101
|
Chen J, He HJ, Ye Q, Feng F, Wang WW, Gu Y, Han R, Xie C. Defective Autophagy and Mitophagy in Alzheimer's Disease: Mechanisms and Translational Implications. Mol Neurobiol 2021; 58:5289-5302. [PMID: 34279771 DOI: 10.1007/s12035-021-02487-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 07/07/2021] [Indexed: 11/30/2022]
Abstract
The main histopathology of Alzheimer's disease (AD) is featured by the extracellular accumulation of amyloid-β (Aβ) plaques and intracellular tau neurofibrillary tangles (NFT) in the brain, which is likely to result from co-pathogenic interactions among multiple factors, e.g., aging or genes. The link between defective autophagy/mitophagy and AD pathologies is still under investigation and not fully established. In this review, we consider how AD is associated with impaired autophagy and mitophagy, and how these impact pathological hallmarks as well as the potential mechanisms. This complicated interplay between autophagy or mitophagy and histopathology in AD suggests that targeting autophagy or mitophagy probably is a promising anti-AD drug candidate. Finally, we review the implications of some new insights for induction of autophagy or mitophagy as the new therapeutic way that targets processes upstream of both NFT and Aβ plaques, and hence stops the neurodegenerative course in AD.
Collapse
Affiliation(s)
- Jie Chen
- Department of Rehabilitation Medicine, Ningbo Medical Center Li Huili Hospital, Ningbo, 315000, China
| | - Hai-Jun He
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Qianqian Ye
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Feifei Feng
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Wen-Wen Wang
- The Center of Traditional Chinese Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Yingying Gu
- Department of Psychiatry, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Ruiyu Han
- NHC Key Laboratory of Family Planning and Healthy, Hebei Key Laboratory of Reproductive Medicine, Hebei Research Institute for Family Planning Science and Technology, Shijiazhuang, 050071, Hebei, China.
| | - Chenglong Xie
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China. .,Institute of Aging, Wenzhou Medical University, Wenzhou, Zhejiang, China. .,Key Laboratory of Alzheimer's Disease of Zhejiang Province, Wenzhou, China.
| |
Collapse
|
102
|
Xiong M, Jiang H, Serrano JR, Gonzales ER, Wang C, Gratuze M, Hoyle R, Bien-Ly N, Silverman AP, Sullivan PM, Watts RJ, Ulrich JD, Zipfel GJ, Holtzman DM. APOE immunotherapy reduces cerebral amyloid angiopathy and amyloid plaques while improving cerebrovascular function. Sci Transl Med 2021; 13:13/581/eabd7522. [PMID: 33597265 DOI: 10.1126/scitranslmed.abd7522] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 10/16/2020] [Indexed: 12/18/2022]
Abstract
The ε4 allele of the apolipoprotein E (APOE) gene is the strongest genetic risk factor for late-onset Alzheimer's disease (AD) and greatly influences the development of amyloid-β (Aβ) pathology. Our current study investigated the potential therapeutic effects of the anti-human APOE antibody HAE-4, which selectively recognizes human APOE that is co-deposited with Aβ in cerebral amyloid angiopathy (CAA) and parenchymal amyloid pathology. In addition, we tested whether HAE-4 provoked brain hemorrhages, a component of amyloid-related imaging abnormalities (ARIA). ARIA is an adverse effect secondary to treatment with anti-Aβ antibodies that can occur in blood vessels with CAA. We used 5XFAD mice expressing human APOE4 +/+ (5XE4) that have prominent CAA and parenchymal plaque pathology to assess the efficacy of HAE-4 compared to an Aβ antibody that removes parenchymal Aβ but increases ARIA in humans. In chronically treated 5XE4 mice, HAE-4 reduced Aβ deposition including CAA compared to a control antibody, whereas the anti-Aβ antibody had no effect on CAA. Furthermore, the anti-Aβ antibody exacerbated microhemorrhage severity, which highly correlated with reactive astrocytes surrounding CAA. In contrast, HAE-4 did not stimulate microhemorrhages and instead rescued CAA-induced cerebrovascular dysfunction in leptomeningeal arteries in vivo. HAE-4 not only reduced amyloid but also dampened reactive microglial, astrocytic, and proinflammatory-associated genes in the cortex. These results suggest that targeting APOE in the core of both CAA and plaques could ameliorate amyloid pathology while protecting cerebrovascular integrity and function.
Collapse
Affiliation(s)
- Monica Xiong
- Department of Neurology, Hope Center for Neurological Disorders, Charles F. and Joanne Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110, USA.,Division of Biology and Biomedical Sciences (DBBS), Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Hong Jiang
- Department of Neurology, Hope Center for Neurological Disorders, Charles F. and Joanne Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Javier Remolina Serrano
- Department of Neurology, Hope Center for Neurological Disorders, Charles F. and Joanne Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Ernesto R Gonzales
- Department of Neurology, Hope Center for Neurological Disorders, Charles F. and Joanne Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Chao Wang
- Department of Neurology, Hope Center for Neurological Disorders, Charles F. and Joanne Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Maud Gratuze
- Department of Neurology, Hope Center for Neurological Disorders, Charles F. and Joanne Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Rosa Hoyle
- Department of Neurology, Hope Center for Neurological Disorders, Charles F. and Joanne Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Nga Bien-Ly
- Denali Therapeutics, South San Francisco, CA 94080, USA
| | | | - Patrick M Sullivan
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Ryan J Watts
- Denali Therapeutics, South San Francisco, CA 94080, USA
| | - Jason D Ulrich
- Department of Neurology, Hope Center for Neurological Disorders, Charles F. and Joanne Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Gregory J Zipfel
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - David M Holtzman
- Department of Neurology, Hope Center for Neurological Disorders, Charles F. and Joanne Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
103
|
Stoiljkovic M, Horvath TL, Hajós M. Therapy for Alzheimer's disease: Missing targets and functional markers? Ageing Res Rev 2021; 68:101318. [PMID: 33711510 PMCID: PMC8131215 DOI: 10.1016/j.arr.2021.101318] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 02/24/2021] [Accepted: 03/08/2021] [Indexed: 12/15/2022]
Abstract
The development of the next generation therapy for Alzheimer's disease (AD) presents a huge challenge given the number of promising treatment candidates that failed in trials, despite recent advancements in understanding of genetic, pathophysiologic and clinical characteristics of the disease. This review reflects some of the most current concepts and controversies in developing disease-modifying and new symptomatic treatments. It elaborates on recent changes in the AD research strategy for broadening drug targets, and potentials of emerging non-pharmacological treatment interventions. Established and novel biomarkers are discussed, including emerging cerebrospinal fluid and plasma biomarkers reflecting tau pathology, neuroinflammation and neurodegeneration. These fluid biomarkers together with neuroimaging findings can provide innovative objective assessments of subtle changes in brain reflecting disease progression. A particular emphasis is given to neurophysiological biomarkers which are well-suited for evaluating the brain overall neural network integrity and function. Combination of multiple biomarkers, including target engagement and outcome biomarkers will empower translational studies and facilitate successful development of effective therapies.
Collapse
Affiliation(s)
- Milan Stoiljkovic
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, 06520, USA; Department of Pharmacology, University of Nis School of Medicine, Nis, Serbia.
| | - Tamas L Horvath
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Mihály Hajós
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, 06520, USA; Cognito Therapeutics, Cambridge, MA, 02138, USA
| |
Collapse
|
104
|
Neurotoxic Soluble Amyloid Oligomers Drive Alzheimer's Pathogenesis and Represent a Clinically Validated Target for Slowing Disease Progression. Int J Mol Sci 2021; 22:ijms22126355. [PMID: 34198582 PMCID: PMC8231952 DOI: 10.3390/ijms22126355] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/06/2021] [Accepted: 06/08/2021] [Indexed: 02/07/2023] Open
Abstract
A large body of clinical and nonclinical evidence supports the role of neurotoxic soluble beta amyloid (amyloid, Aβ) oligomers as upstream pathogenic drivers of Alzheimer's disease (AD). Recent late-stage trials in AD that have evaluated agents targeting distinct species of Aβ provide compelling evidence that inhibition of Aβ oligomer toxicity represents an effective approach to slow or stop disease progression: (1) only agents that target soluble Aβ oligomers show clinical efficacy in AD patients; (2) clearance of amyloid plaque does not correlate with clinical improvements; (3) agents that predominantly target amyloid monomers or plaque failed to show clinical effects; and (4) in positive trials, efficacy is greater in carriers of the ε4 allele of apolipoprotein E (APOE4), who are known to have higher brain concentrations of Aβ oligomers. These trials also show that inhibiting Aβ neurotoxicity leads to a reduction in tau pathology, suggesting a pathogenic sequence of events where amyloid toxicity drives an increase in tau formation and deposition. The late-stage agents with positive clinical or biomarker data include four antibodies that engage Aβ oligomers (aducanumab, lecanemab, gantenerumab, and donanemab) and ALZ-801, an oral agent that fully blocks the formation of Aβ oligomers at the clinical dose.
Collapse
|
105
|
Decourt B, Boumelhem F, Pope ED, Shi J, Mari Z, Sabbagh MN. Critical Appraisal of Amyloid Lowering Agents in AD. Curr Neurol Neurosci Rep 2021; 21:39. [PMID: 34110536 PMCID: PMC8192384 DOI: 10.1007/s11910-021-01125-y] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2021] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW According to the amyloid cascade hypothesis, removing amyloid beta (Aβ) should cure Alzheimer's disease (AD). In the past three decades, many agents have been tested to try to lower Aβ production, prevent Aβ aggregation, and dissolve Aβ deposits. However, the paucity in definitive preventative or curative properties of these agents in clinical trials has resulted in more avant-garde approaches to therapeutic investigations. Immunotherapy has become an area of focus for research on disease-modifying therapies for neurodegenerative diseases. In this review, we highlight the current clinical development landscape of monoclonal antibody (mAb) therapies that target Aβ plaque formation and removal in AD. RECENT FINDINGS Multiple potential disease-modifying therapeutics for AD are in active development. Targeting Aβ with mAbs has the potential to treat various stages of AD: prodromal, prodromal to mild, mild, and mild to moderate. Monoclonal antibodies discussed here include aducanumab, lecanemab, solanezumab, crenezumab, donanemab, and gantenerumab. The final decision by the FDA regarding the approval of aducanumab will offer valuable insight into the trajectory of drug development for mAbs in AD and other neurodegenerative diseases. Future directions for improving the treatment of AD will include more inquiry into the efficacy of mAbs as disease-modifying agents that specifically target Aβ peptides and/or multimers. In addition, a more robust trial design for AD immunotherapy agents should improve outcomes such that objective measures of clinical efficacy will eventually lead to higher chances of drug approval.
Collapse
Affiliation(s)
- Boris Decourt
- Cleveland Clinic Lou Ruvo Center for Brain Health, 888 W. Bonneville Ave, Las Vegas, NV, 89106, USA
| | | | - Evans D Pope
- Cleveland Clinic Lou Ruvo Center for Brain Health, 888 W. Bonneville Ave, Las Vegas, NV, 89106, USA
| | - Jiong Shi
- Cleveland Clinic Lou Ruvo Center for Brain Health, 888 W. Bonneville Ave, Las Vegas, NV, 89106, USA
| | - Zoltan Mari
- Cleveland Clinic Lou Ruvo Center for Brain Health, 888 W. Bonneville Ave, Las Vegas, NV, 89106, USA
| | - Marwan Noel Sabbagh
- Cleveland Clinic Lou Ruvo Center for Brain Health, 888 W. Bonneville Ave, Las Vegas, NV, 89106, USA.
| |
Collapse
|
106
|
Mortada I, Farah R, Nabha S, Ojcius DM, Fares Y, Almawi WY, Sadier NS. Immunotherapies for Neurodegenerative Diseases. Front Neurol 2021; 12:654739. [PMID: 34163421 PMCID: PMC8215715 DOI: 10.3389/fneur.2021.654739] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 05/05/2021] [Indexed: 12/12/2022] Open
Abstract
The current treatments for neurodegenerative diseases are mostly symptomatic without affecting the underlying cause of disease. Emerging evidence supports a potential role for immunotherapy in the management of disease progression. Numerous reports raise the exciting prospect that either the immune system or its derivative components could be harnessed to fight the misfolded and aggregated proteins that accumulate in several neurodegenerative diseases. Passive and active vaccinations using monoclonal antibodies and specific antigens that induce adaptive immune responses are currently under evaluation for their potential use in the development of immunotherapies. In this review, we aim to shed light on prominent immunotherapeutic strategies being developed to fight neuroinflammation-induced neurodegeneration, with a focus on innovative immunotherapies such as vaccination therapy.
Collapse
Affiliation(s)
- Ibrahim Mortada
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon
| | - Raymond Farah
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon
| | - Sanaa Nabha
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon
| | - David M Ojcius
- Department of Biomedical Sciences, University of the Pacific, Arthur Dugoni School of Dentistry, San Francisco, CA, United States
| | - Youssef Fares
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon
| | - Wassim Y Almawi
- College of Health Sciences, Abu Dhabi University, Abu Dhabi, United Arab Emirates
| | - Najwane Said Sadier
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon.,College of Health Sciences, Abu Dhabi University, Abu Dhabi, United Arab Emirates
| |
Collapse
|
107
|
Tian Hui Kwan A, Arfaie S, Therriault J, Rosa-Neto P, Gauthier S. Lessons Learnt from the Second Generation of Anti-Amyloid Monoclonal Antibodies Clinical Trials. Dement Geriatr Cogn Disord 2021; 49:334-348. [PMID: 33321511 DOI: 10.1159/000511506] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 09/10/2020] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Alzheimer disease (AD) is a chronic neurodegenerative disorder with complex pathophysiology that affects over 50 million people worldwide. Most drug therapies, to date, have focused on targeting the amyloid-beta (Aβ) pathway, but clinical outcomes of anti-Aβ antibodies have been unsuccessful and unable to meet their primary endpoints. Similar trends have also been observed in treatments that target the tau pathway. SUMMARY This paper reviews recent anti-Aβ passive monotherapies, since Bapineuzumab, that have progressed to phase 3 clinical trials. Specifically, we discuss the 4 clinical trial programs of Solanezumab (targets Aβ monomers), Aducanumab (targets Aβ oligomers and plaques), Crenezumab (targets Aβ oligomers), and Gantenerumab (targets Aβ fibrils) which are all exogenous monoclonal antibodies. We conclude with potential reasons for why they have not met their primary endpoints and discuss lessons learnt from these trials. Key Message: Future disease-modifying trials (DMTs) for AD should be conducted in asymptomatic, Aβ-positive individuals. Moreover, potential additive and/or synergistic benefits focusing on anti-Aβ and anti-tau drug combinations merit further investigation.
Collapse
Affiliation(s)
- Angela Tian Hui Kwan
- Department of Chemical & Physical Sciences, University of Toronto, Toronto, Ontario, Canada.,Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, Douglas Mental Health University Institute, McGill University, Montreal, Québec, Canada.,Department of Neurology and Neurosurgery, McGill University, Montreal, Québec, Canada
| | - Saman Arfaie
- Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, Douglas Mental Health University Institute, McGill University, Montreal, Québec, Canada.,Department of Neurology and Neurosurgery, McGill University, Montreal, Québec, Canada.,Faculty of Medicine, McGill University, Montreal, Québec, Canada.,Department of Molecular Cell Biology, University of California, Berkeley, California, USA
| | - Joseph Therriault
- Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, Douglas Mental Health University Institute, McGill University, Montreal, Québec, Canada.,Department of Neurology and Neurosurgery, McGill University, Montreal, Québec, Canada.,Department of Psychiatry, McGill University, Montreal, Québec, Canada
| | - Pedro Rosa-Neto
- Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, Douglas Mental Health University Institute, McGill University, Montreal, Québec, Canada.,Department of Neurology and Neurosurgery, McGill University, Montreal, Québec, Canada.,Department of Psychiatry, McGill University, Montreal, Québec, Canada
| | - Serge Gauthier
- Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, Douglas Mental Health University Institute, McGill University, Montreal, Québec, Canada, .,Department of Neurology and Neurosurgery, McGill University, Montreal, Québec, Canada, .,Department of Psychiatry, McGill University, Montreal, Québec, Canada,
| |
Collapse
|
108
|
Merighi S, Poloni TE, Terrazzan A, Moretti E, Gessi S, Ferrari D. Alzheimer and Purinergic Signaling: Just a Matter of Inflammation? Cells 2021; 10:cells10051267. [PMID: 34065393 PMCID: PMC8161210 DOI: 10.3390/cells10051267] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/11/2021] [Accepted: 05/17/2021] [Indexed: 02/06/2023] Open
Abstract
Alzheimer's disease (AD) is a widespread neurodegenerative pathology responsible for about 70% of all cases of dementia. Adenosine is an endogenous nucleoside that affects neurodegeneration by activating four membrane G protein-coupled receptor subtypes, namely P1 receptors. One of them, the A2A subtype, is particularly expressed in the brain at the striatal and hippocampal levels and appears as the most promising target to counteract neurological damage and adenosine-dependent neuroinflammation. Extracellular nucleotides (ATP, ADP, UTP, UDP, etc.) are also released from the cell or are synthesized extracellularly. They activate P2X and P2Y membrane receptors, eliciting a variety of physiological but also pathological responses. Among the latter, the chronic inflammation underlying AD is mainly caused by the P2X7 receptor subtype. In this review we offer an overview of the scientific evidence linking P1 and P2 mediated purinergic signaling to AD development. We will also discuss potential strategies to exploit this knowledge for drug development.
Collapse
Affiliation(s)
- Stefania Merighi
- Department of Translational Medicine and for Romagna, University of Ferrara, 44100 Ferrara, Italy; (S.M.); (A.T.); (E.M.)
| | - Tino Emanuele Poloni
- Department of Neurology and Neuropathology, Golgi-Cenci Foundation & ASP Golgi-Redaelli, Abbiategrasso, 20081 Milan, Italy;
| | - Anna Terrazzan
- Department of Translational Medicine and for Romagna, University of Ferrara, 44100 Ferrara, Italy; (S.M.); (A.T.); (E.M.)
| | - Eva Moretti
- Department of Translational Medicine and for Romagna, University of Ferrara, 44100 Ferrara, Italy; (S.M.); (A.T.); (E.M.)
| | - Stefania Gessi
- Department of Translational Medicine and for Romagna, University of Ferrara, 44100 Ferrara, Italy; (S.M.); (A.T.); (E.M.)
- Correspondence: (S.G.); (D.F.)
| | - Davide Ferrari
- Department of Life Science and Biotechnology, University of Ferrara, 44100 Ferrara, Italy
- Correspondence: (S.G.); (D.F.)
| |
Collapse
|
109
|
Alves SS, Silva-Junior RMPD, Servilha-Menezes G, Homolak J, Šalković-Petrišić M, Garcia-Cairasco N. Insulin Resistance as a Common Link Between Current Alzheimer's Disease Hypotheses. J Alzheimers Dis 2021; 82:71-105. [PMID: 34024838 DOI: 10.3233/jad-210234] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Almost 115 years ago, Alois Alzheimer described Alzheimer's disease (AD) for the first time. Since then, many hypotheses have been proposed. However, AD remains a severe health public problem. The current medical approaches for AD are limited to symptomatic interventions and the complexity of this disease has led to a failure rate of approximately 99.6%in AD clinical trials. In fact, no new drug has been approved for AD treatment since 2003. These failures indicate that we are failing in mimicking this disease in experimental models. Although most studies have focused on the amyloid cascade hypothesis of AD, the literature has made clear that AD is rather a multifactorial disorder. Therefore, the persistence in a single theory has resulted in lost opportunities. In this review, we aim to present the striking points of the long scientific path followed since the description of the first AD case and the main AD hypotheses discussed over the last decades. We also propose insulin resistance as a common link between many other hypotheses.
Collapse
Affiliation(s)
- Suélen Santos Alves
- Department of Neurosciences and Behavioral Sciences, Ribeirão Preto Medical School - University of São Paulo (FMRP-USP), Ribeirão Preto, São Paulo, Brazil
| | - Rui Milton Patrício da Silva-Junior
- Department of Internal Medicine, Ribeirão Preto Medical School -University of São Paulo (FMRP-USP), Ribeirão Preto, São Paulo, Brazil.,Department of Physiology, Ribeirão Preto Medical School - University of São Paulo (FMRP-USP), Ribeirão Preto, São Paulo, Brazil
| | - Gabriel Servilha-Menezes
- Department of Physiology, Ribeirão Preto Medical School - University of São Paulo (FMRP-USP), Ribeirão Preto, São Paulo, Brazil
| | - Jan Homolak
- Department of Pharmacology, University of Zagreb School of Medicine, Zagreb, Croatia.,Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Melita Šalković-Petrišić
- Department of Pharmacology, University of Zagreb School of Medicine, Zagreb, Croatia.,Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Norberto Garcia-Cairasco
- Department of Neurosciences and Behavioral Sciences, Ribeirão Preto Medical School - University of São Paulo (FMRP-USP), Ribeirão Preto, São Paulo, Brazil.,Department of Physiology, Ribeirão Preto Medical School - University of São Paulo (FMRP-USP), Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
110
|
Merighi S, Poloni TE, Pelloni L, Pasquini S, Varani K, Vincenzi F, Borea PA, Gessi S. An Open Question: Is the A 2A Adenosine Receptor a Novel Target for Alzheimer's Disease Treatment? Front Pharmacol 2021; 12:652455. [PMID: 33828485 PMCID: PMC8019913 DOI: 10.3389/fphar.2021.652455] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 02/17/2021] [Indexed: 12/14/2022] Open
Affiliation(s)
- Stefania Merighi
- Department of Translational Medicine and for Romagna, University of Ferrara, Ferrara, Italy
| | - Tino Emanuele Poloni
- Department of Neurology and Neuropathology, Golgi-Cenci Foundation and ASP Golgi-Redaelli, Abbiategrasso, Italy
| | - Lucia Pelloni
- Department of Translational Medicine and for Romagna, University of Ferrara, Ferrara, Italy
| | - Silvia Pasquini
- Department of Translational Medicine and for Romagna, University of Ferrara, Ferrara, Italy
| | - Katia Varani
- Department of Translational Medicine and for Romagna, University of Ferrara, Ferrara, Italy
| | - Fabrizio Vincenzi
- Department of Translational Medicine and for Romagna, University of Ferrara, Ferrara, Italy
| | | | - Stefania Gessi
- Department of Translational Medicine and for Romagna, University of Ferrara, Ferrara, Italy
| |
Collapse
|
111
|
Reiss AB, Montufar N, DeLeon J, Pinkhasov A, Gomolin IH, Glass AD, Arain HA, Stecker MM. Alzheimer Disease Clinical Trials Targeting Amyloid: Lessons Learned From Success in Mice and Failure in Humans. Neurologist 2021; 26:52-61. [PMID: 33646990 DOI: 10.1097/nrl.0000000000000320] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
BACKGROUND The goal of slowing or halting the development of Alzheimer disease (AD) has resulted in the huge allocation of resources by academic institutions and pharmaceutical companies to the development of new treatments. The etiology of AD is elusive, but the aggregation of amyloid-β and tau peptide and oxidative processes are considered critical pathologic mechanisms. The failure of drugs with multiple mechanisms to meet efficacy outcomes has caused several companies to decide not to pursue further AD studies and has left the field essentially where it has been for the past 15 years. Efforts are underway to develop biomarkers for detection and monitoring of AD using genetic, imaging, and biochemical technology, but this is of minimal use if no intervention can be offered. REVIEW SUMMARY In this review, we consider the natural progression of AD and how it continues despite present attempts to modify the amyloid-related machinery to alter the disease trajectory. We describe the mechanisms and approaches to AD treatment targeting amyloid, including both passive and active immunotherapy as well as inhibitors of enzymes in the amyloidogenic pathway. CONCLUSION Lessons learned from clinical trials of amyloid reduction strategies may prove crucial for the leap forward toward novel therapeutic targets to treat AD.
Collapse
Affiliation(s)
- Allison B Reiss
- Department of Medicine, NYU Long Island School of Medicine, Mineola, NY
| | - Natalie Montufar
- Department of Medicine, NYU Long Island School of Medicine, Mineola, NY
| | - Joshua DeLeon
- Department of Medicine, NYU Long Island School of Medicine, Mineola, NY
| | - Aaron Pinkhasov
- Department of Medicine, NYU Long Island School of Medicine, Mineola, NY
| | - Irving H Gomolin
- Department of Medicine, NYU Long Island School of Medicine, Mineola, NY
| | - Amy D Glass
- Department of Medicine, NYU Long Island School of Medicine, Mineola, NY
| | - Hirra A Arain
- Department of Medicine, NYU Long Island School of Medicine, Mineola, NY
| | - Mark M Stecker
- Fresno Center for Medical Education and Research, Department of Medicine, University of California-San Francisco, Fresno, CA
| |
Collapse
|
112
|
Is γ-secretase a beneficial inactivating enzyme of the toxic APP C-terminal fragment C99? J Biol Chem 2021; 296:100489. [PMID: 33662398 PMCID: PMC8027268 DOI: 10.1016/j.jbc.2021.100489] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 02/26/2021] [Accepted: 02/26/2021] [Indexed: 12/12/2022] Open
Abstract
Genetic, biochemical, and anatomical grounds led to the proposal of the amyloid cascade hypothesis centered on the accumulation of amyloid beta peptides (Aβ) to explain Alzheimer's disease (AD) etiology. In this context, a bulk of efforts have aimed at developing therapeutic strategies seeking to reduce Aβ levels, either by blocking its production (γ- and β-secretase inhibitors) or by neutralizing it once formed (Aβ-directed immunotherapies). However, so far the vast majority of, if not all, clinical trials based on these strategies have failed, since they have not been able to restore cognitive function in AD patients, and even in many cases, they have worsened the clinical picture. We here propose that AD could be more complex than a simple Aβ-linked pathology and discuss the possibility that a way to reconcile undoubted genetic evidences linking processing of APP to AD and a consistent failure of Aβ-based clinical trials could be to envision the pathological contribution of the direct precursor of Aβ, the β-secretase-derived C-terminal fragment of APP, βCTF, also referred to as C99. In this review, we summarize scientific evidences pointing to C99 as an early contributor to AD and postulate that γ-secretase should be considered as not only an Aβ-generating protease, but also a beneficial C99-inactivating enzyme. In that sense, we discuss the limitations of molecules targeting γ-secretase and propose alternative strategies seeking to reduce C99 levels by other means and notably by enhancing its lysosomal degradation.
Collapse
|
113
|
Hu N, Mackey H, Thomas R. Power and sample size for random coefficient regression models in randomized experiments with monotone missing data. Biom J 2021; 63:806-824. [PMID: 33586212 DOI: 10.1002/bimj.202000184] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 11/02/2020] [Accepted: 12/07/2020] [Indexed: 11/06/2022]
Abstract
Random coefficient regression (also known as random effects, mixed effects, growth curve, variance component, multilevel, or hierarchical linear modeling) can be a natural and useful approach for characterizing and testing hypotheses in data that are correlated within experimental units. Existing power and sample size software for such data are based on two variance component models or those using a two-stage formulation. These approaches may be markedly inaccurate in settings where more variance components (i.e., intercept, rate of change, and residual error) are warranted. We present variance, power, sample size formulae, and software (R Shiny app) for use with random coefficient regression models with possible missing data and variable follow-up. We illustrate sample size and study design planning using data from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. We additionally examine the drivers of variability to better inform study design.
Collapse
Affiliation(s)
- Nan Hu
- Department of Biostatistics, Genentech Inc., San Francisco, CA, USA
| | - Howard Mackey
- Department of Biostatistics, Genentech Inc., San Francisco, CA, USA
| | - Ronald Thomas
- Department of Neurosciences, University of California San Diego, San Diego, CA, USA
| |
Collapse
|
114
|
Vijayan D, Chandra R. Amyloid Beta Hypothesis in Alzheimer's Disease: Major Culprits and Recent Therapeutic Strategies. Curr Drug Targets 2021; 21:148-166. [PMID: 31385768 DOI: 10.2174/1389450120666190806153206] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 07/13/2019] [Accepted: 07/26/2019] [Indexed: 01/18/2023]
Abstract
Alzheimer's disease (AD) is one of the most common forms of dementia and has been a global concern for several years. Due to the multi-factorial nature of the disease, AD has become irreversible, fatal and imposes a tremendous socio-economic burden. Even though experimental medicines suggested moderate benefits, AD still lacks an effective treatment strategy for the management of symptoms or cure. Among the various hypotheses that describe development and progression of AD, the amyloid hypothesis has been a long-term adherent to the AD due to the involvement of various forms of Amyloid beta (Aβ) peptides in the impairment of neuronal and cognitive functions. Hence, majority of the drug discovery approaches in the past have focused on the prevention of the accumulation of Aβ peptides. Currently, there are several agents in the phase III clinical trials that target Aβ or the various macromolecules triggering Aβ deposition. In this review, we present the state of the art knowledge on the functional aspects of the key players involved in the amyloid hypothesis. Furthermore, we also discuss anti-amyloid agents present in the Phase III clinical trials.
Collapse
Affiliation(s)
- Dileep Vijayan
- Laboratory for Structural Bioinformatics, Center for Biosystems Dynamics Research, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Remya Chandra
- Department of Biotechnology and Microbiology, Thalassery Campus, Kannur University, Kerala Pin 670 661, India
| |
Collapse
|
115
|
Gklinos P, Papadopoulou M, Stanulovic V, Mitsikostas DD, Papadopoulos D. Monoclonal Antibodies as Neurological Therapeutics. Pharmaceuticals (Basel) 2021; 14:ph14020092. [PMID: 33530460 PMCID: PMC7912592 DOI: 10.3390/ph14020092] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 01/20/2021] [Accepted: 01/22/2021] [Indexed: 02/08/2023] Open
Abstract
Over the last 30 years the role of monoclonal antibodies in therapeutics has increased enormously, revolutionizing treatment in most medical specialties, including neurology. Monoclonal antibodies are key therapeutic agents for several neurological conditions with diverse pathophysiological mechanisms, including multiple sclerosis, migraines and neuromuscular disease. In addition, a great number of monoclonal antibodies against several targets are being investigated for many more neurological diseases, which reflects our advances in understanding the pathogenesis of these diseases. Untangling the molecular mechanisms of disease allows monoclonal antibodies to block disease pathways accurately and efficiently with exceptional target specificity, minimizing non-specific effects. On the other hand, accumulating experience shows that monoclonal antibodies may carry class-specific and target-associated risks. This article provides an overview of different types of monoclonal antibodies and their characteristics and reviews monoclonal antibodies currently in use or under development for neurological disease.
Collapse
Affiliation(s)
- Panagiotis Gklinos
- Department of Neurology, KAT General Hospital of Attica, 14561 Athens, Greece;
| | - Miranta Papadopoulou
- Center for Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation of the Academy of Athens (BRFAA), 11527 Athens, Greece;
| | - Vid Stanulovic
- Global Pharmacovigilance, R&D Sanofi, 91385 Chilly-Mazarin, France;
| | - Dimos D. Mitsikostas
- 1st Neurology Department, Aeginition Hospital, National and Kapodistrian University of Athens, 11521 Athens, Greece;
| | - Dimitrios Papadopoulos
- Laboratory of Molecular Genetics, Hellenic Pasteur Institute, 129 Vasilissis Sophias Avenue, 11521 Athens, Greece
- Salpetriere Neuropsychiatric Clinic, 149 Papandreou Street, Metamorphosi, 14452 Athens, Greece
- Correspondence:
| |
Collapse
|
116
|
Xing Z, Zuo Z, Hu D, Zheng X, Wang X, Yuan L, Zhou L, Qi F, Yao Z. Influenza vaccine combined with moderate-dose PD1 blockade reduces amyloid-β accumulation and improves cognition in APP/PS1 mice. Brain Behav Immun 2021; 91:128-141. [PMID: 32956831 DOI: 10.1016/j.bbi.2020.09.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 09/10/2020] [Accepted: 09/15/2020] [Indexed: 12/11/2022] Open
Abstract
Immune dysfunction is implicated in Alzheimer's disease (AD), whereas systemic immune modulation may be neuroprotective. Our previous results have indicated immune challenge with Bacillus Calmette-Guerin attenuates AD pathology in animal models by boosting the systemic immune system. Similarly, independent studies have shown that boosting systemic immune system, by blocking PD-1 checkpoint pathway, modifies AD. Here we hypothesized that influenza vaccine would potentiate function of moderate dose anti-PD-1 and therefore combining them might allow reducing the dose of PD-1 antibody needed to modify the disease. We found that moderate-dose PD-1 in combination with influenza vaccine effectively attenuated cognitive deficit and prevented amyloid-β pathology build-up in APP/PS1 mice in a mechanism dependent on recruitment of peripheral monocyte-derived macrophages into the brain. Eliminating peripheral macrophages abrogated the beneficial effect. Moreover, by comparing CD11b+ compartments in the mouse parenchyma, we observed an elevated subset of Ly6C+ microglia-like cells, which are reportedly derived from peripheral monocytes. In addition, myeloid-derived suppressor cells are strongly elevated in the transgenic model used and normalized by combination treatment, indicating restoration of brain immune homeostasis. Overall, our results suggest that revitalizing brain immunity by combining IV with moderate-dose PD-1 inhibition may represent a therapeutic immunotherapy for AD.
Collapse
Affiliation(s)
- Zhiwei Xing
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-sen University, #74, Zhongshan No. 2 Road, Guangzhou 510080, PR China; Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, #74, Zhongshan No. 2 Road, Guangzhou 510080, PR China
| | - Zejie Zuo
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-sen University, #74, Zhongshan No. 2 Road, Guangzhou 510080, PR China; Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, #74, Zhongshan No. 2 Road, Guangzhou 510080, PR China
| | - Dandan Hu
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, PR China
| | - Xiaona Zheng
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-sen University, #74, Zhongshan No. 2 Road, Guangzhou 510080, PR China; Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, #74, Zhongshan No. 2 Road, Guangzhou 510080, PR China
| | - Xiao Wang
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-sen University, #74, Zhongshan No. 2 Road, Guangzhou 510080, PR China; Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, #74, Zhongshan No. 2 Road, Guangzhou 510080, PR China
| | - Lifang Yuan
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-sen University, #74, Zhongshan No. 2 Road, Guangzhou 510080, PR China; Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, #74, Zhongshan No. 2 Road, Guangzhou 510080, PR China
| | - Lihua Zhou
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-sen University, #74, Zhongshan No. 2 Road, Guangzhou 510080, PR China; Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, #74, Zhongshan No. 2 Road, Guangzhou 510080, PR China; Department of Anatomy, Sun Yat-sen University, School of Medicine, Guangzhou 510089, PR China.
| | - Fangfang Qi
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-sen University, #74, Zhongshan No. 2 Road, Guangzhou 510080, PR China; Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, #74, Zhongshan No. 2 Road, Guangzhou 510080, PR China.
| | - Zhibin Yao
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-sen University, #74, Zhongshan No. 2 Road, Guangzhou 510080, PR China; Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, #74, Zhongshan No. 2 Road, Guangzhou 510080, PR China.
| |
Collapse
|
117
|
Ghosh A, Comerota MM, Wan D, Chen F, Propson NE, Hwang SH, Hammock BD, Zheng H. An epoxide hydrolase inhibitor reduces neuroinflammation in a mouse model of Alzheimer's disease. Sci Transl Med 2020; 12:eabb1206. [PMID: 33298560 PMCID: PMC7784555 DOI: 10.1126/scitranslmed.abb1206] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 08/26/2020] [Indexed: 12/12/2022]
Abstract
Neuroinflammation has been increasingly recognized to play a critical role in Alzheimer's disease (AD). The epoxy fatty acids (EpFAs) are derivatives of the arachidonic acid metabolism pathway and have anti-inflammatory activities. However, their efficacy is limited because of their rapid hydrolysis by the soluble epoxide hydrolase (sEH). We report that sEH is predominantly expressed in astrocytes and is elevated in postmortem brain tissue from patients with AD and in the 5xFAD β amyloid mouse model of AD. The amount of sEH expressed in AD mouse brains correlated with a reduction in brain EpFA concentrations. Using a specific small-molecule sEH inhibitor, 1-trifluoromethoxyphenyl-3-(1-propionylpiperidin-4-yl) urea (TPPU), we report that TPPU treatment protected wild-type mice against LPS-induced inflammation in vivo. Long-term administration of TPPU to the 5xFAD mouse model via drinking water reversed microglia and astrocyte reactivity and immune pathway dysregulation. This was associated with reduced β amyloid pathology and improved synaptic integrity and cognitive function on two behavioral tests. TPPU treatment correlated with an increase in EpFA concentrations in the brains of 5xFAD mice, demonstrating brain penetration and target engagement of this small molecule. These findings support further investigation of TPPU as a potential therapeutic agent for the treatment of AD.
Collapse
Affiliation(s)
- Anamitra Ghosh
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA
| | - Michele M Comerota
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA
| | - Debin Wan
- Department of Entomology and Nematology and UCDMC Comprehensive Cancer Center, University of California, Davis, CA 95616, USA
| | - Fading Chen
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA
| | - Nicholas E Propson
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sung Hee Hwang
- Department of Entomology and Nematology and UCDMC Comprehensive Cancer Center, University of California, Davis, CA 95616, USA
| | - Bruce D Hammock
- Department of Entomology and Nematology and UCDMC Comprehensive Cancer Center, University of California, Davis, CA 95616, USA
| | - Hui Zheng
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA.
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
118
|
Stonebarger GA, Urbanski HF, Woltjer RL, Vaughan KL, Ingram DK, Schultz PL, Calderazzo SM, Siedeman JA, Mattison JA, Rosene DL, Kohama SG. Amyloidosis increase is not attenuated by long-term calorie restriction or related to neuron density in the prefrontal cortex of extremely aged rhesus macaques. GeroScience 2020; 42:1733-1749. [PMID: 32876855 PMCID: PMC7732935 DOI: 10.1007/s11357-020-00259-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 08/24/2020] [Indexed: 01/30/2023] Open
Abstract
As human lifespan increases and the population ages, diseases of aging such as Alzheimer's disease (AD) are a major cause for concern. Although calorie restriction (CR) as an intervention has been shown to increase healthspan in many species, few studies have examined the effects of CR on brain aging in primates. Using postmortem tissue from a cohort of extremely aged rhesus monkeys (22-44 years old, average age 31.8 years) from a longitudinal CR study, we measured immunohistochemically labeled amyloid beta plaques in Brodmann areas 32 and 46 of the prefrontal cortex, areas that play key roles in cognitive processing, are sensitive to aging and, in humans, are also susceptible to AD pathogenesis. We also evaluated these areas for cortical neuron loss, which has not been observed in younger cohorts of aged monkeys. We found a significant increase in plaque density with age, but this was unaffected by diet. Moreover, there was no change in neuron density with age or treatment. These data suggest that even in the oldest-old rhesus macaques, amyloid beta plaques do not lead to overt neuron loss. Hence, the rhesus macaque serves as a pragmatic animal model for normative human aging but is not a complete model of the neurodegeneration of AD. This model of aging may instead prove most useful for determining how even the oldest monkeys are protected from AD, and this information may therefore yield valuable information for clinical AD treatments.
Collapse
Affiliation(s)
- G A Stonebarger
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, 97239, USA
- Division of Neuroscience, Oregon National Primate Research Center, 505 NW 185th Avenue, Beaverton, OR, 97006, USA
| | - H F Urbanski
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, 97239, USA
- Division of Neuroscience, Oregon National Primate Research Center, 505 NW 185th Avenue, Beaverton, OR, 97006, USA
| | - R L Woltjer
- Department of Pathology, Oregon Health & Science University, Portland, OR, 97239, USA
| | - K L Vaughan
- Translational Gerontology Branch, National Institute on Aging Intramural Research Program, NIH, Dickerson, MD, 20842, USA
- Charles River, Wilmington, MA, 01867, USA
| | - D K Ingram
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, 70808, USA
| | - P L Schultz
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MD, 02218, USA
| | - S M Calderazzo
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MD, 02218, USA
| | - J A Siedeman
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MD, 02218, USA
| | - J A Mattison
- Translational Gerontology Branch, National Institute on Aging Intramural Research Program, NIH, Dickerson, MD, 20842, USA
| | - D L Rosene
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MD, 02218, USA
| | - S G Kohama
- Division of Neuroscience, Oregon National Primate Research Center, 505 NW 185th Avenue, Beaverton, OR, 97006, USA.
| |
Collapse
|
119
|
Ettcheto M, Busquets O, Espinosa-Jiménez T, Verdaguer E, Auladell C, Camins A. A Chronological Review of Potential Disease-Modifying Therapeutic Strategies for Alzheimer's Disease. Curr Pharm Des 2020; 26:1286-1299. [PMID: 32066356 DOI: 10.2174/1381612826666200211121416] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 12/18/2019] [Indexed: 01/28/2023]
Abstract
Late-onset Alzheimer's disease (LOAD) is a neurodegenerative disorder that has become a worldwide health problem. This pathology has been classically characterized for its affectation on cognitive function and the presence of depositions of extracellular amyloid β-protein (Aβ) and intracellular neurofibrillary tangles (NFT) composed of hyperphosphorylated Tau protein. To this day, no effective treatment has been developed. Multiple strategies have been proposed over the years with the aim of finding new therapeutic approaches, such as the sequestration of Aβ in plasma or the administration of anti-inflammatory drugs. Also, given the significant role of the insulin receptor in the brain in the proper maintenance of cognitive function, drugs focused on the amelioration of insulin resistance have been proposed as potentially useful and effective in the treatment of AD. In the present review, taking into account the molecular complexity of the disease, it has been proposed that the most appropriate therapeutic strategy is a combinatory treatment of several drugs that will regulate a wide spectrum of the described altered pathological pathways.
Collapse
Affiliation(s)
- Miren Ettcheto
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Science, University of Barcelona, Barcelona, Spain.,Department of Biochemistry and Biotechnology, Faculty of Medicine and Life Sciences, University Rovira i Virgili, Reus, Spain.,Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Carlos III Health Institute, Madrid, Spain.,Institute of Neurosciences, University of Barcelona, Barcelona, Spain
| | - Oriol Busquets
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Science, University of Barcelona, Barcelona, Spain.,Department of Biochemistry and Biotechnology, Faculty of Medicine and Life Sciences, University Rovira i Virgili, Reus, Spain.,Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Carlos III Health Institute, Madrid, Spain.,Institute of Neurosciences, University of Barcelona, Barcelona, Spain
| | - Triana Espinosa-Jiménez
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Science, University of Barcelona, Barcelona, Spain.,Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Carlos III Health Institute, Madrid, Spain.,Institute of Neurosciences, University of Barcelona, Barcelona, Spain
| | - Ester Verdaguer
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Carlos III Health Institute, Madrid, Spain.,Institute of Neurosciences, University of Barcelona, Barcelona, Spain.,Department of Cellular Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Carme Auladell
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Carlos III Health Institute, Madrid, Spain.,Institute of Neurosciences, University of Barcelona, Barcelona, Spain.,Department of Cellular Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Antoni Camins
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Science, University of Barcelona, Barcelona, Spain.,Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Carlos III Health Institute, Madrid, Spain.,Institute of Neurosciences, University of Barcelona, Barcelona, Spain
| |
Collapse
|
120
|
Kreiser RP, Wright AK, Block NR, Hollows JE, Nguyen LT, LeForte K, Mannini B, Vendruscolo M, Limbocker R. Therapeutic Strategies to Reduce the Toxicity of Misfolded Protein Oligomers. Int J Mol Sci 2020; 21:ijms21228651. [PMID: 33212787 PMCID: PMC7696907 DOI: 10.3390/ijms21228651] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 02/07/2023] Open
Abstract
The aberrant aggregation of proteins is implicated in the onset and pathogenesis of a wide range of neurodegenerative disorders, including Alzheimer’s and Parkinson’s diseases. Mounting evidence indicates that misfolded protein oligomers produced as intermediates in the aggregation process are potent neurotoxic agents in these diseases. Because of the transient and heterogeneous nature of these elusive aggregates, however, it has proven challenging to develop therapeutics that can effectively target them. Here, we review approaches aimed at reducing oligomer toxicity, including (1) modulating the oligomer populations (e.g., by altering the kinetics of aggregation by inhibiting, enhancing, or redirecting the process), (2) modulating the oligomer properties (e.g., through the size–hydrophobicity–toxicity relationship), (3) modulating the oligomer interactions (e.g., by protecting cell membranes by displacing oligomers), and (4) reducing oligomer toxicity by potentiating the protein homeostasis system. We analyze examples of these complementary approaches, which may lead to the development of compounds capable of preventing or treating neurodegenerative disorders associated with protein aggregation.
Collapse
Affiliation(s)
- Ryan P. Kreiser
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY 10996, USA; (R.P.K.); (A.K.W.); (N.R.B.); (J.E.H.); (L.T.N.); (K.L.)
| | - Aidan K. Wright
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY 10996, USA; (R.P.K.); (A.K.W.); (N.R.B.); (J.E.H.); (L.T.N.); (K.L.)
| | - Natalie R. Block
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY 10996, USA; (R.P.K.); (A.K.W.); (N.R.B.); (J.E.H.); (L.T.N.); (K.L.)
| | - Jared E. Hollows
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY 10996, USA; (R.P.K.); (A.K.W.); (N.R.B.); (J.E.H.); (L.T.N.); (K.L.)
| | - Lam T. Nguyen
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY 10996, USA; (R.P.K.); (A.K.W.); (N.R.B.); (J.E.H.); (L.T.N.); (K.L.)
| | - Kathleen LeForte
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY 10996, USA; (R.P.K.); (A.K.W.); (N.R.B.); (J.E.H.); (L.T.N.); (K.L.)
| | - Benedetta Mannini
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK;
| | - Michele Vendruscolo
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK;
- Correspondence: (M.V.); (R.L.)
| | - Ryan Limbocker
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY 10996, USA; (R.P.K.); (A.K.W.); (N.R.B.); (J.E.H.); (L.T.N.); (K.L.)
- Correspondence: (M.V.); (R.L.)
| |
Collapse
|
121
|
Venkataraman L, Fair SR, McElroy CA, Hester ME, Fu H. Modeling neurodegenerative diseases with cerebral organoids and other three-dimensional culture systems: focus on Alzheimer's disease. Stem Cell Rev Rep 2020; 18:696-717. [PMID: 33180261 PMCID: PMC7658915 DOI: 10.1007/s12015-020-10068-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2020] [Indexed: 12/11/2022]
Abstract
Many neurodegenerative diseases (NDs) such as Alzheimer’s disease, Parkinson’s disease, frontotemporal dementia, amyotrophic lateral sclerosis and Huntington’s disease, are characterized by the progressive accumulation of abnormal proteinaceous assemblies in specific cell types and regions of the brain, leading to cellular dysfunction and brain damage. Although animal- and in vitro-based studies of NDs have provided the field with an extensive understanding of some of the mechanisms underlying these diseases, findings from these studies have not yielded substantial progress in identifying treatment options for patient populations. This necessitates the development of complementary model systems that are better suited to recapitulate human-specific features of ND pathogenesis. Three-dimensional (3D) culture systems, such as cerebral organoids generated from human induced pluripotent stem cells, hold significant potential to model NDs in a complex, tissue-like environment. In this review, we discuss the advantages of 3D culture systems and 3D modeling of NDs, especially AD and FTD. We also provide an overview of the challenges and limitations of the current 3D culture systems. Finally, we propose a few potential future directions in applying state-of-the-art technologies in 3D culture systems to understand the mechanisms of NDs and to accelerate drug discovery. Graphical abstract ![]()
Collapse
Affiliation(s)
- Lalitha Venkataraman
- Department of Neuroscience, The Ohio State University Wexner Medical Center, 616 Biomedical Research Tower, 460 W. 12th Ave, Columbus, OH, 43210, USA
| | - Summer R Fair
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, 575 Children's Crossroad, Columbus, OH, 43215, USA
- College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Craig A McElroy
- College of Pharmacy, The Ohio State University, Columbus, OH, USA
| | - Mark E Hester
- Department of Neuroscience, The Ohio State University Wexner Medical Center, 616 Biomedical Research Tower, 460 W. 12th Ave, Columbus, OH, 43210, USA.
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, 575 Children's Crossroad, Columbus, OH, 43215, USA.
- Department of Pediatrics, The Ohio State University Wexner Medical Center, Columbus, OH, USA.
| | - Hongjun Fu
- Department of Neuroscience, The Ohio State University Wexner Medical Center, 616 Biomedical Research Tower, 460 W. 12th Ave, Columbus, OH, 43210, USA.
| |
Collapse
|
122
|
Alzheimer's disease: Recent treatment strategies. Eur J Pharmacol 2020; 887:173554. [DOI: 10.1016/j.ejphar.2020.173554] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 09/03/2020] [Accepted: 09/11/2020] [Indexed: 12/12/2022]
|
123
|
Chen Y, Wei G, Zhao J, Nussinov R, Ma B. Computational Investigation of Gantenerumab and Crenezumab Recognition of Aβ Fibrils in Alzheimer's Disease Brain Tissue. ACS Chem Neurosci 2020; 11:3233-3244. [PMID: 32991803 PMCID: PMC8921974 DOI: 10.1021/acschemneuro.0c00364] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Alzheimer's disease (AD) is one of the most devastating neurodegenerative diseases without effective therapies. Immunotherapies using antibodies to lower assembled Aβ provide a promising approach and have been widely studied. Anti-amyloid antibodies are often selective to amyloid conformation, and the lack of amyloid-antibody structural information limits our understanding of these antibodies' conformation selection. Gantenerumab and crenezumab are two anti-Aβ antibodies that bind multiple forms of Aβ with different Aβ epitope preferences. Here, using molecular dynamic (MD) simulations, we study the binding of these two antibodies to the Aβ1-40 fibril, whose conformation is derived from an AD patient's brain tissue. We find that gantenerumab recognizes the Aβ1-11 monomer fragment only at slightly lower pH than the physiological environment where His6 of Aβ1-11 is protonated. Both gantenerumab and crenezumab bind with integrated Aβ fibril rather than binding to monomers within the fibril. Gantenerumab preferentially binds to the N-terminal region of the Aβ1-40 fibril, and the binding is driven by aromatic interactions. Crenezumab can recognize the N-terminal region, as well as the cross-section of the Aβ1-40 fibril, indicating its multiple binding modes in Aβ fibril recognition. These results demonstrate conformation-dependent interactions of antibody-amyloid recognition.
Collapse
Affiliation(s)
- Yujie Chen
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Sciences (MOE), Multiscale Research Institute of Complex Systems, Fudan University, Shanghai 200438, P. R. China
| | - Guanghong Wei
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Sciences (MOE), Multiscale Research Institute of Complex Systems, Fudan University, Shanghai 200438, P. R. China
| | - Jun Zhao
- Basic Science Program, Leidos Biomedical Research, Inc., Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland 21702, United States
| | - Ruth Nussinov
- Basic Science Program, Leidos Biomedical Research, Inc., Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland 21702, United States
- Sackler Institute of Molecular Medicine, Department of Human Genetics and Molecular Medicine, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Buyong Ma
- Basic Science Program, Leidos Biomedical Research, Inc., Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland 21702, United States
- Engineering Research Center of Cell & Therapeutic Antibody (MOE), School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
124
|
Pinheiro L, Faustino C. Therapeutic Strategies Targeting Amyloid-β in Alzheimer's Disease. Curr Alzheimer Res 2020; 16:418-452. [PMID: 30907320 DOI: 10.2174/1567205016666190321163438] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 03/16/2019] [Accepted: 03/17/2019] [Indexed: 12/16/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder linked to protein misfolding and aggregation. AD is pathologically characterized by senile plaques formed by extracellular Amyloid-β (Aβ) peptide and Intracellular Neurofibrillary Tangles (NFT) formed by hyperphosphorylated tau protein. Extensive synaptic loss and neuronal degeneration are responsible for memory impairment, cognitive decline and behavioral dysfunctions typical of AD. Amyloidosis has been implicated in the depression of acetylcholine synthesis and release, overactivation of N-methyl-D-aspartate (NMDA) receptors and increased intracellular calcium levels that result in excitotoxic neuronal degeneration. Current drugs used in AD treatment are either cholinesterase inhibitors or NMDA receptor antagonists; however, they provide only symptomatic relief and do not alter the progression of the disease. Aβ is the product of Amyloid Precursor Protein (APP) processing after successive cleavage by β- and γ-secretases while APP proteolysis by α-secretase results in non-amyloidogenic products. According to the amyloid cascade hypothesis, Aβ dyshomeostasis results in the accumulation and aggregation of Aβ into soluble oligomers and insoluble fibrils. The former are synaptotoxic and can induce tau hyperphosphorylation while the latter deposit in senile plaques and elicit proinflammatory responses, contributing to oxidative stress, neuronal degeneration and neuroinflammation. Aβ-protein-targeted therapeutic strategies are thus a promising disease-modifying approach for the treatment and prevention of AD. This review summarizes recent findings on Aβ-protein targeted AD drugs, including β-secretase inhibitors, γ-secretase inhibitors and modulators, α-secretase activators, direct inhibitors of Aβ aggregation and immunotherapy targeting Aβ, focusing mainly on those currently under clinical trials.
Collapse
Affiliation(s)
- Lídia Pinheiro
- iMed.ULisboa - Research Institute for Medicines, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto 1649-003 Lisboa, Portugal
| | - Célia Faustino
- iMed.ULisboa - Research Institute for Medicines, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto 1649-003 Lisboa, Portugal
| |
Collapse
|
125
|
Uddin MS, Kabir MT, Rahman MS, Behl T, Jeandet P, Ashraf GM, Najda A, Bin-Jumah MN, El-Seedi HR, Abdel-Daim MM. Revisiting the Amyloid Cascade Hypothesis: From Anti-Aβ Therapeutics to Auspicious New Ways for Alzheimer's Disease. Int J Mol Sci 2020; 21:5858. [PMID: 32824102 PMCID: PMC7461598 DOI: 10.3390/ijms21165858] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/03/2020] [Accepted: 08/12/2020] [Indexed: 12/18/2022] Open
Abstract
Alzheimer's disease (AD) is the most prevalent neurodegenerative disorder related to age, characterized by the cerebral deposition of fibrils, which are made from the amyloid-β (Aβ), a peptide of 40-42 amino acids. The conversion of Aβ into neurotoxic oligomeric, fibrillar, and protofibrillar assemblies is supposed to be the main pathological event in AD. After Aβ accumulation, the clinical symptoms fall out predominantly due to the deficient brain clearance of the peptide. For several years, researchers have attempted to decline the Aβ monomer, oligomer, and aggregate levels, as well as plaques, employing agents that facilitate the reduction of Aβ and antagonize Aβ aggregation, or raise Aβ clearance from brain. Unluckily, broad clinical trials with mild to moderate AD participants have shown that these approaches were unsuccessful. Several clinical trials are running involving patients whose disease is at an early stage, but the preliminary outcomes are not clinically impressive. Many studies have been conducted against oligomers of Aβ which are the utmost neurotoxic molecular species. Trials with monoclonal antibodies directed against Aβ oligomers have exhibited exciting findings. Nevertheless, Aβ oligomers maintain equivalent states in both monomeric and aggregation forms; so, previously administered drugs that precisely decrease Aβ monomer or Aβ plaques ought to have displayed valuable clinical benefits. In this article, Aβ-based therapeutic strategies are discussed and several promising new ways to fight against AD are appraised.
Collapse
Affiliation(s)
- Md. Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka 1213, Bangladesh
- Pharmakon Neuroscience Research Network, Dhaka 1207, Bangladesh
| | - Md. Tanvir Kabir
- Department of Pharmacy, BRAC University, Dhaka 1212, Bangladesh;
| | - Md. Sohanur Rahman
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi 6205, Bangladesh;
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India;
| | - Philippe Jeandet
- Research Unit, Induced Resistance and Plant Bioprotection, EA 4707, SFR Condorcet FR CNRS 3417, Faculty of Sciences, University of Reims Champagne-Ardenne, PO Box 1039, 51687 Reims CEDEX 2, France;
| | - Ghulam Md Ashraf
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Agnieszka Najda
- Laboratory of Quality of Vegetables and Medicinal Plants, Department of Vegetable Crops and Medicinal Plants, University of Life Sciences in Lublin, 15 Akademicka Street, 20-950 Lublin, Poland;
| | - May N. Bin-Jumah
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11474, Saudi Arabia;
| | - Hesham R. El-Seedi
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China;
- Pharmacognosy Group, Department of Pharmaceutical Biosciences, Uppsala University, SE-751 23 Uppsala, Sweden
- Department of Chemistry, Faculty of Science, Menoufia University, Shebin El-Koom 32512, Egypt
| | - Mohamed M. Abdel-Daim
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| |
Collapse
|
126
|
Imbimbo BP, Lozupone M, Watling M, Panza F. Discontinued disease-modifying therapies for Alzheimer's disease: status and future perspectives. Expert Opin Investig Drugs 2020; 29:919-933. [PMID: 32657175 DOI: 10.1080/13543784.2020.1795127] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Alzheimer's disease (AD) is the main cause of dementia and represents a huge burden for patients, carers, and healthcare systems. Extensive efforts for over 20 years have failed to find effective disease-modifying drugs. Although amyloid-β (Aβ) accumulation in the brain predicts cognitive decline, effective reduction of plaque load by numerous drug candidates has not yielded significant clinical benefits. A similar pattern is now emerging for drugs which target hyperphosphorylated tau, and trials with anti-inflammatory drugs have been negative despite neuroinflammation appearing to have a crucial role in AD pathogenesis. AREAS COVERED This article reviews key drugs that have been discontinued while in development for AD and delineates the future landscape for present and alternative approaches. EXPERT OPINION Anti-Aβ drugs have failed to validate the Aβ cascade hypothesis of AD. Early findings suggest that the same is happening with therapeutics targeting tau and focussing future research solely on anti-tau drugs is inappropriate. Alternative targets should be pursued, including apolipoprotein E, immunomodulation, plasma exchange, protein autophagy and clearance, mitochondrial dysfunction, abnormal glucose metabolism, neurovascular unit support, epigenetic dysregulation, synaptic loss and dysfunction, microbiota dysbiosis, and combination therapies. Meanwhile, repurposing of drugs approved for other indications is justified where scientific rationale and robust preclinical evidence exist.
Collapse
Affiliation(s)
- Bruno P Imbimbo
- Department of Research and Development, Chiesi Farmaceutici , Parma, Italy
| | - Madia Lozupone
- Unit of Epidemiological Research on Aging "Greatage Study", National Institute of Gastroenterology and Research Hospital IRCCS "S. de Bellis" , Bari, Italy.,Neurodegenerative Disease Unit, Department of Basic Medicine, Neuroscience, and Sense Organs, University of Bari Aldo Moro , Bari, Italy
| | - Mark Watling
- CNS & Pain Department, TranScrip Partners , Reading, UK
| | - Francesco Panza
- Unit of Epidemiological Research on Aging "Greatage Study", National Institute of Gastroenterology and Research Hospital IRCCS "S. de Bellis" , Bari, Italy
| |
Collapse
|
127
|
Plascencia-Villa G, Perry G. Status and future directions of clinical trials in Alzheimer's disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2020; 154:3-50. [PMID: 32739008 DOI: 10.1016/bs.irn.2020.03.022] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Amyloid-β (Aβ) senile plaques and neurofibrillary tangles of tau are generally recognized as the culprits of Alzheimer's disease (AD) and related dementia. About 25 years ago, the amyloid cascade hypotheses postulated a direct correlation of plaques with the development of AD, and it has been the dominant theory since then. In this period, more than 200 clinical trials focused mainly on targeting components of the Aβ cascade have dramatically failed, some of them in Phase III. With a greater than 99.6% failure rate at a cost of several billion from governments, industry, and private funders, therapeutic strategies targeting amyloid and tau are now under scrutiny. Therefore, it is time to reevaluate alternatives to targeting Aβ and tau as effective therapeutic strategies for AD. The diagnosis of AD is currently based on medical examination of symptoms including tests to assess memory impairment, attention, language, and other thinking skills. This is complemented with brain scans, such as computed tomography, magnetic resonance imaging, or positron emission tomography with the help of imaging probes targeting Aβ or tau deposits. This approach has contributed to the tunnel vision focus on Aβ and tau as the main culprits of AD. However, events upstream of these proteopathies (age-related impaired neuronal bioenergetics, lysosome function, neurotrophic signaling, and neuroinflammation, among others) are almost surely where the development of alternative therapeutic interventions should be targeted. Here, we present the current status of therapeutic candidates targeting diverse mechanisms and strategies including Aβ and tau, proteins involved in Aβ production and trafficking (ApoE, α/β/γ-secretases), neuroinflammation, neurotransmitters, neuroprotective agents antimicrobials, and gene and stem cell therapy. There are currently around 33 compounds in Phase III, 78 in Phase II, and 32 more in Phase I trials. With the current world health crisis of increased dementia in a rapidly aging population, effective AD therapies are desperately needed.
Collapse
Affiliation(s)
- Germán Plascencia-Villa
- Department of Biology and Neurosciences Institute, The University of Texas at San Antonio (UTSA), 1 UTSA Circle, San Antonio, TX, United States
| | - George Perry
- Department of Biology and Neurosciences Institute, The University of Texas at San Antonio (UTSA), 1 UTSA Circle, San Antonio, TX, United States.
| |
Collapse
|
128
|
Cummings J, Lee G, Ritter A, Sabbagh M, Zhong K. Alzheimer's disease drug development pipeline: 2020. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2020; 6:e12050. [PMID: 32695874 PMCID: PMC7364858 DOI: 10.1002/trc2.12050] [Citation(s) in RCA: 231] [Impact Index Per Article: 46.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Alzheimer's disease (AD) is a growing public health concern affecting millions of patients worldwide and costing billions of dollars annually. We review the pipeline of drugs and biologics in clinical trials for the treatment of AD. We use the Common Alzheimer's and Related Dementias Research Ontology (CADRO) to classify treatment targets and mechanisms of action. We review our annual pipeline reports for the past 5 years to provide longitudinal insight into clinical trials and drug development for AD. METHODS We reviewed ClinicalTrials.gov as of February 27, 2020, and identified all trials of pharmacologic agents currently being developed for treatment of AD as represented on this widely used U.S. Food and Drug Administration registry. RESULTS There are 121 agents in clinical trials for the treatment of AD. Twenty-nine agents are in 36 Phase 3 trials, 65 agents are in 73 Phase 2 trials, and 27 agents are in 27 Phase 1 trials. Twelve agents in trials target cognitive enhancement and 12 are intended to treat neuropsychiatric and behavioral symptoms. There are 97 agents in disease modification trials. Compared to the 2019 pipeline, there is an increase in the number of disease-modifying agents targeting pathways other than amyloid or tau. DISCUSSION The 2020 pipeline has innovations in clinical trials and treatment targets that provide hope for greater success in AD drug development programs. Review of clinical trials over the past 5 years show that there is progressive emphasis on non-amyloid targets, including candidate treatments for inflammation, synapse and neuronal protection, vascular factors, neurogenesis, and epigenetic interventions. There has been a marked growth in repurposed agents in the pipeline.
Collapse
Affiliation(s)
- Jeffrey Cummings
- Chambers‐Grundy Center for Transformative Neuroscience, Department of Brain HealthSchool of Integrated Health SciencesUniversity of Nevada, Las Vegas (UNLV)Las VegasNevadaUSA
- Cleveland Clinic Lou Ruvo Center for Brain HealthLas VegasNevadaUSA
| | - Garam Lee
- Cleveland Clinic Lou Ruvo Center for Brain HealthLas VegasNevadaUSA
| | - Aaron Ritter
- Cleveland Clinic Lou Ruvo Center for Brain HealthLas VegasNevadaUSA
| | - Marwan Sabbagh
- Cleveland Clinic Lou Ruvo Center for Brain HealthLas VegasNevadaUSA
| | | |
Collapse
|
129
|
Heller L, Thinard R, Chevalier M, Arpag S, Jing Y, Greferath R, Heller R, Nicolau C. Secretion of proteins and antibody fragments from transiently transfected endothelial progenitor cells. J Cell Mol Med 2020; 24:8772-8778. [PMID: 32610368 PMCID: PMC7412409 DOI: 10.1111/jcmm.15511] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/28/2020] [Accepted: 05/30/2020] [Indexed: 01/01/2023] Open
Abstract
In neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, multiple sclerosis and amyotrophic lateral sclerosis, neuroinflammation can lead to blood‐brain barrier (BBB) breakdown. After intravenous or intra‐arterial injection into mice, endothelial progenitor cells (EPCs) home to the damaged BBB to promote neurovascular repair. Autologous EPCs transfected to express specific therapeutic proteins offer an innovative therapeutic option. Here, we demonstrate that EPC transfection by electroporation with plasmids encoding the reporter protein GFP or an anti‐β‐amyloid antibody fragment (Fab) leads to secretion of each protein. We also demonstrate the secreted anti‐β‐amyloid Fab protein functions in β‐amyloid aggregate solubilization.
Collapse
Affiliation(s)
- Loree Heller
- Department of Medical Engineering, University of South Florida, Tampa, Florida, USA
| | - Reynald Thinard
- ALSaTECH, Tufts Biolabs Launchpad, Boston, Massachusetts, USA
| | | | - Sezgi Arpag
- Center for Bioelectrics, Old Dominion University, Norfolk, Virginia, USA
| | - Yu Jing
- Center for Bioelectrics, Old Dominion University, Norfolk, Virginia, USA
| | - Ruth Greferath
- ALSaTECH, Tufts Biolabs Launchpad, Boston, Massachusetts, USA
| | - Richard Heller
- Department of Medical Engineering, University of South Florida, Tampa, Florida, USA
| | - Claude Nicolau
- ALSaTECH, Tufts Biolabs Launchpad, Boston, Massachusetts, USA.,Friedman School of Nutrition Science and Policy, Tufts University, Boston, Massachusetts, USA
| |
Collapse
|
130
|
Ferl GZ, Fuji RN, Atwal JK, Sun T, Ramanujan S, Quartino AL. Mechanistic Modeling of Soluble Aβ Dynamics and Target Engagement in the Brain by Anti-Aβ mAbs in Alzheimer’s Disease. Curr Alzheimer Res 2020; 17:393-406. [DOI: 10.2174/1567205017666200302122307] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 12/20/2019] [Accepted: 03/01/2020] [Indexed: 02/02/2023]
Abstract
Background:
Anti-amyloid-β (Aβ) monoclonal antibodies (mAbs) are currently in development
for treating Alzheimer’s disease.
Objectives:
To address the complexity of Aβ target engagement profiles, improve the understanding of
crenezumab Pharmacokinetics (PK) and Aβ Pharmacodynamics (PD) in the brain, and facilitate comparison
of anti-Aβ therapies with different binding characteristics.
Methods:
A mechanistic mathematical model was developed describing the distribution, elimination,
and binding kinetics of anti-Aβ mAbs and Aβ (monomeric and oligomeric forms of Aβ1-40 and
Aβ1-42) in the brain, Cerebrospinal Fluid (CSF), and plasma. Physiologically meaningful values were
assigned to the model parameters based on the previous data, with remaining parameters fitted to clinical
measurements of Aβ concentrations in CSF and plasma, and PK/PD data of patients undergoing anti-Aβ
therapy. Aβ target engagement profiles were simulated using a Monte Carlo approach to explore the impact
of biological uncertainty in the model parameters.
Results:
Model-based estimates of in vivo affinity of the antibody to monomeric Aβ were qualitatively
consistent with the previous data. Simulations of Aβ target engagement profiles captured observed mean
and variance of clinical PK/PD data.
Conclusion:
This model is useful for comparing target engagement profiles of different anti-Aβ therapies
and demonstrates that 60 mg/kg crenezumab yields a significant increase in Aβ engagement compared
with lower doses of solanezumab, supporting the selection of 60 mg/kg crenezumab for phase 3
studies. The model also provides evidence that the delivery of sufficient quantities of mAb to brain interstitial
fluid is a limiting step with respect to the magnitude of soluble Aβ oligomer neutralization.
Collapse
Affiliation(s)
- Gregory Z. Ferl
- Department of Translational & Systems Pharmacology, Genentech Research & Early Development, Genentech, Inc., South San Francisco, California, CA 94048, United States
| | - Reina N. Fuji
- Department of Translational & Systems Pharmacology, Genentech Research & Early Development, Genentech, Inc., South San Francisco, California, CA 94048, United States
| | - Jasvinder K. Atwal
- Department of Translational & Systems Pharmacology, Genentech Research & Early Development, Genentech, Inc., South San Francisco, California, CA 94048, United States
| | - Tony Sun
- Department of Translational & Systems Pharmacology, Genentech Research & Early Development, Genentech, Inc., South San Francisco, California, CA 94048, United States
| | - Saroja Ramanujan
- Department of Translational & Systems Pharmacology, Genentech Research & Early Development, Genentech, Inc., South San Francisco, California, CA 94048, United States
| | - Angelica L. Quartino
- Department of Translational & Systems Pharmacology, Genentech Research & Early Development, Genentech, Inc., South San Francisco, California, CA 94048, United States
| |
Collapse
|
131
|
Zampar S, Klafki HW, Sritharen K, Bayer TA, Wiltfang J, Rostagno A, Ghiso J, Miles LA, Wirths O. N-terminal heterogeneity of parenchymal and vascular amyloid-β deposits in Alzheimer's disease. Neuropathol Appl Neurobiol 2020; 46:673-685. [PMID: 32497293 PMCID: PMC8082844 DOI: 10.1111/nan.12637] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 05/24/2020] [Indexed: 02/06/2023]
Abstract
Aims: The deposition of amyloid-β (Aβ) peptides in the form of extracellular plaques in the brain represents one of the classical hallmarks of Alzheimer’s disease (AD). In addition to ‘full-length’ Aβ starting with aspartic acid (Asp-1), considerable amounts of various shorter, N-terminally truncated Aβ peptides have been identified by mass spectrometry in autopsy samples from individuals with AD. Methods: Selectivity of several antibodies detecting full-length, total or N-terminally truncated Aβ species has been characterized with capillary isoelectric focusing assays using a set of synthetic Aβ peptides comprising different N-termini. We further assessed the N-terminal heterogeneity of extracellular and vascular Aβ peptide deposits in the human brain by performing immunohistochemical analyses using sporadic AD cases with antibodies targeting different N-terminal residues, including the biosimilar antibodies Bapineuzumab and Crenezumab. Results: While antibodies selectively recognizing Aβ1–x showed a much weaker staining of extracellular plaques and tended to accentuate cerebrovascular amyloid deposits, antibodies detecting Aβ starting with phenylalanine at position 4 of the Aβ sequence showed abundant amyloid plaque immunoreactivity in the brain parenchyma. The biosimilar antibody Bapineuzumab recognized Aβ starting at Asp-1 and demonstrated abundant immunoreactivity in AD brains. Discussion: In contrast to other studied Aβ1–x-specific antibodies, Bapineuzumab displayed stronger immunoreactivity on fixed tissue samples than with sodium dodecyl sulfate-denatured samples on Western blots. This suggests conformational preferences of this antibody. The diverse composition of plaques and vascular deposits stresses the importance of understanding the roles of various Aβ variants during disease development and progression in order to generate appropriate target-developed therapies.
Collapse
Affiliation(s)
- S Zampar
- Department of Psychiatry and Psychotherapy, University Medical Center (UMG), Georg-August-University, Göttingen, Germany
| | - H W Klafki
- Department of Psychiatry and Psychotherapy, University Medical Center (UMG), Georg-August-University, Göttingen, Germany
| | - K Sritharen
- Department of Psychiatry and Psychotherapy, University Medical Center (UMG), Georg-August-University, Göttingen, Germany
| | - T A Bayer
- Department of Psychiatry and Psychotherapy, University Medical Center (UMG), Georg-August-University, Göttingen, Germany
| | - J Wiltfang
- Department of Psychiatry and Psychotherapy, University Medical Center (UMG), Georg-August-University, Göttingen, Germany.,Neurosciences and Signaling Group, Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro, Portugal.,German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - A Rostagno
- Departments of, Pathology, New York University School of Medicine, New York, NY, USA
| | - J Ghiso
- Departments of, Pathology, New York University School of Medicine, New York, NY, USA.,Department of, Psychiatry, New York University School of Medicine, New York, NY, USA
| | - L A Miles
- St. Vincent's Institute of Medical Research, Fitzroy, VIC, Australia
| | - O Wirths
- Department of Psychiatry and Psychotherapy, University Medical Center (UMG), Georg-August-University, Göttingen, Germany
| |
Collapse
|
132
|
Loeffler DA. AMBAR, an Encouraging Alzheimer's Trial That Raises Questions. Front Neurol 2020; 11:459. [PMID: 32547478 PMCID: PMC7272580 DOI: 10.3389/fneur.2020.00459] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 04/29/2020] [Indexed: 12/18/2022] Open
Abstract
Grifols' recent Alzheimer Management by Albumin Replacement (“AMBAR”) study investigated the effects of plasmapheresis with albumin replacement, plus intravenous immunoglobulin (IVIG) in some subjects, in patients with mild-to-moderate Alzheimer's disease (AD). AMBAR was a phase IIb trial in the United States and a phase III trial in Europe. There were three treatment groups (plasmapheresis with albumin replacement; plasmapheresis with low dose albumin and IVIG; plasmapheresis with high dose albumin and IVIG) and sham-treated controls. Disease progression in pooled treated patients was 66% less than control subjects based on ADAS-Cog scores (p = 0.06) and 52% less based on ADCS-ADL scores (p = 0.03). Moderate AD patients had 61% less progression, based on both ADAS-Cog and ADCS-ADL scores, than their sham-treated counterparts (p-values 0.05 and 0.002), and their CDR-Sb scores declined 53% less than their sham-treated counterparts. However, ADAS-Cog and ADCS-ADL scores were not significantly different between actively-treated and sham-treated mild AD patients, although CDR-Sb scores improved vs. baseline for treated mild AD patients. Patients administered both IVIG and albumin had less reduction in brain glucose metabolism than sham-treated patients. Questions raised by these findings include: what mechanism(s) contributed to slowing of disease progression? Is this approach as effective in mild AD as in moderate AD? Must IVIG be included in the protocol? Does age, sex, or ApoE genotype influence treatment response? Does the protocol increase the risk for amyloid-related imaging abnormalities? How long does disease progression remain slowed post-treatment? A further study should allow this approach to be optimized.
Collapse
Affiliation(s)
- David A Loeffler
- Beaumont Research Institute, Department of Neurology, Beaumont Health, Royal Oak, MI, United States
| |
Collapse
|
133
|
Bullain S, Doody R. What works and what does not work in Alzheimer's disease? From interventions on risk factors to anti-amyloid trials. J Neurochem 2020; 155:120-136. [PMID: 32277473 DOI: 10.1111/jnc.15023] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 02/21/2020] [Accepted: 03/23/2020] [Indexed: 12/18/2022]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder with no approved disease-modifying therapy (DMT). In this review, we summarize the various past approaches taken in an attempt to find treatments capable of altering the long-term course for individuals with AD, including: translating epidemiological observations into potential treatment options; seeking a single-treatment approach across the continuum of AD severity; utilizing biomarkers for assessing target engagement; using biomarkers as early surrogates of clinical efficacy; and enriching study populations to demonstrate adequate placebo decline during the limited duration of clinical trials. Although targeting the amyloid-β (Aβ) pathway has been central to the search for an effective DMT, to date, trials of anti-Aβ monoclonal antibodies have failed to consistently demonstrate significant clinical efficacy. Key learnings from these anti-Aβ trials, as well as the trials that came before them, have shifted the focus within clinical development programs to identifying target populations thought most likely to benefit from treatments (i.e., individuals at an earlier stage of disease). Other learnings include strategies to increase the likelihood of showing measurable improvements within the clinical trial setting by better predicting decline in placebo participants, as well as developing measures to quantify the needed treatment exposure (e.g., higher doses). Given the complexity associated with AD pathology and progression, treatments targeting non-amyloid AD pathologies in combination with anti-amyloid therapies may offer an alternative for the successful development of DMTs.
Collapse
Affiliation(s)
| | - Rachelle Doody
- F. Hoffmann-La Roche Ltd, Basel, Switzerland.,Genentech, Inc, South San Francisco, CA, USA
| |
Collapse
|
134
|
Abstract
PURPOSE OF REVIEW Antiamyloid therapy of Alzheimer's disease tackles the overproduction and clearance of the amyloid-beta peptide (Aβ). Immunotherapeutic compounds were tested in large-scale trials. We revisit the recent literature focusing on randomized-controlled trials (RCT) using monoclonal anti-Aβ antibodies. RECENT FINDINGS Forty-three articles on anti-Aβ passive immunotherapy for Alzheimer's disease were published between January 2016 and October 2019 regarding 17 RCTs: 13 phase III trials using the monoclonal antibodies bapineuzumab, solanezumab, gantenerumab, crenezumab, and aducanumab; three phase II with crenezumab and aducanumab; and one phase I trial with BAN2401. Studies resulted largely negative considering the effect of the treatment on primary and secondary outcome variables. The incidence of the most important adverse effect, amyloid-related imaging abnormalities (ARIAs) ranged between 0.2 and 22%, in treatment groups. Primary endpoints were not met in eight trials, and five trials were discontinued prior to completion. SUMMARY Passive immunotherapy RCTs failed to show clinically relevant effects in patients with clinically manifest or prodromal dementia. The high incidence of ARIAs indicates that the risk of adverse events may outweigh the benefits of these interventions. Ongoing studies must determine the benefit of such interventions in preclinical Alzheimer's disease, addressing the effect of antiamyloid immunotherapy in samples of asymptomatic carriers of autosomal-dominant mutations related to early-onset Alzheimer's disease.
Collapse
|
135
|
P32 Phase III studies of crenezumab in early (prodromal-to-mild) Alzheimers disease (CREAD/CREAD2): Biomarker results. Clin Neurophysiol 2020. [DOI: 10.1016/j.clinph.2019.12.038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
136
|
Oxford AE, Stewart ES, Rohn TT. Clinical Trials in Alzheimer's Disease: A Hurdle in the Path of Remedy. Int J Alzheimers Dis 2020; 2020:5380346. [PMID: 32308993 PMCID: PMC7152954 DOI: 10.1155/2020/5380346] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 03/18/2020] [Indexed: 11/17/2022] Open
Abstract
Human clinical trials seek to ameliorate the disease states and symptomatic progression of illnesses that, as of yet, are largely untreatable according to clinical standards. Ideally, clinical trials test "disease-modifying drugs," i.e., therapeutic agents that specifically modify pathological features or molecular bases of the disease and would presumably have a large impact on disease progression. In the case of Alzheimer's disease (AD), however, this approach appears to have stalled progress in the successful development of clinically useful therapies. For the last 25 years, clinical trials involving AD have centered on beta-amyloid (Aβ) and the Aβ hypothesis of AD progression and pathology. According to this hypothesis, the progression of AD begins following an accumulation of Aβ peptide, leading to eventual synapse loss and neuronal cell death: the true overriding pathological feature of AD. Clinical trials arising from the Aβ hypothesis target causal steps in the pathway in order to reduce the formation of Aβ or enhance clearance, and though agents have been successful in this aim, they remain unsuccessful in rescuing cognitive function or slowing cognitive decline. As such, further use of resources in the development of treatment options for AD that target Aβ, its precursors, or its products should be reevaluated. The purpose of this review was to give an overview of how human clinical trials are conducted in the USA and to assess the results of recent failed trials involving AD, the majority of which were based on the Aβ hypothesis. Based on these current findings, it is suggested that lowering Aβ is an unproven strategy, and it may be time to refocus on other targets for the treatment of this disease including pathological forms of tau.
Collapse
Affiliation(s)
- Alexandra E. Oxford
- Department of Biological Sciences, Boise State University, Science Building, Room 228, Boise, Idaho 83725, USA
| | - Erica S. Stewart
- Department of Biological Sciences, Boise State University, Science Building, Room 228, Boise, Idaho 83725, USA
| | - Troy T. Rohn
- Department of Biological Sciences, Boise State University, Science Building, Room 228, Boise, Idaho 83725, USA
| |
Collapse
|
137
|
Bhute S, Sarmah D, Datta A, Rane P, Shard A, Goswami A, Borah A, Kalia K, Dave KR, Bhattacharya P. Molecular Pathogenesis and Interventional Strategies for Alzheimer's Disease: Promises and Pitfalls. ACS Pharmacol Transl Sci 2020; 3:472-488. [PMID: 32566913 DOI: 10.1021/acsptsci.9b00104] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Indexed: 12/16/2022]
Abstract
Alzheimer's disease (AD) is a debilitating disorder characterized by age-related dementia, which has no effective treatment to date. β-Amyloid depositions and hyperphosphorylated tau proteins are the main pathological hallmarks, along with oxidative stress, N-methyl-d-aspartate (NMDA) receptor-mediated excitotoxicity, and low levels of acetylcholine. Current pharmacotherapy for AD only provides symptomatic relief and limited improvement in cognitive functions. Many molecules have been explored that show promising outcomes in AD therapy and can regulate cellular survival through different pathways. To have a vivid approach to strategize the treatment regimen, AD physiopathology should be better explained considering diverse etiological factors in conjunction with biochemical disturbances. This Review attempts to discuss different disease modification approaches and address the novel therapeutic targets of AD that might pave the way for new drug discovery using the well-defined targets for therapy of the disease.
Collapse
Affiliation(s)
- Shashikala Bhute
- Department of Pharmacology and Toxicology,National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar-382355, Gujarat, India
| | - Deepaneeta Sarmah
- Department of Pharmacology and Toxicology,National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar-382355, Gujarat, India
| | - Aishika Datta
- Department of Pharmacology and Toxicology,National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar-382355, Gujarat, India
| | - Pallavi Rane
- Department of Pharmacology and Toxicology,National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar-382355, Gujarat, India
| | - Amit Shard
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar-382355, Gujarat, India
| | - Avirag Goswami
- Department of Neurology, Albert Einstein Medical Center, Philadelphia, Pennsylvania 19141, United States
| | - Anupom Borah
- Department of Life Science and Bioinformatics, Assam University, Silchar, Assam-788011, India
| | - Kiran Kalia
- Department of Pharmacology and Toxicology,National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar-382355, Gujarat, India
| | - Kunjan R Dave
- Department of Neurology, University of Miami Miller School of Medicine, Miami, Florida 33136, United States
| | - Pallab Bhattacharya
- Department of Pharmacology and Toxicology,National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar-382355, Gujarat, India
| |
Collapse
|
138
|
Husna Ibrahim N, Yahaya MF, Mohamed W, Teoh SL, Hui CK, Kumar J. Pharmacotherapy of Alzheimer's Disease: Seeking Clarity in a Time of Uncertainty. Front Pharmacol 2020; 11:261. [PMID: 32265696 PMCID: PMC7105678 DOI: 10.3389/fphar.2020.00261] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 02/24/2020] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's disease (AD) is recognized as a major health hazard that mostly affects people older than 60 years. AD is one of the biggest medical, economic, and social concerns to patients and their caregivers. AD was ranked as the 5th leading cause of global deaths in 2016 by the World Health Organization (WHO). Many drugs targeting the production, aggregation, and clearance of Aβ plaques failed to give any conclusive clinical outcomes. This mainly stems from the fact that AD is not a disease attributed to a single-gene mutation. Two hallmarks of AD, Aβ plaques and neurofibrillary tangles (NFTs), can simultaneously induce other AD etiologies where every pathway is a loop of consequential events. Therefore, the focus of recent AD research has shifted to exploring other etiologies, such as neuroinflammation and central hyperexcitability. Neuroinflammation results from the hyperactivation of microglia and astrocytes that release pro-inflammatory cytokines due to the neurological insults caused by Aβ plaques and NFTs, eventually leading to synaptic dysfunction and neuronal death. This review will report the failures and side effects of many anti-Aβ drugs. In addition, emerging treatments targeting neuroinflammation in AD, such as nonsteroidal anti-inflammatory drugs (NSAIDs) and receptor-interacting serine/threonine protein kinase 1 (RIPK1), that restore calcium dyshomeostasis and microglia physiological function in clearing Aβ plaques, respectively, will be deliberately discussed. Other novel pharmacotherapy strategies in treating AD, including disease-modifying agents (DMTs), repurposing of medications used to treat non-AD illnesses, and multi target-directed ligands (MTDLs) are also reviewed. These approaches open new doors to the development of AD therapy, especially combination therapy that can cater for several targets simultaneously, hence effectively slowing or stopping AD.
Collapse
Affiliation(s)
- Nurul Husna Ibrahim
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Mohamad Fairuz Yahaya
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Wael Mohamed
- Basic Medical Science Department, Kulliyyah of Medicine, International Islamic University Malaysia, Kuantan, Malaysia
- Faculty of Medicine, Department of Clinical Pharmacology, Menoufia University, Shebin El-Kom, Egypt
| | - Seong Lin Teoh
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Chua Kien Hui
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
- Glycofood Sdn Bhd, Selangor, Malaysia
| | - Jaya Kumar
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| |
Collapse
|
139
|
Kwan P, Konno H, Chan KY, Baum L. Rationale for the development of an Alzheimer's disease vaccine. Hum Vaccin Immunother 2020; 16:645-653. [PMID: 31526227 PMCID: PMC7227628 DOI: 10.1080/21645515.2019.1665453] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 08/13/2019] [Accepted: 09/02/2019] [Indexed: 02/07/2023] Open
Abstract
Vaccination traditionally has targeted infectious agents and thus has not heretofore been used to prevent neurodegenerative illness. However, amyloid β (Aβ) or tau, which can act like infectious proteins, or prions, might induce Alzheimer's disease (AD). Furthermore, evidence suggests that traditional infectious agents, including certain viruses and bacteria, may trigger AD. It is therefore worth exploring whether removing such targets could prevent AD. Although failing to treat AD patients who already display cognitive impairment, Aβ monoclonal antibodies are being tested in pre-symptomatic, at-risk individuals to prevent dementia. These antibodies might become the first AD therapeutics. However, their high cost will keep them out of the arms of the vast majority of patients, who increasingly live in developing countries. Because vaccines produce antibodies internally at much lower cost, vaccination might be the most promising approach to reducing the global burden of dementia.
Collapse
Affiliation(s)
- Ping Kwan
- School of Pharmacy, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, P.R. China
- Sydney School of Veterinary Science, The University of Sydney, Sydney, Australia
| | - Haruki Konno
- School of Pharmacy, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, P.R. China
| | - Ka Yan Chan
- School of Pharmacy, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, P.R. China
| | - Larry Baum
- School of Pharmacy, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, P.R. China
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, P.R. China
- Center for Genomic Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, P.R. China
- Department of Psychiatry, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, P.R. China
| |
Collapse
|
140
|
|
141
|
Yoshida K, Moein A, Bittner T, Ostrowitzki S, Lin H, Honigberg L, Jin JY, Quartino A. Pharmacokinetics and pharmacodynamic effect of crenezumab on plasma and cerebrospinal fluid beta-amyloid in patients with mild-to-moderate Alzheimer's disease. ALZHEIMERS RESEARCH & THERAPY 2020; 12:16. [PMID: 31969177 PMCID: PMC6977279 DOI: 10.1186/s13195-020-0580-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 01/05/2020] [Indexed: 12/26/2022]
Abstract
Background Crenezumab, a fully humanized anti-beta-amyloid (Aβ) immunoglobulin G4 (IgG4) monoclonal antibody, binds to both monomeric and aggregated forms of Aβ. We assessed the pharmacokinetics (PK)/pharmacodynamics (PD) of crenezumab and its interaction with monomeric Aβ(1–40) and Aβ(1–42) peptides in serum/plasma and cerebrospinal fluid (CSF) samples from the phase II ABBY and BLAZE studies and the phase Ib GN29632 study. Methods In ABBY, BLAZE, and GN29632 studies, patients with mild-to-moderate AD were treated with either placebo or crenezumab (300 mg subcutaneously every 2 weeks [q2w], or 15 mg/kg, 30 mg/kg, 45 mg/kg, 60 mg/kg, or 120 mg/kg intravenously q4w). Serum/plasma PK/PD analyses included samples from 131 patients who received crenezumab in all three studies. CSF PK/PD analyses included samples from 76 patients who received crenezumab in ABBY or BLAZE. The impact of baseline patient factors on Aβ profiles was also evaluated. Results The serum concentration of crenezumab increased in a dose-proportional manner between 15 and 120 mg/kg q4w. Total monomeric plasma Aβ(1–40) and Aβ(1–42) levels significantly increased after crenezumab administration. The mean crenezumab CSF to serum ratio was ~ 0.3% and was similar across dosing cohorts/routes of administration. No clear correlation was observed between crenezumab concentration and Aβ(1–42) increase in CSF at week 69. The target-mediated drug disposition (TMDD) model described the observed plasma concentration–time profiles of crenezumab and Aβ well. Elimination clearance (CLel) and central volume of distribution (Vcent) of crenezumab were estimated at 0.159 L/day and 2.89 L, respectively, corresponding to a half-life of ~ 20 days. Subcutaneous bioavailability was estimated at 66.2%. Conclusions Crenezumab PK was dose proportional up to 120 mg/kg, with a half-life consistent with IgG monoclonal antibodies. Our findings provide evidence for peripheral target engagement in patients with mild-to-moderate AD. The study also showed that a model-based approach is useful in making inference on PK/PD relationship with unmeasured species such as free plasma Aβ levels. Trial registrations ABBY: ClinicalTrials.gov, NCT01343966. Registered April 28, 2011. BLAZE: ClinicalTrials.gov, NCT01397578. Registered July 19, 2011. GN29632: ClinicalTrials.gov, NCT02353598. Registered February 3, 2015.
Collapse
Affiliation(s)
- Kenta Yoshida
- Genentech, Inc., South San Francisco, CA, 94080, USA
| | - Anita Moein
- Genentech, Inc., South San Francisco, CA, 94080, USA
| | | | | | - Helen Lin
- Genentech, Inc., South San Francisco, CA, 94080, USA
| | - Lee Honigberg
- Genentech, Inc., South San Francisco, CA, 94080, USA
| | - Jin Y Jin
- Genentech, Inc., South San Francisco, CA, 94080, USA
| | | |
Collapse
|
142
|
Current Landscape of Late-Phase Clinical Trials for Alzheimer's Disease: Comparing Regional Variation Between Subjects in Japan and North America. Pharmaceut Med 2020; 33:511-518. [PMID: 31933241 DOI: 10.1007/s40290-019-00306-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
INTRODUCTION Over the last few decades, numerous late-phase multi-regional clinical trials have been conducted to develop a novel treatment for Alzheimer's disease (AD), with no effective results. OBJECTIVE To inform the design and interpretation of future clinical trials, the aim of this study was first to examine the current landscape of late-phase clinical trials to determine key study design characteristics, and then assess the regional variation between Japan and North America for the most utilized clinical efficacy endpoint in the most targeted stage of the disease. METHODS The study design and the mechanism of action of the interventional drugs tested in the late-phase clinical trials initiated in the last 5 years (2014-2018) were assessed based on the records in ClinicalTrials.gov database. The regional variation of the most utilized clinical efficacy endpoint in the most targeted population was assessed using data from two similarly designed observational studies conducted in Japan (Japanese Alzheimer's Disease Neuroimaging Initiative, J-ADNI) and North America (Alzheimer's Disease Neuroimaging Initiative, ADNI). For the most utilized clinical efficacy endpoint, the change from baseline (CFB) at Month 6, Year 1 and Year 2 was estimated using the growth curve model with a random intercept and slope, including gender as a fixed factor and age, apolipoprotein E ε4 genotype and years of education as covariates. RESULTS Of 48 Phase III trials that were initiated during the study period, 25 were disease-modifying treatment trials in which individuals with early AD were the most studied (56%) and Clinical Dementia Rating-Sum of Boxes (CDR-SB) was the most frequently utilized primary clinical efficacy endpoint (64%). The baseline characteristics of the early AD population between J-ADNI and ADNI were generally comparable, except for years of education. When comparing CDR-SB in early AD, J-ADNI had generally better baseline scores and the overall progression was similar (CFB at Year 2, ADNI 2.7 and J-ADNI 2.3, p = 0.190), despite slower progression in functional domains (CFB at Year 2, ADNI 1.4 and J-ADNI 1.0, p = 0.031). CONCLUSION Over the years, the target population has shifted toward early stage of the disease, wherein the clinical progression is slower and difficult to measure. Moreover, our results suggest that regional variation could have an impact on functional measurements due to cultural differences in pivotal clinical trials. Therefore, caution should be exercised according to the characteristics of the endpoint used.
Collapse
|
143
|
Crehan H, Liu B, Kleinschmidt M, Rahfeld JU, Le KX, Caldarone BJ, Frost JL, Hettmann T, Hutter-Paier B, O'Nuallain B, Park MA, DiCarli MF, Lues I, Schilling S, Lemere CA. Effector function of anti-pyroglutamate-3 Aβ antibodies affects cognitive benefit, glial activation and amyloid clearance in Alzheimer's-like mice. ALZHEIMERS RESEARCH & THERAPY 2020; 12:12. [PMID: 31931873 PMCID: PMC6958628 DOI: 10.1186/s13195-019-0579-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 12/30/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND Pyroglutamate-3 Aβ (pGlu-3 Aβ) is an N-terminally truncated and post-translationally modified Aβ species found in Alzheimer's disease (AD) brain. Its increased peptide aggregation propensity and toxicity make it an attractive emerging treatment strategy for AD. We address the question of how the effector function of an anti-pGlu-3 Aβ antibody influences the efficacy of immunotherapy in mouse models with AD-like pathology. METHODS We compared two different immunoglobulin (Ig) isotypes of the same murine anti-pGlu-3 Aβ mAb (07/1 IgG1 and 07/2a IgG2a) and a general N-terminal Aβ mAb (3A1 IgG1) for their ability to clear Aβ and protect cognition in a therapeutic passive immunotherapy study in aged, plaque-rich APPSWE/PS1ΔE9 transgenic (Tg) mice. We also compared the ability of these antibodies and a CDC-mutant form of 07/2a (07/2a-k), engineered to avoid complement activation, to clear Aβ in an ex vivo phagocytosis assay and following treatment in APPSLxhQC double Tg mice, and to activate microglia using longitudinal microPET imaging with TSPO-specific 18F-GE180 tracer following a single bolus antibody injection in young and old Tg mice. RESULTS We demonstrated significant cognitive improvement, better plaque clearance, and more plaque-associated microglia in the absence of microhemorrhage in aged APPSWE/PS1ΔE9 Tg mice treated with 07/2a, but not 07/1 or 3A1, compared to PBS in our first in vivo study. All mAbs cleared plaques in an ex vivo assay, although 07/2a promoted the highest phagocytic activity. Compared with 07/2a, 07/2a-k showed slightly reduced affinity to Fcγ receptors CD32 and CD64, although the two antibodies had similar binding affinities to pGlu-3 Aβ. Treatment of APPSLxhQC mice with 07/2a and 07/2a-k mAbs in our second in vivo study showed significant plaque-lowering with both mAbs. Longitudinal 18F-GE180 microPET imaging revealed different temporal patterns of microglial activation for 3A1, 07/1, and 07/2a mAbs and no difference between 07/2a-k and PBS-treated Tg mice. CONCLUSION Our results suggest that attenuation of behavioral deficits and clearance of amyloid is associated with strong effector function of the anti-pGlu-3 Aβ mAb in a therapeutic treatment paradigm. We present evidence that antibody engineering to reduce CDC-mediated complement binding facilitates phagocytosis of plaques without inducing neuroinflammation in vivo. Hence, the results provide implications for tailoring effector function of humanized antibodies for clinical development.
Collapse
Affiliation(s)
- Helen Crehan
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Hale BTM 9002S, 60 Fenwood Rd, Boston, MA, 02115, USA.,Harvard Medical School, Boston, MA, USA
| | - Bin Liu
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Hale BTM 9002S, 60 Fenwood Rd, Boston, MA, 02115, USA.,Harvard Medical School, Boston, MA, USA
| | - Martin Kleinschmidt
- Vivoryon Therapeutics AG, Halle (Saale), Germany.,Department Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, Halle (Saale), Germany
| | - Jens-Ulrich Rahfeld
- Vivoryon Therapeutics AG, Halle (Saale), Germany.,Department Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, Halle (Saale), Germany
| | - Kevin X Le
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Hale BTM 9002S, 60 Fenwood Rd, Boston, MA, 02115, USA
| | - Barbara J Caldarone
- Harvard Medical School, Boston, MA, USA.,Mouse Behavior Core, Harvard Medical School, Boston, MA, USA
| | - Jeffrey L Frost
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Hale BTM 9002S, 60 Fenwood Rd, Boston, MA, 02115, USA
| | | | | | - Brian O'Nuallain
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Hale BTM 9002S, 60 Fenwood Rd, Boston, MA, 02115, USA.,Harvard Medical School, Boston, MA, USA
| | - Mi-Ae Park
- Harvard Medical School, Boston, MA, USA.,Department of Radiology, Brigham Women's Hospital, Boston, MA, USA
| | - Marcelo F DiCarli
- Harvard Medical School, Boston, MA, USA.,Department of Radiology, Brigham Women's Hospital, Boston, MA, USA
| | - Inge Lues
- Vivoryon Therapeutics AG, Halle (Saale), Germany
| | - Stephan Schilling
- Vivoryon Therapeutics AG, Halle (Saale), Germany.,Department Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, Halle (Saale), Germany
| | - Cynthia A Lemere
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Hale BTM 9002S, 60 Fenwood Rd, Boston, MA, 02115, USA. .,Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
144
|
Pardridge WM. Blood-Brain Barrier and Delivery of Protein and Gene Therapeutics to Brain. Front Aging Neurosci 2020; 11:373. [PMID: 31998120 PMCID: PMC6966240 DOI: 10.3389/fnagi.2019.00373] [Citation(s) in RCA: 229] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 12/19/2019] [Indexed: 01/02/2023] Open
Abstract
Alzheimer’s disease (AD) and treatment of the brain in aging require the development of new biologic drugs, such as recombinant proteins or gene therapies. Biologics are large molecule therapeutics that do not cross the blood-brain barrier (BBB). BBB drug delivery is the limiting factor in the future development of new therapeutics for the brain. The delivery of recombinant protein or gene medicines to the brain is a binary process: either the brain drug developer re-engineers the biologic with BBB drug delivery technology, or goes forward with brain drug development in the absence of a BBB delivery platform. The presence of BBB delivery technology allows for engineering the therapeutic to enable entry into the brain across the BBB from blood. Brain drug development may still take place in the absence of BBB delivery technology, but with a reliance on approaches that have rarely led to FDA approval, e.g., CSF injection, stem cells, small molecules, and others. CSF injection of drug is the most widely practiced approach to brain delivery that bypasses the BBB. However, drug injection into the CSF results in limited drug penetration to the brain parenchyma, owing to the rapid export of CSF from the brain to blood. A CSF injection of a drug is equivalent to a slow intravenous (IV) infusion of the pharmaceutical. Given the profound effect the existence of the BBB has on brain drug development, future drug or gene development for the brain will be accelerated by future advances in BBB delivery technology in parallel with new drug discovery.
Collapse
Affiliation(s)
- William M Pardridge
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
145
|
Tolar M, Abushakra S, Sabbagh M. The path forward in Alzheimer's disease therapeutics: Reevaluating the amyloid cascade hypothesis. Alzheimers Dement 2020; 16:1553-1560. [PMID: 31706733 DOI: 10.1016/j.jalz.2019.09.075] [Citation(s) in RCA: 175] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Development of disease-modifying treatments for Alzheimer's disease (AD) has been challenging, with no drugs approved to date. The failures of several amyloid-targeted programs have led many to dismiss the amyloid beta (Aβ) hypothesis of AD. An antiamyloid antibody aducanumab recently showed modest but significant efficacy in a phase 3 trial, providing important validation of amyloid as a therapeutic target. However, the inconsistent results observed with aducanumab may be explained by the limited brain penetration and lack of selectivity for the soluble Aβ oligomers, which are implicated as upstream drivers of neurodegeneration by multiple studies. Development of agents that can effectively inhibit Aβ oligomer formation or block their toxicity is therefore warranted. An ideal drug would cross the blood-brain barrier efficiently and achieve sustained brain levels that can continuously prevent oligomer formation or inhibit their toxicity. A late-stage candidate with these attributes is ALZ-801, an oral drug with a favorable safety profile and high brain penetration that can robustly inhibit Aβ oligomer formation. An upcoming phase 3 trial with ALZ-801 in APOE4/4 homozygous patients with early AD will effectively test this amyloid oligomer hypothesis.
Collapse
Affiliation(s)
| | | | - Marwan Sabbagh
- Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV, USA
| |
Collapse
|
146
|
Greenberg SM, Bacskai BJ, Hernandez-Guillamon M, Pruzin J, Sperling R, van Veluw SJ. Cerebral amyloid angiopathy and Alzheimer disease - one peptide, two pathways. Nat Rev Neurol 2020; 16:30-42. [PMID: 31827267 PMCID: PMC7268202 DOI: 10.1038/s41582-019-0281-2] [Citation(s) in RCA: 517] [Impact Index Per Article: 103.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2019] [Indexed: 12/22/2022]
Abstract
The shared role of amyloid-β (Aβ) deposition in cerebral amyloid angiopathy (CAA) and Alzheimer disease (AD) is arguably the clearest instance of crosstalk between neurodegenerative and cerebrovascular processes. The pathogenic pathways of CAA and AD intersect at the levels of Aβ generation, its circulation within the interstitial fluid and perivascular drainage pathways and its brain clearance, but diverge in their mechanisms of brain injury and disease presentation. Here, we review the evidence for and the pathogenic implications of interactions between CAA and AD. Both pathologies seem to be driven by impaired Aβ clearance, creating conditions for a self-reinforcing cycle of increased vascular Aβ, reduced perivascular clearance and further CAA and AD progression. Despite the close relationship between vascular and plaque Aβ deposition, several factors favour one or the other, such as the carboxy-terminal site of the peptide and specific co-deposited proteins. Amyloid-related imaging abnormalities that have been seen in trials of anti-Aβ immunotherapy are another probable intersection between CAA and AD, representing overload of perivascular clearance pathways and the effects of removing Aβ from CAA-positive vessels. The intersections between CAA and AD point to a crucial role for improving vascular function in the treatment of both diseases and indicate the next steps necessary for identifying therapies.
Collapse
Affiliation(s)
- Steven M Greenberg
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Brian J Bacskai
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Mar Hernandez-Guillamon
- Neurovascular Research Laboratory, Institut de Recerca, Hospital Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Jeremy Pruzin
- Center for Alzheimer Research and Treatment, Brigham & Women's Hospital, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Reisa Sperling
- Center for Alzheimer Research and Treatment, Brigham & Women's Hospital, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Susanne J van Veluw
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
147
|
Guthrie H, Honig LS, Lin H, Sink KM, Blondeau K, Quartino A, Dolton M, Carrasco-Triguero M, Lian Q, Bittner T, Clayton D, Smith J, Ostrowitzki S. Safety, Tolerability, and Pharmacokinetics of Crenezumab in Patients with Mild-to-Moderate Alzheimer's Disease Treated with Escalating Doses for up to 133 Weeks. J Alzheimers Dis 2020; 76:967-979. [PMID: 32568196 PMCID: PMC7505005 DOI: 10.3233/jad-200134] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/09/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND Crenezumab is a fully humanized, monoclonal anti-amyloid-β immunoglobulin G4 antibody. OBJECTIVE This Phase Ib study (NCT02353598) evaluated the safety, tolerability, and pharmacokinetics of crenezumabat doses of ≤120 mg/kg administered intravenously every 4 weeks (q4w). Immunogenicity and exploratory biomarkers were also evaluated. METHODS In this multicenter, double-blind study, participants (aged 50-90 years) with mild-to-moderate Alzheimer's disease (AD) and amyloid-positive positron emission tomography (PET) scan were randomized to receive crenezumab 30 or 45 mg/kg (Cohort 1, n = 21), 60 mg/kg (Cohort 2, n = 21), or 120 mg/kg (Cohort 3, n = 19) or corresponding placebo (n = 14) intravenously q4w for 13 weeks. Seventy-one participants were subsequently enrolled in an optional open-label extension (OLE) and received crenezumab at the originally assigned dose level, except for Cohort 3 (crenezumab 60 mg/kg during OLE). Participants received regular brain MRIs to assess amyloid-related imaging abnormalities (ARIA). Results up to Week 133 are reported. RESULTS Approximately 94% of participants experienced ≥1 adverse event (AE). Most AEs were mild or moderate; 15.5% experienced a Grade ≥3 AE. No ARIA-edema/effusion (ARIA-E) events were observed. New ARIA-micro hemorrhages and hemosiderosis (ARIA-H) were reported in 4.9% (double-blind treatment period) and 9.9% (combined double-blind treatment and OLE periods) of participants. Steady-state trough concentrations of crenezumab were dose-proportional and maintained for each dose level. CONCLUSION Crenezumab doses of ≤120 mg/kg intravenously q4w were well tolerated. The observed safety profile for ≤133 weeks of treatment in a mild-to-moderate AD population was similar to that seen in previous trials.
Collapse
Affiliation(s)
| | | | - Helen Lin
- Genentech, Inc., South San Francisco, CA, USA
| | | | | | | | | | | | - Qinshu Lian
- Genentech, Inc., South San Francisco, CA, USA
| | | | | | | | | |
Collapse
|
148
|
Kopec BM, Zhao L, Rosa-Molinar E, Siahaan TJ. Non-invasive Brain Delivery and Efficacy of BDNF in APP/PS1 Transgenic Mice as a Model of Alzheimer's Disease. ACTA ACUST UNITED AC 2020; 8. [PMID: 32551362 PMCID: PMC7302105 DOI: 10.18103/mra.v8i2.2043] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Neurotrophic factors such as brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) have been demonstrated for their potential as a neuroregenerative treatment of Alzheimer's disease (AD). Unfortunately, most proteins cannot be effectively delivered into the brain from the blood stream due to the presence of the blood-brain barrier (BBB). In this study, we delivered BDNF using ADTC5 as BBB modulator (BBBM) into the brains of transgenic APP/PS1 mice, a mouse model for AD. As controls, two groups of APP/PS1 mice were treated with BDNF alone and vehicle, respectively. All three groups were subjected to behavioral/cognitive assessments in Y-maze and novel object recognition (NOR) tests as well as evaluation of the brain markers activated by BDNF. The results showed that BDNF + ADTC5 group performed significantly better in both the Y-maze and NOR assessments compared to mice that received BDNF alone or vehicle. In addition, significant upregulations of NG2 receptors as well as EGR1 and ARC mRNA transcripts were observed in the brain cortex of mice treated with BDNF + ADTC5, further indicating the efficacy of delivered BDNF in the brain. There were high plaque loads in all groups of mice, suggesting no influence of BDNF on the plaque formation. In summary, ADTC5 can deliver BDNF into the brains of APP/PS1 mice and the activity of BDNF in improving cognitive function was likely due to improvement in synaptic plasticity via NG2 glia cells and not by reducing the plaque load.
Collapse
Affiliation(s)
- Brian M Kopec
- Department of Pharmaceutical Chemistry, The University of Kansas, 2095 Constant Avenue, Lawrence, Kansas 66047 USA
| | - Liqin Zhao
- Department of Pharmacology & Toxicology, The University of Kansas, 2095 Constant Avenue, Lawrence, Kansas 66047 USA
| | - Eduardo Rosa-Molinar
- Department of Pharmacology & Toxicology, The University of Kansas, 2095 Constant Avenue, Lawrence, Kansas 66047 USA
| | - Teruna J Siahaan
- Department of Pharmaceutical Chemistry, The University of Kansas, 2095 Constant Avenue, Lawrence, Kansas 66047 USA
| |
Collapse
|
149
|
Klein G, Delmar P, Voyle N, Rehal S, Hofmann C, Abi-Saab D, Andjelkovic M, Ristic S, Wang G, Bateman R, Kerchner GA, Baudler M, Fontoura P, Doody R. Gantenerumab reduces amyloid-β plaques in patients with prodromal to moderate Alzheimer's disease: a PET substudy interim analysis. ALZHEIMERS RESEARCH & THERAPY 2019; 11:101. [PMID: 31831056 PMCID: PMC6909550 DOI: 10.1186/s13195-019-0559-z] [Citation(s) in RCA: 146] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 11/19/2019] [Indexed: 02/02/2023]
Abstract
BACKGROUND We previously investigated low doses (105 or 225 mg) of gantenerumab, a fully human monoclonal antibody that binds and removes aggregated amyloid-β by Fc receptor-mediated phagocytosis, in the SCarlet RoAD (SR) and Marguerite RoAD (MR) phase 3 trials. Several lines of evidence suggested that higher doses may be necessary to achieve clinical efficacy. We therefore designed a positron emission tomography (PET) substudy to evaluate the effect of gantenerumab uptitrated to 1200 mg every 4 weeks on amyloid-β plaques as measured using florbetapir PET in patients with prodromal to moderate Alzheimer's disease (AD). METHODS A subset of patients enrolled in the SR and MR studies who subsequently entered the open-label extensions (OLEs) were included in this substudy. Patients were aged 50 to 90 years with a clinical diagnosis of probable prodromal to moderate AD and were included based on a visual read of the original screening scan in the double-blind phase. Patients were assigned to 1 of 5 titration schedules (ranging from 2 to 10 months) with a target gantenerumab dose of 1200 mg every 4 weeks. The main endpoint of this substudy was change in amyloid-β plaque burden from OLE baseline to week 52 and week 104, assessed using florbetapir PET. Florbetapir global cortical signal was calculated using a prespecified standard uptake value ratio method converted to the Centiloid scale. RESULTS Sixty-seven of the 89 patients initially enrolled had ≥ 1 follow-up scan by August 15, 2018. Mean amyloid levels were reduced by 39 Centiloids by the first year and 59 Centiloids by year 2, a 3.5-times greater reduction than was seen after 2 years at 225 mg in SR. At years 1 and 2, 37% and 51% of patients, respectively, had amyloid-β plaque levels below the amyloid-β positivity threshold. CONCLUSION Results from this exploratory interim analysis of the PET substudy suggest that gantenerumab doses up to 1200 mg resulted in robust amyloid-β plaque removal at 2 years. PET amyloid levels were consistent with sparse-to-no neuritic amyloid-β plaques in 51% of patients after 2 years of therapy. Amyloid reductions were similar to those observed in other placebo-controlled studies that have suggested potential clinical benefit. TRIAL REGISTRATION ClinicalTrials.gov, NCT01224106 (SCarlet RoAD) and NCT02051608 (Marguerite RoAD).
Collapse
Affiliation(s)
- Gregory Klein
- Roche Pharma Research and Early Development, Basel, Switzerland.
| | - Paul Delmar
- Roche/Genentech Product Development, Neuroscience, Basel, Switzerland
| | | | | | - Carsten Hofmann
- Roche Pharma Research and Early Development, Basel, Switzerland
| | - Danielle Abi-Saab
- Roche/Genentech Product Development, Neuroscience, Basel, Switzerland
| | | | - Smiljana Ristic
- Roche/Genentech Product Development, Neuroscience, Basel, Switzerland
| | - Guoqiao Wang
- Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Randall Bateman
- Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | | | - Monika Baudler
- Roche/Genentech Product Development, Neuroscience, Basel, Switzerland
| | - Paulo Fontoura
- Roche/Genentech Product Development, Neuroscience, Basel, Switzerland
| | - Rachelle Doody
- Roche/Genentech Product Development, Neuroscience, Basel, Switzerland.,Genentech, Inc., South San Francisco, CA, USA
| |
Collapse
|
150
|
Meilandt WJ, Maloney JA, Imperio J, Lalehzadeh G, Earr T, Crowell S, Bainbridge TW, Lu Y, Ernst JA, Fuji RN, Atwal JK. Characterization of the selective in vitro and in vivo binding properties of crenezumab to oligomeric Aβ. ALZHEIMERS RESEARCH & THERAPY 2019; 11:97. [PMID: 31787113 PMCID: PMC6886224 DOI: 10.1186/s13195-019-0553-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 11/06/2019] [Indexed: 02/01/2023]
Abstract
Background Accumulation of amyloid β (Aβ) in the brain is proposed as a cause of Alzheimer’s disease (AD), with Aβ oligomers hypothesized to be the primary mediators of neurotoxicity. Crenezumab is a humanized immunoglobulin G4 monoclonal antibody that has been shown to bind to synthetic monomeric and aggregated Aβ in vitro; however, less is known about the binding characteristic in vivo. In this study, we evaluated the binding patterns of crenezumab to synthetic and native forms of Aβ both in vitro and in vivo. Methods Crenezumab was used to immunoprecipitate Aβ from synthetic Aβ preparations or brain homogenates from a PS2APP mouse model of AD to determine the forms of Aβ that crenezumab interacts with. Following systemic dosing in PS2APP or nontransgenic control mice, immunohistochemistry was used to localize crenezumab and assess its relative distribution in the brain, compared with amyloid plaques and markers of neuritic dystrophies (BACE1; LAMP1). Pharmacodynamic correlations were performed to investigate the relationship between peripheral and central target engagement. Results In vitro, crenezumab immunoprecipitated Aβ oligomers from both synthetic Aβ preparations and endogenous brain homogenates from PS2APP mice. In vivo studies in the PS2APP mouse showed that crenezumab localizes to regions surrounding the periphery of amyloid plaques in addition to the hippocampal mossy fibers. These regions around the plaques are reported to be enriched in oligomeric Aβ, actively incorporate soluble Aβ, and contribute to Aβ-induced neurotoxicity and axonal dystrophy. In addition, crenezumab did not appear to bind to the dense core region of plaques or vascular amyloid. Conclusions Crenezumab binds to multiple forms of amyloid β (Aβ), particularly oligomeric forms, and localizes to brain areas rich in Aβ oligomers, including the halo around plaques and hippocampal mossy fibers, but not to vascular Aβ. These insights highlight a unique mechanism of action for crenezumab of engaging Aβ oligomers.
Collapse
Affiliation(s)
- William J Meilandt
- Department of Neuroscience, Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Janice A Maloney
- Department of Neuroscience, Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Jose Imperio
- Department of Neuroscience, Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Guita Lalehzadeh
- Department of Neuroscience, Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Tim Earr
- Department of Neuroscience, Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Susan Crowell
- Department of Preclinical and Translational Pharmacokinetics/Pharmacodynamics, Genentech, Inc., 1 DNA Way, South San Francisco, CA, USA
| | - Travis W Bainbridge
- Department of Protein Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, CA, USA
| | - Yanmei Lu
- Department of Biochemical and Cellular Pharmacology, Genentech, Inc., 1 DNA Way, South San Francisco, CA, USA
| | - James A Ernst
- Department of Protein Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, CA, USA
| | - Reina N Fuji
- Department of Safety Assessment Pathology, Genentech, Inc., 1 DNA Way, South San Francisco, CA, USA
| | - Jasvinder K Atwal
- Department of Neuroscience, Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA.
| |
Collapse
|