101
|
Kobayashi T, Kageyama R. Expression Dynamics and Functions of Hes Factors in Development and Diseases. Curr Top Dev Biol 2014; 110:263-83. [DOI: 10.1016/b978-0-12-405943-6.00007-5] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
102
|
Abstract
The Notch signaling effectors Hes1 and Hes7 exhibit oscillatory expression with a period of about 2-3 h during embryogenesis. Hes1 oscillation is important for proliferation and differentiation of neural stem cells, whereas Hes7 oscillation regulates periodic formation of somites. Continuous expression of Hes1 and Hes7 inhibits these developmental processes. Thus, expression dynamics are very important for gene functions, but it is difficult to distinguish between oscillatory and persistent expression by conventional methods such as in situ hybridization and immunostaining. Here, we describe time-lapse imaging methods using destabilized luciferase reporters and a highly sensitive cooled charge-coupled device camera, which can monitor dynamic gene expression. Furthermore, the expression of two genes can be examined simultaneously by a dual reporter system using two-color luciferase reporters. Time-lapse imaging analyses reveal how dynamically gene expression changes in many biological events.
Collapse
|
103
|
Imayoshi I, Isomura A, Harima Y, Kawaguchi K, Kori H, Miyachi H, Fujiwara T, Ishidate F, Kageyama R. Oscillatory control of factors determining multipotency and fate in mouse neural progenitors. Science 2013; 342:1203-8. [PMID: 24179156 DOI: 10.1126/science.1242366] [Citation(s) in RCA: 388] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The basic helix-loop-helix transcription factors Ascl1/Mash1, Hes1, and Olig2 regulate fate choice of neurons, astrocytes, and oligodendrocytes, respectively. These same factors are coexpressed by neural progenitor cells. Here, we found by time-lapse imaging that these factors are expressed in an oscillatory manner by mouse neural progenitor cells. In each differentiation lineage, one of the factors becomes dominant. We used optogenetics to control expression of Ascl1 and found that, although sustained Ascl1 expression promotes neuronal fate determination, oscillatory Ascl1 expression maintains proliferating neural progenitor cells. Thus, the multipotent state correlates with oscillatory expression of several fate-determination factors, whereas the differentiated state correlates with sustained expression of a single factor.
Collapse
Affiliation(s)
- Itaru Imayoshi
- Institute for Virus Research, Kyoto University, Shogoin-Kawahara, Sakyo-ku, Kyoto 606-8507, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
104
|
El Yakoubi W, Borday C, Hamdache J, Parain K, Tran HT, Vleminckx K, Perron M, Locker M. Hes4 controls proliferative properties of neural stem cells during retinal ontogenesis. Stem Cells 2013; 30:2784-95. [PMID: 22969013 PMCID: PMC3549485 DOI: 10.1002/stem.1231] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Accepted: 08/08/2012] [Indexed: 11/22/2022]
Abstract
The retina of fish and amphibian contains genuine neural stem cells located at the most peripheral edge of the ciliary marginal zone (CMZ). However, their cell-of-origin as well as the mechanisms that sustain their maintenance during development are presently unknown. We identified Hes4 (previously named XHairy2), a gene encoding a bHLH-O transcriptional repressor, as a stem cell-specific marker of the Xenopus CMZ that is positively regulated by the canonical Wnt pathway and negatively by Hedgehog signaling. We found that during retinogenesis, Hes4 labels a small territory, located first at the pigmented epithelium (RPE)/neural retina (NR) border and later in the retinal margin, that likely gives rise to adult retinal stem cells. We next addressed whether Hes4 might impart this cell subpopulation with retinal stem cell features: inhibited RPE or NR differentiation programs, continuous proliferation, and slow cell cycle speed. We could indeed show that Hes4 overexpression cell autonomously prevents retinal precursor cells from commitment toward retinal fates and maintains them in a proliferative state. Besides, our data highlight for the first time that Hes4 may also constitute a crucial regulator of cell cycle kinetics. Hes4 gain of function indeed significantly slows down cell division, mainly through the lengthening of G1 phase. As a whole, we propose that Hes4 maintains particular stemness features in a cellular cohort dedicated to constitute the adult retinal stem cell pool, by keeping it in an undifferentiated and slowly proliferative state along embryonic retinogenesis. Stem Cells 2012;30:2784–2795
Collapse
|
105
|
Annenkov A. Receptor tyrosine kinase (RTK) signalling in the control of neural stem and progenitor cell (NSPC) development. Mol Neurobiol 2013; 49:440-71. [PMID: 23982746 DOI: 10.1007/s12035-013-8532-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Accepted: 08/09/2013] [Indexed: 01/04/2023]
Abstract
Important developmental responses are elicited in neural stem and progenitor cells (NSPC) by activation of the receptor tyrosine kinases (RTK), including the fibroblast growth factor receptors, epidermal growth factor receptor, platelet-derived growth factor receptors and insulin-like growth factor receptor (IGF1R). Signalling through these RTK is necessary and sufficient for driving a number of developmental processes in the central nervous system. Within each of the four RTK families discussed here, receptors are activated by sets of ligands that do not cross-activate receptors of the other three families, and therefore, their activation can be independently regulated by ligand availability. These RTK pathways converge on a conserved core of signalling molecules, but differences between the receptors in utilisation of signalling molecules and molecular adaptors for intracellular signal propagation become increasingly apparent. Intracellular inhibitors of RTK signalling are widely involved in the regulation of developmental signalling in NSPC and often determine developmental outcomes of RTK activation. In addition, cellular responses of NSPC to the activation of a given RTK may be significantly modulated by signal strength. Cellular propensity to respond also plays a role in developmental outcomes of RTK signalling. In combination, these mechanisms regulate the balance between NSPC maintenance and differentiation during development and in adulthood. Attribution of particular developmental responses of NSPC to specific pathways of RTK signalling becomes increasingly elucidated. Co-activation of several RTK in developing NSPC is common, and analysis of co-operation between their signalling pathways may advance knowledge of RTK role in NSPC development.
Collapse
Affiliation(s)
- Alexander Annenkov
- Bone and Joint Research Unit, William Harvey Research Institute, Bart's and The London School of Medicine, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK,
| |
Collapse
|
106
|
Martynoga B, Mateo JL, Zhou B, Andersen J, Achimastou A, Urbán N, van den Berg D, Georgopoulou D, Hadjur S, Wittbrodt J, Ettwiller L, Piper M, Gronostajski RM, Guillemot F. Epigenomic enhancer annotation reveals a key role for NFIX in neural stem cell quiescence. Genes Dev 2013; 27:1769-86. [PMID: 23964093 PMCID: PMC3759694 DOI: 10.1101/gad.216804.113] [Citation(s) in RCA: 159] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 07/24/2013] [Indexed: 01/03/2023]
Abstract
The majority of neural stem cells (NSCs) in the adult brain are quiescent, and this fraction increases with aging. Although signaling pathways that promote NSC quiescence have been identified, the transcriptional mechanisms involved are mostly unknown, largely due to lack of a cell culture model. In this study, we first demonstrate that NSC cultures (NS cells) exposed to BMP4 acquire cellular and transcriptional characteristics of quiescent cells. We then use epigenomic profiling to identify enhancers associated with the quiescent NS cell state. Motif enrichment analysis of these enhancers predicts a major role for the nuclear factor one (NFI) family in the gene regulatory network controlling NS cell quiescence. Interestingly, we found that the family member NFIX is robustly induced when NS cells enter quiescence. Using genome-wide location analysis and overexpression and silencing experiments, we demonstrate that NFIX has a major role in the induction of quiescence in cultured NSCs. Transcript profiling of NS cells overexpressing or silenced for Nfix and the phenotypic analysis of the hippocampus of Nfix mutant mice suggest that NFIX controls the quiescent state by regulating the interactions of NSCs with their microenvironment.
Collapse
Affiliation(s)
- Ben Martynoga
- Division of Molecular Neurobiology, MRC-National Institute for Medical Research, London NW7 1AA, United Kingdom
| | - Juan L. Mateo
- Centre for Organismal Studies (COS) Heidelberg, University of Heidelberg, 69120 Heidelberg, Germany
| | - Bo Zhou
- Department of Biochemistry, Developmental Genomics Group, Center of Excellence in Bioinformatics and Life Sciences, University at Buffalo, Buffalo, New York, 14203, USA
| | - Jimena Andersen
- Division of Molecular Neurobiology, MRC-National Institute for Medical Research, London NW7 1AA, United Kingdom
| | - Angeliki Achimastou
- Division of Molecular Neurobiology, MRC-National Institute for Medical Research, London NW7 1AA, United Kingdom
| | - Noelia Urbán
- Division of Molecular Neurobiology, MRC-National Institute for Medical Research, London NW7 1AA, United Kingdom
| | - Debbie van den Berg
- Division of Molecular Neurobiology, MRC-National Institute for Medical Research, London NW7 1AA, United Kingdom
| | - Dimitra Georgopoulou
- Research Department of Cancer Biology, University College London, Cancer Institute, London WC1E 6BT, United Kingdom
| | - Suzana Hadjur
- Research Department of Cancer Biology, University College London, Cancer Institute, London WC1E 6BT, United Kingdom
| | - Joachim Wittbrodt
- Centre for Organismal Studies (COS) Heidelberg, University of Heidelberg, 69120 Heidelberg, Germany
| | - Laurence Ettwiller
- Centre for Organismal Studies (COS) Heidelberg, University of Heidelberg, 69120 Heidelberg, Germany
| | - Michael Piper
- The School of Biomedical Sciences, The Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | - Richard M. Gronostajski
- Department of Biochemistry, Developmental Genomics Group, Center of Excellence in Bioinformatics and Life Sciences, University at Buffalo, Buffalo, New York, 14203, USA
| | - François Guillemot
- Division of Molecular Neurobiology, MRC-National Institute for Medical Research, London NW7 1AA, United Kingdom
| |
Collapse
|
107
|
Nomura T, Gotoh H, Ono K. Changes in the regulation of cortical neurogenesis contribute to encephalization during amniote brain evolution. Nat Commun 2013; 4:2206. [DOI: 10.1038/ncomms3206] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Accepted: 06/27/2013] [Indexed: 12/30/2022] Open
|
108
|
Midbrain dopaminergic neurons: a review of the molecular circuitry that regulates their development. Dev Biol 2013; 379:123-38. [PMID: 23603197 DOI: 10.1016/j.ydbio.2013.04.014] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Revised: 03/27/2013] [Accepted: 04/12/2013] [Indexed: 12/21/2022]
Abstract
Dopaminergic (DA) neurons of the ventral midbrain (VM) play vital roles in the regulation of voluntary movement, emotion and reward. They are divided into the A8, A9 and A10 subgroups. The development of the A9 group of DA neurons is an area of intense investigation to aid the generation of these neurons from stem cell sources for cell transplantation approaches to Parkinson's disease (PD). This review discusses the molecular processes that are involved in the identity, specification, maturation, target innervation and survival of VM DA neurons during development. The complex molecular interactions of a number of genetic pathways are outlined, as well as recent advances in the mechanisms that regulate subset identity within the VM DA neuronal pool. A thorough understanding of the cellular and molecular mechanisms involved in the development of VM DA neurons will greatly facilitate the use of cell replacement therapy for the treatment of PD.
Collapse
|
109
|
Cell cycle and lineage progression of neural progenitors in the ventricular-subventricular zones of adult mice. Proc Natl Acad Sci U S A 2013; 110:E1045-54. [PMID: 23431204 DOI: 10.1073/pnas.1219563110] [Citation(s) in RCA: 189] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Proliferating neural stem cells and intermediate progenitors persist in the ventricular-subventricular zone (V-SVZ) of the adult mammalian brain. This extensive germinal layer in the walls of the lateral ventricles is the site of birth of different types of interneurons destined for the olfactory bulb. The cell cycle dynamics of stem cells (B1 cells), intermediate progenitors (C cells), and neuroblasts (A cells) in the V-SVZ and the number of times these cells divide remain unknown. Using whole mounts of the walls of the lateral ventricles of adult mice and three cell cycle analysis methods using thymidine analogs, we determined the proliferation dynamics of B1, C, and A cells in vivo. Achaete-scute complex homolog (Ascl)1(+) C cells were heterogeneous with a cell cycle length (T(C)) of 18-25 h and a long S phase length (T(S)) of 14-17 h. After C cells, Doublecortin(+) A cells were the second-most common dividing cell type in the V-SVZ and had a T(C) of 18 h and T(S) of 9 h. Human glial fibrillary acidic protein (hGFAP)::GFP(+) B1 cells had a surprisingly short Tc of 17-18 h and a T(S) of 4 h. Progenitor population analysis suggests that following the initial division of B1 cells, C cells divide three times and A cells once, possibly twice. These data provide essential information on the dynamics of adult progenitor cell proliferation in the V-SVZ and how large numbers of new neurons continue to be produced in the adult mammalian brain.
Collapse
|
110
|
Xu Q, Wilkinson DG. Boundary formation in the development of the vertebrate hindbrain. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2013; 2:735-45. [PMID: 24014457 DOI: 10.1002/wdev.106] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The formation of a sharp interface of adjacent subdivisions is important for establishing the precision of tissue organization, and at specific borders it serves to organize key signaling centers. We discuss studies of vertebrate hindbrain development that have given important insights into mechanisms that underlie the formation and maintenance of sharp borders. The hindbrain is subdivided into a series of segments with distinct anteroposterior identity that underlies the specification of distinct neuronal cell types. During early stages of segmentation, cell identity switching contributes to the refinement of borders and enables homogenous territories to be maintained despite intermingling of cells between segments. At later stages, there is a specific restriction to cell intermingling between segments that is mediated by Eph receptor and ephrin signaling. Eph-ephrin signaling can restrict cell intermingling and sharpen borders through multiple mechanisms, including the regulation of cell adhesion and contact inhibition of cell migration.
Collapse
Affiliation(s)
- Qiling Xu
- Division of Developmental Neurobiology, MRC National Institute for Medical Research, London, UK
| | | |
Collapse
|
111
|
Wang Y, Tu W, Lou Y, Xie A, Lai X, Guo F, Deng Z. Mesenchymal stem cells regulate the proliferation and differentiation of neural stem cells through Notch signaling. Cell Biol Int 2013; 33:1173-9. [DOI: 10.1016/j.cellbi.2009.08.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2009] [Revised: 05/30/2009] [Accepted: 08/17/2009] [Indexed: 01/22/2023]
|
112
|
Beets K, Huylebroeck D, Moya IM, Umans L, Zwijsen A. Robustness in angiogenesis: notch and BMP shaping waves. Trends Genet 2012; 29:140-9. [PMID: 23279848 DOI: 10.1016/j.tig.2012.11.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Revised: 10/31/2012] [Accepted: 11/16/2012] [Indexed: 12/20/2022]
Abstract
Vascular patterning involves sprouting of blood vessels, which is governed by orchestrated communication between cells in the surrounding tissue and endothelial cells (ECs) lining the blood vessels. Single ECs are selected for sprouting by hypoxia-induced stimuli and become the 'tip' or leader cell that guides new sprouts. The 'stalk' or trailing ECs proliferate for tube extension and lumenize the nascent vessel. Stalk and tip cells can dynamically switch their identities during this process in a Notch-dependent manner. Here, we review recent studies showing that bone morphogenetic protein (BMP) signaling coregulates Notch target genes in ECs. In particular, we focus on how Delta-like ligand 4 (DLL4)-Notch and BMP effector interplay may drive nonsynchronized oscillatory gene expression in ECs essential for setting sharp tip-stalk cell boundaries while sustaining a dynamic pool of nonsprouting ECs. Deeper knowledge about the coregulation of vessel plasticity in different vascular beds may result in refinement of anti-angiogenesis and vessel normalization therapies.
Collapse
Affiliation(s)
- Karen Beets
- Laboratory of Developmental Signaling, VIB Center for the Biology of Disease, VIB, 3000 Leuven, Belgium
| | | | | | | | | |
Collapse
|
113
|
Tan SL, Ohtsuka T, González A, Kageyama R. MicroRNA9 regulates neural stem cell differentiation by controlling Hes1 expression dynamics in the developing brain. Genes Cells 2012; 17:952-61. [PMID: 23134481 DOI: 10.1111/gtc.12009] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2012] [Accepted: 09/20/2012] [Indexed: 11/26/2022]
Abstract
Earlier studies show that Hes1 expression is oscillatory in neural stem cells but sustained and high in the roof plate and the floor plate, and that such different dynamics of Hes1 expression (oscillatory versus sustained) regulate different proliferation and differentiation characteristics of these cells (active in neural stem cells but rather dormant in roof/floor plate cells). The mechanism of how different dynamics of Hes1 expression is controlled remains to be determined. Here, we found that the seed sequence of microRNA-9 (miR-9) is complementary to the 3'-UTR sequence of Hes1 mRNA. MiR-9 is highly expressed in the ventricular zone of the developing brain, which contains neural stem cells, but it is not expressed in the roof plate or the floor plate. Over-expression of miR-9 negatively regulates the Hes1 protein expression by interacting with the 3'-UTR of Hes1 mRNA, thereby inducing cell cycle exit and neuronal differentiation. Conversely, knockdown of miR-9 inhibits neuronal differentiation. Furthermore, knockdown of miR-9 inhibits the oscillatory expression of Hes1 mRNA in neural stem cells. These results indicate that miR-9 regulates the proliferation and differentiation of neural stem cells by controlling the dynamics of Hes1 expression in the developing brain.
Collapse
Affiliation(s)
- Siok-Lay Tan
- Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan
| | | | | | | |
Collapse
|
114
|
Broom ER, Gilthorpe JD, Butts T, Campo-Paysaa F, Wingate RJT. The roof plate boundary is a bi-directional organiser of dorsal neural tube and choroid plexus development. Development 2012; 139:4261-70. [PMID: 23052907 DOI: 10.1242/dev.082255] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The roof plate is a signalling centre positioned at the dorsal midline of the central nervous system and generates dorsalising morphogenic signals along the length of the neuraxis. Within cranial ventricles, the roof plate gives rise to choroid plexus, which regulates the internal environment of the developing and adult brain and spinal cord via the secretion of cerebrospinal fluid. Using the fourth ventricle as our model, we show that the organiser properties of the roof plate are determined by its boundaries with the adjacent neuroepithelium. Through a combination of in ovo transplantation, co-culture and electroporation techniques in chick embryos between embryonic days 3 and 6, we demonstrate that organiser properties are maintained by interactions between the non-neural roof plate and the neural rhombic lip. At the molecular level, this interaction is mediated by Delta-Notch signalling and upregulation of the chick homologue of Hes1: chairy2. Gain- and loss-of-function approaches reveal that cdelta1 is both necessary and sufficient for organiser function. Our results also demonstrate that while chairy2 is specifically required for the maintenance of the organiser, its ectopic expression is not sufficient to recapitulate organiser properties. Expression of atonal1 in the rhombic lip adjacent at the roof plate boundary is acutely dependent on both boundary cell interactions and Delta-Notch signalling. Correspondingly, the roof plate boundary organiser also signals to the roof plate itself to specify the expression of early choroid plexus markers. Thus, the roof plate boundary organiser signals bi-directionally to acutely coordinate the development of adjacent neural and non-neural tissues.
Collapse
Affiliation(s)
- Emma R Broom
- MRC Centre for Developmental Neurobiology, King's College London, London, UK
| | | | | | | | | |
Collapse
|
115
|
Cockburn DM, Charish J, Tassew NG, Eubanks J, Bremner R, Macchi P, Monnier PP. The double-stranded RNA-binding protein Staufen 2 regulates eye size. Mol Cell Neurosci 2012; 51:101-11. [PMID: 22940085 DOI: 10.1016/j.mcn.2012.08.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Revised: 08/13/2012] [Accepted: 08/16/2012] [Indexed: 12/25/2022] Open
Abstract
Regulation of tissue size is a poorly understood process. Mammalian Staufen 2 (Stau2) is a double-stranded mRNA binding protein known to regulate dendrite formation in vitro as well as cell survival and migration in vivo. Three Stau2 isoforms have been identified in the brain of mammals. Here we show that all these Stau2 isoforms are also expressed in the developing eye of chicken embryos. Strikingly, ectopic expression of Stau2 was sufficient to increase eye size, suggesting a novel biological role of Stau2 in eye morphogenesis. Moreover, down regulation of Stau2 in vivo resulted in a small eye. Microphthalmia was not associated with either increased cell death or differentiation but with reduced cell proliferation. Rescue experiments showed that all three Stau2 isoforms present in the developing eye could prevent microphthalmia. Finally, we showed that Stau2 silencing decreased HES-1 and Sox-2 in the developing eye. These data highlight a new biological function for Stau2 and suggest that translation control of specific Stau2-associated transcripts may be a key regulator of tissue size.
Collapse
Affiliation(s)
- Diane M Cockburn
- Toronto Western Research Institute, Genetics and Development Division, MCL-6-415, Toronto M5T 2S8, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
116
|
Affiliation(s)
- Clemens Kiecker
- Medical Research Council (MRC) Center for Developmental Neurobiology, King's College, London SE1 1UL, United Kingdom; ,
| | - Andrew Lumsden
- Medical Research Council (MRC) Center for Developmental Neurobiology, King's College, London SE1 1UL, United Kingdom; ,
| |
Collapse
|
117
|
Robertshaw E, Kiecker C. Phylogenetic origins of brain organisers. SCIENTIFICA 2012; 2012:475017. [PMID: 24278699 PMCID: PMC3820451 DOI: 10.6064/2012/475017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Accepted: 06/21/2012] [Indexed: 06/02/2023]
Abstract
The regionalisation of the nervous system begins early in embryogenesis, concomitant with the establishment of the anteroposterior (AP) and dorsoventral (DV) body axes. The molecular mechanisms that drive axis induction appear to be conserved throughout the animal kingdom and may be phylogenetically older than the emergence of bilateral symmetry. As a result of this process, groups of patterning genes that are equally well conserved are expressed at specific AP and DV coordinates of the embryo. In the emerging nervous system of vertebrate embryos, this initial pattern is refined by local signalling centres, secondary organisers, that regulate patterning, proliferation, and axonal pathfinding in adjacent neuroepithelium. The main secondary organisers for the AP neuraxis are the midbrain-hindbrain boundary, zona limitans intrathalamica, and anterior neural ridge and for the DV neuraxis the notochord, floor plate, and roof plate. A search for homologous secondary organisers in nonvertebrate lineages has led to controversy over their phylogenetic origins. Based on a recent study in hemichordates, it has been suggested that the AP secondary organisers evolved at the base of the deuterostome superphylum, earlier than previously thought. According to this view, the lack of signalling centres in some deuterostome lineages is likely to reflect a secondary loss due to adaptive processes. We propose that the relative evolutionary flexibility of secondary organisers has contributed to a broader morphological complexity of nervous systems in different clades.
Collapse
Affiliation(s)
- Ellen Robertshaw
- MRC Centre for Developmental Neurobiology, King's College London, 4th Floor, New Hunt's House, Guy's Hospital Campus, London SE1 1UL, UK
| | - Clemens Kiecker
- MRC Centre for Developmental Neurobiology, King's College London, 4th Floor, New Hunt's House, Guy's Hospital Campus, London SE1 1UL, UK
| |
Collapse
|
118
|
Bonev B, Stanley P, Papalopulu N. MicroRNA-9 Modulates Hes1 ultradian oscillations by forming a double-negative feedback loop. Cell Rep 2012; 2:10-8. [PMID: 22840391 PMCID: PMC4103481 DOI: 10.1016/j.celrep.2012.05.017] [Citation(s) in RCA: 136] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Revised: 03/20/2012] [Accepted: 05/21/2012] [Indexed: 11/25/2022] Open
Abstract
Short-period (ultradian) oscillations of Hes1, a Notch signaling effector, are essential for maintaining neural progenitors in a proliferative state, while constitutive downregulation of Hes1 leads to neuronal differentiation. Hes1 oscillations are driven by autorepression, coupled with high instability of the protein and mRNA. It is unknown how Hes1 mRNA stability is controlled and furthermore, how cells exit oscillations in order to differentiate. Here, we identify a microRNA, miR-9, as a component of ultradian oscillations. We show that miR-9 controls the stability of Hes1 mRNA and that both miR-9 overexpression and lack of miR-9 dampens Hes1 oscillations. Reciprocally, Hes1 represses the transcription of miR-9, resulting in out-of-phase oscillations. However, unlike the primary transcript, mature miR-9 is very stable and thus accumulates over time. Given that raising miR-9 levels leads to dampening of oscillations, these findings provide support for a self-limiting mechanism whereby cells might terminate Hes1 oscillations and differentiate.
Collapse
Affiliation(s)
- Boyan Bonev
- Faculty of Life Sciences, Michael Smith Building, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | | | | |
Collapse
|
119
|
Chatterjee M, Li JYH. Patterning and compartment formation in the diencephalon. Front Neurosci 2012; 6:66. [PMID: 22593732 PMCID: PMC3349951 DOI: 10.3389/fnins.2012.00066] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Accepted: 04/17/2012] [Indexed: 01/03/2023] Open
Abstract
The diencephalon gives rise to structures that play an important role in connecting the anterior forebrain with the rest of the central nervous system. The thalamus is the major diencephalic derivative that functions as a relay station between the cortex and other lower order sensory systems. Almost two decades ago, neuromeric/prosomeric models were proposed describing the subdivision and potential segmentation of the diencephalon. Unlike the laminar structure of the cortex, the diencephalon is progressively divided into distinct functional compartments consisting principally of thalamus, epithalamus, pretectum, and hypothalamus. Neurons generated within these domains further aggregate to form clusters called nuclei, which form specific structural and functional units. We review the recent advances in understanding the genetic mechanisms that are involved in the patterning and compartment formation of the diencephalon.
Collapse
Affiliation(s)
- Mallika Chatterjee
- Department of Genetics and Developmental Biology, University of Connecticut Health Center Farmington, CT, USA
| | | |
Collapse
|
120
|
Epstein DJ. Regulation of thalamic development by sonic hedgehog. Front Neurosci 2012; 6:57. [PMID: 22529771 PMCID: PMC3328779 DOI: 10.3389/fnins.2012.00057] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Accepted: 03/30/2012] [Indexed: 12/28/2022] Open
Abstract
The thalamus is strategically positioned within the caudal diencephalic area of the forebrain, between the mesencephalon and telencephalon. This location is important for unique aspects of thalamic function, to process and relay sensory and motor information to and from the cerebral cortex. How the thalamus comes to reside within this region of the central nervous system has been the subject of much investigation. Extracellular signals secreted from key locations both extrinsic and intrinsic to the thalamic primordium have recently been identified and shown to play important roles in the growth, regionalization, and specification of thalamic progenitors. One factor in particular, the secreted morphogen Sonic hedgehog (Shh), has been implicated in spatiotemporal and threshold models of thalamic development that differ from other areas of the CNS due, in large part, to its expression within two signaling centers, the basal plate and the zona limitans intrathalamica, a dorsally projecting spike that separates the thalamus from the subthalamic region. Shh signaling from these dual sources exhibit unique and overlapping functions in the control of thalamic progenitor identity and nuclei specification. This review will highlight recent advances in our understanding of Shh function during thalamic development, revealing similarities, and differences that exist between species.
Collapse
Affiliation(s)
- Douglas J Epstein
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania Philadelphia, PA, USA
| |
Collapse
|
121
|
Jeziorska DM, Koentges G, Vance KW. Novel cis-regulatory modules control expression of the Hairy and Enhancer of Split-1 (HES1) transcription factor in myoblasts. J Biol Chem 2011; 287:5687-97. [PMID: 22167192 PMCID: PMC3285341 DOI: 10.1074/jbc.m111.286484] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The expression profile of a gene is controlled by DNA sequences called cis-regulatory modules (CRMs). CRMs can function over large genomic distances and can be located many kilobases away from their target promoters. hes1 is a key developmental gene that is overexpressed in certain cancers and is a primary target of NOTCH signaling. Despite this, analysis of hes1 transcriptional control has been limited solely to its promoter. Here, we identify seven conserved DNA sequence blocks, representing the hes1 promoter and six novel CRMs, within 57 kb upstream of the mouse hes1 gene. We identify 12 binding sites for the RBP-Jκ NOTCH effector and a single M-CAT motif within these regions. We validate RBP-Jκ and TEAD family occupancy in cells in culture and test the response of each of these CRMs to active NOTCH. We show that two regions, CRM5 and CRM7, function as enhancers, and four can repress transcription. A pair of RBP-Jκ motifs arranged in a tail-tail configuration in CRM5 and the M-CAT motif in CRM7 are necessary for enhancer function. Furthermore, these enhancers are occupied by transcriptional co-activators and loop onto the hes1 promoter within the endogenous hes1 locus. This work demonstrates the power of combining computational genomics and experimental methodologies to identify novel CRMs and characterize their function.
Collapse
Affiliation(s)
- Danuta M Jeziorska
- Laboratory of Genomic Systems Analysis, School of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
| | | | | |
Collapse
|
122
|
Abstract
Recent advances in neuroimaging techniques turned possible for neuroradiologists to be frequently the first one to detect possible brain structural anomalies. However, with all the recent advances in genetics and embryology, understanding posterior fossa malformation's principles is being hardest to be achieved than previously. Studies in vertebrate models provide a developmental framework in which to categorize human hindbrain malformations and serve to inform our thinking regarding candidate genes involved in disrupted developmental processes. The main focus of this review was to survey the basic principles of the rhombomere division, anteroposterior and dorsoventral patterning, alar and basal zone concept, and axonal path finding to integrate the knowledge of human hindbrain malformations for better understanding the genetic basis of hindbrain development.
Collapse
|
123
|
Kameda Y, Saitoh T, Fujimura T. Hes1 regulates the number and anterior–posterior patterning of mesencephalic dopaminergic neurons at the mid/hindbrain boundary (isthmus). Dev Biol 2011; 358:91-101. [DOI: 10.1016/j.ydbio.2011.07.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Revised: 06/22/2011] [Accepted: 07/12/2011] [Indexed: 10/18/2022]
|
124
|
Skaggs K, Martin DM, Novitch BG. Regulation of spinal interneuron development by the Olig-related protein Bhlhb5 and Notch signaling. Development 2011; 138:3199-211. [PMID: 21750031 DOI: 10.1242/dev.057281] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The neural circuits that control motor activities depend on the spatially and temporally ordered generation of distinct classes of spinal interneurons. Despite the importance of these interneurons, the mechanisms underlying their genesis are poorly understood. Here, we demonstrate that the Olig-related transcription factor Bhlhb5 (recently renamed Bhlhe22) plays two central roles in this process. Our findings suggest that Bhlhb5 repressor activity acts downstream of retinoid signaling and homeodomain proteins to promote the formation of dI6, V1 and V2 interneuron progenitors and their differentiated progeny. In addition, Bhlhb5 is required to organize the spatially restricted expression of the Notch ligands and Fringe proteins that both elicit the formation of the interneuron populations that arise adjacent to Bhlhb5(+) cells and influence the global pattern of neuronal differentiation. Through these actions, Bhlhb5 helps transform the spatial information established by morphogen signaling into local cell-cell interactions associated with Notch signaling that control the progression of neurogenesis and extend neuronal diversity within the developing spinal cord.
Collapse
Affiliation(s)
- Kaia Skaggs
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | |
Collapse
|
125
|
Vilas-Boas F, Fior R, Swedlow JR, Storey KG, Henrique D. A novel reporter of notch signalling indicates regulated and random Notch activation during vertebrate neurogenesis. BMC Biol 2011; 9:58. [PMID: 21880129 PMCID: PMC3201213 DOI: 10.1186/1741-7007-9-58] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Accepted: 08/31/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Building the complex vertebrate nervous system involves the regulated production of neurons and glia while maintaining a progenitor cell population. Neurogenesis starts asynchronously in different regions of the embryo and occurs over a long period of time, allowing progenitor cells to be exposed to multiple extrinsic signals that regulate the production of different cell types. Notch-mediated cell-cell signalling is one of the mechanisms that maintain the progenitor pool, however, little is known about how the timing of Notch activation is related to the cell cycle and the distinct modes of cell division that generate neurons. An essential tool with which to investigate the role of Notch signalling on cell by cell basis is the development a faithful reporter of Notch activity. RESULTS Here we present a novel reporter for Notch activity based on the promoter of the well characterised Notch target chick Hes5-1, coupled with multiple elements that confer instability, including a destabilized nuclear Venus fluorescent protein and the 3' untranslated region (UTR) of Hes5-1. We demonstrate that this reporter faithfully recapitulates the endogenous expression of Hes5-1 and that it robustly responds to Notch activation in the chick neural tube. Analysis of the patterns of Notch activity revealed by this reporter indicates that although Notch is most frequently activated prior to mitosis it can be activated at any time within the cell cycle. Notch active progenitors undergoing mitosis generate two daughters that both continue to experience Notch signalling. However, cells lacking Notch activity before and during mitosis generate daughters with dissimilar Notch activity profiles. CONCLUSIONS A novel Notch reporter with multiple destabilisation elements provides a faithful read-out of endogenous Notch activity on a cell-by-cell basis, as neural progenitors progress through the cell cycle in the chick neural tube. Notch activity patterns in this cell population provide evidence for distinct Notch signalling dynamics underlying different cell division modes and for the involvement of random initiation of Notch signalling within the neuroepithelium. These findings highlight the importance of single-cell analysis in the study of the complexity of Notch activity and provide new insights into the mechanisms underlying cell fate decisions in neural progenitors.
Collapse
Affiliation(s)
- Filipe Vilas-Boas
- Instituto de Medicina Molecular and Instituto de Histologia e Biologia do Desenvolvimento, Faculdade de Medicina da Universidade de Lisboa, Av Prof, Egas Moniz, 1649-028 Lisboa, Portugal
| | | | | | | | | |
Collapse
|
126
|
Shimojo H, Ohtsuka T, Kageyama R. Dynamic expression of notch signaling genes in neural stem/progenitor cells. Front Neurosci 2011; 5:78. [PMID: 21716644 PMCID: PMC3116140 DOI: 10.3389/fnins.2011.00078] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Accepted: 06/03/2011] [Indexed: 12/19/2022] Open
Abstract
In neural stem/progenitor cells, expression of the Notch effector Hes1, a transcriptional repressor, oscillates with a period of 2–3 h by negative feedback, and Hes1 oscillations induce the oscillatory expression of the proneural gene Neurogenin2 (Ngn2) and the Notch ligand gene Delta-like1 (Dll1). Dll1 oscillation leads to the mutual activation of Notch signaling between neighboring cells, thereby maintaining a group of cells in the undifferentiated state. Not all cells express Hes1 in an oscillatory manner: cells in boundary regions such as the isthmus express Hes1 in a sustained manner, and these cells are rather dormant with regard to proliferation and differentiation. Thus, Hes1 allows cell proliferation and differentiation when its expression oscillates but induces dormancy when its expression is sustained. After Hes1 expression is repressed, Ngn2 is expressed in a sustained manner, promoting neuronal differentiation. Thus, Ngn2 leads to the maintenance of neural stem/progenitor cells by inducing Dll1 oscillation when its expression oscillates but to neuronal differentiation when its expression is sustained. These results indicate that the different dynamics of Hes1 and Ngn2 lead to different outcomes.
Collapse
Affiliation(s)
- Hiromi Shimojo
- Institute for Virus Research, Kyoto University Kyoto, Japan
| | | | | |
Collapse
|
127
|
Webb KJ, Coolen M, Gloeckner CJ, Stigloher C, Bahn B, Topp S, Ueffing M, Bally-Cuif L. The Enhancer of split transcription factor Her8a is a novel dimerisation partner for Her3 that controls anterior hindbrain neurogenesis in zebrafish. BMC DEVELOPMENTAL BIOLOGY 2011; 11:27. [PMID: 21586122 PMCID: PMC3125270 DOI: 10.1186/1471-213x-11-27] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Accepted: 05/17/2011] [Indexed: 12/31/2022]
Abstract
Background Neurogenesis control and the prevention of premature differentiation in the vertebrate embryo are crucial processes, allowing the formation of late-born cell types and ensuring the correct shape and cytoarchitecture of the brain. Members of the Hairy/Enhancer of Split (Hairy/E(spl)) family of bHLH-Orange transcription factors, such as zebrafish Her3, 5, 9 and 11, are implicated in the local inhibition of neurogenesis to maintain progenitor pools within the early neural plate. To better understand how these factors exert their inhibitory function, we aimed to isolate some of their functional interactors. Results We used a yeast two-hybrid screen with Her5 as bait and recovered a novel zebrafish Hairy/E(spl) factor - Her8a. Using phylogenetic and synteny analyses, we demonstrate that her8a evolved from an ancient duplicate of Hes6 that was recently lost in the mammalian lineage. We show that her8a is expressed across the mid- and anterior hindbrain from the start of segmentation. Through knockdown and misexpression experiments, we demonstrate that Her8a is a negative regulator of neurogenesis and plays an essential role in generating progenitor pools within rhombomeres 2 and 4 - a role resembling that of Her3. Her8a co-purifies with Her3, suggesting that Her8a-Her3 heterodimers may be relevant in this domain of the neural plate, where both proteins are co-expressed. Finally, we demonstrate that her8a expression is independent of Notch signaling at the early neural plate stage but that SoxB factors play a role in its expression, linking patterning information to neurogenesis control. Overall, the regulation and function of Her8a differ strikingly from those of its closest relative in other vertebrates - the Hes6-like proteins. Conclusions Our results characterize the phylogeny, expression and functional interactions involving a new Her factor, Her8a, and highlight the complex interplay of E(spl) proteins that generates the neurogenesis pattern of the zebrafish early neural plate.
Collapse
Affiliation(s)
- Katharine J Webb
- Zebrafish Neurogenetics Department, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstr, 1, D-85764 Neuherberg, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
128
|
Pax6 regulates boundary-cell specification in the rat hindbrain. Mech Dev 2011; 128:289-302. [DOI: 10.1016/j.mod.2011.04.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Revised: 03/12/2011] [Accepted: 04/04/2011] [Indexed: 11/20/2022]
|
129
|
Neves J, Parada C, Chamizo M, Giráldez F. Jagged 1 regulates the restriction of Sox2 expression in the developing chicken inner ear: a mechanism for sensory organ specification. Development 2011; 138:735-44. [PMID: 21266409 DOI: 10.1242/dev.060657] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Hair cells of the inner ear sensory organs originate from progenitor cells located at specific domains of the otic vesicle: the prosensory patches. Notch signalling is necessary for sensory development and loss of function of the Notch ligand jagged 1 (Jag1, also known as serrate 1) results in impaired sensory organs. However, the underlying mechanism of Notch function is unknown. Our results show that in the chicken otic vesicle, the Sox2 expression domain initially contains the nascent patches of Jag1 expression but, later on, Sox2 is only maintained in the Jag1-positive domains. Ectopic human JAG1 (hJag1) is able to induce Sox2 expression and enlarged sensory organs. The competence to respond to hJag1, however, is confined to the regions that expressed Sox2 early in development, suggesting that hJag1 maintains Sox2 expression rather than inducing it de novo. The effect is non-cell-autonomous and requires Notch signalling. hJag1 activates Notch, induces Hes/Hey genes and endogenous Jag1 in a non-cell-autonomous manner, which is consistent with lateral induction. The effects of hJag1 are mimicked by Jag2 but not by Dl1. Sox2 is sufficient to activate the Atoh1 enhancer and to ectopically induce sensory cell fate outside neurosensory-competent domains. We suggest that the prosensory function of Jag1 resides in its ability to generate discrete domains of Notch activity that maintain Sox2 expression within restricted areas of an extended neurosensory-competent domain. This provides a mechanism to couple patterning and cell fate specification during the development of sensory organs.
Collapse
Affiliation(s)
- Joana Neves
- CEXS, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona, C/Dr Aiguader 88, 08003-Barcelona, Spain
| | | | | | | |
Collapse
|
130
|
Carre A, Rachdi L, Tron E, Richard B, Castanet M, Schlumberger M, Bidart JM, Szinnai G, Polak M. Hes1 is required for appropriate morphogenesis and differentiation during mouse thyroid gland development. PLoS One 2011; 6:e16752. [PMID: 21364918 PMCID: PMC3045378 DOI: 10.1371/journal.pone.0016752] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Accepted: 01/10/2011] [Indexed: 11/18/2022] Open
Abstract
Notch signalling plays an important role in endocrine development, through its target gene Hes1. Hes1, a bHLH transcriptional repressor, influences progenitor cell proliferation and differentiation. Recently, Hes1 was shown to be expressed in the thyroid and regulate expression of the sodium iodide symporter (Nis). To investigate the role of Hes1 for thyroid development, we studied thyroid morphology and function in mice lacking Hes1. During normal mouse thyroid development, Hes1 was detected from E9.5 onwards in the median anlage, and at E11.5 in the ultimobranchial bodies. Hes1(-/-) mouse embryos had a significantly lower number of Nkx2-1-positive progenitor cells (p<0.05) at E9.5 and at E11.5. Moreover, Hes1(-/-) mouse embryos showed a significantly smaller total thyroid surface area (-40 to -60%) compared to wild type mice at all study time points (E9.5-E16.5). In both Hes1(-/-) and wild type mouse embryos, most Nkx2-1-positive thyroid cells expressed the cell cycle inhibitor p57 at E9.5 in correlation with low proliferation index. In Hes1(-/-) mouse embryos, fusion of the median anlage with the ultimobranchial bodies was delayed by 3 days (E16.5 vs. E13.5 in wild type mice). After fusion of thyroid anlages, hypoplastic Hes1(-/-) thyroids revealed a significantly decreased labelling area for T4 (-78%) and calcitonin (-65%) normalized to Nkx2-1 positive cells. Decreased T4-synthesis might be due to reduced Nis labelling area (-69%). These findings suggest a dual role of Hes1 during thyroid development: first, control of the number of both thyrocyte and C-cell progenitors, via a p57-independent mechanism; second, adequate differentiation and endocrine function of thyrocytes and C-cells.
Collapse
Affiliation(s)
- Aurore Carre
- INSERM U845, Université Paris-Descartes, Paris, France
| | - Latif Rachdi
- INSERM U845, Université Paris-Descartes, Paris, France
| | - Elodie Tron
- INSERM U845, Université Paris-Descartes, Paris, France
| | | | | | | | - Jean-Michel Bidart
- Department of Clinical Biology, Institut Gustave-Roussy, Villejuif, France
| | - Gabor Szinnai
- Paediatric Endocrinology, University Children's Hospital Basel, Basel, Switzerland
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Michel Polak
- INSERM U845, Université Paris-Descartes, Paris, France
- Paediatric Endocrine Unit, Necker Enfants-Malades Hospital, and Centre des Maladies Endocriniennes Rares de la Croissance, AP-HP, Paris, France
- * E-mail:
| |
Collapse
|
131
|
Kobayashi T, Kageyama R. Hes1 oscillations contribute to heterogeneous differentiation responses in embryonic stem cells. Genes (Basel) 2011; 2:219-28. [PMID: 24710146 PMCID: PMC3924840 DOI: 10.3390/genes2010219] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Revised: 02/12/2011] [Accepted: 02/13/2011] [Indexed: 01/09/2023] Open
Abstract
Embryonic stem (ES) cells can differentiate into multiple types of cells belonging to all three germ layers. Although ES cells are clonally established, they display heterogeneous responses upon the induction of differentiation, resulting in a mixture of various types of differentiated cells. Our recent reports have shown that Hes1 regulates the fate choice of ES cells by repressing Notch signaling, and that the oscillatory expression of Hes1 contributes to various differentiation responses in ES cells. Here we discuss the mechanism regulating the intracellular dynamics in ES cells and how to trigger the lineage choice from pluripotent ES cells.
Collapse
Affiliation(s)
- Taeko Kobayashi
- Institute for Virus Research, Kyoto University, Shogoin-Kawahara, Sakyo-ku, Kyoto 606-8507, Japan.
| | - Ryoichiro Kageyama
- Institute for Virus Research, Kyoto University, Shogoin-Kawahara, Sakyo-ku, Kyoto 606-8507, Japan.
| |
Collapse
|
132
|
Tateya T, Imayoshi I, Tateya I, Ito J, Kageyama R. Cooperative functions of Hes/Hey genes in auditory hair cell and supporting cell development. Dev Biol 2011; 352:329-40. [PMID: 21300049 DOI: 10.1016/j.ydbio.2011.01.038] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Revised: 12/16/2010] [Accepted: 01/28/2011] [Indexed: 01/08/2023]
Abstract
Notch-mediated lateral inhibition has been reported to regulate auditory hair cell and supporting cell development from common precursors. While the Notch effector genes Hes1, Hes5 and Hey1 are expressed in the developing cochlea, inactivation of either of them causes only mild abnormality, suggesting their functional redundancy. To explore the roles of Hes/Hey genes in cochlear development, we examined compound heterozygous or homozygous mutant mice that lacked Hes1, Hes5 and Hey1 alleles. We found that a reduction in Hes/Hey gene dosage led to graded increase of hair cell formation. However, if at least one allele of Hes1, Hes5 or Hey1 was intact, excessive hair cells were accompanied by overproduction of supporting cells, suggesting that the hair cell increase does not occur at the expense of supporting cells, and that each Hes/Hey gene functions to induce supporting cells. By contrast, when all alleles of Hes1, Hes5 and Hey1 were inactivated, the number of hair cells increased more drastically, whereas that of supporting cells was unchanged compared with control, suggesting that supporting cell formation was balanced by their overproduction and fate conversion into hair cells. The increase of the cell numbers seemed to occur after the prosensory domain formation in the mutants because the proliferation state and the size of the prosensory domain were not affected. Thus, Hes1, Hes5 and Hey1 cooperatively inhibit hair cell formation, and one allele of Hes1, Hes5 or Hey1 is sufficient for supporting cell production probably by lateral inhibition in the sensory epithelium. Strikingly, Hes/Hey mutations lead to disorganized cell alignment and polarity and to hearing loss despite hair cell overproduction. These results suggest that Hes/Hey gene dosage is essential not only for generation of appropriate numbers of hair cells and supporting cells by controlling cell proliferation and lateral inhibition but also for the hearing ability by regulating the cell alignment and polarity.
Collapse
Affiliation(s)
- Tomoko Tateya
- Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan
| | | | | | | | | |
Collapse
|
133
|
Bonev B, Pisco A, Papalopulu N. MicroRNA-9 reveals regional diversity of neural progenitors along the anterior-posterior axis. Dev Cell 2011; 20:19-32. [PMID: 21238922 PMCID: PMC3361082 DOI: 10.1016/j.devcel.2010.11.018] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Revised: 10/11/2010] [Accepted: 11/19/2010] [Indexed: 12/19/2022]
Abstract
Neural progenitors self-renew and generate neurons throughout the central nervous system. Here, we uncover an unexpected regional specificity in the properties of neural progenitor cells, revealed by the function of a microRNA—miR-9. miR-9 is expressed in neural progenitors, and its knockdown results in an inhibition of neurogenesis along the anterior-posterior axis. However, the underlying mechanism differs—in the hindbrain, progenitors fail to exit the cell cycle, whereas in the forebrain they undergo apoptosis, counteracting the proliferative effect. Among several targets, we functionally identify hairy1 as a primary target of miR-9, regulated at the mRNA level. hairy1 mediates the effects of miR-9 on proliferation, through Fgf8 signaling in the forebrain and Wnt signaling in the hindbrain, but affects apoptosis only in the forebrain, via the p53 pathway. Our findings show a positional difference in the responsiveness of progenitors to miR-9 depletion, revealing an underlying divergence of their properties.
Collapse
Affiliation(s)
- Boyan Bonev
- Faculty of Life Sciences, Michael Smith Building, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | | | | |
Collapse
|
134
|
Radosevic M, Robert-Moreno À, Coolen M, Bally-Cuif L, Alsina B. Her9 represses neurogenic fate downstream of Tbx1 and retinoic acid signaling in the inner ear. Development 2011; 138:397-408. [DOI: 10.1242/dev.056093] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Proper spatial control of neurogenesis in the inner ear ensures the precise innervation of mechanotransducing cells and the propagation of auditory and equilibrium stimuli to the brain. Members of the Hairy and enhancer of split (Hes) gene family regulate neurogenesis by inhibiting neuronal differentiation and maintaining neural stem cell pools in non-neurogenic zones. Remarkably, their role in the spatial control of neurogenesis in the ear is unknown. In this study, we identify her9, a zebrafish ortholog of Hes1, as a key gene in regulating otic neurogenesis through the definition of the posterolateral non-neurogenic field. First, her9 emerges as a novel otic patterning gene that represses proneural function and regulates the extent of the neurogenic domain. Second, we place Her9 downstream of Tbx1, linking these two families of transcription factors for the first time in the inner ear and suggesting that the reported role of Tbx1 in repressing neurogenesis is in part mediated by the bHLH transcriptional repressor Her9. Third, we have identified retinoic acid (RA) signaling as the upstream patterning signal of otic posterolateral genes such as tbx1 and her9. Finally, we show that at the level of the cranial otic field, opposing RA and Hedgehog signaling position the boundary between the neurogenic and non-neurogenic compartments. These findings permit modeling of the complex genetic cascade that underlies neural patterning of the otic vesicle.
Collapse
Affiliation(s)
- Marija Radosevic
- Developmental Biology Laboratory, Dept. Ciències Experimentals i de la Salut, Universitat Pompeu Fabra-Parc de Recerca Biomèdica de Barcelona, Dr Aiguader 88, 08003 Barcelona, Spain
| | - Àlex Robert-Moreno
- Developmental Biology Laboratory, Dept. Ciències Experimentals i de la Salut, Universitat Pompeu Fabra-Parc de Recerca Biomèdica de Barcelona, Dr Aiguader 88, 08003 Barcelona, Spain
| | - Marion Coolen
- Laboratory of Neurobiology and Development, Institute of Neurobiology Alfred Fessard, CNRS, Avenue de Terrasse, 91198 cedex, Gif-sur-Yvette, France
| | - Laure Bally-Cuif
- Laboratory of Neurobiology and Development, Institute of Neurobiology Alfred Fessard, CNRS, Avenue de Terrasse, 91198 cedex, Gif-sur-Yvette, France
| | - Berta Alsina
- Developmental Biology Laboratory, Dept. Ciències Experimentals i de la Salut, Universitat Pompeu Fabra-Parc de Recerca Biomèdica de Barcelona, Dr Aiguader 88, 08003 Barcelona, Spain
| |
Collapse
|
135
|
Krispin S, Nitzan E, Kalcheim C. The dorsal neural tube: a dynamic setting for cell fate decisions. Dev Neurobiol 2011; 70:796-812. [PMID: 20683859 DOI: 10.1002/dneu.20826] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The dorsal neural tube first generates neural crest cells that exit the neural primordium following an epithelial-to-mesenchymal conversion to become sympathetic ganglia, Schwann cells, dorsal root sensory ganglia, and melanocytes of the skin. Following the end of crest emigration, the dorsal midline of the neural tube becomes the roof plate, a signaling center for the organization of dorsal neuronal cell types. Recent lineage analysis performed before the onset of crest delamination revealed that the dorsal tube is a highly dynamic region sequentially traversed by fate-restricted crest progenitors. Furthermore, prospective roof plate cells were shown to originate ventral to presumptive crest and to progressively relocate dorsalward to occupy their definitive midline position following crest delamination. These data raise important questions regarding the mechanisms of cell emigration in relation to fate acquisition, and suggest the possibility that spatial and/or temporal information in the dorsal neural tube determines initial segregation of neural crest cells into their derivatives. In addition, they emphasize the need to address what controls the end of neural crest production and consequent roof plate formation, a fundamental issue for understanding the separation between central and peripheral lineages during development of the nervous system.
Collapse
Affiliation(s)
- Shlomo Krispin
- Department of Medical Neurobiology, Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | | | | |
Collapse
|
136
|
Jung S, Park RH, Kim S, Jeon YJ, Ham DS, Jung MY, Kim SS, Lee YD, Park CH, Suh-Kim H. Id proteins facilitate self-renewal and proliferation of neural stem cells. Stem Cells Dev 2010; 19:831-41. [PMID: 19757990 DOI: 10.1089/scd.2009.0093] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Members of helix-loop-helix (HLH) protein family of Id (inhibitor of differentiation) dimerize with bHLH transcription factors and function as negative regulators of differentiation during development. Most of inhibitory roles of Id proteins have been demonstrated in non-neural tissues, and their roles in the developing nervous system are not clearly demonstrated. In this study, we show that Id1, Id2, and Id3 increase self-renewing and proliferation potential of cortical neural stem cells (NSCs) while inhibiting neuronal differentiation. In electrophoretic mobility gel shift and luciferase assays, Id proteins interfered with binding of NeuroD/E47 complexes to the E-box sequences and inhibited E-box-mediated gene expression. Overexpression of Id proteins in NSCs increased both the number and the size of neurospheres in colony-forming assays. Expression of Hes1 and Hes5 was not increased by overexpression of Id proteins under the condition in which Nestin expression was increased. In utero electroporation of Id yielded higher numbers of Ki67-positive and Sox2-positive cells in the mouse embryonic brain. The study suggests Id proteins play independent roles in the maintenance of neural stem properties.
Collapse
Affiliation(s)
- Seunghwan Jung
- Department of Anatomy, Ajou University, School of Medicine, Suwon, Gyeonggi-do, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
137
|
Chapouton P, Skupien P, Hesl B, Coolen M, Moore JC, Madelaine R, Kremmer E, Faus-Kessler T, Blader P, Lawson ND, Bally-Cuif L. Notch activity levels control the balance between quiescence and recruitment of adult neural stem cells. J Neurosci 2010; 30:7961-74. [PMID: 20534844 PMCID: PMC6632678 DOI: 10.1523/jneurosci.6170-09.2010] [Citation(s) in RCA: 196] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Accepted: 04/09/2010] [Indexed: 12/19/2022] Open
Abstract
The limited generation of neurons during adulthood is controlled by a balance between quiescence and recruitment of neural stem cells (NSCs). We use here the germinal zone of the zebrafish adult telencephalon to examine how the frequency of NSC divisions is regulated. We show, using several in vivo techniques, that progenitors transit back and forth between the quiescent and dividing state, according to varying levels of Notch activity: Notch induction drives progenitors into quiescence, whereas blocking Notch massively reinitiates NSC division and subsequent commitment toward becoming neurons. Notch activation appears predominantly triggered by newly recruited progenitors onto their neighbors, suggesting an involvement of Notch in a self-limiting mechanism, once neurogenesis is started. These results identify for the first time a lateral inhibition-like mechanism in the context of adult neurogenesis and suggest that the equilibrium between quiescence and neurogenesis in the adult brain is controlled by fluctuations of Notch activity, thereby regulating the amount of adult-born neurons.
Collapse
Affiliation(s)
- Prisca Chapouton
- Zebrafish Neurogenetics Department, Helmholtz Zentrum München, German Research Center for Environmental Health, D-85764 Neuherberg, Germany
- Center for Integrated Protein Science (Munich), Institute of Developmental Genetics, Technical University Munich, D-85764 Neuherberg, Germany
| | - Paulina Skupien
- Zebrafish Neurogenetics Department, Helmholtz Zentrum München, German Research Center for Environmental Health, D-85764 Neuherberg, Germany
- Center for Integrated Protein Science (Munich), Institute of Developmental Genetics, Technical University Munich, D-85764 Neuherberg, Germany
| | - Birgit Hesl
- Zebrafish Neurogenetics Department, Helmholtz Zentrum München, German Research Center for Environmental Health, D-85764 Neuherberg, Germany
- Center for Integrated Protein Science (Munich), Institute of Developmental Genetics, Technical University Munich, D-85764 Neuherberg, Germany
| | - Marion Coolen
- Zebrafish Neurogenetics Department, Helmholtz Zentrum München, German Research Center for Environmental Health, D-85764 Neuherberg, Germany
- Center for Integrated Protein Science (Munich), Institute of Developmental Genetics, Technical University Munich, D-85764 Neuherberg, Germany
- Zebrafish Neurogenetics Group, Laboratory of Neurobiology and Development, CNRS, Unité Propre de Recherche 3294, Institute of Neurobiology Alfred Fessard, F-91198 Gif-sur-Yvette, France
| | - John C. Moore
- Program in Gene Function and Expression, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Romain Madelaine
- Université de Toulouse, Université Paul Sabatier, Centre de Biologie du Développement, F-31062 Toulouse, France
- Centre National de la Recherche Scientifique (CNRS), Centre de Biologie du Développement, Unité Mixte de Recherche 5547, F-31062 Toulouse, France
| | - Elizabeth Kremmer
- Institute of Molecular Immunology, Helmholtz Zentrum München, German Research Center for Environmental Health, D-81377 Munich, Germany
| | - Theresa Faus-Kessler
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, D-85764 Neuherberg, Germany, and
| | - Patrick Blader
- Université de Toulouse, Université Paul Sabatier, Centre de Biologie du Développement, F-31062 Toulouse, France
- Centre National de la Recherche Scientifique (CNRS), Centre de Biologie du Développement, Unité Mixte de Recherche 5547, F-31062 Toulouse, France
| | - Nathan D. Lawson
- Program in Gene Function and Expression, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Laure Bally-Cuif
- Zebrafish Neurogenetics Department, Helmholtz Zentrum München, German Research Center for Environmental Health, D-85764 Neuherberg, Germany
- Center for Integrated Protein Science (Munich), Institute of Developmental Genetics, Technical University Munich, D-85764 Neuherberg, Germany
- Zebrafish Neurogenetics Group, Laboratory of Neurobiology and Development, CNRS, Unité Propre de Recherche 3294, Institute of Neurobiology Alfred Fessard, F-91198 Gif-sur-Yvette, France
| |
Collapse
|
138
|
Ono Y, Nakatani T, Minaki Y, Kumai M. The basic helix-loop-helix transcription factor Nato3 controls neurogenic activity in mesencephalic floor plate cells. Development 2010; 137:1897-906. [DOI: 10.1242/dev.042572] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Floor plate (FP) cells, the ventral midline cells of the developing neural tube, have long been thought to be non-neurogenic organizer cells that control neuronal patterning and axonal guidance. Recent studies have revealed that mesencephalic FP (mesFP) cells have neurogenic activity and generate dopaminergic neurons. However, the mechanisms underlying the control of neurogenic potential in FP cells are not yet fully understood. Here we identified the bHLH factor Nato3 as an FP-specific transcription factor. In Nato3-null mutant mice, FP cells in the spinal cord were correctly specified, but could not properly mature. By contrast, in the developing mesencephalon, loss of Nato3 did not affect FP differentiation, but led to loss of neurogenic activity in the medial subpopulation of mesFP cells by suppressing proneural gene expression and inducing cell cycle arrest. As a consequence, the number of midbrain dopaminergic neurons generated was decreased in mutants. We also found that Hes1, which is known to be required for non-dividing organizer cell development in the neural tube, was aberrantly upregulated in the mesFP cells of Nato3 mutants. Consistently, forced expression of Nato3 repressed Hes1 expression and consequently induced premature neurogenesis. Finally, we showed that forced expression of Hes1 in mesFP cells induced cell cycle arrest and downregulation of proneural factors. Taken together, these results suggest that Nato3 confers neurogenic potential on mesFP cells by suppressing classical non-neurogenic FP cell differentiation, at least in part, through repressing Hes1.
Collapse
Affiliation(s)
- Yuichi Ono
- Group for Neuronal Differentiation, KAN Research Institute, Kobe MI R&D Center, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
- Group for Transgenic Technology, KAN Research Institute, Kobe MI R&D Center, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Tomoya Nakatani
- Group for Neuronal Differentiation, KAN Research Institute, Kobe MI R&D Center, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Yasuko Minaki
- Group for Neuronal Differentiation, KAN Research Institute, Kobe MI R&D Center, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Minoru Kumai
- Group for Transgenic Technology, KAN Research Institute, Kobe MI R&D Center, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| |
Collapse
|
139
|
Essential roles of Notch signaling in maintenance of neural stem cells in developing and adult brains. J Neurosci 2010; 30:3489-98. [PMID: 20203209 DOI: 10.1523/jneurosci.4987-09.2010] [Citation(s) in RCA: 530] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Activation of Notch signaling induces the expression of transcriptional repressor genes such as Hes1, leading to repression of proneural gene expression and maintenance of neural stem/progenitor cells. However, a requirement for Notch signaling in the telencephalon was not clear, because in Hes1;Hes3;Hes5 triple-mutant mice, neural stem/progenitor cells are depleted in most regions of the developing CNS, but not in the telencephalon. Here, we investigated a role for Notch signaling in the telencephalon by generating tamoxifen-inducible conditional knock-out mice that lack Rbpj, an intracellular signal mediator of all Notch receptors. When Rbpj was deleted in the embryonic brain, almost all telencephalic neural stem/progenitor cells prematurely differentiated into neurons and were depleted. When Rbpj was deleted in the adult brain, all neural stem cells differentiated into transit-amplifying cells and neurons. As a result, neurogenesis increased transiently, but 3 months later all neural stem cells were depleted and neurogenesis was totally lost. These results indicated an absolute requirement of Notch signaling for the maintenance of neural stem cells and a proper control of neurogenesis in both embryonic and adult brains.
Collapse
|
140
|
Hansen DV, Lui JH, Parker PRL, Kriegstein AR. Neurogenic radial glia in the outer subventricular zone of human neocortex. Nature 2010; 464:554-561. [PMID: 20154730 DOI: 10.1038/nature08845] [Citation(s) in RCA: 971] [Impact Index Per Article: 64.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Revised: 03/25/2010] [Accepted: 01/21/2010] [Indexed: 12/18/2022]
Abstract
Neurons in the developing rodent cortex are generated from radial glial cells that function as neural stem cells. These epithelial cells line the cerebral ventricles and generate intermediate progenitor cells that migrate into the subventricular zone (SVZ) and proliferate to increase neuronal number. The developing human SVZ has a massively expanded outer region (OSVZ) thought to contribute to cortical size and complexity. However, OSVZ progenitor cell types and their contribution to neurogenesis are not well understood. Here we show that large numbers of radial glia-like cells and intermediate progenitor cells populate the human OSVZ. We find that OSVZ radial glia-like cells have a long basal process but, surprisingly, are non-epithelial as they lack contact with the ventricular surface. Using real-time imaging and clonal analysis, we demonstrate that these cells can undergo proliferative divisions and self-renewing asymmetric divisions to generate neuronal progenitor cells that can proliferate further. We also show that inhibition of Notch signalling in OSVZ progenitor cells induces their neuronal differentiation. The establishment of non-ventricular radial glia-like cells may have been a critical evolutionary advance underlying increased cortical size and complexity in the human brain.
Collapse
Affiliation(s)
- David V Hansen
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, San Francisco, California 94143, USA
| | | | | | | |
Collapse
|
141
|
Marklund U, Hansson EM, Sundström E, de Angelis MH, Przemeck GKH, Lendahl U, Muhr J, Ericson J. Domain-specific control of neurogenesis achieved through patterned regulation of Notch ligand expression. Development 2010; 137:437-45. [PMID: 20081190 DOI: 10.1242/dev.036806] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Homeodomain (HD) transcription factors and components of the Notch pathway [Delta1 (Dll1), Jagged1 (Jag1) and the Fringe (Fng) proteins] are expressed in distinct progenitor domains along the dorsoventral (DV) axis of the developing spinal cord. However, the internal relationship between these two regulatory pathways has not been established. In this report we show that HD proteins act upstream of Notch signalling. Thus, HD proteins control the spatial distribution of Notch ligands and Fng proteins, whereas perturbation of the Notch pathway does not affect the regional expression of HD proteins. Loss of Dll1 or Jag1 leads to a domain-specific increase of neuronal differentiation but does not affect the establishment of progenitor domain boundaries. Moreover, gain-of-function experiments indicate that the ability of Dll1 and Jag1 to activate Notch is limited to progenitors endogenously expressing the respective ligand. Fng proteins enhance Dll1-activated Notch signalling and block Notch activation mediated by Jag1. This finding, combined with the overlapping expression of Fng with Dll1 but not with Jag1, is likely to explain the domain-specific activity of the Notch ligands. This outcome is opposite to the local regulation of Notch activity in most other systems, including the Drosophila wing, where Fng co-localizes with Jagged/Serrate rather than Dll/Delta, which facilitates Notch signalling at regional boundaries instead of within domains. The regulation of Notch activation in the spinal cord therefore appears to endow specific progenitor populations with a domain-wide autonomy in the control of neurogenesis and prevents any inadequate activation of Notch across progenitor domain boundaries.
Collapse
Affiliation(s)
- Ulrika Marklund
- Department of Cell and Molecular Biology, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
142
|
Bluske KK, Kawakami Y, Koyano-Nakagawa N, Nakagawa Y. Differential activity of Wnt/beta-catenin signaling in the embryonic mouse thalamus. Dev Dyn 2010; 238:3297-309. [PMID: 19924825 DOI: 10.1002/dvdy.22167] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
In neural development, several Wnt genes are expressed in the vertebrate diencephalon, including the thalamus. However, roles of Wnt signaling in the thalamus during neurogenesis are not well understood. We examined Wnt/beta-catenin activity in embryonic mouse thalamus and found that a Wnt target gene Axin2 and reporter activity of BAT-gal transgenic mice show similar, differential patterns within the thalamic ventricular zone, where ventral and rostral regions had lower activity than other regions. Expression of Wnt ligands and signaling components also showed complex, differential patterns. Finally, based on partially reciprocal patterns of Wnt and Shh signals in the thalamic ventricular zone, we tested if Shh signal is sufficient or necessary for the differential Axin2 expression. Analysis of mice with enhanced or reduced Shh signal showed that Axin2 expression is similar to controls. These results suggest that differential Wnt signaling may play a role in patterning the thalamus independent of Shh signaling.
Collapse
Affiliation(s)
- Krista K Bluske
- Department of Neuroscience, and Graduate Program in Neuroscience, Minneapolis, Minnesota 55455, USA
| | | | | | | |
Collapse
|
143
|
Murata J, Ohtsuka T, Tokunaga A, Nishiike S, Inohara H, Okano H, Kageyama R. Notch-Hes1 pathway contributes to the cochlear prosensory formation potentially through the transcriptional down-regulation of p27Kip1. J Neurosci Res 2010; 87:3521-34. [PMID: 19598246 DOI: 10.1002/jnr.22169] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The Notch signaling pathway has a crucial role in the differentiation of hair cells and supporting cells by mediating "lateral inhibition" via the ligands Delta-like1 (Dll1) and Jagged2 (Jag2) and the effectors Hes1 and Hes5 during mammalian inner ear development. Recently, another Notch ligand, Jagged1 (Jag1)-dependent Notch activation, has been revealed to be important for the determination of the prosensory region in the earlier stage before cell differentiation. However, little is known about the effectors of the Notch pathway in this context. P27(Kip1), a cyclin-dependent kinase inhibitor, is also known to demarcate the prosensory region in the cochlear primordium, which consists of the sensory progenitors that have completed their terminal mitoses. Hes1 reportedly promotes precursor cell proliferation through the transcriptional down-regulation of p27(Kip1) in the thymus, liver, and brain. In this study, we observed Hes1 as a mediator between the Notch signaling pathway and the regulation of proliferation of sensory precursor cells by p27(Kip1) in the developing cochlea. We showed that Hes1, but not Hes5, was weakly expressed at the time of onset of p27(Kip1). The expression pattern of Hes1 prior to cell differentiation was similar to that of activated Notch1. P27(Kip1) was up-regulated and BrdU-positive S-phase cells were reduced in the developing cochlear epithelium of Hes1 null mice. These results suggest that the Notch-Hes1 pathway may contribute to the adequate proliferation of sensory precursor cells via the potential transcriptional down-regulation of p27(Kip1) expression and play a pivotal role in the correct prosensory determination.
Collapse
Affiliation(s)
- Junko Murata
- Department of Otolaryngology and Sensory Organ Surgery, Osaka University School of Medicine, Osaka, Japan.
| | | | | | | | | | | | | |
Collapse
|
144
|
Schlosser G. Making senses development of vertebrate cranial placodes. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2010; 283:129-234. [PMID: 20801420 DOI: 10.1016/s1937-6448(10)83004-7] [Citation(s) in RCA: 142] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Cranial placodes (which include the adenohypophyseal, olfactory, lens, otic, lateral line, profundal/trigeminal, and epibranchial placodes) give rise to many sense organs and ganglia of the vertebrate head. Recent evidence suggests that all cranial placodes may be developmentally related structures, which originate from a common panplacodal primordium at neural plate stages and use similar regulatory mechanisms to control developmental processes shared between different placodes such as neurogenesis and morphogenetic movements. After providing a brief overview of placodal diversity, the present review summarizes current evidence for the existence of a panplacodal primordium and discusses the central role of transcription factors Six1 and Eya1 in the regulation of processes shared between different placodes. Upstream signaling events and transcription factors involved in early embryonic induction and specification of the panplacodal primordium are discussed next. I then review how individual placodes arise from the panplacodal primordium and present a model of multistep placode induction. Finally, I briefly summarize recent advances concerning how placodal neurons and sensory cells are specified, and how morphogenesis of placodes (including delamination and migration of placode-derived cells and invagination) is controlled.
Collapse
Affiliation(s)
- Gerhard Schlosser
- Zoology, School of Natural Sciences & Martin Ryan Institute, National University of Ireland, Galway, Ireland
| |
Collapse
|
145
|
Kageyama R, Niwa Y, Shimojo H, Kobayashi T, Ohtsuka T. Ultradian oscillations in Notch signaling regulate dynamic biological events. Curr Top Dev Biol 2010; 92:311-31. [PMID: 20816400 DOI: 10.1016/s0070-2153(10)92010-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Notch signaling regulates many dynamic processes; accordingly, expression of genes in this pathway is also dynamic. In mouse embryos, one dynamic process regulated by Notch is somite segmentation, which occurs with a 2-h periodicity. This periodic event is regulated by a biological clock called the segmentation clock, which involves cyclic expression of the Notch effector gene Hes7. Loss of Hes7 expression and sustained expression of Hes7 result in identical and severe somite defects, suggesting that Hes7 oscillation is required for proper somite segmentation. Mathematical models of this oscillator have been used to generate and test hypothesis, helping to uncover the role of negative feedback in regulating the oscillator. Oscillations of another Notch effector gene, Hes1, plays an important role in maintenance of neural stem cells. Hes1 expression oscillates with a period of about 2-3h in neural stem cells, whereas sustained Hes1 expression inhibits proliferation and differentiation of these cells, suggesting that Hes1 oscillations are important for their proper activities. Hes1 inhibits its own expression as well as the expression of the proneural gene Neurogenin2 and the Notch ligand Delta1, driving oscillations of these two genes. Delta1 oscillations in turn maintain neural stem cells by mutual activation of Notch signaling, which re-activates Hes1 to close the cycle. Hes1 expression also oscillates in embryonic stem (ES) cells. Cells expressing low and high levels of Hes1 tend to differentiate into neural and mesodermal cells, respectively. Furthermore, Hes1-null ES cells display early and uniform neural differentiation, indicating that Hes1 oscillations act to promote multipotency by generating heterogeneity in both the differentiation timing and the fate choice. Taken together, these results suggest that Notch signaling can drive short-period oscillatory expression of Hes7 and Hes1 (ultradian oscillation) and that ultradian oscillations are important for many biological events.
Collapse
|
146
|
Zheng MH, Shi M, Pei Z, Gao F, Han H, Ding YQ. The transcription factor RBP-J is essential for retinal cell differentiation and lamination. Mol Brain 2009; 2:38. [PMID: 20017954 PMCID: PMC2804697 DOI: 10.1186/1756-6606-2-38] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2009] [Accepted: 12/18/2009] [Indexed: 11/10/2022] Open
Abstract
Background The highly ordered vertebrate retina is composed of seven cell types derived from a common pool of retinal progenitor cells (RPCs), and is a good model for the studies of cell differentiation and interaction during neural development. Notch signaling plays a pivotal role in retinogenesis in mammals, but the full scope of the functions of Notch pathway, and the underlying molecular mechanisms, remain unclear. Results In this study, we conditionally knocked out RBP-J, the critical transcription factor downstream to all four Notch receptors, in RPCs of mouse retina at different developmental stages. Disruption of RBP-J at early retinogenesis resulted in accelerated RPCs differentiation, but only photoreceptors and ganglion cells were overrepresented, with other neuronal populations diminished. Similarly, deletion of RBP-J at early postnatal days also led to overproduction of photoreceptors, suggesting that RBP-J governed RPCs specification and differentiation through retinogenesis. In all the RBP-J deletion models, the retinal laminar structures were distorted by the formation of numerous rosette-like structures, reminiscent of β-catenin deficient retina. Indeed, we found that these rosettes aligned with gaps in β-catenin expression at the apical surface of the retina. By in vivo electroporation-mediated transfection, we demonstrated that lamination defects in RBP-J deficient retinae were rescued by overexpressing β-catenin. Conclusions Our data indicate that RBP-J-mediated canonical Notch signaling governs retinal cell specification and differentiation, and maintains retinal lamination through the expression of β-catenin.
Collapse
Affiliation(s)
- Min-Hua Zheng
- Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi'an 710032, China.
| | | | | | | | | | | |
Collapse
|
147
|
Kageyama R, Ohtsuka T, Shimojo H, Imayoshi I. Dynamic regulation of Notch signaling in neural progenitor cells. Curr Opin Cell Biol 2009; 21:733-40. [DOI: 10.1016/j.ceb.2009.08.009] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2009] [Revised: 08/26/2009] [Accepted: 08/31/2009] [Indexed: 11/28/2022]
|
148
|
Her6 regulates the neurogenetic gradient and neuronal identity in the thalamus. Proc Natl Acad Sci U S A 2009; 106:19895-900. [PMID: 19903880 DOI: 10.1073/pnas.0910894106] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
During vertebrate brain development, the onset of neuronal differentiation is under strict temporal control. In the mammalian thalamus and other brain regions, neurogenesis is regulated also in a spatially progressive manner referred to as a neurogenetic gradient, the underlying mechanism of which is unknown. Here we describe the existence of a neurogenetic gradient in the zebrafish thalamus and show that the progression of neurogenesis is controlled by dynamic expression of the bHLH repressor her6. Members of the Hes/Her family are known to regulate proneural genes, such as Neurogenin and Ascl. Here we find that Her6 determines not only the onset of neurogenesis but also the identity of thalamic neurons, marked by proneural and neurotransmitter gene expression: loss of Her6 leads to premature Neurogenin1-mediated genesis of glutamatergic (excitatory) neurons, whereas maintenance of Her6 leads to Ascl1-mediated production of GABAergic (inhibitory) neurons. Thus, the presence or absence of a single upstream regulator of proneural gene expression, Her6, leads to the establishment of discrete neuronal domains in the thalamus.
Collapse
|
149
|
Model organisms inform the search for the genes and developmental pathology underlying malformations of the human hindbrain. Semin Pediatr Neurol 2009; 16:155-63. [PMID: 19778712 PMCID: PMC2778478 DOI: 10.1016/j.spen.2009.06.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Congenital malformations of the human hindbrain, including the cerebellum, are poorly understood largely because their recognition is a relatively recent advance for imaging diagnostics. Cerebellar malformations are the most obvious and best characterized hindbrain malformations due to their relative ease of viewing by magnetic resonance imaging and the recent identification of several causative genes (Millen et al. Curr Opin Neurobiol 18:12-19, 2008). Malformations of the pons and medulla have also been described both in isolation and in association with cerebellar malformations (Barkovich et al. Ann Neurol 62:625-639, 2007). Although little is understood regarding the specific developmental pathologies underlying hindbrain malformations in humans, much is known regarding the mechanisms and genes driving hindbrain development in vertebrate model organisms. Thus, studies in vertebrate models provide a developmental framework in which to categorize human hindbrain malformations and serve to provide information regarding disrupted developmental processes and candidate genes. Here, we survey the basic principles of vertebrate hindbrain development and integrate our current knowledge of human hindbrain malformations into this framework.
Collapse
|
150
|
Qiu X, Lim CH, Ho SHK, Lee KH, Jiang YJ. Temporal Notch activation through Notch1a and Notch3 is required for maintaining zebrafish rhombomere boundaries. Dev Genes Evol 2009; 219:339-51. [PMID: 19705151 PMCID: PMC2744777 DOI: 10.1007/s00427-009-0296-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2009] [Accepted: 07/10/2009] [Indexed: 02/08/2023]
Abstract
In vertebrates, hindbrain is subdivided into seven segments termed rhombomeres and the interface between each rhombomere forms the boundary. Similar to the D/V boundary formation in Drosophila, Notch activation has been shown to regulate the segregation of rhombomere boundary cells. Here we further explored the function of Notch signaling in the formation of rhombomere boundaries. By using bodipy ceramide cell-labeling technique, we found that the hindbrain boundary is formed initially in mib mutants but lost after 24 hours post-fertilization (hpf). This phenotype was more severe in mibta52b allele than in mibtfi91 allele. Similarly, injection of su(h)-MO led to boundary defects in a dosage-dependent manner. Boundary cells were recovered in mibta52b mutants in the hdac1-deficient background, where neurogenesis is inhibited. Furthermore, boundary cells lost sensitivity to reduced Notch activation from 15 somite stage onwards. We also showed that knockdown of notch3 function in notch1a mutants leads to the loss of rhombomere boundary cells and causes neuronal hyperplasia, indicating that Notch1a and Notch3 play a redundant role in the maintenance of rhombomere boundary.
Collapse
Affiliation(s)
- Xuehui Qiu
- Laboratory of Developmental Signalling and Patterning, Genes and Development Division, Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology and Research), Singapore, Singapore
| | | | | | | | | |
Collapse
|