101
|
Rajan KB, McAninch EA, Aggarwal NT, Barnes LL, Wilson RS, Weuve J, DeCarli CS, Evans DA. Longitudinal Changes in Blood Biomarkers of Clinical Alzheimer Disease in a Biracial Population Sample. Neurology 2023; 100:e874-e883. [PMID: 36446595 PMCID: PMC9984218 DOI: 10.1212/wnl.0000000000201289] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 08/10/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND AND OBJECTIVES Recent studies suggest the utility of blood biomarkers in detecting changes in neurodegenerative disorders. The objective of our research was to test the hypothesis that the longitudinal changes in total tau (t-tau), neurofilament light chain (Nf-L), and glial fibrillary acidic protein (GFAP) are associated with structural MRI and the development of clinical Alzheimer disease (AD) and cognitive decline. METHODS Data came from a population-based sample with serum concentrations of t-tau, Nf-L, and GFAP and cognitive characteristics measured over 17 years. The inclusion criteria for this investigation were based on participants with blood samples, cognitive function testing, and clinical diagnosis for AD. The longitudinal changes in the serum biomarkers were examined using linear mixed models for log10-transformed concentrations. RESULTS In 1,327 participants (60% Black participants and 60% women, the concentration of t-tau increased annually by 4.8% (95% CI = 4.0-5.6) and Nf-L by 5.9% (95% CI = 5.4-6.4). The longitudinal change in GFAP was higher among Black participants than among White participants (4.4% vs 3.5% per year, p = 0.028). Baseline MRI characteristics were associated with the longitudinal changes in serum biomarkers of clinical AD. Specifically, a higher baseline third ventricular volume was associated with a higher rate of increase in the concentration of t-tau, and white matter hyperintensities predicted a higher rate of increase in Nf-L. The rate of change in concentrations of t-tau, Nf-L, and GFAP was significantly higher among those who developed clinical AD than in those with no cognitive impairment. For each standard deviation unit decline in global cognition, longitudinal change in t-tau increased by 81% (95% CI = 76-86), Nf-L by 113% (95% CI = 105-120), and GFAP by 66% (95% CI = 62-70). DISCUSSION Blood biomarkers showed significant longitudinal changes corresponding to cognitive decline, clinical AD, and structural MRI characteristics. Our findings show that longitudinal changes in serum biomarkers were associated with several cognitive endophenotypes. CLASSIFICATION OF EVIDENCE The study found Class II evidence that longitudinal changes in serum t-tau, Nf-L, and GFAP were associated with cognitive decline and the development of clinical AD in people older than 65 years.
Collapse
Affiliation(s)
- Kumar B Rajan
- From the Rush Institute for Healthy Aging (K.R., D.E.), Rush University Medical Center, Chicago IL; Stanford University (E.A.M.), Palo Alto, CA; Rush Alzheimer's Disease Center (N.A., L.L.B., R.W.), Chicago IL; Boston University (J.W.), Boston, MA; and Department of Neurology (C.S.D.), University of California, Davis.
| | - Elizabeth A McAninch
- From the Rush Institute for Healthy Aging (K.R., D.E.), Rush University Medical Center, Chicago IL; Stanford University (E.A.M.), Palo Alto, CA; Rush Alzheimer's Disease Center (N.A., L.L.B., R.W.), Chicago IL; Boston University (J.W.), Boston, MA; and Department of Neurology (C.S.D.), University of California, Davis
| | - Neelum T Aggarwal
- From the Rush Institute for Healthy Aging (K.R., D.E.), Rush University Medical Center, Chicago IL; Stanford University (E.A.M.), Palo Alto, CA; Rush Alzheimer's Disease Center (N.A., L.L.B., R.W.), Chicago IL; Boston University (J.W.), Boston, MA; and Department of Neurology (C.S.D.), University of California, Davis
| | - Lisa L Barnes
- From the Rush Institute for Healthy Aging (K.R., D.E.), Rush University Medical Center, Chicago IL; Stanford University (E.A.M.), Palo Alto, CA; Rush Alzheimer's Disease Center (N.A., L.L.B., R.W.), Chicago IL; Boston University (J.W.), Boston, MA; and Department of Neurology (C.S.D.), University of California, Davis
| | - Robert S Wilson
- From the Rush Institute for Healthy Aging (K.R., D.E.), Rush University Medical Center, Chicago IL; Stanford University (E.A.M.), Palo Alto, CA; Rush Alzheimer's Disease Center (N.A., L.L.B., R.W.), Chicago IL; Boston University (J.W.), Boston, MA; and Department of Neurology (C.S.D.), University of California, Davis
| | - Jennifer Weuve
- From the Rush Institute for Healthy Aging (K.R., D.E.), Rush University Medical Center, Chicago IL; Stanford University (E.A.M.), Palo Alto, CA; Rush Alzheimer's Disease Center (N.A., L.L.B., R.W.), Chicago IL; Boston University (J.W.), Boston, MA; and Department of Neurology (C.S.D.), University of California, Davis
| | - Charles S DeCarli
- From the Rush Institute for Healthy Aging (K.R., D.E.), Rush University Medical Center, Chicago IL; Stanford University (E.A.M.), Palo Alto, CA; Rush Alzheimer's Disease Center (N.A., L.L.B., R.W.), Chicago IL; Boston University (J.W.), Boston, MA; and Department of Neurology (C.S.D.), University of California, Davis
| | - Denis A Evans
- From the Rush Institute for Healthy Aging (K.R., D.E.), Rush University Medical Center, Chicago IL; Stanford University (E.A.M.), Palo Alto, CA; Rush Alzheimer's Disease Center (N.A., L.L.B., R.W.), Chicago IL; Boston University (J.W.), Boston, MA; and Department of Neurology (C.S.D.), University of California, Davis
| |
Collapse
|
102
|
Abed SS, Hamdan FB, Hussein MM, Al-Mayah QS. Plasma tau and neurofilament light chain as biomarkers of Alzheimer's disease and their relation to cognitive functions. J Med Life 2023; 16:284-289. [PMID: 36937471 PMCID: PMC10015560 DOI: 10.25122/jml-2022-0251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 01/03/2023] [Indexed: 03/21/2023] Open
Abstract
Alzheimer's disease (AD) dementia is the most frequent cause of neurodegenerative dementia. The cognitive and behavioral symptoms associated with this disorder often have overlapping characteristics, potentially resulting in delayed diagnosis or misdiagnosis. This study aimed to assess the level of peripheral blood neurofilament light chain (NfL) and total tau (t-tau) protein in AD patients and investigate their relationship with cognitive impairment. The study included 80 participants of both sexes between the ages of 60 to 85 years. The participants were divided into two groups, consisting of 40 individuals in the control group (mean age 75±6.6 years) who had no cognitive or functional impairments and 40 AD patients (mean age 74.98±5.03 years). This study utilized the DSM-5 diagnostic criteria for major or mild neurocognitive disorder attributed to Alzheimer's disease (AD). The clinical and biochemical features of all participants were documented, and the Alzheimer's disease Assessment Scale cognitive subscale (ADAS-cog) scores were evaluated. Sandwich ELISA was employed to determine serum NfL and t-tau protein levels. The median serum NfL and t-tau protein levels in AD patients were significantly higher than those of the controls (47.84 pg/ml versus 17.66 pg/ml and 12.05 pg/ml versus 11.13 pg/ml, respectively). Age was positively correlated with NfL, t-tau levels, and ADAS-cog. Although elevated NfL and t-tau protein levels may play a role in disease progression, their diagnostic value for AD was limited.
Collapse
Affiliation(s)
- Sadiruldeen Sami Abed
- Department of Pharmacy, Osol Aldeen University College, Baghdad, Iraq
- Corresponding Author: Sadiruldeen Sami Abed, Department of Pharmacy, Osol Aldeen University College, Baghdad, Iraq. E-mail:
| | - Farqad Bader Hamdan
- Department of Physiology, College of Medicine, Al-Nahrain University, Baghdad, Iraq
| | | | | |
Collapse
|
103
|
Jiang X, O'Bryant SE, Johnson LA, Rissman RA, Yaffe K. Association of cardiovascular risk factors and blood biomarkers with cognition: The HABS-HD study. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2023; 15:e12394. [PMID: 36911361 PMCID: PMC9994160 DOI: 10.1002/dad2.12394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 12/08/2022] [Accepted: 12/20/2022] [Indexed: 03/14/2023]
Abstract
Introduction To determine if cardiovascular risk factor (CVRF) burden is associated with Alzheimer's disease (AD) biomarkers and whether they synergistically associate with cognition. Methods We cross-sectionally studied 1521 non-demented Mexican American (52%) and non-Hispanic White individuals aged ≥50 years. A composite score was calculated by averaging the z-scores of five cognitive tests. Plasma β-amyloid (Aβ) 42/40, total tau (t-tau), and neurofilament light (NfL) were assayed using Simoa. CVRF burden was assessed using the Framingham Risk Score (FRS). Results Compared to low FRS (< 10% risk), high FRS (≥ 20% risk) was independently associated with increased t-tau and NfL. High FRS was significantly associated with higher NfL only among Mexican American individuals. Intermediate or high FRS (vs. low FRS) were independently associated with lower cognition, and the association remained significant after adjusting for plasma biomarkers. Hypertension synergistically interacted with t-tau and NfL (p < 0.05). Discussion CVRFs play critical roles, both through independent and neurodegenerative pathways, on cognition.
Collapse
Affiliation(s)
- Xiaqing Jiang
- Department of Psychiatry and Behavioral SciencesUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Sid E. O'Bryant
- Institute for Translational ResearchUniversity of North Texas Health Science CenterFort WorthTexasUSA
| | - Leigh A. Johnson
- Institute for Translational ResearchUniversity of North Texas Health Science CenterFort WorthTexasUSA
| | - Robert A. Rissman
- Department of NeurosciencesUniversity of CaliforniaSan DiegoCaliforniaUSA
- Veterans Affairs San Diego Healthcare SystemSan DiegoCaliforniaUSA
| | - Kristine Yaffe
- Department of Psychiatry and Behavioral SciencesUniversity of California San FranciscoSan FranciscoCaliforniaUSA
- Department of Epidemiology and BiostatisticsUniversity of California San FranciscoSan FranciscoCaliforniaUSA
- Department of NeurologyUniversity of CaliforniaSan FranciscoCaliforniaUSA
- San Francisco VA Health Care SystemSan FranciscoCaliforniaUSA
| | | |
Collapse
|
104
|
Dong Y, Hou T, Li Y, Liu R, Cong L, Liu K, Liu C, Han X, Ren Y, Tang S, Winblad B, Blennow K, Wang Y, Du Y, Qiu C. Plasma Amyloid-β, Total Tau, and Neurofilament Light Chain Across the Alzheimer's Disease Clinical Spectrum: A Population-Based Study. J Alzheimers Dis 2023; 96:845-858. [PMID: 37899059 PMCID: PMC10657676 DOI: 10.3233/jad-230932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/06/2023] [Indexed: 10/31/2023]
Abstract
BACKGROUND Plasma biomarkers have emerged as a promising approach for characterizing pathophysiology in mild cognitive impairment (MCI) and Alzheimer's disease (AD). OBJECTIVE We aimed to characterize plasma biomarkers for AD and neurodegeneration across the AD clinical continuum, and to assess their ability to differentiate between AD, MCI, and normal cognition. METHODS This population-based study engaged 1,446 rural-dwelling older adults (age ≥60 years, 61.0% women) derived from MIND-China; of these, 402 were defined with MCI and 142 with AD. Plasma amyloid-β (Aβ), total tau (t-tau), and neurofilament light chain (NfL) concentrations were analyzed using the Simoa platform. Data were analyzed using linear and logistic regression models, and receiver operating characteristic (ROC) analysis. RESULTS Across the AD clinical spectrum, plasma Aβ40 and NfL increased, whereas Aβ42/Aβ40 ratio decreased. Plasma t-tau was higher in people with AD dementia than those with MCI or normal cognition. Plasma NfL outperformed other biomarkers in differentiating AD from normal cognition (area under the ROC curve [AUC] = 0.75), but all plasma biomarkers performed poorly to distinguish MCI from normal cognition (AUC <0.60). Plasma NfL in combination with age, sex, education, and APOE genotype yielded the AUC of 0.87 for differentiating between AD and normal cognition, 0.79 between AD and MCI, and 0.64 between MCI and normal cognition. CONCLUSIONS In this Chinese population, AD plasma biomarkers vary by age, sex, and APOE genotype. Plasma Aβ, t-tau, and NfL differ across the AD clinical spectrum, and plasma NfL appears to be superior to plasma Aβ and t-tau for defining the clinical spectrum.
Collapse
Affiliation(s)
- Yi Dong
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, P.R. China
- Institute of Brain Science and Brain-inspired Research, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, P.R. China
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging in Shandong First Medical University, Ministry of Education of the People’s Republic of China, Jinan, Shandong, P.R. China
- Department of Neurology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, P.R. China
| | - Tingting Hou
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, P.R. China
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging in Shandong First Medical University, Ministry of Education of the People’s Republic of China, Jinan, Shandong, P.R. China
- Department of Neurology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, P.R. China
| | - Yuanjing Li
- Aging Research Center and Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet-Stockholm University, Stockholm, Sweden
| | - Rui Liu
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, P.R. China
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging in Shandong First Medical University, Ministry of Education of the People’s Republic of China, Jinan, Shandong, P.R. China
- Department of Neurology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, P.R. China
| | - Lin Cong
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, P.R. China
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging in Shandong First Medical University, Ministry of Education of the People’s Republic of China, Jinan, Shandong, P.R. China
- Department of Neurology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, P.R. China
| | - Keke Liu
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, P.R. China
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging in Shandong First Medical University, Ministry of Education of the People’s Republic of China, Jinan, Shandong, P.R. China
- Department of Neurology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, P.R. China
| | - Cuicui Liu
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, P.R. China
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging in Shandong First Medical University, Ministry of Education of the People’s Republic of China, Jinan, Shandong, P.R. China
- Department of Neurology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, P.R. China
| | - Xiaolei Han
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, P.R. China
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging in Shandong First Medical University, Ministry of Education of the People’s Republic of China, Jinan, Shandong, P.R. China
- Department of Neurology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, P.R. China
| | - Yifei Ren
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, P.R. China
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging in Shandong First Medical University, Ministry of Education of the People’s Republic of China, Jinan, Shandong, P.R. China
- Department of Neurology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, P.R. China
| | - Shi Tang
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, P.R. China
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging in Shandong First Medical University, Ministry of Education of the People’s Republic of China, Jinan, Shandong, P.R. China
- Department of Neurology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, P.R. China
| | - Bengt Winblad
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
- Theme Inflammation and Aging, Karolinska University Hospital, Huddinge, Sweden
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Yongxiang Wang
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, P.R. China
- Institute of Brain Science and Brain-inspired Research, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, P.R. China
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging in Shandong First Medical University, Ministry of Education of the People’s Republic of China, Jinan, Shandong, P.R. China
- Department of Neurology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, P.R. China
- Aging Research Center and Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet-Stockholm University, Stockholm, Sweden
| | - Yifeng Du
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, P.R. China
- Institute of Brain Science and Brain-inspired Research, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, P.R. China
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging in Shandong First Medical University, Ministry of Education of the People’s Republic of China, Jinan, Shandong, P.R. China
- Department of Neurology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, P.R. China
| | - Chengxuan Qiu
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, P.R. China
- Institute of Brain Science and Brain-inspired Research, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, P.R. China
- Aging Research Center and Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet-Stockholm University, Stockholm, Sweden
| |
Collapse
|
105
|
Green ZD, Kueck PJ, John CS, Burns JM, Morris JK. Blood Biomarkers Discriminate Cerebral Amyloid Status and Cognitive Diagnosis when Collected with ACD-A Anticoagulant. Curr Alzheimer Res 2023; 20:557-566. [PMID: 38047367 PMCID: PMC10792989 DOI: 10.2174/0115672050271523231111192725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/03/2023] [Accepted: 10/05/2023] [Indexed: 12/05/2023]
Abstract
BACKGROUND The development of biomarkers that are easy to collect, process, and store is a major goal of research on current Alzheimer's Disease (AD) and underlies the growing interest in plasma biomarkers. Biomarkers with these qualities will improve diagnosis and allow for better monitoring of therapeutic interventions. However, blood collection strategies have historically differed between studies. We examined the ability of various ultrasensitive plasma biomarkers to predict cerebral amyloid status in cognitively unimpaired individuals when collected using acid citrate dextrose (ACD). We then examined the ability of these biomarkers to predict cognitive impairment independent of amyloid status. METHODS Using a cross-sectional study design, we measured amyloid beta 42/40 ratio, pTau-181, neurofilament-light, and glial fibrillary acidic protein using the Quanterix Simoa® HD-X platform. To evaluate the discriminative accuracy of these biomarkers in determining cerebral amyloid status, we used both banked plasma and 18F-AV45 PET cerebral amyloid neuroimaging data from 140 cognitively unimpaired participants. We further examined their ability to discriminate cognitive status by leveraging data from 42 cognitively impaired older adults. This study is the first, as per our knowledge, to examine these specific tests using plasma collected using acid citrate dextrose (ACD), as well as the relationship with amyloid PET status. RESULTS Plasma AB42/40 had the highest AUC (0.833, 95% C.I. 0.767-0.899) at a cut-point of 0.0706 for discriminating between the two cerebral amyloid groups (sensitivity 76%, specificity 78.5%). Plasma NFL at a cut-point of 20.58pg/mL had the highest AUC (0.908, 95% CI 0.851- 0.966) for discriminating cognitive impairment (sensitivity 84.8%, specificity 89.9%). The addition of age and apolipoprotein e4 status did not improve the discriminative accuracy of these biomarkers. CONCLUSION Our results suggest that the Aβ42/40 ratio is useful in discriminating clinician-rated elevated cerebral amyloid status and that NFL is useful for discriminating cognitive impairment status. These findings reinforce the growing body of evidence regarding the general utility of these biomarkers and extend their utility to plasma collected in a non-traditional anticoagulant.
Collapse
Affiliation(s)
- Zachary D. Green
- Alzheimer’s Disease Research Center, University of Kansas, Kansas City, KS, 66160, United States
| | - Paul J. Kueck
- Alzheimer’s Disease Research Center, University of Kansas, Kansas City, KS, 66160, United States
| | - Casey S. John
- Alzheimer’s Disease Research Center, University of Kansas, Kansas City, KS, 66160, United States
| | - Jeffrey M. Burns
- Alzheimer’s Disease Research Center, University of Kansas, Kansas City, KS, 66160, United States
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, 66160, United States
| | - Jill K. Morris
- Alzheimer’s Disease Research Center, University of Kansas, Kansas City, KS, 66160, United States
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, 66160, United States
| |
Collapse
|
106
|
Shim Y. Follow-up Comparisons of Two Plasma Biomarkers of Alzheimer's Disease, Neurofilament Light Chain, and Oligomeric Aβ: A Pilot Study. Curr Alzheimer Res 2023; 20:715-724. [PMID: 38299421 DOI: 10.2174/0115672050284054240119101834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/06/2024] [Accepted: 01/16/2024] [Indexed: 02/02/2024]
Abstract
BACKGROUND AND OBJECTIVE Recent evidence suggests that blood-based biomarkers might be useful for Alzheimer's disease (AD). Among them, we intend to investigate whether neurofilament light (NfL) and multimer detection system-oligomeric Aβ (MDS-OAβ) values can be useful in screening, predicting, and monitoring disease progression and how the relationship between NfL and MDS-OAβ values changes. METHODS Eighty participants with probable AD dementia, 50 with mild cognitive impairment (MCI), and 19 with subjective cognitive decline (SCD) underwent baseline and follow-up evaluations of the Mini-Mental Status Examination (MMSE) and both plasma biomarkers. RESULTS Baseline MDS-OAß (p = 0.016) and NfL (p = 0.002) plasma concentrations differed significantly among groups, but only NfL correlated with baseline MMSE scores (r = -0.278, p = 0.001). In follow-up, neither correlated with MMSE changes overall. However, in SCD and MCI participants (n = 32), baseline MDS-OAß correlated with follow-up MMSE scores (r = 0.532, p = 0.041). Linear regression revealed a relationship between baseline MDS-OAβ and follow-up MMSE scores. In SCD and MCI participants, plasma NfL changes correlated with MMSE changes (r = 0.564, p = 0.028). CONCLUSION This study shows that only in participants with SCD and MCI, not including AD dementia, can MDS-OAß predict the longitudinal cognitive decline measured by follow-up MMSE. Changes of NfL, not MDS-OAß, parallel the changes of MMSE. Further studies with larger samples and longer durations could strengthen these results..
Collapse
Affiliation(s)
- YongSoo Shim
- Department of Neurology, The Catholic University of Korea Eunpyeong St. Mary's Hospital, Seoul, Republic of Korea
| |
Collapse
|
107
|
Padala SP, Newhouse PA. Blood-based biomarkers in Alzheimer's disease: a mini-review. Metab Brain Dis 2023; 38:185-193. [PMID: 36342582 PMCID: PMC10688968 DOI: 10.1007/s11011-022-01114-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 10/19/2022] [Indexed: 11/09/2022]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia and has far reaching consequences for patients and their caregivers. Early detection and treatment are key factors in limiting the impact of the disease. However, a definitive diagnosis of AD requires an examination of brain tissue during an autopsy. Although a plethora of biomarkers such as neuroimaging, electrophysiological, and cerebrospinal fluid (CSF) biomarkers are available, their utility is limited to research due to their poor reach and prohibitive cost. In order for biomarkers to be widely used, they need to be accessible, affordable, and conducive for the patient population or disease stage. Blood-based biomarkers may not only be less expensive and more accessible compared to neuroimaging or CSF tests, but they are also preferred by patients with AD as they are much less invasive. In this mini-review article, we expand on the rationale for the use of blood-based biomarkers, review currently available biomarkers and discuss the need for the standardization of these biomarkers. We contrast the blood-based biomarkers with other available biomarkers and discuss the advantages of using a panel of blood-based biomarkers to strengthen their accuracy.
Collapse
Affiliation(s)
- Sanjana P Padala
- Vanderbilt University , 2301 Vanderbilt Place, Nashville, TN, 37235, USA.
| | - Paul A Newhouse
- Vanderbilt University , 2301 Vanderbilt Place, Nashville, TN, 37235, USA
- Center for Cognitive Medicine, Department of Psychiatry, Vanderbilt University Medical Center, Nashville, TN, USA
- VA-TVHS Geriatric Research Education and Clinical Center, Nashville, TN, USA
| |
Collapse
|
108
|
Farvadi F, Hashemi F, Amini A, Alsadat Vakilinezhad M, Raee MJ. Early Diagnosis of Alzheimer's Disease with Blood Test; Tempting but Challenging. INTERNATIONAL JOURNAL OF MOLECULAR AND CELLULAR MEDICINE 2023; 12:172-210. [PMID: 38313372 PMCID: PMC10837916 DOI: 10.22088/ijmcm.bums.12.2.172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 11/25/2023] [Accepted: 12/13/2023] [Indexed: 02/06/2024]
Abstract
The increasing prevalence of Alzheimer's disease (AD) has led to a health crisis. According to official statistics, more than 55 million people globally have AD or other types of dementia, making it the sixth leading cause of death. It is still difficult to diagnose AD and there is no definitive diagnosis yet; post-mortem autopsy is still the only definite method. Moreover, clinical manifestations occur very late in the course of disease progression; therefore, profound irreversible changes have already occurred when the disease manifests. Studies have shown that in the preclinical stage of AD, changes in some biomarkers are measurable prior to any neurological damage or other symptoms. Hence, creating a reliable, fast, and affordable method capable of detecting AD in early stage has attracted the most attention. Seeking clinically applicable, inexpensive, less invasive, and much more easily accessible biomarkers for early diagnosis of AD, blood-based biomarkers (BBBs) seem to be an ideal option. This review is an inclusive report of BBBs that have been shown to be altered in the course of AD progression. The aim of this report is to provide comprehensive insight into the research status of early detection of AD based on BBBs.
Collapse
Affiliation(s)
- Fakhrossadat Farvadi
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Hashemi
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, the University of Newcastle, Newcastle, Australia
| | - Azadeh Amini
- Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical sciences, Tehran, Iran
| | | | - Mohammad Javad Raee
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
109
|
Merten N, Pinto AA, Paulsen AJ, Chen Y, Engelman CD, Hancock LM, Johnson SC, Schubert CR. Associations of Midlife Lifestyle and Health Factors with Long-Term Changes in Blood-Based Biomarkers of Alzheimer's Disease and Neurodegeneration. J Alzheimers Dis 2023; 94:1381-1395. [PMID: 37393497 PMCID: PMC10461414 DOI: 10.3233/jad-221287] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2023]
Abstract
BACKGROUND Pathological biomarkers of Alzheimer's disease (AD) and other dementias can change decades before clinical symptoms. Lifestyle and health factors might be relevant modifiable risk factors for dementia. Many previous studies have been focusing on associations of lifestyle and health-related factors with clinical outcomes later in life. OBJECTIVE We aimed to determine to what extent midlife factors of lifestyle, inflammation, vascular, and metabolic health were associated with long-term changes in blood-based biomarkers of AD (amyloid beta (Aβ)) and neurodegeneration (neurofilament light chain (NfL); total tau(TTau)). METHODS In 1,529 Beaver Dam Offspring Study (BOSS) participants (mean age 49 years, standard deviation (SD) = 9; 54% were women), we applied mixed-effects models with baseline risk factors as determinants and 10-year serum biomarker change as outcomes. RESULTS We found that education and inflammatory markers were associated with levels and/or change over time across all three markers of AD and neurodegeneration in the blood. There were baseline associations of measures of cardiovascular health with lower Aβ42/Aβ40. TTau changed little over time and was higher in individuals with diabetes. Individuals with lower risk in a number of cardiovascular and metabolic risk factors, including diabetes, hypertension, and atherosclerosis had slower accumulation of neurodegeneration over time, as determined by NfL levels. CONCLUSION Various lifestyle and health factors, including education and inflammation, were associated with longitudinal changes of neurodegenerative and AD biomarker levels in midlife. If confirmed, these findings could have important implications for developing early lifestyle and health interventions that could potentially slow processes of neurodegeneration and AD.
Collapse
Affiliation(s)
- Natascha Merten
- Division of Geriatrics and Gerontology, Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, WI, USA
- Wisconsin Alzheimer’s Disease Research Center, School of Medicine and Public Health, University of Wisconsin-Madison, WI, USA
- Department of Population Health Sciences, School of Medicine and Public Health, University of Wisconsin-Madison, WI, USA
| | - A Alex Pinto
- Department of Biostatistics and Medical Informatics, School of Medicine and Public Health, University of Wisconsin-Madison, WI, USA
| | - Adam J Paulsen
- Department of Population Health Sciences, School of Medicine and Public Health, University of Wisconsin-Madison, WI, USA
| | - Yanjun Chen
- Department of Ophthalmology and Visual Sciences, School of Medicine and Public Health, University of Wisconsin-Madison, WI, USA
| | - Corinne D Engelman
- Department of Population Health Sciences, School of Medicine and Public Health, University of Wisconsin-Madison, WI, USA
| | - Laura M Hancock
- Department of Neurology, School of Medicine and Public Health, University of Wisconsin-Madison, WI, USA
- William S Middleton Memorial Veterans Hospital, WI, USA
| | - Sterling C Johnson
- Division of Geriatrics and Gerontology, Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, WI, USA
- Wisconsin Alzheimer’s Disease Research Center, School of Medicine and Public Health, University of Wisconsin-Madison, WI, USA
| | - Carla R Schubert
- Department of Population Health Sciences, School of Medicine and Public Health, University of Wisconsin-Madison, WI, USA
| |
Collapse
|
110
|
Mielke MM, Aggarwal NT, Vila‐Castelar C, Agarwal P, Arenaza‐Urquijo EM, Brett B, Brugulat‐Serrat A, DuBose LE, Eikelboom WS, Flatt J, Foldi NS, Franzen S, Gilsanz P, Li W, McManus AJ, van Lent DM, Milani SA, Shaaban CE, Stites SD, Sundermann E, Suryadevara V, Trani J, Turner AD, Vonk JMJ, Quiroz YT, Babulal GM. Consideration of sex and gender in Alzheimer's disease and related disorders from a global perspective. Alzheimers Dement 2022; 18:2707-2724. [PMID: 35394117 PMCID: PMC9547039 DOI: 10.1002/alz.12662] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/15/2022] [Accepted: 02/20/2022] [Indexed: 01/31/2023]
Abstract
Sex or gender differences in the risk of Alzheimer's disease and related dementias (ADRD) differ by world region, suggesting that there are potentially modifiable risk factors for intervention. However, few epidemiological or clinical ADRD studies examine sex differences; even fewer evaluate gender in the context of ADRD risk. The goals of this perspective are to: (1) provide definitions of gender, biologic sex, and sexual orientation. and the limitations of examining these as binary variables; (2) provide an overview of what is known with regard to sex and gender differences in the risk, prevention, and diagnosis of ADRD; and (3) discuss these sex and gender differences from a global, worldwide perspective. Identifying drivers of sex and gender differences in ADRD throughout the world is a first step in developing interventions unique to each geographical and sociocultural area to reduce these inequities and to ultimately reduce global ADRD risk. HIGHLIGHTS: The burden of dementia is unevenly distributed geographically and by sex and gender. Scientific advances in genetics and biomarkers challenge beliefs that sex is binary. Discrimination against women and sex and gender minority (SGM) populations contributes to cognitive decline. Sociocultural factors lead to gender inequities in Alzheimer's disease and related dementias (ADRD) worldwide.
Collapse
Affiliation(s)
- Michelle M. Mielke
- Division of Epidemiology, Department of Quantitative Health SciencesMayo ClinicRochesterMinnesotaUSA
- Department of NeurologyMayo ClinicRochesterMinnesotaUSA
| | - Neelum T. Aggarwal
- Department of Neurological SciencesRush University Medical CenterChicagoIllinoisUSA
- Rush Alzheimer's Disease CenterRush University Medical CenterChicagoIllinoisUSA
| | - Clara Vila‐Castelar
- Department of Psychiatry, Harvard Medical SchoolMassachusetts General HospitalMassachusettsBostonUSA
| | - Puja Agarwal
- Rush Alzheimer's Disease CenterRush University Medical CenterChicagoIllinoisUSA
- Department of Internal MedicineRush University Medical CenterChicagoIllinoisUSA
| | - Eider M. Arenaza‐Urquijo
- Barcelonaβeta Brain Research Center (BBRC)Pasqual Maragall FoundationBarcelonaSpain
- IMIM (Hospital del Mar Medical Research Institute)BarcelonaSpain
- CIBER Fragilidad y Envejecimiento Saludable (CIBERFES)MadridSpain
| | - Benjamin Brett
- Department of NeurosurgeryMedical College of WisconsinWisconsinMilwaukeeUSA
| | - Anna Brugulat‐Serrat
- Barcelonaβeta Brain Research Center (BBRC)Pasqual Maragall FoundationBarcelonaSpain
- IMIM (Hospital del Mar Medical Research Institute)BarcelonaSpain
- CIBER Fragilidad y Envejecimiento Saludable (CIBERFES)MadridSpain
- Atlantic Fellow for Equity in Brain HealthThe University of California San FranciscoSan FranciscoCaliforniaUSA
| | - Lyndsey E. DuBose
- Department of Medicine, Division of GeriatricsUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
| | - Willem S. Eikelboom
- Department of NeurologyErasmus MC University Medical CenterRotterdamThe Netherlands
| | - Jason Flatt
- Social and Behavioral Health Program, School of Public HealthUniversity of Nevada, Las VegasLas VegasNevadaUSA
| | - Nancy S. Foldi
- Department of Psychology, Queens College and The Graduate CenterCity University of New YorkNew YorkUSA
- Department of PsychiatryNew York University Long Island School of MedicineNew YorkUSA
| | - Sanne Franzen
- Department of NeurologyErasmus MC University Medical CenterRotterdamThe Netherlands
| | - Paola Gilsanz
- Kaiser Permanente Division of ResearchOaklandCaliforniaUSA
| | - Wei Li
- Department of Clinical and Diagnostic SciencesUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Alison J. McManus
- Department of NeurologyMassachusetts General HospitalBostonMassachusettsUSA
| | - Debora Melo van Lent
- UT Health San AntonioGlenn Biggs Institute for Alzheimer's and Neurodegenerative diseasesSan AntonioTexasUSA
- Framingham Heart StudyFraminghamMassachusettsUSA
- Department of NeurologyBoston University School of MedicineBostonMassachusettsUSA
| | - Sadaf Arefi Milani
- Division of Geriatrics & Palliative Medicine, Department of Internal MedicineUniversity of Texas Medical BranchGalvestonTexasUSA
| | - C. Elizabeth Shaaban
- Department of EpidemiologyGraduate School of Public HealthUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Shana D. Stites
- Department of PsychiatryPerlman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Erin Sundermann
- Department of PsychiatryUniversity of CaliforniaSan DiegoCaliforniaUSA
| | - Vidyani Suryadevara
- Department of Orthopedic SurgeryRush University Medical CenterChicagoIllinoisUSA
| | - Jean‐Francoise Trani
- Department of Public HealthWashington University in St. LouisSt. LouisMissouriUSA
| | - Arlener D. Turner
- Department of Psychiatry & Behavioral SciencesUniversity of Miami Miller School of MedicineMiamiFloridaUSA
| | - Jet M. J. Vonk
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and SurgeonsColumbia UniversityNew YorkNew YorkUSA
- Julius Center for Health Sciences and Primary CareDepartment of EpidemiologyUniversity Medical Center Utrecht and Utrecht UniversityUtrechtThe Netherlands
| | - Yakeel T. Quiroz
- Department of Psychiatry, Harvard Medical SchoolMassachusetts General HospitalMassachusettsBostonUSA
- Grupo de Neurociencias de Antioquia of Universidad de AntioquiaMedellinColumbiaUSA
| | - Ganesh M. Babulal
- Department of NeurologyWashington University in St. LouisSt. LouisMississippiUSA
- Department of Clinical Research and LeadershipThe George Washington University School of Medicine and Health SciencesWashingtonDCUSA
- Department of Psychology, Faculty of HumanitiesUniversity of JohannesburgJohannesburgSouth Africa
| | | |
Collapse
|
111
|
Iverson GL, Minkkinen M, Karr JE, Berghem K, Zetterberg H, Blennow K, Posti JP, Luoto TM. Examining four blood biomarkers for the detection of acute intracranial abnormalities following mild traumatic brain injury in older adults. Front Neurol 2022; 13:960741. [PMID: 36484020 PMCID: PMC9723459 DOI: 10.3389/fneur.2022.960741] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 10/20/2022] [Indexed: 01/25/2023] Open
Abstract
Blood-based biomarkers have been increasingly studied for diagnostic and prognostic purposes in patients with mild traumatic brain injury (MTBI). Biomarker levels in blood have been shown to vary throughout age groups. Our aim was to study four blood biomarkers, glial fibrillary acidic protein (GFAP), ubiquitin C-terminal hydrolase-L1 (UCH-L1), neurofilament light (NF-L), and total tau (t-tau), in older adult patients with MTBI. The study sample was collected in the emergency department in Tampere University Hospital, Finland, between November 2015 and November 2016. All consecutive adult patients with head injury were eligible for inclusion. Serum samples were collected from the enrolled patients, which were frozen and later sent for biomarker analyses. Patients aged 60 years or older with MTBI, head computed tomography (CT) imaging, and available biomarker levels were eligible for this study. A total of 83 patients (mean age = 79.0, SD = 9.58, range = 60-100; 41.0% men) were included in the analysis. GFAP was the only biomarker to show statistically significant differentiation between patients with and without acute head CT abnormalities [U(83) = 280, p < 0.001, r = 0.44; area under the curve (AUC) = 0.79, 95% CI = 0.67-0.91]. The median UCH-L1 values were modestly greater in the abnormal head CT group vs. normal head CT group [U (83) = 492, p = 0.065, r = 0.20; AUC = 0.63, 95% CI = 0.49-0.77]. Older age was associated with biomarker levels in the normal head CT group, with the most prominent age associations being with NF-L (r = 0.56) and GFAP (r = 0.54). The results support the use of GFAP in detecting abnormal head CT findings in older adults with MTBIs. However, small sample sizes run the risk for producing non-replicable findings that may not generalize to the population and do not translate well to clinical use. Further studies should consider the potential effect of age on biomarker levels when establishing clinical cut-off values for detecting head CT abnormalities.
Collapse
Affiliation(s)
- Grant L. Iverson
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA, United States,Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital and the Schoen Adams Research Institute at Spaulding Rehabilitation, Charlestown, MA, United States,Home Base, A Red Sox Foundation and Massachusetts General Hospital Program, Boston, MA, United States
| | - Mira Minkkinen
- Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, Tampere, Finland
| | - Justin E. Karr
- Department of Psychology, University of Kentucky, Lexington, KY, United States
| | - Ksenia Berghem
- Medical Imaging Centre, Department of Radiology, Tampere University Hospital, Tampere, Finland
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden,UK Dementia Research Institute at University College London, London, United Kingdom,Department of Neurodegenerative Disease, University College London Queen Square Institute of Neurology, London, United Kingdom,Hong Kong Center for Neurodegenerative Diseases, Hong Kong, Hong Kong SAR, China
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Jussi P. Posti
- Neurocenter, Department of Neurosurgery, Turku University Hospital and University of Turku, Turku, Finland,Turku Brain Injury Center, Turku University Hospital and University of Turku, Turku, Finland
| | - Teemu M. Luoto
- Department of Neurosurgery, Tampere University Hospital and Tampere University, Tampere, Finland,*Correspondence: Teemu M. Luoto
| |
Collapse
|
112
|
Hier DB, Azizi S, Thimgan MS, Wunsch DC. Tau kinetics in Alzheimer's disease. Front Aging Neurosci 2022; 14:1055170. [PMID: 36437992 PMCID: PMC9682289 DOI: 10.3389/fnagi.2022.1055170] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 10/27/2022] [Indexed: 07/20/2023] Open
Abstract
The cytoskeletal protein tau is implicated in the pathogenesis of Alzheimer's disease which is characterized by intra-neuronal neurofibrillary tangles containing abnormally phosphorylated insoluble tau. Levels of soluble tau are elevated in the brain, the CSF, and the plasma of patients with Alzheimer's disease. To better understand the causes of these elevated levels of tau, we propose a three-compartment kinetic model (brain, CSF, and plasma). The model assumes that the synthesis of tau follows zero-order kinetics (uncorrelated with compartmental tau levels) and that the release, absorption, and clearance of tau is governed by first-order kinetics (linearly related to compartmental tau levels). Tau that is synthesized in the brain compartment can be released into the interstitial fluid, catabolized, or retained in neurofibrillary tangles. Tau released into the interstitial fluid can mix with the CSF and eventually drain to the plasma compartment. However, losses of tau in the drainage pathways may be significant. The kinetic model estimates half-life of tau in each compartment (552 h in the brain, 9.9 h in the CSF, and 10 h in the plasma). The kinetic model predicts that an increase in the neuronal tau synthesis rate or a decrease in tau catabolism rate best accounts for observed increases in tau levels in the brain, CSF, and plasma found in Alzheimer's disease. Furthermore, the model predicts that increases in brain half-life of tau in Alzheimer's disease should be attributed to decreased tau catabolism and not to increased tau synthesis. Most clearance of tau in the neuron occurs through catabolism rather than release to the CSF compartment. Additional experimental data would make ascertainment of the model parameters more precise.
Collapse
Affiliation(s)
- Daniel B. Hier
- Applied Computational Intelligence Laboratory, Department of Electrical & Computer Engineering, Missouri University of Science & Technology, Rolla, MO, United States
- Department of Neurology and Rehabilitation, University of Illinois at Chicago, Chicago, IL, United States
| | - Sima Azizi
- Applied Computational Intelligence Laboratory, Department of Electrical & Computer Engineering, Missouri University of Science & Technology, Rolla, MO, United States
| | - Matthew S. Thimgan
- Department of Biological Sciences, Missouri University of Science & Technology, Rolla, MO, United States
| | - Donald C. Wunsch
- Applied Computational Intelligence Laboratory, Department of Electrical & Computer Engineering, Missouri University of Science & Technology, Rolla, MO, United States
- ECCS Division, National Science Foundation, Alexandria, VA, United States
| |
Collapse
|
113
|
Whelan R, Barbey FM, Cominetti MR, Gillan CM, Rosická AM. Developments in scalable strategies for detecting early markers of cognitive decline. Transl Psychiatry 2022; 12:473. [PMID: 36351888 PMCID: PMC9645320 DOI: 10.1038/s41398-022-02237-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 11/10/2022] Open
Abstract
Effective strategies for early detection of cognitive decline, if deployed on a large scale, would have individual and societal benefits. However, current detection methods are invasive or time-consuming and therefore not suitable for longitudinal monitoring of asymptomatic individuals. For example, biological markers of neuropathology associated with cognitive decline are typically collected via cerebral spinal fluid, cognitive functioning is evaluated from face-to-face assessments by experts and brain measures are obtained using expensive, non-portable equipment. Here, we describe scalable, repeatable, relatively non-invasive and comparatively inexpensive strategies for detecting the earliest markers of cognitive decline. These approaches are characterized by simple data collection protocols conducted in locations outside the laboratory: measurements are collected passively, by the participants themselves or by non-experts. The analysis of these data is, in contrast, often performed in a centralized location using sophisticated techniques. Recent developments allow neuropathology associated with potential cognitive decline to be accurately detected from peripheral blood samples. Advances in smartphone technology facilitate unobtrusive passive measurements of speech, fine motor movement and gait, that can be used to predict cognitive decline. Specific cognitive processes can be assayed using 'gamified' versions of standard laboratory cognitive tasks, which keep users engaged across multiple test sessions. High quality brain data can be regularly obtained, collected at-home by users themselves, using portable electroencephalography. Although these methods have great potential for addressing an important health challenge, there are barriers to be overcome. Technical obstacles include the need for standardization and interoperability across hardware and software. Societal challenges involve ensuring equity in access to new technologies, the cost of implementation and of any follow-up care, plus ethical issues.
Collapse
Affiliation(s)
- Robert Whelan
- School of Psychology, Trinity College Dublin, Dublin, Ireland.
- Global Brain Health Institute, Trinity College Dublin, Dublin, Ireland.
| | - Florentine M Barbey
- School of Psychology, Trinity College Dublin, Dublin, Ireland
- Cumulus Neuroscience Ltd, Dublin, Ireland
| | - Marcia R Cominetti
- Global Brain Health Institute, Trinity College Dublin, Dublin, Ireland
- Department of Gerontology, Universidade Federal de São Carlos, São Carlos, Brazil
| | - Claire M Gillan
- School of Psychology, Trinity College Dublin, Dublin, Ireland
- Global Brain Health Institute, Trinity College Dublin, Dublin, Ireland
| | - Anna M Rosická
- School of Psychology, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
114
|
Abstract
Alzheimer's disease (AD) characterization has progressed from being indexed using clinical symptomatology followed by neuropathological examination at autopsy to in vivo signatures using cerebrospinal fluid (CSF) biomarkers and positron emission tomography. The core AD biomarkers reflect amyloid-β plaques (A), tau pathology (T) and neurodegeneration (N), following the ATN schedule, and are now being introduced into clinical routine practice. This is an important development, as disease-modifying treatments are now emerging. Further, there are now reproducible data on CSF biomarkers which reflect synaptic pathology, neuroinflammation and common co-pathologies. In addition, the development of ultrasensitive techniques has enabled the core CSF biomarkers of AD pathophysiology to be translated to blood (e.g., phosphorylated tau, amyloid-β and neurofilament light). In this chapter, we review where we stand with both core and novel CSF biomarkers, as well as the explosion of data on blood biomarkers. Also, we discuss potential applications in research aiming to better understand the disease, as well as possible use in routine clinical practice and therapeutic trials.
Collapse
Affiliation(s)
- Joel Simrén
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Gothenburg, Sweden.
| | - Anders Elmgren
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Gothenburg, Sweden; Department of Neurodegenerative Disease, Institute of Neurology, University College London, London, United Kingdom; UK Dementia Research Institute, University College London, London, United Kingdom; Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
| |
Collapse
|
115
|
Graff-Radford J, Mielke MM, Hofrenning EI, Kouri N, Lesnick TG, Moloney CM, Rabinstein A, Cabrera-Rodriguez JN, Rothberg DM, Przybelski SA, Petersen RC, Knopman DS, Dickson DW, Jack CR, Algeciras-Schimnich A, Nguyen AT, Murray ME, Vemuri P. Association of plasma biomarkers of amyloid and neurodegeneration with cerebrovascular disease and Alzheimer's disease. Neurobiol Aging 2022; 119:1-7. [PMID: 35952440 PMCID: PMC9732897 DOI: 10.1016/j.neurobiolaging.2022.07.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 06/30/2022] [Accepted: 07/20/2022] [Indexed: 12/13/2022]
Abstract
The objective of this study was to determine the differential mapping of plasma biomarkers to postmortem neuropathology measures. We identified 64 participants in a population-based study with antemortem plasma markers (amyloid-β [Aβ] x-42, Aβx-40, neurofilament light [NfL], and total tau [T-tau]) who also had neuropathologic assessments of Alzheimer's and cerebrovascular pathology. We conducted weighted linear-regression models to evaluate relationships between plasma measures and neuropathology. Higher plasma NfL and Aβ42/40 ratio were associated with cerebrovascular neuropathologic scales (p < 0.05) but not with Braak stage, neuritic plaque score, or Thal phase. Plasma Aβ42/40 and NfL explained up to 18% of the variability in cerebrovascular neuropathologic scales. In participants predominantly with modest levels of Alzheimer's pathologic change, biomarkers of amyloid and neurodegeneration were associated with cerebrovascular neuropathology. NfL is a non-specific marker of brain injury, therefore its association with cerebrovascular neuropathology was expected. The association between elevated Aβ42/40 and cerebrovascular disease pathology needs further investigation but could be due to the use of less specific amyloid-β assays (x-40, x-42).
Collapse
Affiliation(s)
| | - Michelle M Mielke
- Department of Neurology, Mayo Clinic, Rochester, MN, USA; Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA; Division of Public Health Sciences, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | | | - Naomi Kouri
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Timothy G Lesnick
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | | | | | | | | | - Scott A Przybelski
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | | | | | | | | | | | - Aivi T Nguyen
- Department of Pathology and Laboratory Medicine, Mayo Clinic, Rochester, MN, USA
| | | | | |
Collapse
|
116
|
Hossain I, Blennow K, Posti JP, Zetterberg H. Tau as a fluid biomarker of concussion and neurodegeneration. CONCUSSION (LONDON, ENGLAND) 2022; 7:CNC98. [PMID: 36687115 PMCID: PMC9841393 DOI: 10.2217/cnc-2022-0004] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 11/16/2022] [Indexed: 12/12/2022]
Abstract
Concussion is predominant among the vast number of traumatic brain injuries that occur worldwide. Difficulties in timely identification, whether concussion led to neuronal injury or not, diagnosis and the lack of prognostic tools for adequate management could lead this type of brain injury to progressive neurodegenerative diseases. Tau has been extensively studied in recent years, particularly in repetitive mild traumatic brain injuries and sports-related concussions. Tauopathies, the group of neurodegenerative diseases, have also been studied with advanced functional imaging. Nevertheless, neurodegenerative diseases, such as chronic traumatic encephalopathy, are still conclusively diagnosed at autopsy. Here, we discuss the diagnostic dilemma and the relationship between concussion and neurodegenerative diseases and review the literature on tau as a promising biomarker for concussion.
Collapse
Affiliation(s)
- Iftakher Hossain
- Department of Neurosurgery, Neurocenter, Turku University Hospital, Finland,Turku Brain Injury Center, Turku University Hospital, Finland,Department of Clinical Neurosciences, University of Turku, Finland,Department of Clinical Neurosciences, Neurosurgery Unit, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK,Author for correspondence: Tel.: +358 2 313 0282;
| | - Kaj Blennow
- Institute of Neuroscience & Physiology, Department of Psychiatry & Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Jussi P Posti
- Department of Neurosurgery, Neurocenter, Turku University Hospital, Finland,Turku Brain Injury Center, Turku University Hospital, Finland,Department of Clinical Neurosciences, University of Turku, Finland
| | - Henrik Zetterberg
- Institute of Neuroscience & Physiology, Department of Psychiatry & Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden,Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK,UK Dementia Research Institute at UCL, University College London, London, UK,Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
| |
Collapse
|
117
|
Chen PH, Lin SI, Liao YY, Hsu WL, Cheng FY. Associations between blood-based biomarkers of Alzheimer's disease with cognition in motoric cognitive risk syndrome: A pilot study using plasma Aβ42 and total tau. Front Aging Neurosci 2022; 14:981632. [PMID: 36268195 PMCID: PMC9577229 DOI: 10.3389/fnagi.2022.981632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/20/2022] [Indexed: 01/28/2023] Open
Abstract
Background Motoric cognitive risk (MCR) syndrome is a conceptual construct that combines slow gait speed with subjective cognitive complaints and has been shown to be associated with an increased risk of developing dementia. However, the relationships between the pathology of Alzheimer's disease (AD) and MCR syndrome remain uncertain. Therefore, the purpose of this study was to determine the levels of plasma AD biomarkers (Aβ42 and total tau) and their relationships with cognition in individuals with MCR. Materials and methods This was a cross-sectional pilot study that enrolled 25 individuals with normal cognition (NC), 27 with MCR, and 16 with AD. Plasma Aβ42 and total tau (t-tau) levels were measured using immunomagnetic reduction (IMR) assays. A comprehensive neuropsychological assessment was also performed. Results The levels of plasma t-tau proteins did not differ significantly between the MCR and AD groups, but that of plasma t-tau was significantly increased in the MCR and AD groups, compared to the NC group. Visuospatial performance was significantly lower in the MCR group than in the NC group. The levels of plasma t-tau correlated significantly with the Montreal Cognitive Assessment (MoCA) and Boston naming test scores in the MCR group. Conclusion In this pilot study, we found significantly increased plasma t-tau proteins in the MCR and AD groups, compared with the NC group. The plasma t-tau levels were also significantly correlated with the cognitive function of older adults with MCR. These results implied that MCR and AD may share similar pathology. However, these findings need further confirmation in longitudinal studies.
Collapse
Affiliation(s)
- Pei-Hao Chen
- Department of Neurology, MacKay Memorial Hospital, Taipei, Taiwan,Department of Medicine, MacKay Medical College, New Taipei City, Taiwan,Graduate Institute of Mechanical and Electrical Engineering, National Taipei University of Technology, Taipei, Taiwan
| | - Sang-I Lin
- Institute of Long-Term Care, MacKay Medical College, New Taipei City, Taiwan
| | - Ying-Yi Liao
- Department of Gerontological Health Care, National Taipei University of Nursing and Health Sciences, Taipei, Taiwan
| | - Wei-Ling Hsu
- Institute of Long-Term Care, MacKay Medical College, New Taipei City, Taiwan,Center of Dementia Care, MacKay Memorial Hospital, New Taipei City, Taiwan
| | - Fang-Yu Cheng
- Institute of Long-Term Care, MacKay Medical College, New Taipei City, Taiwan,*Correspondence: Fang-Yu Cheng,
| |
Collapse
|
118
|
Guillemain G, Lacapere JJ, Khemtemourian L. Targeting hIAPP fibrillation: A new paradigm to prevent β-cell death? BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:184002. [PMID: 35868406 DOI: 10.1016/j.bbamem.2022.184002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/20/2022] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
Loss of pancreatic β-cell mass is deleterious for type 2 diabetes patients since it reduces insulin production, critical for glucose homeostasis. The main research axis developed over the last few years was to generate new pancreatic β-cells or to transplant pancreatic islets as occurring for some specific type 1 diabetes patients. We evaluate here a new paradigm consisting in preservation of β-cells by prevention of human islet amyloid polypeptide (hIAPP) oligomers and fibrils formation leading to pancreatic β-cell death. We review the hIAPP physiology and the pathology that contributes to β-cell destruction, deciphering the various cellular steps that could be involved. Recent progress in understanding other amyloidosis such as Aβ, Tau, α-synuclein or prion, involved in neurodegenerative processes linked with inflammation, has opened new research lines of investigations to preserve neuronal cells. We evaluate and estimate their transposition to the pancreatic β-cells preservation. Among them is the control of reactive oxygen species (ROS) production occurring with inflammation and the possible implication of the mitochondrial translocator protein as a diagnostic and therapeutic target. The present review also focuses on other amyloid forming proteins from molecular to physiological and physiopathological points of view that could help to better decipher hIAPP-induced β-cell death mechanisms and to prevent hIAPP fibril formation.
Collapse
Affiliation(s)
- Ghislaine Guillemain
- Sorbonne Université, Institut Hospitalo-Universitaire, Inserm UMR_S938, Institute of Cardio metabolism and Nutrition (ICAN), Centre de recherche de St-Antoine (CRSA), 27 rue de Chaligny, F-75012 Paris, France.
| | - Jean-Jacques Lacapere
- Sorbonne Université, Ecole Normale Supérieure, PSL University, CNRS UMR 7203, Laboratoire des BioMolécules (LBM), 4 place Jussieu, F-75005 Paris, France.
| | - Lucie Khemtemourian
- CBMN, CNRS UMR 5248, IPB, Univ. Bordeaux, Allée Geoffroy Saint-Hilaire, F-33600 Pessac, France.
| |
Collapse
|
119
|
Lin LJ, Li KY. Comparing the effects of olfactory-based sensory stimulation and board game training on cognition, emotion, and blood biomarkers among individuals with dementia: A pilot randomized controlled trial. Front Psychol 2022; 13:1003325. [PMID: 36204759 PMCID: PMC9531625 DOI: 10.3389/fpsyg.2022.1003325] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 09/01/2022] [Indexed: 11/13/2022] Open
Abstract
Olfactory dysfunction can indicate early cognitive decline and is associated with dementia symptoms. We developed an olfactory-based sensory stimulation program and investigated its effects on cognition and emotion, and board game training were used as a comparison. In this parallel design pilot study, 30 participants with mild to moderate dementia were equal randomly assigned to the control (CONT), olfactory stimulation with cognitive training (OS), and board game (BG) groups. Two participants were withdrawn from CONT and OS groups, respectively. The intervention was a 12-week program with one 30-min session twice a week. We employed a blood-based biomarker technique and several cognitive and psychological tests to measure basal and after-intervention values. No significant differences were observed between the groups after intervention, as measured using the Mini-Mental State Examination, Loewenstein Occupational Therapy Cognitive Assessment (LOTCA), Top International Biotech Smell Identification Test, and Geriatric Depression Scale (GDS). The results showed that the OS group had a lower plasma Tau level than the other groups following intervention, whereas the CONT group had a significantly increased plasma amyloid ß1-42 level. OS participants had a lower concentration ratio of plasma Tau and amyloid Aß1-42 and showed more stable or improved cognition, olfactory function, and mood state. Both the OS and BG groups had a higher percentage of participants with stable or improved cognition and emotion. Taken together, these results suggest that olfactory-based sensory stimulation can be a beneficial intervention for patients with dementia.
Collapse
Affiliation(s)
- Li-jung Lin
- Graduate Institute of Sport, Leisure, and Hospitality Management, National Taiwan Normal University, Taipei, Taiwan
| | - Kuan-yi Li
- Department of Occupational Therapy, Graduate Institute of Behavioral Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Movement Disorders Section, Department of Neurology, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan
- *Correspondence: Kuan-yi Li,
| |
Collapse
|
120
|
Burgess BL, Cho E, Honigberg L. Neurofilament light as a predictive biomarker of unresolved chemotherapy-induced peripheral neuropathy in subjects receiving paclitaxel and carboplatin. Sci Rep 2022; 12:15593. [PMID: 36114333 PMCID: PMC9481642 DOI: 10.1038/s41598-022-18716-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 08/18/2022] [Indexed: 11/09/2022] Open
Abstract
AbstractManagement of chemotherapy-induced peripheral neuropathy (CIPN) remains a significant challenge in the treatment of cancer. Risk mitigation for CIPN involves preemptive reduction of cumulative dose or reduction of dose intensity upon emergence of symptoms, despite the risk of reduced tumor efficacy. A predictive biomarker for dose-limiting CIPN could improve treatment outcomes by allowing providers to make informed decisions that balance both safety and efficacy. To identify a predictive biomarker of CIPN, markers of neurodegeneration neurofilament-light (NfL), glial fibrillary acidic protein (GFAP), tau and ubiquitin c-terminal hydrolase L1 (UCHL1) were assessed in serum of up to 88 subjects drawn 21 days following the first of 6 treatments with chemotherapeutics paclitaxel and carboplatin. Serum NfL and GFAP were increased with chemotherapy. Further, NfL change predicted subsequent onset of grade 2–3 CIPN during the remainder of the trial (mean treatment duration = 200 days) and trended toward stronger prediction of CIPN that remained unresolved at the end of the study. These results confirm previous reports that serum NfL is increased in CIPN and provide the first evidence that NfL can be used to identify subjects susceptible to dose-limiting paclitaxel and carboplatin induced CIPN prior to onset of symptoms.
Collapse
|
121
|
Huang Y, Li Y, Xie F, Guo Q. Associations of plasma phosphorylated tau181 and neurofilament light chain with brain amyloid burden and cognition in objectively defined subtle cognitive decline patients. CNS Neurosci Ther 2022; 28:2195-2205. [PMID: 36074638 PMCID: PMC9627371 DOI: 10.1111/cns.13962] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/05/2022] [Accepted: 08/15/2022] [Indexed: 02/06/2023] Open
Abstract
AIMS There is increasing evidence that plasma biomarkers are specific biomarkers for Alzheimer's disease (AD) pathology, but their potential utility in Obj-SCD (objectively defined subtle cognitive decline) remains unclear. METHODS A total of 234 subjects, including 65 with brain amyloid beta (Aβ) negative normal cognition (Aβ- NC), 58 with Aβ-positive NC (Aβ+ NC), 63 with Aβ- Obj-SCD, and 48 with Aβ+ Obj-SCD were enrolled. Plasma Aβ42, Aβ40, Aβ42/Aβ40 ratio, phosphorylated tau181 (p-tau181), neurofilament light chain (NfL), and total tau (T-tau) were measured using Simoa assays. Logistic and linear regression analyses were used to examine the relationship between plasma biomarkers and brain amyloid, cognition, and imaging measures adjusting for age, sex, education, APOE ε4 status, and vascular risk scores. Receiver operating characteristics were used to evaluate the discriminative validity of biomarkers. RESULTS After adjustment, only plasma p-tau181 and NfL were significantly elevated in Aβ+ Obj-SCD participants compared to Aβ- NC group. Elevated p-tau181 was associated with brain amyloid accumulation, worse cognitive performance (visual episodic memory, executive function, and visuospatial function), and hippocampal atrophy. These associations mainly occurred in Aβ+ individuals. In contrast, higher NfL was correlated with brain amyloid burden and verbal memory decline. These associations predominantly occurred in Aβ- individuals. The adjusted diagnostic model combining p-tau181 and NfL levels showed the best performance in identifying Aβ+ Obj-SCD from Aβ- NC [area under the curve (AUC) = 0.814], which did not differ from the adjusted p-tau181 model (AUC = 0.763). CONCLUSIONS Our findings highlight that plasma p-tau181, alone or combined with NfL, contributes to identifying high-risk AD populations.
Collapse
Affiliation(s)
- Yanlu Huang
- Department of GerontologyShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiChina
| | - Yuehua Li
- Department of RadiologyShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiChina
| | - Fang Xie
- PET Center, Huashan HospitalFudan UniversityShanghaiChina
| | - Qihao Guo
- Department of GerontologyShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiChina
| |
Collapse
|
122
|
Sapkota S, Erickson K, Harvey D, Tomaszewski‐Farias SE, Olichney JM, Johnson DK, Dugger BN, Mungas DM, Fletcher E, Maillard P, Seshadri S, Satizabal CL, Kautz T, Parent D, Tracy RP, Maezawa I, Jin L, DeCarli C. Plasma biomarkers predict cognitive trajectories in an ethnoracially and clinically diverse cohort: Mediation with hippocampal volume. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2022; 14:e12349. [PMID: 36092690 PMCID: PMC9434579 DOI: 10.1002/dad2.12349] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/25/2022] [Accepted: 06/26/2022] [Indexed: 11/11/2022]
Abstract
Introduction We examine whether the association between key plasma biomarkers (amyloid β [aβ] 42/40, total tau (t-tau), neurofilament light [NfL]) and cognitive trajectories (executive function [EF] and episodic memory [EM]) is mediated through neurodegeneration. Methods All participants were recruited from the University of California, Davis-Alzheimer's Disease Research Center (n = 473; baseline age range = 49-95 years, 60% women). We applied an accelerated longitudinal design to test latent growth models for EF and EM, and path and mediation analyses. Age was centered at 75 years, and all models were adjusted for sex, education, and ethnicity. Results HV differentially mediated the association aβ 42/40 and NfL on EF and EM level and change. Hippocampal volume (HV) did not mediate the association between t-tau and cognitive performance. Discussion Neurodegeneration as represented with HV selectively mediates the association between key non-invasive plasma biomarkers and cognitive trajectories in an ethnoracially and clinically diverse community-based sample.
Collapse
Affiliation(s)
- Shraddha Sapkota
- Department of NeurologyUniversity of CaliforniaDavisCaliforniaUSA
| | - Kelsey Erickson
- Department of Pathology and Laboratory MedicineUniversity of CaliforniaDavisCaliforniaUSA
| | - Danielle Harvey
- Department of Public Health SciencesUniversity of CaliforniaDavisCaliforniaUSA
| | | | - John M. Olichney
- Department of NeurologyUniversity of CaliforniaDavisCaliforniaUSA
| | - David K. Johnson
- Department of NeurologyUniversity of CaliforniaDavisCaliforniaUSA
| | - Brittany N. Dugger
- Department of Pathology and Laboratory MedicineUniversity of CaliforniaDavisCaliforniaUSA
| | - Dan M. Mungas
- Department of NeurologyUniversity of CaliforniaDavisCaliforniaUSA
| | - Evan Fletcher
- Department of NeurologyUniversity of CaliforniaDavisCaliforniaUSA
| | - Pauline Maillard
- Department of NeurologyUniversity of CaliforniaDavisCaliforniaUSA
| | - Sudha Seshadri
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases and Department of Population Health SciencesUT Health San AntonioSan AntonioTexasUSA
| | - Claudia L. Satizabal
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases and Department of Population Health SciencesUT Health San AntonioSan AntonioTexasUSA
- Department of NeurologyBoston University School of MedicineBostonMassachusettsUSA
- The Framingham Heart StudyFraminghamMassachusettsUSA
| | - Tiffany Kautz
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases and Department of Population Health SciencesUT Health San AntonioSan AntonioTexasUSA
| | - Danielle Parent
- Department of Pathology and Laboratory MedicineUniversity of VermontBurlingtonVermontUSA
| | - Russell P. Tracy
- Department of Pathology and Laboratory MedicineUniversity of VermontBurlingtonVermontUSA
| | - Izumi Maezawa
- Department of Pathology and Laboratory MedicineUniversity of CaliforniaDavisCaliforniaUSA
| | - Lee‐Way Jin
- Department of Pathology and Laboratory MedicineUniversity of CaliforniaDavisCaliforniaUSA
| | - Charles DeCarli
- Department of NeurologyUniversity of CaliforniaDavisCaliforniaUSA
| |
Collapse
|
123
|
Garcia‐Moreno H, Prudencio M, Thomas‐Black G, Solanky N, Jansen‐West KR, Hanna AL‐Shaikh R, Heslegrave A, Zetterberg H, Santana MM, Pereira de Almeida L, Vasconcelos‐Ferreira A, Januário C, Infante J, Faber J, Klockgether T, Reetz K, Raposo M, Ferreira AF, Lima M, Schöls L, Synofzik M, Hübener‐Schmid J, Puschmann A, Gorcenco S, Wszolek ZK, Petrucelli L, Giunti P. Tau and neurofilament light-chain as fluid biomarkers in spinocerebellar ataxia type 3. Eur J Neurol 2022; 29:2439-2452. [PMID: 35478426 PMCID: PMC9543545 DOI: 10.1111/ene.15373] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/06/2022] [Accepted: 04/24/2022] [Indexed: 01/02/2023]
Abstract
BACKGROUND AND PURPOSE Clinical trials in spinocerebellar ataxia type 3 (SCA3) will require biomarkers for use as outcome measures. METHODS To evaluate total tau (t-tau), glial fibrillary acidic protein (GFAP), ubiquitin carboxy-terminal hydrolase L1 (UCHL1) and neurofilament light-chain (NfL) as fluid biomarkers in SCA3, ATXN3 mutation carriers (n = 143) and controls (n = 172) were clinically assessed, and the plasma concentrations of the four proteins were analysed on the Simoa HD-1 platform. Eleven ATXN3 mutation carrier cerebrospinal fluid samples were analysed for t-tau and phosphorylated tau (p-tau181 ). A transgenic SCA3 mouse model (MJDTg) was used to measure cerebellar t-tau levels. RESULTS Plasma t-tau levels were higher in mutation carriers below the age of 50 compared to controls, and the Inventory of Non-Ataxia Signs was associated with t-tau in ataxic patients (p = 0.004). Pre-ataxic carriers showed higher cerebrospinal fluid t-tau and p-tau181 concentrations compared to ataxic patients (p = 0.025 and p = 0.014, respectively). Cerebellar t-tau was elevated in MJDTg mice compared to wild-type (p = 0.033) only in the early stages of the disease. GFAP and UCHL1 did not show higher levels in mutation carriers compared to controls. Plasma NfL concentrations were higher in mutation carriers compared to controls, and differences were greater for younger carriers. The Scale for the Assessment and Rating of Ataxia was the strongest predictor of NfL in ataxic patients (p < 0.001). CONCLUSION Our results suggest that tau might be a marker of early disease stages in SCA3. NfL can discriminate mutation carriers from controls and is associated with different clinical variables. Longitudinal studies are required to confirm their potential role as biomarkers in clinical trials.
Collapse
Affiliation(s)
- Hector Garcia‐Moreno
- Ataxia CentreDepartment of Clinical and Movement NeurosciencesUCL Queen Square Institute of NeurologyUniversity College LondonLondonUK,Department of NeurogeneticsNational Hospital for Neurology and NeurosurgeryUniversity College London Hospitals NHS Foundation TrustLondonUK
| | - Mercedes Prudencio
- Department of NeuroscienceMayo ClinicJacksonvilleFloridaUSA,Neuroscience Graduate ProgramMayo Clinic Graduate School of Biomedical SciencesJacksonvilleFloridaUSA
| | - Gilbert Thomas‐Black
- Ataxia CentreDepartment of Clinical and Movement NeurosciencesUCL Queen Square Institute of NeurologyUniversity College LondonLondonUK,Department of NeurogeneticsNational Hospital for Neurology and NeurosurgeryUniversity College London Hospitals NHS Foundation TrustLondonUK
| | - Nita Solanky
- Ataxia CentreDepartment of Clinical and Movement NeurosciencesUCL Queen Square Institute of NeurologyUniversity College LondonLondonUK,Department of NeurogeneticsNational Hospital for Neurology and NeurosurgeryUniversity College London Hospitals NHS Foundation TrustLondonUK
| | | | | | - Amanda Heslegrave
- Department of Neurodegenerative DiseaseUCL Queen Square Institute of NeurologyLondonUK,UK Dementia Research Institute at UCLLondonUK
| | - Henrik Zetterberg
- Department of Neurodegenerative DiseaseUCL Queen Square Institute of NeurologyLondonUK,UK Dementia Research Institute at UCLLondonUK,Department of Psychiatry and NeurochemistryInstitute of Neuroscience and Physiologythe Sahlgrenska Academy at the University of GothenburgMölndalSweden,Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden
| | - Magda M. Santana
- Center for Neuroscience and Cell BiologyUniversity of CoimbraCoimbraPortugal
| | | | | | | | - Jon Infante
- Neurology ServiceUniversity Hospital Marqués de Valdecilla‐IDIVALUniversity of CantabriaCentro de Investigación en Red de Enfermedades Neurodegenerativas (CIBERNED)SantanderSpain
| | - Jennifer Faber
- Department of NeurologyUniversity Hospital BonnBonnGermany,German Center for Neurodegenerative Diseases (DZNE)BonnGermany
| | - Thomas Klockgether
- Department of NeurologyUniversity Hospital BonnBonnGermany,German Center for Neurodegenerative Diseases (DZNE)BonnGermany
| | - Kathrin Reetz
- Department of NeurologyRWTH Aachen UniversityAachenGermany,JARA‐BRAIN Institute Molecular Neuroscience and NeuroimagingForschungszentrum JülichRWTH Aachen UniversityAachenGermany
| | - Mafalda Raposo
- Faculdade de Ciências e TecnologiaUniversidade dos AçoresPonta DelgadaPortugal,Instituto de Biologia Molecular e Celular (IBMC)Instituto de Investigação e Inovação em Saúde (i3S)Universidade do PortoPortoPortugal
| | - Ana F. Ferreira
- Faculdade de Ciências e TecnologiaUniversidade dos AçoresPonta DelgadaPortugal,Instituto de Biologia Molecular e Celular (IBMC)Instituto de Investigação e Inovação em Saúde (i3S)Universidade do PortoPortoPortugal
| | - Manuela Lima
- Faculdade de Ciências e TecnologiaUniversidade dos AçoresPonta DelgadaPortugal,Instituto de Biologia Molecular e Celular (IBMC)Instituto de Investigação e Inovação em Saúde (i3S)Universidade do PortoPortoPortugal
| | - Ludger Schöls
- Department for Neurodegenerative DiseasesHertie‐Institute for Clinical Brain Research and Center for NeurologyUniversity of TübingenTübingenGermany,German Center for Neurodegenerative Diseases (DZNE)TübingenGermany
| | - Matthis Synofzik
- Department for Neurodegenerative DiseasesHertie‐Institute for Clinical Brain Research and Center for NeurologyUniversity of TübingenTübingenGermany,German Center for Neurodegenerative Diseases (DZNE)TübingenGermany
| | | | - Andreas Puschmann
- Lund University, Skåne University HospitalClinical Sciences, NeurologyLundSweden
| | - Sorina Gorcenco
- Lund University, Skåne University HospitalClinical Sciences, NeurologyLundSweden
| | | | - Leonard Petrucelli
- Department of NeuroscienceMayo ClinicJacksonvilleFloridaUSA,Neuroscience Graduate ProgramMayo Clinic Graduate School of Biomedical SciencesJacksonvilleFloridaUSA
| | - Paola Giunti
- Ataxia CentreDepartment of Clinical and Movement NeurosciencesUCL Queen Square Institute of NeurologyUniversity College LondonLondonUK,Department of NeurogeneticsNational Hospital for Neurology and NeurosurgeryUniversity College London Hospitals NHS Foundation TrustLondonUK
| |
Collapse
|
124
|
Pajewski NM, Elahi FM, Tamura MK, Hinman JD, Nasrallah IM, Ix JH, Miller LM, Launer LJ, Wright CB, Supiano MA, Lerner AJ, Sudduth TL, Killeen AA, Cheung AK, Reboussin DM, Wilcock DM, Williamson JD. Plasma amyloid beta, neurofilament light chain, and total tau in the Systolic Blood Pressure Intervention Trial (SPRINT). Alzheimers Dement 2022; 18:1472-1483. [PMID: 34786815 PMCID: PMC9110563 DOI: 10.1002/alz.12496] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 06/29/2021] [Accepted: 09/13/2021] [Indexed: 12/27/2022]
Abstract
INTRODUCTION Lowering blood pressure (BP) reduces the risk for cognitive impairment and the progression of cerebral white matter lesions. It is unclear whether hypertension control also influences plasma biomarkers related to Alzheimer's disease and non-disease-specific neurodegeneration. METHODS We examined the effect of intensive (< 120 mm Hg) versus standard (< 140 mm Hg) BP control on longitudinal changes in plasma amyloid beta (Aβ)40 and Aβ42 , total tau, and neurofilament light chain (NfL) in a subgroup of participants from the Systolic Blood Pressure Intervention Trial (N = 517). RESULTS Over 3.8 years, there were no significant between-group differences for Aβ40, Aβ42, Aβ42 /Aβ40, or total tau. Intensive treatment was associated with larger increases in NfL compared to standard treatment. Adjusting for kidney function, but not BP, attenuated the association between intensive treatment and NfL. DISCUSSION Intensive BP treatment was associated with changes in NfL, which were correlated with changes in kidney function associated with intensive treatment. TRIAL REGISTRATION clinicaltrials.gov Identifier: NCT01206062.
Collapse
Affiliation(s)
- Nicholas M. Pajewski
- Department of Biostatistics and Data Science, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Fanny M. Elahi
- Department of Neurology, Memory and Aging Center, Weill Institute for Neurosciences, University of California San Francisco, USA
| | - Manjula Kurella Tamura
- Geriatric Research, Education and Clinical Center, Palo Alto Veterans Affairs Health Care System, California and Division of Nephrology, Stanford University School of Medicine, Palo Alto, California, USA
| | - Jason D. Hinman
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, USA
| | - Ilya M. Nasrallah
- Department of Radiology, University of Pennsylvania, Philadelphia, USA
| | - Joachim H. Ix
- Division of Nephrology-Hypertension, University of California San Diego, USA
| | - Lindsay M. Miller
- Division of Nephrology-Hypertension, University of California San Diego, USA
| | - Lenore J. Launer
- Intramural Research Program, National Institute on Aging, Baltimore, Maryland, USA
| | - Clinton B. Wright
- National Institute of Neurological Disorders and Stroke, Bethesda, Maryland, USA
| | - Mark A. Supiano
- Geriatric Research, Education and Clinical Center, Veterans Affairs Salt Lake City Health System, Utah and Division of Geriatrics, University of Utah School of Medicine, Salt Lake City, USA
| | - Alan J. Lerner
- Department of Neurology, University Hospitals – Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Tiffany L. Sudduth
- Department of Physiology, Sanders-Brown Center on Aging, University of Kentucky, Lexington, USA
| | - Anthony A. Killeen
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, USA
| | - Alfred K. Cheung
- Division of Nephrology and Hypertension, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City and Renal Section, Veterans Affairs Salt Lake City Healthcare System, Utah, USA
| | - David M. Reboussin
- Department of Biostatistics and Data Science, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Donna M. Wilcock
- Department of Physiology, Sanders-Brown Center on Aging, University of Kentucky, Lexington, USA
| | - Jeff D. Williamson
- Section on Gerontology and Geriatric Medicine, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| |
Collapse
|
125
|
Chang PS, Chou HH, Lai TJ, Yen CH, Pan JC, Lin PT. Investigation of coenzyme Q10 status, serum amyloid-β, and tau protein in patients with dementia. Front Aging Neurosci 2022; 14:910289. [PMID: 35959290 PMCID: PMC9358012 DOI: 10.3389/fnagi.2022.910289] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 07/06/2022] [Indexed: 11/14/2022] Open
Abstract
Objectives Dementia is an oxidative stress-related disease. Coenzyme Q10 is a nutrient that occurs naturally in the human body and acts as an antioxidant. The purpose of this study was to investigate the relationships of coenzyme Q10 status, biomarkers for dementia (amyloid β and tau protein), and antioxidant capacity in patients with dementia. Methods Eighty dementia patients aged ≥60 years and with a mini mental state examination (MMSE) score ≤ 26 were enrolled. The levels of coenzyme Q10, total antioxidant capacity (TAC), amyloid β, and tau protein were measured. Results A total of 73% of patients had a low coenzyme Q10 status. Patients with low coenzyme Q10 status had a significantly higher level of serum amyloid β-42 and amyloid β-42/40 ratio (p < 0.05). Coenzyme Q10 status was significantly correlated with the values of TAC, MMSE score, amyloid β-42, and amyloid β-42/40 ratio (p < 0.05) but not with tau protein. Additionally, a high proportion of moderate dementia patients were found to have low coenzyme Q10 status (p = 0.07). Conclusion Patients with dementia suffered from coenzyme Q10 deficiency, and the degree of deficiency was related to the level of amyloid-β and antioxidant capacity. Since adequate level of coenzyme Q10 may delay the progression of dementia, monitoring coenzyme Q10 status in patients with dementia is necessary.
Collapse
Affiliation(s)
- Po-Sheng Chang
- Department of Nutrition, Chung Shan Medical University, Taichung, Taiwan
- Graduate Program in Nutrition, Chung Shan Medical University, Taichung, Taiwan
| | - Hsi-Hsien Chou
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Neurology, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Te-Jen Lai
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Psychiatry, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chi-Hua Yen
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Family and Community Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Ji-Cyun Pan
- Department of Nutrition, Chung Shan Medical University, Taichung, Taiwan
| | - Ping-Ting Lin
- Department of Nutrition, Chung Shan Medical University, Taichung, Taiwan
- Department of Nutrition, Chung Shan Medical University Hospital, Taichung, Taiwan
- *Correspondence: Ping-Ting Lin,
| |
Collapse
|
126
|
Chen L, Niu X, Wang Y, Lv S, Zhou X, Yang Z, Peng D. Plasma tau proteins for the diagnosis of mild cognitive impairment and Alzheimer's disease: A systematic review and meta-analysis. Front Aging Neurosci 2022; 14:942629. [PMID: 35959295 PMCID: PMC9358685 DOI: 10.3389/fnagi.2022.942629] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
ObjectiveDetecting plasma tau biomarkers used to be impossible due to their low concentrations in blood samples. Currently, new high-sensitivity assays made it a reality. We performed a systematic review and meta-analysis in order to test the accuracy of plasma tau protein in diagnosing Alzheimer's disease (AD) or mild cognitive impairment (MCI).MethodsWe searched PubMed, Cochrane, Embase and Web of Science databases, and conducted correlation subgroup analysis, sensitivity analysis and publication bias analysis using R Programming Language.ResultsA total of 56 studies were included. Blood t-tau and p-tau levels increased from controls to MCI to AD patients, and showed significant changes in pairwise comparisons of AD, MCI and normal cognition. P-tau217 was more sensitive than p-tau181 and p-tau231 in different cognition periods. In addition, ultrasensitive analytical platforms, immunomagnetic reduction (IMR), increased the diagnostic value of tau proteins, especially the diagnostic value of t-tau.ConclusionBoth t-tau and p-tau are suitable AD blood biomarkers, and p-tau217 is more sensitive than other tau biomarkers to differentiate MCI and AD. Detection techniques also have an impact on biomarkers' results. New ultrasensitive analytical platforms of IMR increase the diagnostic value of both t-tau and p-tau biomarkers.Systematic review registrationhttps://www.crd.york.ac.uk/PROSPERO/, registration number: CRD42021264701.
Collapse
Affiliation(s)
- Leian Chen
- Department of Neurology, China-Japan Friendship Hospital, Beijing, China
- Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiaoqian Niu
- Department of Neurology, China-Japan Friendship Hospital, Beijing, China
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
| | - Yuye Wang
- Department of Neurology, China-Japan Friendship Hospital, Beijing, China
- Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Shuang Lv
- Department of Neurology, China-Japan Friendship Hospital, Beijing, China
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
| | - Xiao Zhou
- Department of Neurology, China-Japan Friendship Hospital, Beijing, China
- Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Ziyuan Yang
- Department of Neurology, China-Japan Friendship Hospital, Beijing, China
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
| | - Dantao Peng
- Department of Neurology, China-Japan Friendship Hospital, Beijing, China
- Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
- *Correspondence: Dantao Peng
| |
Collapse
|
127
|
Non-Invasive Nasal Discharge Fluid and Other Body Fluid Biomarkers in Alzheimer’s Disease. Pharmaceutics 2022; 14:pharmaceutics14081532. [PMID: 35893788 PMCID: PMC9330777 DOI: 10.3390/pharmaceutics14081532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/12/2022] [Accepted: 07/19/2022] [Indexed: 02/04/2023] Open
Abstract
The key to current Alzheimer’s disease (AD) therapy is the early diagnosis for prompt intervention, since available treatments only slow the disease progression. Therefore, this lack of promising therapies has called for diagnostic screening tests to identify those likely to develop full-blown AD. Recent AD diagnosis guidelines incorporated core biomarker analyses into criteria, including amyloid-β (Aβ), total-tau (T-tau), and phosphorylated tau (P-tau). Though effective, the accessibility of screening tests involving conventional cerebrospinal fluid (CSF)- and blood-based analyses is often hindered by the invasiveness and high cost. In an attempt to overcome these shortcomings, biomarker profiling research using non-invasive body fluid has shown the potential to capture the pathological changes in the patients’ bodies. These novel non-invasive body fluid biomarkers for AD have emerged as diagnostic and pathological targets. Here, we review the potential peripheral biomarkers, including non-invasive peripheral body fluids of nasal discharge, tear, saliva, and urine for AD.
Collapse
|
128
|
Chen JB, Chang CC, Moi SH, Li LC. A Profile of Nanoparticle-Based Plasma Neurodegenerative Biomarkers for Cognitive Function Among Patients Undergoing Hemodialysis. Int J Gen Med 2022; 15:6115-6125. [PMID: 35846795 PMCID: PMC9286482 DOI: 10.2147/ijgm.s368987] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 07/05/2022] [Indexed: 01/20/2023] Open
Abstract
Purpose This study aimed to compare the plasma levels of nanoparticle-based neurodegenerative biomarkers between hemodialysis (HD) participants with grossly normal cognitive function and healthy controls. Patients and Methods A cohort of participants undergoing maintenance HD and healthy controls were enrolled for comparison between July and October 2021. The immunomagnetic reduction method was used to measure plasma neurodegenerative biomarkers Aβ1-40, Aβ1-42, tau protein, and neurofilament light chain (NfL). The clinical dementia rating (CDR) was used to evaluate cognitive function. A receiver operating characteristic curve was used to discriminate between HD participants and healthy controls. Results There were 52 and 18 participants in the HD and healthy control groups, respectively. The mean age of the HD participants was 62 years, and that of the healthy controls was 57 years. The mean HD vintage in the HD cohort was 11.8 years. HD participants demonstrated significantly higher plasma levels of Aβ1-42, tau protein, Aβ1-42 × tau, and NfL and Aβ1-42/Aβ1-40 ratio and significantly lower plasma Aβ1-40 levels than healthy controls. The measured plasma biomarkers could not discriminate between CDR0 and CDR0.5 HD participants. The area under the curve of the study biomarkers to discriminate HD participants from healthy controls ranged from 0.987 (Aβ1-42 × tau) to 0.889 (NfL). Conclusion The plasma levels of nanoparticle-based neurodegenerative biomarkers were higher in HD participants with grossly normal cognitive function than in healthy controls. These findings imply that neurodegenerative changes appear in HD participants. A profile of plasma neurodegenerative biomarkers could be considered a potential surrogate for evaluating long-term cognitive function in HD participants.
Collapse
Affiliation(s)
- Jin-Bor Chen
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and School of Medicine, Kaohsiung, 833, Taiwan, Republic of China.,College of Medicine, Chang Gung University, Taoyuan, 330, Taiwan, Republic of China
| | - Chiung-Chih Chang
- College of Medicine, Chang Gung University, Taoyuan, 330, Taiwan, Republic of China.,Department of Neurology, Kaohsiung Chang Gung Memorial Hospital and School of Medicine, Kaohsiung, 833, Taiwan, Republic of China
| | - Sin-Hua Moi
- Center of Cancer Program Development, E-Da Cancer Hospital, I-Shou University, Kaohsiung, 833, Taiwan, Republic of China
| | - Lung-Chih Li
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and School of Medicine, Kaohsiung, 833, Taiwan, Republic of China.,College of Medicine, Chang Gung University, Taoyuan, 330, Taiwan, Republic of China
| |
Collapse
|
129
|
Botella Lucena P, Vanherle S, Lodder C, Gutiérrez de Ravé M, Stancu IC, Lambrichts I, Vangheluwe R, Bruffaerts R, Dewachter I. Blood-based Aβ42 increases in the earliest pre-pathological stage before decreasing with progressive amyloid pathology in preclinical models and human subjects: opening new avenues for prevention. Acta Neuropathol 2022; 144:489-508. [PMID: 35796870 PMCID: PMC9381631 DOI: 10.1007/s00401-022-02458-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/21/2022] [Accepted: 06/21/2022] [Indexed: 11/27/2022]
Abstract
Blood-based (BB) biomarkers for Aβ and tau can indicate pathological processes in the brain, in the early pathological, even pre-symptomatic stages in Alzheimer’s disease. However, the relation between BB biomarkers and AD-related processes in the brain in the earliest pre-pathology stage before amyloid pathology develops, and their relation with total brain concentrations of Aβ and tau, is poorly understood. This stage presents a critical window for the earliest prevention of AD. Preclinical models with well-defined temporal progression to robust amyloid and tau pathology provide a unique opportunity to study this relation and were used here to study the link between BB biomarkers with AD-related processes in pre- and pathological stages. We performed a cross-sectional study at different ages assessing the link between BB concentrations and AD-related processes in the brain. This was complemented with a longitudinal analysis and with analysis of age-related changes in a small cohort of human subjects. We found that BB-tau concentrations increased in serum, correlating with progressive development of tau pathology and with increasing tau aggregates and p-tau concentrations in brain in TauP301S mice (PS19) developing tauopathy. BB-Aβ42 concentrations in serum decreased between 4.5 and 9 months of age, correlating with the progressive development of robust amyloid pathology in APP/PS1 (5xFAD) mice, in line with previous findings. Most importantly, BB-Aβ42 concentrations significantly increased between 1.5 and 4.5 months, i.e., in the earliest pre-pathological stage, before robust amyloid pathology develops in the brain, indicating biphasic BB-Aβ42 dynamics. Furthermore, increasing BB-Aβ42 in the pre-pathological phase, strongly correlated with increasing Aβ42 concentrations in brain. Our subsequent longitudinal analysis of BB-Aβ42 in 5xFAD mice, confirmed biphasic BB-Aβ42, with an initial increase, before decreasing with progressive robust pathology. Furthermore, in human samples, BB-Aβ42 concentrations were significantly higher in old (> 60 years) compared to young (< 50 years) subjects, as well as to age-matched AD patients, further supporting age-dependent increase of Aβ42 concentrations in the earliest pre-pathological phase, before amyloid pathology. Also BB-Aβ40 concentrations were found to increase in the earliest pre-pathological phase both in preclinical models and human subjects, while subsequent significantly decreasing concentrations in the pathological phase were characteristic for BB-Aβ42. Together our data indicate that BB biomarkers reflect pathological processes in brain of preclinical models with amyloid and tau pathology, both in the pathological and pre-pathological phase. Our data indicate a biphasic pattern of BB-Aβ42 in preclinical models and a human cohort. And most importantly, we here show that BB-Aβ increased and correlated with increasing concentrations of Aβ in the brain, in the earliest pre-pathological stage in a preclinical model. Our data thereby identify a novel critical window for prevention, using BB-Aβ as marker for accumulating Aβ in the brain, in the earliest pre-pathological stage, opening new avenues for personalized early preventive strategies against AD, even before amyloid pathology develops.
Collapse
Affiliation(s)
- Pablo Botella Lucena
- Biomedical Research Institute, BIOMED, Hasselt University, 3590, Diepenbeek, Belgium
| | - Sarah Vanherle
- Biomedical Research Institute, BIOMED, Hasselt University, 3590, Diepenbeek, Belgium
| | - Chritica Lodder
- Biomedical Research Institute, BIOMED, Hasselt University, 3590, Diepenbeek, Belgium
| | | | - Ilie-Cosmin Stancu
- Biomedical Research Institute, BIOMED, Hasselt University, 3590, Diepenbeek, Belgium
| | - Ivo Lambrichts
- Biomedical Research Institute, BIOMED, Hasselt University, 3590, Diepenbeek, Belgium
| | - Riet Vangheluwe
- Neurology Department, ZOL Genk General Hospital, Genk, Belgium
| | - Rose Bruffaerts
- Biomedical Research Institute, BIOMED, Hasselt University, 3590, Diepenbeek, Belgium.,Laboratory for Cognitive Neurology, Department of Neurosciences, Leuven Brain Institute (LBI), KU, 3000, Leuven, Belgium.,Department of Neurology, University Hospitals, 3000, Leuven, Belgium.,Computational Neurology, Experimental Neurobiology Unit, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Ilse Dewachter
- Biomedical Research Institute, BIOMED, Hasselt University, 3590, Diepenbeek, Belgium.
| |
Collapse
|
130
|
Faldu KG, Shah JS. Alzheimer's disease: a scoping review of biomarker research and development for effective disease diagnosis. Expert Rev Mol Diagn 2022; 22:681-703. [PMID: 35855631 DOI: 10.1080/14737159.2022.2104639] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 07/19/2022] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Alzheimer's disease (AD) is regarded as the foremost reason for neurodegeneration that prominently affects the geriatric population. Characterized by extracellular accumulation of amyloid-beta (Aβ), intracellular aggregation of hyperphosphorylated tau (p-tau), and neuronal degeneration that causes impairment of memory and cognition. Amyloid/tau/neurodegeneration (ATN) classification is utilized for research purposes and involves amyloid, tau, and neuronal injury staging through MRI, PET scanning, and CSF protein concentration estimations. CSF sampling is invasive, and MRI and PET scanning requires sophisticated radiological facilities which limit its widespread diagnostic use. ATN classification lacks effectiveness in preclinical AD. AREAS COVERED This publication intends to collate and review the existing biomarker profile and the current research and development of a new arsenal of biomarkers for AD pathology from different biological samples, microRNA (miRNA), proteomics, metabolomics, artificial intelligence, and machine learning for AD screening, diagnosis, prognosis, and monitoring of AD treatments. EXPERT OPINION It is an accepted observation that AD-related pathological changes occur over a long period of time before the first symptoms are observed providing ample opportunity for detection of biological alterations in various biological samples that can aid in early diagnosis and modify treatment outcomes.
Collapse
Affiliation(s)
- Khushboo Govind Faldu
- Department of Pharmacology, Institute of Pharmacy, Nirma University, Ahmedabad, India
| | - Jigna Samir Shah
- Department of Pharmacology, Institute of Pharmacy, Nirma University, Ahmedabad, India
| |
Collapse
|
131
|
Laforce RJ, Dallaire-Théroux C, Racine AM, Dent G, Salinas-Valenzuela C, Poulin E, Cayer AM, Bédard-Tremblay D, Rouleau-Bonenfant T, St-Onge F, Schraen-Maschke S, Beauregard JM, Sergeant N, Puymirat J. Tau positron emission tomography, cerebrospinal fluid and plasma biomarkers of neurodegeneration, and neurocognitive testing: an exploratory study of participants with myotonic dystrophy type 1. J Neurol 2022; 269:3579-3587. [PMID: 35103843 PMCID: PMC9217820 DOI: 10.1007/s00415-022-10970-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/11/2022] [Accepted: 01/11/2022] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To investigate Tau pathology using multimodal biomarkers of neurodegeneration and neurocognition in participants with myotonic dystrophy type 1 (DM1). METHODS We recruited twelve participants with DM1 and, for comparison, two participants with Alzheimer's Disease (AD). Participants underwent cognitive screening and social cognition testing using the Dépistage Cognitif de Québec (DCQ), among other tests. Biomarkers included Tau PET with [18F]-AV-1451, CSF (Aβ, Tau, phospho-Tau), and plasma (Aβ, Tau, Nf-L, GFAP) studies. RESULTS Of the twelve DM1 participants, seven completed the full protocol (Neurocognition 11/12; PET 7/12, CSF 9/12, plasma 12/12). Three DM1 participants were cognitively impaired (CI). On average, CI DM1 participants had lower scores on the DCQ compared to cognitively unimpaired (CU) DM1 participants (75.5/100 vs. 91.4/100) and were older (54 vs. 44 years old) but did not differ in years of education (11.3 vs. 11.1). The majority (6/7) of DM1 participants had no appreciable PET signal. Only one of the CI participants presented with elevated Tau PET SUVR in bilateral medial temporal lobes. This participant was the eldest and most cognitively impaired, and had the lowest CSF Aβ 1-42 and the highest CSF Tau levels, all suggestive of co-existing AD. CSF Tau and phospho-Tau levels were higher in the 3 CI compared to CU DM1 participants, but with a mean value lower than that typically observed in AD. Nf-L and GFAP were elevated in most DM1 participants (9/11 and 8/11, respectively). Finally, CSF phospho-Tau was significantly correlated with plasma Nf-L concentrations. CONCLUSIONS AND RELEVANCE We observed heterogenous cognitive and biomarker profiles in individuals with DM1. While some participants presented with abnormal PET and/or CSF Tau, these patterns were highly variable and only present in a small subset. Although DM1 may indeed represent a non-AD Tauopathy, the Tau-PET tracer used in this study was unable to detect an in vivo Tau DM1 signature in this small cohort. Interestingly, most DM1 participants presented with elevated plasma Nf-L and GFAP levels, suggestive of other, possibly related, central brain alterations which motivate further research. This pioneering study provides novel insights towards the potential relationship between biomarkers and neurocognitive deficits commonly seen in DM1.
Collapse
Affiliation(s)
- Robert Jr Laforce
- Clinique Interdisciplinaire de Mémoire, CHU de Québec, Québec, QC, Canada.
| | | | | | | | | | - Elizabeth Poulin
- Clinique Interdisciplinaire de Mémoire, CHU de Québec, Québec, QC, Canada
| | - Anne-Marie Cayer
- Clinique Interdisciplinaire de Mémoire, CHU de Québec, Québec, QC, Canada
| | | | | | - Frédéric St-Onge
- Clinique Interdisciplinaire de Mémoire, CHU de Québec, Québec, QC, Canada
| | - Susanna Schraen-Maschke
- Université de Lille, Inserm UMRS1172, CHU Lille, Lille, France
- Alzheimer & Tauopathies, LabEx DISTALZ, Lille, France
| | | | - Nicolas Sergeant
- Université de Lille, Inserm UMRS1172, CHU Lille, Lille, France
- Alzheimer & Tauopathies, LabEx DISTALZ, Lille, France
| | - Jack Puymirat
- Clinique Interdisciplinaire de Mémoire, CHU de Québec, Québec, QC, Canada
| |
Collapse
|
132
|
Tau as a Biomarker of Neurodegeneration. Int J Mol Sci 2022; 23:ijms23137307. [PMID: 35806324 PMCID: PMC9266883 DOI: 10.3390/ijms23137307] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 06/29/2022] [Accepted: 06/29/2022] [Indexed: 12/13/2022] Open
Abstract
Less than 50 years since tau was first isolated from a porcine brain, its detection in femtolitre concentrations in biological fluids is revolutionizing the diagnosis of neurodegenerative diseases. This review highlights the molecular and technological advances that have catapulted tau from obscurity to the forefront of biomarker diagnostics. Comprehensive updates are provided describing the burgeoning clinical applications of tau as a biomarker of neurodegeneration. For the clinician, tau not only enhances diagnostic accuracy, but holds promise as a predictor of clinical progression, phenotype, and response to drug therapy. For patients living with neurodegenerative disorders, characterization of tau dysregulation could provide much-needed clarity to a notoriously murky diagnostic landscape.
Collapse
|
133
|
Shahim P, Zetterberg H, Simren J, Ashton NJ, Norato G, Schöll M, Tegner Y, Diaz-Arrastia R, Blennow K. Association of Plasma Biomarker Levels With Their CSF Concentration and the Number and Severity of Concussions in Professional Athletes. Neurology 2022; 99:e347-e354. [PMID: 35654597 DOI: 10.1212/wnl.0000000000200615] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 03/15/2022] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To examine whether the brain biomarkers total-tau (T-tau), glial fibrillary acidic protein (GFAP), and β-amyloid (Aβ) isomers 40 and 42 in plasma relate to the corresponding concentrations in cerebrospinal fluid (CSF), blood-brain barrier integrity, and duration of post-concussion syndrome (PCS) due to repetitive head impacts (RHI) in professional athletes. METHOD In this cross-sectional study, professional athletes with persistent PCS due to RHI (median of 1.5 years after recent concussion) and uninjured controls were assessed with blood and CSF sampling. The diagnosis of PCS was based on the Diagnostic and Statistical Manual of Mental Disorders (Fourth Edition). The athletes were enrolled through information flyers about the study sent to the Swedish hockey league (SHL) and the SHL Medicine Committee. The controls were enrolled through flyers at University of Gothenburg and Sahlgrenska University Hospital, Sweden. The participants underwent lumbar puncture and blood assessment at Sahlgrenska University Hospital. The main outcome measures were history of RHI and PCS severity (PCS> 1 year versus PCS< 1 year) in relation to plasma and CSF concentrations of T-tau, GFAP, Aβ40, and Aβ42. Plasma T-tau, GFAP, Aβ40, and Aβ42 were quantified using an ultrasensitive assay technology. RESULTS A total of 47 participants (28 athletes [median age 28 years, range 18-52] with persistent PCS, due to RHI and 19 controls [median age, 25 years, range 21-35]) underwent paired blood and cerebrospinal fluid (CSF) sampling. T-tau, Aβ40 and Aβ42 concentrations measured in plasma did not correlate with the corresponding CSF concentrations, while there was a correlation between plasma and CSF levels of GFAP (r=0.45, p=0.020). There were no significant relationships between plasma T-tau, GFAP, and blood-brain barrier integrity as measured by CSF:serum albumin ratio. T-tau, GFAP, Aβ40, and Aβ42 measured in plasma did not relate to PCS severity. None of the markers measured in plasma correlated with number of concussions, except decreased Aβ42 in those with higher number of concussions (r=-0.40, p=0.04). CONCLUSIONS T-tau, GFAP, Aβ40 and Aβ42 measured in plasma do not correspond to CSF measures, and may have limited utility for the evaluation of the late effects of RHI, compared with when measured in CSF. CLASSIFICATION OF EVIDENCE This study provides Class III evidence that in professional athletes with post-concussion symptoms, plasma concentrations of T-tau, GFAP, Aβ40, and Aβ42 are not informative in the diagnosis of late effects of repetitive head injuries.
Collapse
Affiliation(s)
- Pashtun Shahim
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden .,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Rehabilitation Medicine Department, National Institutes of Health Clinical Center, Bethesda, MD, USA
| | - Henrik Zetterberg
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK.,UK Dementia Research Institute, London, UK
| | - Joel Simren
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Nicholas J Ashton
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden.,King's College London, Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Institute Clinical Neuroscience Institute, London, UK.,NIHR Biomedical Research Centre for Mental Health and Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation, London, UK
| | - Gina Norato
- Clinical Trials Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Michael Schöll
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden.,Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Yelverton Tegner
- Division of Health, Medicine and Rehabilitation, Department of Health Science, Luleå University of Technology, Luleå, Sweden
| | - Ramon Diaz-Arrastia
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Kaj Blennow
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| |
Collapse
|
134
|
Syrjanen JA, Campbell MR, Algeciras-Schimnich A, Vemuri P, Graff-Radford J, Machulda MM, Bu G, Knopman DS, Jack CR, Petersen RC, Mielke MM. Associations of amyloid and neurodegeneration plasma biomarkers with comorbidities. Alzheimers Dement 2022; 18:1128-1140. [PMID: 34569696 PMCID: PMC8957642 DOI: 10.1002/alz.12466] [Citation(s) in RCA: 144] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 01/21/2023]
Abstract
INTRODUCTION Blood-based biomarkers of amyloid pathology and neurodegeneration are entering clinical use. It is critical to understand what factors affect the levels of these markers. METHODS Plasma markers (Aβ42, Aβ40, NfL, T-tau, Aβ42/40 ratio) were measured on the Quanterix Simoa HD-1 analyzer for 996 Mayo Clinic Study of Aging (MCSA) participants, aged 51 to 95 years. All other data were collected during in-person MCSA visits or abstracted from the medical record. RESULTS Among cognitively unimpaired (CU) participants, all plasma markers correlated with age. Linear regression models revealed multiple relationships. For example, higher Charlson Comorbidity Index and chronic kidney disease were associated with higher levels of all biomarkers. Some relationships differed between mild cognitive impairment and dementia participants. DISCUSSION Multiple variables affect plasma biomarkers of amyloid pathology and neurodegeneration among CU in the general population. Incorporating this information is critical for accurate interpretation of the biomarker levels and for the development of reference ranges.
Collapse
Affiliation(s)
- Jeremy A. Syrjanen
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota, USA
| | - Michelle R. Campbell
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | | | | | | | - Mary M. Machulda
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, Minnesota, USA
| | - Guojun Bu
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | | | | | - Ronald C. Petersen
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota, USA
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | - Michelle M. Mielke
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota, USA
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
135
|
Polsinelli AJ, Apostolova LG. Atypical Alzheimer Disease Variants. Continuum (Minneap Minn) 2022; 28:676-701. [PMID: 35678398 PMCID: PMC10028410 DOI: 10.1212/con.0000000000001082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
PURPOSE OF REVIEW This article discusses the clinical, neuroimaging, and biomarker profiles of sporadic atypical Alzheimer disease (AD) variants, including early-onset AD, posterior cortical atrophy, logopenic variant primary progressive aphasia, dysexecutive variant and behavioral variant AD, and corticobasal syndrome. RECENT FINDINGS Significant advances are being made in the recognition and characterization of the syndromically diverse AD variants. These variants are identified by the predominant cognitive and clinical features: early-onset amnestic syndrome, aphasia, visuospatial impairments, dysexecutive and behavioral disturbance, or motor symptoms. Although understanding of regional susceptibility to disease remains in its infancy, visualizing amyloid and tau pathology in vivo and CSF examination of amyloid-β and tau proteins are particularly useful in atypical AD, which can be otherwise prone to misdiagnosis. Large-scale research efforts, such as LEADS (the Longitudinal Early-Onset Alzheimer Disease Study), are currently ongoing and will continue to shed light on our understanding of these diverse presentations. SUMMARY Understanding the clinical, neuroimaging, and biomarker profiles of the heterogeneous group of atypical AD syndromes improves diagnostic accuracy in patients who are at increased risk of misdiagnosis. Earlier accurate identification facilitates access to important interventions, social services and disability assistance, and crucial patient and family education.
Collapse
|
136
|
Tarutani A, Adachi T, Akatsu H, Hashizume Y, Hasegawa K, Saito Y, Robinson AC, Mann DMA, Yoshida M, Murayama S, Hasegawa M. Ultrastructural and biochemical classification of pathogenic tau, α-synuclein and TDP-43. Acta Neuropathol 2022; 143:613-640. [PMID: 35513543 PMCID: PMC9107452 DOI: 10.1007/s00401-022-02426-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 04/12/2022] [Accepted: 04/23/2022] [Indexed: 12/20/2022]
Abstract
Intracellular accumulation of abnormal proteins with conformational changes is the defining neuropathological feature of neurodegenerative diseases. The pathogenic proteins that accumulate in patients' brains adopt an amyloid-like fibrous structure and exhibit various ultrastructural features. The biochemical analysis of pathogenic proteins in sarkosyl-insoluble fractions extracted from patients' brains also shows disease-specific features. Intriguingly, these ultrastructural and biochemical features are common within the same disease group. These differences among the pathogenic proteins extracted from patients' brains have important implications for definitive diagnosis of the disease, and also suggest the existence of pathogenic protein strains that contribute to the heterogeneity of pathogenesis in neurodegenerative diseases. Recent experimental evidence has shown that prion-like propagation of these pathogenic proteins from host cells to recipient cells underlies the onset and progression of neurodegenerative diseases. The reproduction of the pathological features that characterize each disease in cellular and animal models of prion-like propagation also implies that the structural differences in the pathogenic proteins are inherited in a prion-like manner. In this review, we summarize the ultrastructural and biochemical features of pathogenic proteins extracted from the brains of patients with neurodegenerative diseases that accumulate abnormal forms of tau, α-synuclein, and TDP-43, and we discuss how these disease-specific properties are maintained in the brain, based on recent experimental insights.
Collapse
Affiliation(s)
- Airi Tarutani
- Department of Brain and Neuroscience, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, 156-8506, Japan
| | - Tadashi Adachi
- Division of Neuropathology, Department of Brain and Neurosciences, Faculty of Medicine, Tottori University, Tottori, 683-8503, Japan
| | - Hiroyasu Akatsu
- Department of Neuropathology, Choju Medical Institute, Fukushimura Hospital, Aichi, 441-8124, Japan
- Department of Community-Based Medical Education, Nagoya City University Graduate School of Medical Sciences, Aichi, 467-8601, Japan
| | - Yoshio Hashizume
- Department of Neuropathology, Choju Medical Institute, Fukushimura Hospital, Aichi, 441-8124, Japan
| | - Kazuko Hasegawa
- Division of Neurology, National Hospital Organization, Sagamihara National Hospital, Kanagawa, 252-0392, Japan
| | - Yuko Saito
- Department of Neuropathology, Tokyo Metropolitan Institute of Gerontology, Tokyo, 173-0015, Japan
- Department of Pathology and Laboratory Medicine, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, 187-8551, Japan
| | - Andrew C Robinson
- Faculty of Biology, Medicine and Health, School of Biological Sciences, Division of Neuroscience and Experimental Psychology, Salford Royal Hospital, The University of Manchester, Salford, M6 8HD, UK
| | - David M A Mann
- Faculty of Biology, Medicine and Health, School of Biological Sciences, Division of Neuroscience and Experimental Psychology, Salford Royal Hospital, The University of Manchester, Salford, M6 8HD, UK
| | - Mari Yoshida
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, Aichi, 480-1195, Japan
| | - Shigeo Murayama
- Department of Neuropathology, Tokyo Metropolitan Institute of Gerontology, Tokyo, 173-0015, Japan
- Brain Bank for Neurodevelopmental, Neurological and Psychiatric Disorders, United Graduate School of Child Development, Osaka University, Osaka, 565-0871, Japan
| | - Masato Hasegawa
- Department of Brain and Neuroscience, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, 156-8506, Japan.
| |
Collapse
|
137
|
Blood phospho-tau in Alzheimer disease: analysis, interpretation, and clinical utility. Nat Rev Neurol 2022; 18:400-418. [PMID: 35585226 DOI: 10.1038/s41582-022-00665-2] [Citation(s) in RCA: 142] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2022] [Indexed: 12/11/2022]
Abstract
Well-authenticated biomarkers can provide critical insights into the biological basis of Alzheimer disease (AD) to enable timely and accurate diagnosis, estimate future burden and support therapeutic trials. Current cerebrospinal fluid and molecular neuroimaging biomarkers fulfil these criteria but lack the scalability and simplicity necessary for widespread application. Blood biomarkers of adequate effectiveness have the potential to act as first-line diagnostic and prognostic tools, and offer the possibility of extensive population screening and use that is not limited to specialized centres. Accelerated progress in our understanding of the biochemistry of brain-derived tau protein and advances in ultrasensitive technologies have enabled the development of AD-specific phosphorylated tau (p-tau) biomarkers in blood. In this Review we discuss how new information on the molecular processing of brain p-tau and secretion of specific fragments into biofluids is informing blood biomarker development, enabling the evaluation of preanalytical factors that affect quantification, and informing harmonized protocols for blood handling. We also review the performance of blood p-tau biomarkers in the context of AD and discuss their potential contexts of use for clinical and research purposes. Finally, we highlight outstanding ethical, clinical and analytical challenges, and outline the steps that need to be taken to standardize inter-laboratory and inter-assay measurements.
Collapse
|
138
|
Zhang L, Wang D, Dai Y, Wang X, Cao Y, Liu W, Tao Z. Machine Learning Reveals a Multipredictor Nomogram for Diagnosing the Alzheimer's Disease Based on Chemiluminescence Immunoassay for Total Tau in Plasma. Front Aging Neurosci 2022; 14:863673. [PMID: 35645782 PMCID: PMC9136081 DOI: 10.3389/fnagi.2022.863673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/14/2022] [Indexed: 11/10/2022] Open
Abstract
Background Predicting amnestic mild cognitive impairment (aMCI) in conversion and Alzheimer's disease (AD) remains a daunting task. Standard diagnostic procedures for AD population are reliant on neuroimaging features (positron emission tomography, PET), cerebrospinal fluid (CSF) biomarkers (Aβ1-42, T-tau, P-tau), which are expensive or require invasive sampling. The blood-based biomarkers offer the opportunity to provide an alternative approach for easy diagnosis of AD, which would be a less invasive and cost-effective screening tool than currently approved CSF or amyloid β positron emission tomography (PET) biomarkers. Methods We developed and validated a sensitive and selective immunoassay for total Tau in plasma. Robust signatures were obtained based on several clinical features selected by multiple machine learning algorithms between the three participant groups. Subsequently, a well-fitted nomogram was constructed and validated, integrating clinical factors and total Tau concentration. The predictive performance was evaluated according to the receiver operating characteristic (ROC) curves and area under the curve (AUC) statistics. Decision curve analysis and calibration curves are used to evaluate the net benefit of nomograms in clinical decision-making. Results Under optimum conditions, chemiluminescence analysis (CLIA) displays a desirable dynamic range within Tau concentration from 7.80 to 250 pg/mL with readily achieved higher performances (LOD: 5.16 pg/mL). In the discovery cohort, the discrimination between the three well-defined participant groups according to Tau concentration was in consistent agreement with clinical diagnosis (AD vs. non-MCI: AUC = 0.799; aMCI vs. non-MCI: AUC = 0.691; AD vs. aMCI: AUC = 0.670). Multiple machine learning algorithms identified Age, Gender, EMPG, Tau, ALB, HCY, VB12, and/or Glu as robust signatures. A nomogram integrated total Tau concentration and clinical factors provided better predictive performance (AD vs. non-MCI: AUC = 0.960, AD vs. aMCI: AUC = 0.813 in discovery cohort; AD vs. non-MCI: AUC = 0.938, AD vs. aMCI: AUC = 0.754 in validation cohort). Conclusion The developed assay and a satisfactory nomogram model hold promising clinical potential for early diagnosis of aMCI and AD participants.
Collapse
|
139
|
Klyucherev TO, Olszewski P, Shalimova AA, Chubarev VN, Tarasov VV, Attwood MM, Syvänen S, Schiöth HB. Advances in the development of new biomarkers for Alzheimer's disease. Transl Neurodegener 2022; 11:25. [PMID: 35449079 PMCID: PMC9027827 DOI: 10.1186/s40035-022-00296-z] [Citation(s) in RCA: 114] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 03/28/2022] [Indexed: 12/16/2022] Open
Abstract
Alzheimer's disease (AD) is a complex, heterogeneous, progressive disease and is the most common type of neurodegenerative dementia. The prevalence of AD is expected to increase as the population ages, placing an additional burden on national healthcare systems. There is a large need for new diagnostic tests that can detect AD at an early stage with high specificity at relatively low cost. The development of modern analytical diagnostic tools has made it possible to determine several biomarkers of AD with high specificity, including pathogenic proteins, markers of synaptic dysfunction, and markers of inflammation in the blood. There is a considerable potential in using microRNA (miRNA) as markers of AD, and diagnostic studies based on miRNA panels suggest that AD could potentially be determined with high accuracy for individual patients. Studies of the retina with improved methods of visualization of the fundus are also showing promising results for the potential diagnosis of the disease. This review focuses on the recent developments of blood, plasma, and ocular biomarkers for the diagnosis of AD.
Collapse
Affiliation(s)
- Timofey O Klyucherev
- Department of Neuroscience, Functional Pharmacology, University of Uppsala, Uppsala, Sweden.,Department of Pharmacology, Institute of Pharmacy, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Pawel Olszewski
- Department of Neuroscience, Functional Pharmacology, University of Uppsala, Uppsala, Sweden
| | - Alena A Shalimova
- Department of Neuroscience, Functional Pharmacology, University of Uppsala, Uppsala, Sweden.,Department of Pharmacology, Institute of Pharmacy, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Vladimir N Chubarev
- Institute of Translational Medicine and Biotechnology, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Vadim V Tarasov
- Department of Pharmacology, Institute of Pharmacy, I. M. Sechenov First Moscow State Medical University, Moscow, Russia.,Institute of Translational Medicine and Biotechnology, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Misty M Attwood
- Department of Neuroscience, Functional Pharmacology, University of Uppsala, Uppsala, Sweden
| | - Stina Syvänen
- Department of Public Health and Caring Sciences, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Helgi B Schiöth
- Department of Neuroscience, Functional Pharmacology, University of Uppsala, Uppsala, Sweden.
| |
Collapse
|
140
|
Manzine PR, Vatanabe IP, Grigoli MM, Pedroso RV, de Almeida MPOMEP, de Oliveira DDSMS, Crispim Nascimento CM, Peron R, de Souza Orlandi F, Cominetti MR. Potential Protein Blood-Based Biomarkers in Different Types of Dementia: A Therapeutic Overview. Curr Pharm Des 2022; 28:1170-1186. [DOI: 10.2174/1381612828666220408124809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 02/24/2022] [Indexed: 11/22/2022]
Abstract
Abstract:
Biomarkers capable of identifying and distinguishing types of dementia such as Alzheimer's disease (AD), Parkinson's disease dementia (PDD), Lewy body dementia (LBD), and frontotemporal dementia (FTD) have been become increasingly relentless. Studies of possible biomarker proteins in the blood that can help formulate new diagnostic proposals and therapeutic visions of different types of dementia are needed. However, due to several limitations of these biomarkers, especially in discerning dementia, their clinical applications are still undetermined. Thus, the updating of biomarker blood proteins that can help in the diagnosis and discrimination of these main dementia conditions is essential to enable new pharmacological and clinical management strategies, with specificities for each type of dementia. To review the literature concerning protein blood-based AD and non-AD biomarkers as new pharmacological targets and/or therapeutic strategies. Recent findings for protein-based AD, PDD, LBD, and FTD biomarkers are focused on in this review. Protein biomarkers were classified according to the pathophysiology of the dementia types. The diagnosis and distinction of dementia through protein biomarkers is still a challenge. The lack of exclusive biomarkers for each type of dementia highlights the need for further studies in this field. Only after this, blood biomarkers may have a valid use in clinical practice as they are promising to help in diagnosis and in the differentiation of diseases.
Collapse
Affiliation(s)
- Patricia Regina Manzine
- Department of Gerontology, Federal University of Sao Carlos, Brazil. Highway Washington Luis, Km 235. Monjolinho
| | - Izabela Pereira Vatanabe
- Department of Gerontology, Federal University of Sao Carlos, Brazil. Highway Washington Luis, Km 235. Monjolinho
| | - Marina Mantellatto Grigoli
- Department of Gerontology, Federal University of Sao Carlos, Brazil. Highway Washington Luis, Km 235. Monjolinho
| | - Renata Valle Pedroso
- Department of Gerontology, Federal University of Sao Carlos, Brazil. Highway Washington Luis, Km 235. Monjolinho
| | | | | | | | - Rafaela Peron
- Department of Gerontology, Federal University of Sao Carlos, Brazil. Highway Washington Luis, Km 235. Monjolinho
| | - Fabiana de Souza Orlandi
- Department of Gerontology, Federal University of Sao Carlos, Brazil. Highway Washington Luis, Km 235. Monjolinho
| | - Márcia Regina Cominetti
- Department of Gerontology, Federal University of Sao Carlos, Brazil. Highway Washington Luis, Km 235. Monjolinho
| |
Collapse
|
141
|
Sarnowski C, Ghanbari M, Bis JC, Logue M, Fornage M, Mishra A, Ahmad S, Beiser AS, Boerwinkle E, Bouteloup V, Chouraki V, Cupples LA, Damotte V, DeCarli CS, DeStefano AL, Djoussé L, Fohner AE, Franz CE, Kautz TF, Lambert JC, Lyons MJ, Mosley TH, Mukamal KJ, Pase MP, Portilla Fernandez EC, Rissman RA, Satizabal CL, Vasan RS, Yaqub A, Debette S, Dufouil C, Launer LJ, Kremen WS, Longstreth WT, Ikram MA, Seshadri S. Meta-analysis of genome-wide association studies identifies ancestry-specific associations underlying circulating total tau levels. Commun Biol 2022; 5:336. [PMID: 35396452 PMCID: PMC8993877 DOI: 10.1038/s42003-022-03287-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 03/17/2022] [Indexed: 01/27/2023] Open
Abstract
Circulating total-tau levels can be used as an endophenotype to identify genetic risk factors for tauopathies and related neurological disorders. Here, we confirmed and better characterized the association of the 17q21 MAPT locus with circulating total-tau in 14,721 European participants and identified three novel loci in 953 African American participants (4q31, 5p13, and 6q25) at P < 5 × 10-8. We additionally detected 14 novel loci at P < 5 × 10-7, specific to either Europeans or African Americans. Using whole-exome sequence data in 2,279 European participants, we identified ten genes associated with circulating total-tau when aggregating rare variants. Our genetic study sheds light on genes reported to be associated with neurological diseases including stroke, Alzheimer's, and Parkinson's (F5, MAP1B, and BCAS3), with Alzheimer's pathological hallmarks (ADAMTS12, IL15, and FHIT), or with an important function in the brain (PARD3, ELFN2, UBASH3B, SLIT3, and NSD3), and suggests that the genetic architecture of circulating total-tau may differ according to ancestry.
Collapse
Affiliation(s)
- Chloé Sarnowski
- Department of Epidemiology, Human Genetics, and Environmental Sciences, University of Texas Health Science Center at Houston, Houston, TX, USA.
| | - Mohsen Ghanbari
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Genetics, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Joshua C Bis
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Mark Logue
- National Center for PTSD, Behavioral Sciences Division, VA Boston Healthcare System, Boston, MA, USA
- Department of Psychiatry and Biomedical Genetics, Boston University School of Medicine, Boston, MA, USA
| | - Myriam Fornage
- University of Texas Health Sciences Center at Houston, Houston, TX, USA
| | - Aniket Mishra
- University of Bordeaux, Inserm, Bordeaux Population Health Research Center, team VINTAGE, UMR 1219, F-33000, Bordeaux, France
| | - Shahzad Ahmad
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
- Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Alexa S Beiser
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
- Boston University and the NHLBI's Framingham Heart Study, Boston, MA, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Eric Boerwinkle
- University of Texas Health Sciences Center at Houston, Houston, TX, USA
| | - Vincent Bouteloup
- Centre Inserm U1219 Bordeaux Population Health, CIC1401-EC, Institut de Santé Publique, d'Epidémiologie et de Développement, Université de Bordeaux, CHU de Bordeaux, Pôle Santé Publique, Bordeaux, France
| | - Vincent Chouraki
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE- LabEx DISTALZ - Risk factors and molecular determinants of aging diseases, F-59000, Lille, France
| | - L Adrienne Cupples
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
- Boston University and the NHLBI's Framingham Heart Study, Boston, MA, USA
| | - Vincent Damotte
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE- LabEx DISTALZ - Risk factors and molecular determinants of aging diseases, F-59000, Lille, France
| | - Charles S DeCarli
- Department of Neurology and Center for Neuroscience, University of California at Davis, Davis, CA, USA
| | - Anita L DeStefano
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Luc Djoussé
- Department of Medicine, Division of Aging, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Alison E Fohner
- Institute of Public Health Genetics and Department of Epidemiology and Cardiovascular Health Research Unit, University of Washington, Seattle, WA, USA
| | - Carol E Franz
- Department of Psychiatry and Center for Behavior Genetics of Aging, University of California, San Diego, La Jolla, CA, USA
| | - Tiffany F Kautz
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, University of Texas Health Sciences Center, San Antonio, TX, USA
| | - Jean-Charles Lambert
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE- LabEx DISTALZ - Risk factors and molecular determinants of aging diseases, F-59000, Lille, France
| | - Michael J Lyons
- Department of Psychology and Brain Sciences, Boston University, Boston, MA, USA
| | | | - Kenneth J Mukamal
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Matthew P Pase
- Turner Institute for Brain and Mental Health, Monash University, Melbourne, VIC, Australia
- Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | | | - Robert A Rissman
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Claudia L Satizabal
- Boston University and the NHLBI's Framingham Heart Study, Boston, MA, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, University of Texas Health Sciences Center, San Antonio, TX, USA
| | - Ramachandran S Vasan
- Boston University and the NHLBI's Framingham Heart Study, Boston, MA, USA
- Preventive Medicine & Epidemiology, Boston University School of Medicine, Boston, MA, USA
| | - Amber Yaqub
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Stephanie Debette
- University of Bordeaux, Inserm, Bordeaux Population Health Research Center, team VINTAGE, UMR 1219, F-33000, Bordeaux, France
- Bordeaux University Hospital, Department of Neurology, Institute for Neurodegenerative Diseases, Bordeaux, France
| | - Carole Dufouil
- Bordeaux University Hospital, Department of Neurology, Institute for Neurodegenerative Diseases, Bordeaux, France
| | | | - William S Kremen
- Department of Psychiatry and Center for Behavior Genetics of Aging, University of California, San Diego, La Jolla, CA, USA
| | - William T Longstreth
- Departments of Neurology and Epidemiology, University of Washington, Seattle, WA, USA
| | - M Arfan Ikram
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Sudha Seshadri
- Boston University and the NHLBI's Framingham Heart Study, Boston, MA, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, University of Texas Health Sciences Center, San Antonio, TX, USA
| |
Collapse
|
142
|
Barbu M, Jónsson K, Zetterberg H, Blennow K, Kolsrud O, Ricksten S, Dellgren G, Björk K, Jeppsson A. Serum biomarkers of brain injury after uncomplicated cardiac surgery: Secondary analysis from a randomized trial. Acta Anaesthesiol Scand 2022; 66:447-453. [PMID: 35118644 PMCID: PMC9302991 DOI: 10.1111/aas.14033] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/16/2021] [Accepted: 01/22/2022] [Indexed: 11/29/2022]
Abstract
Background Postoperative cognitive dysfunction is common after cardiac surgery. Postoperative measurements of brain injury biomarkers may identify brain damage and predict cognitive dysfunction. We describe the release patterns of five brain injury markers in serum and plasma after uncomplicated cardiac surgery. Methods Sixty‐one elective cardiac surgery patients were randomized to undergo surgery with either a dextran‐based prime or a crystalloid prime. Blood samples were taken immediately before surgery, and 2 and 24 h after surgery. Concentrations of the brain injury biomarkers S100B, glial fibrillary acidic protein (GFAP), tau, neurofilament light (NfL) and neuron‐specific enolase (NSE)) and the blood–brain barrier injury marker β‐trace protein were analyzed. Concentrations of brain injury biomarkers were correlated to patients’ age, operation time, and degree of hemolysis. Results No significant difference in brain injury biomarkers was observed between the prime groups. All brain injury biomarkers increased significantly after surgery (tau +456% (25th–75th percentile 327%−702%), NfL +57% (28%−87%), S100B +1145% (783%−2158%), GFAP +17% (−3%−43%), NSE +168% (106%−228%), while β‐trace protein was reduced (−11% (−17−3%). Tau, S100B, and NSE peaked at 2h, NfL and GFAP at 24 h. Postoperative concentrations of brain injury markers correlated to age, operation time, and/or hemolysis. Conclusion Uncomplicated cardiac surgery with cardiopulmonary bypass is associated with an increase in serum/plasma levels of all the studied injury markers, without signs of blood–brain barrier injury. The biomarkers differ markedly in their levels of release and time course. Further investigations are required to study associations between perioperative release of biomarkers, postoperative cognitive function and clinical outcome.
Collapse
Affiliation(s)
- Mikael Barbu
- Department of Molecular and Clinical Medicine Institute of Medicine Sahlgrenska Academy University of Gothenburg Gothenburg Sweden
- Department of Cardiology Blekinge Hospital Karlskrona Sweden
| | - Kristján Jónsson
- Department of Cardiothoracic Surgery Sahlgrenska University Hospital Gothenburg Sweden
| | - Henrik Zetterberg
- Clinical Neurochemistry Laboratory Sahlgrenska University Hospital Mölndal Sweden
- Department of Psychiatry and Neurochemistry Institute of Neuroscience and Physiology Sahlgrenska Academy University of Gothenburg Mölndal Sweden
- Department of Neurodegenerative Disease UCL Institute of Neurology London UK
- UK Dementia Research Institute at UCL London UK
| | - Kaj Blennow
- Clinical Neurochemistry Laboratory Sahlgrenska University Hospital Mölndal Sweden
- Department of Psychiatry and Neurochemistry Institute of Neuroscience and Physiology Sahlgrenska Academy University of Gothenburg Mölndal Sweden
| | - Oscar Kolsrud
- Department of Cardiothoracic Surgery Sahlgrenska University Hospital Gothenburg Sweden
| | - Sven‐Erik Ricksten
- Department of Cardiothoracic Anesthesia and Intensive Care Sahlgrenska University Hospital Gothenburg Sweden
- Department of Anesthesiology and Intensive Care Institute of Clinical Sciences University of Gothenburg Gothenburg Sweden
| | - Göran Dellgren
- Department of Molecular and Clinical Medicine Institute of Medicine Sahlgrenska Academy University of Gothenburg Gothenburg Sweden
- Department of Cardiothoracic Surgery Sahlgrenska University Hospital Gothenburg Sweden
| | - Kerstin Björk
- Department of Cardiothoracic Surgery Sahlgrenska University Hospital Gothenburg Sweden
| | - Anders Jeppsson
- Department of Molecular and Clinical Medicine Institute of Medicine Sahlgrenska Academy University of Gothenburg Gothenburg Sweden
- Department of Cardiothoracic Surgery Sahlgrenska University Hospital Gothenburg Sweden
| |
Collapse
|
143
|
Lippa SM, Gill J, Brickell TA, Guedes VA, French LM, Lange RT. Blood Biomarkers Predict Future Cognitive Decline after Military-Related Traumatic Brain Injury. Curr Alzheimer Res 2022; 19:351-363. [PMID: 35362372 DOI: 10.2174/1567205019666220330144432] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 11/19/2021] [Accepted: 01/24/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Traumatic brain injury (TBI) has been associated with increased likelihood of late-life dementia; however, the mechanisms driving this relationship are elusive. Blood-based biomarkers may provide insight into these mechanisms and serve as useful prognostic indicators of cognitive recovery or decline following a TBI. OBJECTIVE The aim of this study was to examine blood biomarkers within one year of TBI and explore their relationship with cognitive decline. METHODS Service members and veterans (n=224) without injury (n=77), or with history of bodily injury (n=37), uncomplicated mild TBI (n=55), or more severe TBI (n=55), underwent a blood draw and neuropsychological assessment within one year of their injury as part of a case-control study. A subsample (n=87) completed follow-up cognitive assessment. RESULTS In the more severe TBI group, baseline glial fibrillary acidic protein (p=.008) and ubiquitin C-terminal hydrolase-L1 (p=.026) were associated with processing speed at baseline, and baseline ubiquitin C-terminal hydrolase-L1 predicted change in immediate (R2Δ=.244, p=.005) and delayed memory (R2Δ=.390, p=.003) over time. In the mild TBI group, higher baseline tau predicted greater negative change in perceptual reasoning (R2Δ=.188, p=.033) and executive functioning (R2Δ=.298, p=.007); higher baseline neurofilament light predicted greater negative change in perceptual reasoning (R2Δ=.211, p=.012). CONCLUSION Baseline ubiquitin C-terminal hydrolase-L1 strongly predicted memory decline in the more severe TBI group, while tau and neurofilament light strongly predicted decline in the mild TBI group. A panel including these biomarkers could be particularly helpful in identifying those at risk for future cognitive decline following TBI.
Collapse
Affiliation(s)
- Sara M Lippa
- National Intrepid Center of Excellence, Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - Jessica Gill
- National Institutes of Health, National Institute of Nursing Research, Bethesda, MD, USA
| | - Tracey A Brickell
- National Intrepid Center of Excellence, Walter Reed National Military Medical Center, Bethesda, MD, USA
- Defense and Veterans Brain Injury Center, Walter Reed National Military Medical Center, Bethesda, MD, USA
- Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Contractor, General Dynamics Information Technology, Falls Church, VA, USA
- Centre of Excellence on Post-traumatic Stress Disorder, Ottawa, ON, Canada
| | - Vivian A Guedes
- National Institutes of Health, National Institute of Nursing Research, Bethesda, MD, USA
| | - Louis M French
- National Intrepid Center of Excellence, Walter Reed National Military Medical Center, Bethesda, MD, USA
- Defense and Veterans Brain Injury Center, Walter Reed National Military Medical Center, Bethesda, MD, USA
- Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Rael T Lange
- National Intrepid Center of Excellence, Walter Reed National Military Medical Center, Bethesda, MD, USA
- Defense and Veterans Brain Injury Center, Walter Reed National Military Medical Center, Bethesda, MD, USA
- Contractor, General Dynamics Information Technology, Falls Church, VA, USA
- Centre of Excellence on Post-traumatic Stress Disorder, Ottawa, ON, Canada
- University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
144
|
Li TR, Yang Q, Hu X, Han Y. Biomarkers and Tools for Predicting Alzheimer's Disease in the Preclinical Stage. Curr Neuropharmacol 2022; 20:713-737. [PMID: 34030620 PMCID: PMC9878962 DOI: 10.2174/1570159x19666210524153901] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 04/27/2021] [Accepted: 05/08/2021] [Indexed: 11/22/2022] Open
Abstract
Alzheimer's disease (AD) is the only leading cause of death for which no disease-modifying therapy is currently available. Over the past decade, a string of disappointing clinical trial results has forced us to shift our focus to the preclinical stage of AD, which represents the most promising therapeutic window. However, the accurate diagnosis of preclinical AD requires the presence of brain β- amyloid deposition determined by cerebrospinal fluid or amyloid-positron emission tomography, significantly limiting routine screening and diagnosis in non-tertiary hospital settings. Thus, an easily accessible marker or tool with high sensitivity and specificity is highly needed. Recently, it has been discovered that individuals in the late stage of preclinical AD may not be truly "asymptomatic" in that they may have already developed subtle or subjective cognitive decline. In addition, advances in bloodderived biomarker studies have also allowed the detection of pathologic changes in preclinical AD. Exosomes, as cell-to-cell communication messengers, can reflect the functional changes of their source cell. Methodological advances have made it possible to extract brain-derived exosomes from peripheral blood, making exosomes an emerging biomarker carrier and liquid biopsy tool for preclinical AD. The eye and its associated structures have rich sensory-motor innervation. In this regard, studies have indicated that they may also provide reliable markers. Here, our report covers the current state of knowledge of neuropsychological and eye tests as screening tools for preclinical AD and assesses the value of blood and brain-derived exosomes as carriers of biomarkers in conjunction with the current diagnostic paradigm.
Collapse
Affiliation(s)
- Tao-Ran Li
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China
| | - Qin Yang
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China
| | - Xiaochen Hu
- Department of Psychiatry, University of Cologne, Medical Faculty, Cologne, 50924, Germany
| | - Ying Han
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China;,Center of Alzheimer’s Disease, Beijing Institute for Brain Disorders, Beijing, 100053, China;,National Clinical Research Center for Geriatric Disorders, Beijing, 100053, China;,School of Biomedical Engineering, Hainan University, Haikou, 570228, China;,Address correspondence to this author at the Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China; Tel: +86 13621011941; E-mail:
| |
Collapse
|
145
|
Pan FF, Huang Q, Wang Y, Wang YF, Guan YH, Xie F, Guo QH. Non-linear Character of Plasma Amyloid Beta Over the Course of Cognitive Decline in Alzheimer’s Continuum. Front Aging Neurosci 2022; 14:832700. [PMID: 35401142 PMCID: PMC8984285 DOI: 10.3389/fnagi.2022.832700] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 02/28/2022] [Indexed: 12/14/2022] Open
Abstract
Plasma amyloid-β (Aβ) was associated with brain Aβ deposition and Alzheimer’s disease (AD) development. However, changes of plasma Aβ over the course of cognitive decline in the Alzheimer’s continuum remained uncertain. We recruited 449 participants to this study, including normal controls (NC), subjective cognitive decline (SCD), mild cognitive impairment (MCI), AD, and non-AD dementia. All the participants underwent plasma Aβ42, Aβ40, and t-tau measurements with single-molecule array (Simoa) immunoassay and PET scan with 18F-florbetapir amyloid tracer. In the subgroup of Aβ-PET positive, plasma Aβ42 and Aβ42/Aβ40 ratio was significantly lower in AD than NC, SCD and MCI, yet SCD had significantly higher levels of plasma Aβ42 than both NC and MCI. In the diagnostic groups of MCI and dementia, participants with Aβ-PET positive had lower plasma Aβ42 and Aβ42/40 ratio than participants with Aβ-PET negative, and the increasing levels of plasma Aβ42 and Aβ42/40 ratio indicated lower risks of Aβ-PET positive. However, in the participants with SCD, plasma Aβ42 and Aβ40 were higher in the subgroup of Aβ-PET positive than Aβ-PET negative, and the increasing levels of plasma Aβ42 and Aβ40 indicated higher risks of Aβ-PET positive. No significant association was observed between plasma Aβ and Aβ-PET status in normal controls. These findings showed that, in the continuum of AD, plasma Aβ42 had a significantly increasing trend from NC to SCD before decreasing in MCI and AD. Furthermore, the predictive values of plasma Aβ for brain amyloid deposition were inconsistent over the course of cognitive decline.
Collapse
Affiliation(s)
- Feng-Feng Pan
- Department of Gerontology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Qi Huang
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Ying Wang
- Department of Gerontology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Yi-Fan Wang
- Department of Gerontology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Yi-Hui Guan
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Fang Xie
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
- Fang Xie,
| | - Qi-Hao Guo
- Department of Gerontology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
- *Correspondence: Qi-Hao Guo,
| |
Collapse
|
146
|
Snellman A, Lantero-Rodriguez J, Emeršič A, Vrillon A, Karikari TK, Ashton NJ, Gregorič Kramberger M, Čučnik S, Paquet C, Rot U, Zetterberg H, Blennow K. N-terminal and mid-region tau fragments as fluid biomarkers in neurological diseases. Brain 2022; 145:2834-2848. [PMID: 35311972 PMCID: PMC9420020 DOI: 10.1093/brain/awab481] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 11/15/2021] [Accepted: 11/21/2021] [Indexed: 12/03/2022] Open
Abstract
Brain-derived tau secreted into CSF and blood consists of different N-terminal and mid-domain fragments, which may have a differential temporal course and thus, biomarker potential across the Alzheimer’s disease continuum or in other neurological diseases. While current clinically validated total tau assays target mid-domain epitopes, comparison of these assays with new biomarkers targeting N-terminal epitopes using the same analytical platform may be important to increase the understanding of tau pathophysiology. We developed three total tau immunoassays targeting specific N-terminal (NTA and NTB total tau) or mid-region (MR total tau) epitopes, using single molecule array technology. After analytical validation, the diagnostic performance of these biomarkers was evaluated in CSF and compared with the Innotest total tau (and as proof of concept, with N-p-tau181 and N-p-tau217) in three clinical cohorts (n = 342 total). The cohorts included participants across the Alzheimer’s disease continuum (n = 276), other dementias (n = 22), Creutzfeldt–Jakob disease (n = 24), acute neurological disorders (n = 18) and progressive supranuclear palsy (n = 22). Furthermore, we evaluated all three new total tau biomarkers in plasma (n = 44) and replicated promising findings with NTA total tau in another clinical cohort (n = 50). In CSF, all total tau biomarkers were increased in Alzheimer’s disease compared with controls (P < 0.0001) and correlated with each other (rs = 0.53−0.95). NTA and NTB total tau, but not other total tau assays, distinguished amyloid-positive and amyloid-negative mild cognitive impairment with high accuracies (AUCs 84% and 82%, P < 0.001) matching N-p-tau217 (AUC 83%; DeLong test P = 0.93 and 0.88). All total tau assays were excellent in differentiating Alzheimer’s disease from other dementias (P < 0.001, AUCs 89–100%). In Creutzfeldt–Jakob disease and acute neurological disorders, N-terminal total tau biomarkers had significantly higher fold changes versus controls in CSF (45–133-fold increase) than Innotest or MR total tau (11–42-fold increase, P < 0.0001 for all). In progressive supranuclear palsy, CSF concentrations of all total tau biomarkers were similar to those in controls. Plasma NTA total tau concentrations were increased in Alzheimer’s disease compared with controls in two independent cohorts (P = 0.0056 and 0.0033), while Quanterix total tau performed poorly (P = 0.55 and 0.44). Taken together, N-terminal-directed CSF total tau biomarkers increase ahead of standard total tau alternatives in the Alzheimer’s disease continuum, increase to higher degrees in Creutzfeldt–Jakob disease and acute neurological diseases and show better potential than Quanterix total tau as Alzheimer’s disease blood biomarkers. For progressive supranuclear palsy, other tau biomarkers should continue to be investigated.
Collapse
Affiliation(s)
- Anniina Snellman
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Turku PET Centre, University of Turku, Turku, Finland
| | - Juan Lantero-Rodriguez
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Andreja Emeršič
- Department of Neurology, University Medical Centre Ljubljana, Slovenia.,Faculty of Pharmacy, University of Ljubljana, Slovenia
| | - Agathe Vrillon
- Université de Paris, Cognitive Neurology Center, GHU Nord APHP Hospital Lariboisière Fernand Widal, Paris, France.,Université de Paris, Inserm UMR S11-44 Therapeutic Optimization in Neuropsychopharmacology, Paris, France
| | - Thomas K Karikari
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Nicholas J Ashton
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden.,Department of Old Age Psychiatry, Maurice Wohl Clinical Neuroscience Institute, King's College London, London, UK.,NIHR Biomedical Research Centre for Mental Health & Biomedical Research Unit for Dementia at South London & Maudsley NHS Foundation, London, UK
| | - Milica Gregorič Kramberger
- Department of Neurology, University Medical Centre Ljubljana, Slovenia.,Faculty of Medicine, University of Ljubljana, Slovenia
| | - Saša Čučnik
- Department of Neurology, University Medical Centre Ljubljana, Slovenia.,Faculty of Pharmacy, University of Ljubljana, Slovenia.,Department of Rheumatology, University Medical Centre Ljubljana, Slovenia
| | - Claire Paquet
- Université de Paris, Cognitive Neurology Center, GHU Nord APHP Hospital Lariboisière Fernand Widal, Paris, France.,Université de Paris, Inserm UMR S11-44 Therapeutic Optimization in Neuropsychopharmacology, Paris, France
| | - Uroš Rot
- Department of Neurology, University Medical Centre Ljubljana, Slovenia.,Faculty of Medicine, University of Ljubljana, Slovenia
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK.,UK Dementia Research Institute at UCL, London, UK.,Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| |
Collapse
|
147
|
Uchida K. Waste Clearance in the Brain and Neuroinflammation: A Novel Perspective on Biomarker and Drug Target Discovery in Alzheimer's Disease. Cells 2022; 11:cells11050919. [PMID: 35269541 PMCID: PMC8909773 DOI: 10.3390/cells11050919] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/26/2022] [Accepted: 03/04/2022] [Indexed: 02/06/2023] Open
Abstract
Alzheimer’s disease (AD) is a multifactorial disease with a heterogeneous etiology. The pathology of Alzheimer’s disease is characterized by amyloid-beta and hyperphosphorylated tau, which are necessary for disease progression. Many clinical trials on disease-modifying drugs for AD have failed to indicate their clinical benefits. Recent advances in fundamental research have indicated that neuroinflammation plays an important pathological role in AD. Damage- and pathogen-associated molecular patterns in the brain induce neuroinflammation and inflammasome activation, causing caspase-1-dependent glial and neuronal cell death. These waste products in the brain are eliminated by the glymphatic system via perivascular spaces, the blood-brain barrier, and the blood–cerebrospinal fluid barrier. Age-related vascular dysfunction is associated with an impairment of clearance and barrier functions, leading to neuroinflammation. The proteins involved in waste clearance in the brain and peripheral circulation may be potential biomarkers and drug targets in the early stages of cognitive impairment. This short review focuses on waste clearance dysfunction in AD pathobiology and discusses the improvement of waste clearance as an early intervention in prodromal AD and preclinical stages of dementia.
Collapse
Affiliation(s)
- Kazuhiko Uchida
- Faculty of Medicine, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba 305-8575, Ibaraki, Japan; ; Tel.: +81-29-853-3210; Fax: +81-50-3730-7456
- Institute for Biomedical Research, MCBI, 4-9-29 Matsushiro, Tsukuba 305-0035, Ibaraki, Japan
| |
Collapse
|
148
|
Genome-wide association study identifies APOE locus influencing plasma p-tau181 levels. J Hum Genet 2022; 67:459-463. [DOI: 10.1038/s10038-022-01026-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/10/2022] [Accepted: 02/15/2022] [Indexed: 11/09/2022]
|
149
|
Shi M, Chai Y, Zhang J, Chen X. Endoplasmic Reticulum Stress-Associated Neuronal Death and Innate Immune Response in Neurological Diseases. Front Immunol 2022; 12:794580. [PMID: 35082783 PMCID: PMC8784382 DOI: 10.3389/fimmu.2021.794580] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 12/17/2021] [Indexed: 12/13/2022] Open
Abstract
Neuronal death and inflammatory response are two common pathological hallmarks of acute central nervous system injury and chronic degenerative disorders, both of which are closely related to cognitive and motor dysfunction associated with various neurological diseases. Neurological diseases are highly heterogeneous; however, they share a common pathogenesis, that is, the aberrant accumulation of misfolded/unfolded proteins within the endoplasmic reticulum (ER). Fortunately, the cell has intrinsic quality control mechanisms to maintain the proteostasis network, such as chaperone-mediated folding and ER-associated degradation. However, when these control mechanisms fail, misfolded/unfolded proteins accumulate in the ER lumen and contribute to ER stress. ER stress has been implicated in nearly all neurological diseases. ER stress initiates the unfolded protein response to restore proteostasis, and if the damage is irreversible, it elicits intracellular cascades of death and inflammation. With the growing appreciation of a functional association between ER stress and neurological diseases and with the improved understanding of the multiple underlying molecular mechanisms, pharmacological and genetic targeting of ER stress are beginning to emerge as therapeutic approaches for neurological diseases.
Collapse
Affiliation(s)
- Mingming Shi
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Neurological Institute, Key Laboratory of Post-trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China.,Department of Neurosurgery, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Yan Chai
- Tianjin Neurological Institute, Key Laboratory of Post-trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China.,Department of Neurosurgery, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Jianning Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Neurological Institute, Key Laboratory of Post-trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China.,Department of Neurosurgery, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Xin Chen
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Neurological Institute, Key Laboratory of Post-trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China.,Department of Neurosurgery, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| |
Collapse
|
150
|
Friis T, Wikström AK, Acurio J, León J, Zetterberg H, Blennow K, Nelander M, Åkerud H, Kaihola H, Cluver C, Troncoso F, Torres-Vergara P, Escudero C, Bergman L. Cerebral Biomarkers and Blood-Brain Barrier Integrity in Preeclampsia. Cells 2022; 11:cells11050789. [PMID: 35269411 PMCID: PMC8909006 DOI: 10.3390/cells11050789] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/10/2022] [Accepted: 02/20/2022] [Indexed: 01/25/2023] Open
Abstract
Cerebral complications in preeclampsia contribute substantially to maternal mortality and morbidity. There is a lack of reliable and accessible predictors for preeclampsia-related cerebral complications. In this study, plasma from women with preeclampsia (n = 28), women with normal pregnancies (n = 28) and non-pregnant women (n = 16) was analyzed for concentrations of the cerebral biomarkers neurofilament light (NfL), tau, neuron-specific enolase (NSE) and S100B. Then, an in vitro blood−brain barrier (BBB) model, based on the human cerebral microvascular endothelial cell line (hCMEC/D3), was employed to assess the effect of plasma from the three study groups. Transendothelial electrical resistance (TEER) was used as an estimation of BBB integrity. NfL and tau are proteins expressed in axons, NSE in neurons and S100B in glial cells and are used as biomarkers for neurological injury in other diseases such as dementia, traumatic brain injury and hypoxic brain injury. Plasma concentrations of NfL, tau, NSE and S100B were all higher in women with preeclampsia compared with women with normal pregnancies (8.85 vs. 5.25 ng/L, p < 0.001; 2.90 vs. 2.40 ng/L, p < 0.05; 3.50 vs. 2.37 µg/L, p < 0.001 and 0.08 vs. 0.05 µg/L, p < 0.01, respectively). Plasma concentrations of NfL were also higher in women with preeclampsia compared with non-pregnant women (p < 0.001). Higher plasma concentrations of the cerebral biomarker NfL were associated with decreased TEER (p = 0.002) in an in vitro model of the BBB, a finding which indicates that NfL could be a promising biomarker for BBB alterations in preeclampsia.
Collapse
Affiliation(s)
- Therese Friis
- Department of Women’s and Children’s Health, Uppsala University, 75185 Uppsala, Sweden; (A.-K.W.); (M.N.); (L.B.)
- Correspondence: ; Tel.: +46-18-611-6613
| | - Anna-Karin Wikström
- Department of Women’s and Children’s Health, Uppsala University, 75185 Uppsala, Sweden; (A.-K.W.); (M.N.); (L.B.)
| | - Jesenia Acurio
- Vascular Physiology Laboratory, Department of Basic Sciences, Faculty of Sciences, University of Bío-Bío, Chillán 3810178, Chile; (J.A.); (J.L.); (F.T.); (C.E.)
- Group of Research and Innovation in Vascular Health (GRIVAS Health), Chillán 3810178, Chile;
| | - José León
- Vascular Physiology Laboratory, Department of Basic Sciences, Faculty of Sciences, University of Bío-Bío, Chillán 3810178, Chile; (J.A.); (J.L.); (F.T.); (C.E.)
- Group of Research and Innovation in Vascular Health (GRIVAS Health), Chillán 3810178, Chile;
- Escuela de Enfermería, Facultad de Salud, Universidad Santo Tomás, Los Ángeles 4441171, Chile
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, 43180 Mölndal, Sweden; (H.Z.); (K.B.)
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, 43180 Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, Queen Square, London WC1E 6BT, UK
- UK Dementia Research Institute at UCL, London WC1E 6BT, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, 43180 Mölndal, Sweden; (H.Z.); (K.B.)
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, 43180 Mölndal, Sweden
| | - Maria Nelander
- Department of Women’s and Children’s Health, Uppsala University, 75185 Uppsala, Sweden; (A.-K.W.); (M.N.); (L.B.)
| | - Helena Åkerud
- Department of Immunology, Genetics and Pathology, Uppsala University, 75185 Uppsala, Sweden; (H.Å.); (H.K.)
| | - Helena Kaihola
- Department of Immunology, Genetics and Pathology, Uppsala University, 75185 Uppsala, Sweden; (H.Å.); (H.K.)
| | - Catherine Cluver
- Department of Obstetrics and Gynecology, Stellenbosch University, Cape Town 7500, South Africa;
| | - Felipe Troncoso
- Vascular Physiology Laboratory, Department of Basic Sciences, Faculty of Sciences, University of Bío-Bío, Chillán 3810178, Chile; (J.A.); (J.L.); (F.T.); (C.E.)
| | - Pablo Torres-Vergara
- Group of Research and Innovation in Vascular Health (GRIVAS Health), Chillán 3810178, Chile;
- Department of Pharmacy, Faculty of Pharmacy, University of Concepción, Concepción 4070386, Chile
| | - Carlos Escudero
- Vascular Physiology Laboratory, Department of Basic Sciences, Faculty of Sciences, University of Bío-Bío, Chillán 3810178, Chile; (J.A.); (J.L.); (F.T.); (C.E.)
- Group of Research and Innovation in Vascular Health (GRIVAS Health), Chillán 3810178, Chile;
| | - Lina Bergman
- Department of Women’s and Children’s Health, Uppsala University, 75185 Uppsala, Sweden; (A.-K.W.); (M.N.); (L.B.)
- Department of Obstetrics and Gynecology, Stellenbosch University, Cape Town 7500, South Africa;
- Department of Obstetrics and Gynecology, Gothenburg University, 41650 Gothenburg, Sweden
| |
Collapse
|