, flail arm and flail leg syndrome). Disease severity was measured by the revised version of the functional rating scale. White matter fractional anisotropy (FA) was assessed using tract-based spatial statistics (TBSS) and a region of interest (ROI) approach. We found significant FA reductions in motor and extra-motor cerebral fiber tracts in classical ALS and in the LMN ALS-variant patients compared to controls. The voxel-based TBSS results were confirmed by the ROI findings. The white matter damage correlated with the disease severity in the patient group and was found in a similar distribution, but to a lesser extent, among the LMN ALS-variant subgroup. ALS and LMN ALS variants are multisystem degenerations. DTI shows the potential to determine an earlier diagnosis, particularly in LMN ALS variants. The statistically identical findings of white matter lesions in classical ALS and LMN variants as ascertained by DTI further underline that these variants should be regarded as part of the ALS spectrum.
Collapse
|
130
|
Schrooten M, Robberecht W, Van Damme P. From El Escorial to Awaji: where do we go next with the amyotrophic lateral sclerosis criteria? Neurodegener Dis Manag 2012. [DOI: 10.2217/nmt.11.82] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
SUMMARY Making an early and accurate diagnosis in amyotrophic lateral sclerosis is important for patients and their families and for entry in clinical trials. Amyotrophic lateral sclerosis remains a clinical diagnosis, requiring the presence of upper and lower motor neuron symptoms and signs in multiple body regions, in patients with a progressive disease course and after exclusion of other diseases that can mimic the clinical presentation. Research criteria have been developed to allow uniform diagnosis. The original El Escorial criteria have been revised twice to improve the sensitivity. In this report, the current scientific status of these criteria is reviewed and suggestions for further adaptations are made.
Collapse
Affiliation(s)
- Maarten Schrooten
- Department of Neurology & Experimental Neurology, University Hospitals Leuven, KU Leuven, Belgium
| | - Wim Robberecht
- Department of Neurology & Experimental Neurology, University Hospitals Leuven, KU Leuven, Belgium
- LIND (Leuven Institute of Neurodegenerative Disorders), KU Leuven, Belgium
- Vesalius Research Center, VIB, Leuven, Belgium
| | - Philip Van Damme
- Neurology Department, University Hospitals Leuven, Herestraat 49, 3000 Leuven, Belgium
| |
Collapse
|
131
|
Sharma KR, Sheriff S, Maudsley A, Govind V. Diffusion tensor imaging of basal ganglia and thalamus in amyotrophic lateral sclerosis. J Neuroimaging 2012; 23:368-74. [PMID: 22273090 DOI: 10.1111/j.1552-6569.2011.00679.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
PURPOSE To assess the involvement of basal ganglia and thalamus in patients with amyotrophic lateral sclerosis (ALS) using diffusion tensor imaging (DTI) method. METHODS Fourteen definite-ALS patients and 12 age-matched controls underwent whole brain DTI on a 3T scanner. Mean-diffusivity (MD) and fractional anisotropy (FA) were obtained bilaterally from the basal ganglia and thalamus in the regions-of-interest (ROIs). RESULTS The MD was significantly higher (P < .02) in basal ganglia and thalamus in patients with ALS compared with controls. Correspondingly, the FA was significantly lower (P < .02) in these structures, except in caudate (P = .04) and putamen (P = .06) in patients compared with controls. There were mild to strong correlations (r = .3-.7) between the DTI measures of basal ganglia and finger-tap, foot-tap, and lip-and-tongue movement rate. CONCLUSIONS The increased MD in basal ganglia and thalamus and decreased FA in globus pallidus and thalamus are indicative of neuronal loss or dysfunction in these structures.
Collapse
Affiliation(s)
- Khema R Sharma
- Department of Neurology, University of Miami, Miller School of Medicine, Miami, FL 33136, USA.
| | | | | | | |
Collapse
|
132
|
Higashihara M, Sonoo M, Imafuku I, Fukutake T, Kamakura K, Inoue K, Hatanaka Y, Shimizu T, Tsuji S, Ugawa Y. Fasciculation potentials in amyotrophic lateral sclerosis and the diagnostic yield of the Awaji algorithm. Muscle Nerve 2012; 45:175-82. [DOI: 10.1002/mus.22299] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
133
|
Sharma KR, Saigal G, Maudsley AA, Govind V. 1H MRS of basal ganglia and thalamus in amyotrophic lateral sclerosis. NMR IN BIOMEDICINE 2011; 24:1270-1276. [PMID: 21404355 PMCID: PMC3210902 DOI: 10.1002/nbm.1687] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Revised: 01/06/2011] [Accepted: 01/10/2011] [Indexed: 05/30/2023]
Abstract
Previous studies have evaluated motor and extramotor cerebral cortical regions in patients with amyotrophic lateral sclerosis (ALS) using (1) H MRS, but none have evaluated the thalamus or basal ganglia. The objective of this exploratory study was to evaluate the subclinical involvement of the basal ganglia and thalamus in patients with ALS using (1) H MRS. Fourteen patients (52±7 years) with sporadic definite ALS and 17 age-matched controls were studied using volumetric MRSI on a 3-T scanner. The concentration of the metabolites N-acetylaspartate (NAA), choline (Cho) and their ratio (NAA/Cho) were obtained bilaterally from the basal ganglia (lentiform nucleus, caudate) and thalamus. The maximum rates of finger and foot tap and lip and tongue movements were obtained to assess extrapyramidal and pyramidal tract function. In patients with ALS, relative to controls, the NAA concentration was significantly lower (p<0.02) in the basal ganglia and thalamus, and the Cho concentration was higher (p<0.01) in these structures, except in the caudate (p=0.04). Correspondingly, the NAA/Cho ratio was significantly lower (p<0.01) in these structures, except in the caudate (p=0.03), in patients than in controls. There were mild to strong correlations (r=0.4-0.7) between the metabolites of the basal ganglia and finger tap, foot tap and lip and tongue movement rates. In conclusion, decreased NAA in the basal ganglia and thalamus and increased Cho and decreased NAA/Cho in the lentiform nucleus and thalamus are indicative of neuronal loss or dysfunction and alterations in choline-containing membranes in these structures.
Collapse
Affiliation(s)
- Khema R Sharma
- Department of Neurology, University of Miami, Miller School of Medicine, 1150 NW 14th St., Miami, FL 33136, USA.
| | | | | | | |
Collapse
|
134
|
Decremental responses to repetitive nerve stimulation (RNS) in motor neuron disease. Clin Neurophysiol 2011; 122:2530-6. [DOI: 10.1016/j.clinph.2011.05.019] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2010] [Revised: 05/24/2011] [Accepted: 05/26/2011] [Indexed: 11/21/2022]
|
135
|
Sonoo M, Higashihara M, Hokkoku K. [Electrodiagnosis of ALS: its practical aspects]. Rinsho Shinkeigaku 2011; 51:1111-1113. [PMID: 22277500 DOI: 10.5692/clinicalneurol.51.1111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Electrodiagnostic methods, especially needle EMG plays an important role for the ALS diagnosis. Existing diagnostic criteria such as revised El Escorial criteria (R-EEC) and Awaji algorithm have a drawback of low sensitivity. Our study revealed that the percentage of patients classified as confirmed ALS, i.e. clinically probable (laboratory supported) or higher, was 43% using the R-EEC and 37% using the Awaji algorithm. Needle EMG can strongly suggest ALS beyond these criteria. Fasciculation potentials (FPs) are sufficiently specific for ALS, and we have argued its diagnostic utitlity in ALS diagnosis. FPs are rare in other neurogenic diseases, such as cervical or lumbar spine disorders and spinal and bulbar muscular atrophy. Profuse FPs observed in both upper and lower limbs would strongly suggest ALS. EMG of the upper trapezius muscle is useful since it is easily relaxed, and the spontaneous activities in this muscle are sufficiently sensitive and specific for ALS. Inclusion body myositis (IBM) might be confused with ALS, but its differentiation is actually easy since a normal recruitment in a chronically weak muscle definitely indicates myopathy. Furthermore, EMG of the flexor digitorum profundus muscle in IBM patients would reveal typical myopathic, i.e. low-amplitude and thin, motor unit potentials.
Collapse
Affiliation(s)
- Masahiro Sonoo
- Department of Neurology, Teikyo University School of Medicine
| | | | | |
Collapse
|
136
|
Bowser R, Turner MR, Shefner J. Biomarkers in amyotrophic lateral sclerosis: opportunities and limitations. Nat Rev Neurol 2011; 7:631-8. [DOI: 10.1038/nrneurol.2011.151] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
137
|
Hardiman O, van den Berg LH, Kiernan MC. Clinical diagnosis and management of amyotrophic lateral sclerosis. Nat Rev Neurol 2011; 7:639-49. [PMID: 21989247 DOI: 10.1038/nrneurol.2011.153] [Citation(s) in RCA: 427] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease that results in progressive loss of bulbar and limb function. Patients typically die from respiratory failure within 3 years of symptom onset. The incidence of ALS in Europe is 2-3 cases per 100,000 individuals in the general population, and the overall lifetime risk of developing the disease is 1:400. ALS is familial in 5% of cases, and shows a Mendelian pattern of inheritance. ALS is recognized to overlap with frontotemporal dementia. Diagnosis is made on clinical grounds, using internationally recognized consensus criteria, after exclusion of conditions that can mimic ALS. The Revised ALS Functional Rating Scale is currently the most widely used assessment tool; scores are used to predict survival, and have been employed extensively in clinical trials. Riluzole remains the only effective drug, and extends the average survival of patients by 3-6 months. Optimal treatment is based on symptom management and preservation of quality of life, provided in a multidisciplinary setting. The discovery of further effective disease-modifying therapies remains a critical need for patients with this devastating condition.
Collapse
Affiliation(s)
- Orla Hardiman
- Department of Neurology, School of Medicine, Room 5.41, 5th Floor, Biomedical Science Building, Trinity College Dublin, Dublin 2, Ireland.
| | | | | |
Collapse
|
138
|
On the development of markers for pathological TDP-43 in amyotrophic lateral sclerosis with and without dementia. Prog Neurobiol 2011; 95:649-62. [PMID: 21911035 DOI: 10.1016/j.pneurobio.2011.08.011] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Revised: 08/29/2011] [Accepted: 08/29/2011] [Indexed: 11/24/2022]
Abstract
Pathological 43-kDa transactive response sequence DNA-binding protein (TDP-43) has been recognized as the major disease protein in amyotrophic lateral sclerosis (ALS), frontotemporal lobar degeneration with ubiquitin positive, tau and α-synuclein negative inclusions (FTLD-U) and the transitional forms between these multisystem conditions. In order to develop TDP-43 into a successful ALS biomarker, the natural history of TDP-43 pathology needs to be characterized and the underlying pathophysiology established. Here we propose a spatial and temporal "two-axes" model of central nervous system vulnerability for TDP-43 linked degeneration and review recent studies on potential biomarkers related to pathological TDP-43 in the cerebrospinal fluid (CSF), blood, and skeletal muscle. The model includes the following two arms: Firstly, a "motor neuron disease" or "spinal cord/brainstem to motor cortex" axis (with degeneration possibly ascending from the lower motor neurons to the upper motor neurons); and secondly, a "dementia" or "corticoid/allocortex to neocortex" axis (with a probable spread of TDP-43 linked degeneration from the mediotemporal lobe to wider mesocortical and neocortical brain areas). At the cellular level, there is a gradual disappearance of normal TDP-43 in the nucleus in combination with the formation of pathological aggregates in the cell body and cellular processes, which can also be used to identify the stage of the disease process. Moreover, TDP-43 lesions in subpial/subependymal or perivascular localizations have been noted, and this might account for increased CSF and blood TDP-43 levels through mechanisms that remain to be elucidated.
Collapse
|
139
|
Gould TW, Oppenheim RW. Motor neuron trophic factors: therapeutic use in ALS? BRAIN RESEARCH REVIEWS 2011; 67:1-39. [PMID: 20971133 PMCID: PMC3109102 DOI: 10.1016/j.brainresrev.2010.10.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2010] [Revised: 10/12/2010] [Accepted: 10/18/2010] [Indexed: 12/12/2022]
Abstract
The modest effects of neurotrophic factor (NTF) treatment on lifespan in both animal models and clinical studies of Amyotropic Lateral Sclerosis (ALS) may result from any one or combination of the four following explanations: 1.) NTFs block cell death in some physiological contexts but not in ALS; 2.) NTFs do not rescue motoneurons (MNs) from death in any physiological context; 3.) NTFs block cell death in ALS but to no avail; and 4.) NTFs are physiologically effective but limited by pharmacokinetic constraints. The object of this review is to critically evaluate the role of both NTFs and the intracellular cell death pathway itself in regulating the survival of spinal and cranial (lower) MNs during development, after injury and in response to disease. Because the role of molecules mediating MN survival has been most clearly resolved by the in vivo analysis of genetically engineered mice, this review will focus on studies of such mice expressing reporter, null or other mutant alleles of NTFs, NTF receptors, cell death or ALS-associated genes.
Collapse
Affiliation(s)
- Thomas W Gould
- Department of Neurobiology and Anatomy, Wake Forest University School of Medicine, Winston-Salem, NC 27157-1010, USA.
| | | |
Collapse
|
140
|
Immunohistochemistry utilization in autopsy pathology: A Canadian experience. Pathol Res Pract 2011; 207:241-6. [DOI: 10.1016/j.prp.2011.02.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Revised: 02/11/2011] [Accepted: 02/14/2011] [Indexed: 11/19/2022]
|
141
|
Geser F, Stein B, Partain M, Elman LB, McCluskey LF, Xie SX, Van Deerlin VM, Kwong LK, Lee VMY, Trojanowski JQ. Motor neuron disease clinically limited to the lower motor neuron is a diffuse TDP-43 proteinopathy. Acta Neuropathol 2011; 121:509-17. [PMID: 21225272 DOI: 10.1007/s00401-011-0797-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Revised: 12/20/2010] [Accepted: 12/21/2010] [Indexed: 12/12/2022]
Abstract
Motor neuron disease (MND) may present as an isolated lower motor neuron (LMN) disorder. Although the significance of pathological 43 kDa transactive responsive sequence DNA binding protein (TDP-43) for amyotrophic lateral sclerosis (ALS) was appreciated only recently, the topographical distribution of TDP-43 pathology in MND clinically isolated to the LMN versus normal controls (COs) is only incompletely described. Therefore, we performed longitudinal clinical evaluation and retrospective chart review of autopsied patients diagnosed with isolated LMN disease. Cases with a disease duration over 4 years were designated as progressive muscular atrophy (PMA), and those with a more rapid course as MND/LMN. Immunohistochemistry was employed to identify neuronal and glial TDP-43 pathology in the central nervous system (CNS) in patients and COs. We examined 19 subjects including six patients (i.e., four with MND/LMN and two with PMA) and 13 COs. All patients showed significant TDP-43 linked degeneration of LMNs, and five cases showed a lesser degree of motor cortex degeneration. Additional brain areas were affected in varying degrees, ranging from predominantly brainstem pathology to significant involvement of the whole CNS including neocortical and limbic areas. Pathological TDP-43 was present only rarely in the CO group. We conclude that MND limited to the LMN and PMA is part of a disease continuum that includes ALS and FTLD-TDP, all of which are characterized by widespread TDP-43 pathology. Hence, we suggest that the next revision of the El Escorial criteria for the diagnosis of ALS include MND patients with disease clinically limited to the LMN and PMA as variants of ALS, which like classical ALS, are TDP-43 proteinopathies.
Collapse
|
142
|
van der Graaff MM, Sage CA, Caan MWA, Akkerman EM, Lavini C, Majoie CB, Nederveen AJ, Zwinderman AH, Vos F, Brugman F, van den Berg LH, de Rijk MC, van Doorn PA, Van Hecke W, Peeters RR, Robberecht W, Sunaert S, de Visser M. Upper and extra-motoneuron involvement in early motoneuron disease: a diffusion tensor imaging study. Brain 2011; 134:1211-28. [DOI: 10.1093/brain/awr016] [Citation(s) in RCA: 117] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
|
143
|
Affiliation(s)
- Masahiro Sonoo
- Department of Neurology, Teikyo University School of Medicine
| |
Collapse
|
144
|
Deregulation of Cytoskeletal Protein Phosphorylation and Neurodegeneration. ADVANCES IN NEUROBIOLOGY 2011. [DOI: 10.1007/978-1-4419-6787-9_14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
145
|
Turner MR, Modo M. Advances in the application of MRI to amyotrophic lateral sclerosis. EXPERT OPINION ON MEDICAL DIAGNOSTICS 2010; 4:483-496. [PMID: 21516259 PMCID: PMC3080036 DOI: 10.1517/17530059.2010.536836] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
IMPORTANCE OF THE FIELD: With the emergence of therapeutic candidates for the incurable and rapidly progressive neurodegenerative condition of amyotrophic lateral sclerosis (ALS), it will be essential to develop easily obtainable biomarkers for diagnosis, as well as monitoring, in a disease where clinical examination remains the predominant diagnostic tool. Magnetic resonance imaging (MRI) has greatly developed over the past thirty years since its initial introduction to neuroscience. With multi-modal applications, MRI is now offering exciting opportunities to develop practical biomarkers in ALS. AREAS COVERED IN THIS REVIEW: The historical application of MRI to the field of ALS, its state-of-the-art and future aspirations will be reviewed. Specifically, the significance and limitations of structural MRI to detect gross morphological tissue changes in relation to clinical presentation will be discussed. The more recent application of diffusion tensor imaging (DTI), magnetic resonance spectroscopy (MRS), functional and resting-state MRI (fMRI & R-fMRI) will be contrasted in relation to these more conventional MRI assessments. Finally, future aspirations will be sketched out in providing a more disease mechanism-based molecular MRI. WHAT THE READER WILL GAIN: This review will equip the reader with an overview of the application of MRI to ALS and illustrate its potential to develop biomarkers. This discussion is exemplified by key studies, demonstrating the strengths and limitations of each modality. The reader will gain an expert opinion on both the current and future developments of MR imaging in ALS. TAKE HOME MESSAGE: MR imaging generates potential diagnostic, prognostic and therapeutic monitoring biomarkers of ALS. The emerging fusion of structural, functional and potentially molecular imaging will improve our understanding of wider cerebral connectivity and holds the promise of biomarkers sensitive to the earliest changes.
Collapse
Affiliation(s)
- Martin R Turner
- Oxford University Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, Oxford, UK
| | | |
Collapse
|
146
|
Turner MR, Brockington A, Scaber J, Hollinger H, Marsden R, Shaw PJ, Talbot K. Pattern of spread and prognosis in lower limb-onset ALS. ACTA ACUST UNITED AC 2010; 11:369-73. [PMID: 20001488 DOI: 10.3109/17482960903420140] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Our objective was to establish the pattern of spread in lower limb-onset ALS (contra- versus ipsi-lateral) and its contribution to prognosis within a multivariate model. Pattern of spread was established in 109 sporadic ALS patients with lower limb-onset, prospectively recorded in Oxford and Sheffield tertiary clinics from 2001 to 2008. Survival analysis was by univariate Kaplan-Meier log-rank and multivariate Cox proportional hazards. Variables studied were time to next limb progression, site of next progression, age at symptom onset, gender, diagnostic latency and use of riluzole. Initial progression was either to the contralateral leg (76%) or ipsilateral arm (24%). Factors independently affecting survival were time to next limb progression, age at symptom onset, and diagnostic latency. Time to progression as a prognostic factor was independent of initial direction of spread. In a regression analysis of the deceased, overall survival from symptom onset approximated to two years plus the time interval for initial spread. In conclusion, rate of progression in lower limb-onset ALS is not influenced by whether initial spread is to the contralateral limb or ipsilateral arm. The time interval to this initial spread is a powerful factor in predicting overall survival, and could be used to facilitate decision-making and effective care planning.
Collapse
Affiliation(s)
- Martin R Turner
- Oxford University Department of Clinical Neurology, Oxford, UK.
| | | | | | | | | | | | | |
Collapse
|
147
|
de Carvalho M, Pinto S, Swash M. Does the motor cortex influence denervation in ALS? EMG studies of muscles with both contralateral and bilateral corticospinal innervation. Clin Neurophysiol 2010; 122:629-635. [PMID: 20822953 DOI: 10.1016/j.clinph.2010.07.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2010] [Revised: 06/13/2010] [Accepted: 07/06/2010] [Indexed: 12/13/2022]
Abstract
OBJECTIVES To evaluate the pattern of degeneration of lower motor neuron progression in ALS in relation to the contralateral and ipsilateral corticospinal innervation of the tested muscles. METHODS EMG evaluation of the sternomastoid and trapezius muscles on one or both sides, and transcranial magnetic stimulation to record motor evoked responses from these muscles after ipsilateral and contralateral cortical stimulation. The sternomastoid muscle receives corticospinal input from both hemispheres, but the trapezius only a contralateral corticospinal innervation; however the power motor innervation of both these muscles is derived from the same spinal nucleus, and the same motor nerve. Seventy-five patients with ALS were studied at the time of diagnosis, and 54 control subjects, consisting of normal subjects and disease control subjects. MUP analysis and spontaneous activity were assessed. RESULTS We confirmed that the sternomastoid receives both contralateral and ipsilateral corticospinal innervation, and the trapezius usually only contralateral innervation. The MUP analysis revealed symmetric changes in sternomastoid and trapezius muscles, and both muscles were equally affected. CONCLUSIONS Our findings are in accord with the concept that LMN degeneration in ALS is related to local factors in the spinal cord. SIGNIFICANCE Our findings suggest that local factors in the spinal grey matter are important in causing LMN degeneration in ALS, but they do not rule out a corticomotoneuronal contribution.
Collapse
Affiliation(s)
| | - Susana Pinto
- Institute of Molecular Medicine, Faculty of Medicine, Lisbon, Portugal
| | - Michael Swash
- Department of Neurosciences, St. Maria Hospital, Lisbon, Portugal; Department of Neurology, Royal London Hospital, Queen Mary School of Medicine, University of London, London, UK
| |
Collapse
|
148
|
van der Graaff MM, Lavini C, Akkerman EM, Majoie CB, Nederveen AJ, Zwinderman AH, Brugman F, van den Berg LH, de Jong JMBV, de Visser M. MR spectroscopy findings in early stages of motor neuron disease. AJNR Am J Neuroradiol 2010; 31:1799-806. [PMID: 20801763 DOI: 10.3174/ajnr.a2217] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE Upper motor neuron degeneration varies in different phenotypes of MND. We used single-voxel MR spectroscopy of the primary motor cortex to detect corticomotoneuron degeneration and glial hyperactivity in different phenotypes of MND with a relatively short disease duration, contributing to further delineation of the phenotypes. MATERIALS AND METHODS We prospectively included patients with ALS-B, ALS-L, and PMA and compared their data with those of patients with PLS and healthy controls. Each cohort consisted of 12 individuals. Disease duration was <1 year in ALS and PMA, but longer in PLS by definition. Follow-up examination was at 6 months. We measured ALSFRS-R, finger- and foot-tapping speed, and levels of the following: 1) NAAx, 2) mIns, and 3) Glx in the primary motor cortex. RESULTS At baseline, we found significantly decreased NAAx levels and increased mIns levels in PLS. Levels of NAAx and mIns in patients with ALS-L and ALS-B were not significantly different from those in controls, but NAAx levels were significantly lower compared with those in PMA. At follow-up, only in PMA was a decrease of NAAx demonstrated. Glx levels varied widely in all groups. Levels of NAAx and mIns correlated well with clinical variables. CONCLUSIONS Metabolite changes suggest neuronal dysfunction and active glial involvement in PLS. The corticomotoneuron is affected in early ALS-B and ALS-L, but at a later stage also in PMA. MR spectroscopy data are useful to obtain insight into the disease process at the level of the upper motor neuron in various phenotypes of MND.
Collapse
Affiliation(s)
- M M van der Graaff
- Departments of Neurology, Academic Medical Center, Amsterdam, the Netherlands.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
149
|
Turner MR, Swash M, Ebers GC. Lockhart Clarke's contribution to the description of amyotrophic lateral sclerosis. Brain 2010; 133:3470-9. [PMID: 20576696 DOI: 10.1093/brain/awq097] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The definition of the clinicopathological entity of amyotrophic lateral sclerosis evolved over half a century. Although the definitive term amyotrophic lateral sclerosis that acknowledged both upper and lower motor neuron involvement was attributed to Jean-Martin Charcot in 1874, his initial case was published nearly a decade earlier; and it is accepted that, from at least the 1830s, several others (including Charles Bell, François-Amilcar Aran and Jean Cruveilhier) had already recognized a progressive lower motor neuron-only syndrome within a broader, clinically-defined group of disorders, termed progressive muscular atrophy. Although William Gowers first grouped the three phenotypes of amyotrophic lateral sclerosis, progressive muscular atrophy and progressive bulbar palsy together as part of the same syndrome, the term motor neuron disease, as an over-arching label, was not suggested until nearly a century later by W. Russell Brain. Augustus Jacob Lockhart Clarke (1817-80) is best known for his descriptions of spinal cord anatomy. However, in two detailed case reports from the 1860s, he carried out rigorous post-mortem neuropathological studies of what appear to be classical cases of amyotrophic lateral sclerosis. Furthermore, he recognized the additional involvement of the corticospinal tracts that distinguished this from progressive muscular atrophy. Several aspects of the exquisite clinical histories documented as part of both studies, one by Charles Bland Radcliffe, resonate with contemporary debates concerning the evolution of disease in amyotrophic lateral sclerosis. These 'past masters' still have much to teach us.
Collapse
Affiliation(s)
- Martin R Turner
- Department of Clinical Neurology, West Wing Level 3, John Radcliffe Hospital, Oxford University, Oxford OX3 9DU, UK.
| | | | | |
Collapse
|
150
|
Baumann F, Rose SE, Nicholson GA, Hutchinson N, Pannek K, Pettitt A, Mccombe PA, Henderson RD. Biomarkers of disease in a case of familial lower motor neuron ALS. ACTA ACUST UNITED AC 2010; 11:486-9. [DOI: 10.3109/17482961003774428] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|