101
|
Sánchez-Sánchez AV, Camp E, Leal-Tassias A, Mullor JL. Wnt signaling has different temporal roles during retinal development. Dev Dyn 2010; 239:297-310. [PMID: 20014102 DOI: 10.1002/dvdy.22168] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Differentiation of neural retinal precursor (NRP) cells in vertebrates follows an established order of cell-fate determination associated with exit from the cell cycle. Wnt signaling regulates cell cycle in colon carcinoma cells and has been implicated in different aspects of retinal development in various species. To better understand the biological roles of Wnt in the developing retina, we have used a transgenic and pharmacological approach to manipulate the Wnt signaling pathway during retinal development in medaka embryos. With the use of both approaches, we observed that during the early phase of retinal development Wnt signaling regulated cell cycle progression, proliferation, apoptosis, and differentiation of NRP cells. However, during later phases of retinal development, proliferation and apoptosis were not affected by manipulation of Wnt signaling. Instead, Wnt regulated Vsx1 expression, but not the expression of other retinal cell markers tested. Thus, the response of NRP cells to Wnt signaling is stage-dependent.
Collapse
Affiliation(s)
- Ana V Sánchez-Sánchez
- Department of Regenerative Medicine, Centro de Investigación Príncipe Felipe, Valencia 46012, Spain
| | | | | | | |
Collapse
|
102
|
Lopes CS, Casares F. hth maintains the pool of eye progenitors and its downregulation by Dpp and Hh couples retinal fate acquisition with cell cycle exit. Dev Biol 2010; 339:78-88. [DOI: 10.1016/j.ydbio.2009.12.020] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Revised: 12/11/2009] [Accepted: 12/12/2009] [Indexed: 01/11/2023]
|
103
|
Abstract
The vertebrate eye comprises tissues from different embryonic origins: the lens and the cornea are derived from the surface ectoderm, but the retina and the epithelial layers of the iris and ciliary body are from the anterior neural plate. The timely action of transcription factors and inductive signals ensure the correct development of the different eye components. Establishing the genetic basis of eye defects in zebrafishes, mouse, and human has been an important tool for the detailed analysis of this complex process. A single eye field forms centrally within the anterior neural plate during gastrulation; it is characterized on the molecular level by the expression of "eye-field transcription factors." The single eye field is separated into two, forming the optic vesicle and later (under influence of the lens placode) the optic cup. The lens develops from the lens placode (surface ectoderm) under influence of the underlying optic vesicle. Pax6 acts in this phase as master control gene, and genes encoding cytoskeletal proteins, structural proteins, or membrane proteins become activated. The cornea forms from the surface ectoderm, and cells from the periocular mesenchyme migrate into the cornea giving rise for the future cornea stroma. Similarly, the iris and ciliary body form from the optic cup. The outer layer of the optic cup becomes the retinal pigmented epithelium, and the main part of the inner layer of the optic cup forms later the neural retina with six different types of cells including the photoreceptors. The retinal ganglion cells grow toward the optic stalk forming the optic nerve. This review describes the major molecular players and cellular processes during eye development as they are known from frogs, zebrafish, chick, and mice-showing also differences among species and missing links for future research. The relevance to human disorders is one of the major aspects covered throughout the review.
Collapse
Affiliation(s)
- Jochen Graw
- Helmholtz Center Munich-German Research Center for Environmental Health, Institute of Developmental Genetics, Neuherberg, Germany
| |
Collapse
|
104
|
Abstract
Organogenesis of the eye is a multistep process that starts with the formation of optic vesicles followed by invagination of the distal domain of the vesicles and the overlying lens placode resulting in morphogenesis of the optic cup. The late optic vesicle becomes patterned into distinct ocular tissues: the neural retina, retinal pigment epithelium (RPE), and optic stalk. Multiple congenital eye disorders, including anophthalmia or microphthalmia, aniridia, coloboma, and retinal dysplasia, stem from disruptions in embryonic eye development. Thus, it is critical to understand the mechanisms that lead to initial specification and differentiation of ocular tissues. An accumulating number of studies demonstrate that a complex interplay between inductive signals provided by tissue-tissue interactions and cell-intrinsic factors is critical to ensuring proper specification of ocular tissues as well as maintenance of RPE cell fate. While several of the extrinsic and intrinsic determinants have been identified, we are just at the beginning in understanding how these signals are integrated. In addition, we know very little about the actual output of these interactions. In this chapter, we provide an update of the mechanisms controlling the early steps of eye development in vertebrates, with emphasis on optic vesicle evagination, specification of neural retina and RPE at the optic vesicle stage, the process of invagination during morphogenesis of the optic cup, and maintenance of the RPE cell fate.
Collapse
Affiliation(s)
- Sabine Fuhrmann
- Department of Ophthalmology and Visual Sciences, Moran Eye Center, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
105
|
Trimarchi JM, Cho SH, Cepko CL. Identification of genes expressed preferentially in the developing peripheral margin of the optic cup. Dev Dyn 2009; 238:2327-9. [PMID: 19449303 PMCID: PMC2916742 DOI: 10.1002/dvdy.21973] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Specification of the peripheral optic cup by Wnt signaling is critical for formation of the ciliary body/iris. Identification of marker genes for this region during development provides a starting point for functional analyses. During transcriptional profiling of single cells from the developing eye, two cells were identified that expressed genes not found in most other single cell profiles. In situ hybridizations demonstrated that many of these genes were expressed in the peripheral optic cup in both early mouse and chicken development, and in the ciliary body/iris at subsequent developmental stages. These analyses indicate that the two cells probably originated from the developing ciliary body/iris. Changes in expression of these genes were assayed in embryonic chicken retinas when canonical Wnt signaling was ectopically activated by CA-beta-catenin. Twelve ciliary body/iris genes were identified as upregulated following induction, suggesting they are excellent candidates for downstream effectors of Wnt signaling in the optic cup.
Collapse
Affiliation(s)
- Jeffrey M Trimarchi
- Department of Genetics and Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
106
|
Agathocleous M, Harris WA. From Progenitors to Differentiated Cells in the Vertebrate Retina. Annu Rev Cell Dev Biol 2009; 25:45-69. [DOI: 10.1146/annurev.cellbio.042308.113259] [Citation(s) in RCA: 195] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Michalis Agathocleous
- Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge CB2 3DY, United Kingdom;
- Gonville and Caius College, University of Cambridge, Cambridge CB2 1TA, United Kingdom;
| | - William A. Harris
- Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge CB2 3DY, United Kingdom;
| |
Collapse
|
107
|
Agathocleous M, Iordanova I, Willardsen MI, Xue XY, Vetter ML, Harris WA, Moore KB. A directional Wnt/beta-catenin-Sox2-proneural pathway regulates the transition from proliferation to differentiation in the Xenopus retina. Development 2009; 136:3289-99. [PMID: 19736324 DOI: 10.1242/dev.040451] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Progenitor cells in the central nervous system must leave the cell cycle to become neurons and glia, but the signals that coordinate this transition remain largely unknown. We previously found that Wnt signaling, acting through Sox2, promotes neural competence in the Xenopus retina by activating proneural gene expression. We now report that Wnt and Sox2 inhibit neural differentiation through Notch activation. Independently of Sox2, Wnt stimulates retinal progenitor proliferation and this, when combined with the block on differentiation, maintains retinal progenitor fates. Feedback inhibition by Sox2 on Wnt signaling and by the proneural transcription factors on Sox2 mean that each element of the core pathway activates the next element and inhibits the previous one, providing a directional network that ensures retinal cells make the transition from progenitors to neurons and glia.
Collapse
Affiliation(s)
- Michalis Agathocleous
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | | | | | | | | | | | | |
Collapse
|
108
|
Ruiz JM, Rodríguez J, Bovolenta P. Growth and differentiation of the retina and the optic tectum in the medaka fish requires olSfrp5. Dev Neurobiol 2009; 69:617-32. [PMID: 19507177 DOI: 10.1002/dneu.20731] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Secreted Frizzled-Related Proteins (SFRPs) are extracellular modulators of Wnt and Bmp signaling. Previous studies in birds and fishes have shown that Sfrp1, a member of this family, is strongly expressed throughout the development of the eye contributing to the specification of the eye field, retina neurogenesis and providing guidance information to retina ganglion cell axons. Here, we report that in medaka fish (Oryzias latipes) the expression of olSfrp5, which is closely related to olSfrp1, largely overlaps with that of olSfrp1 in the eye, but is additionally expressed in the developing midbrain and gut primordium. Morpholino-based interference with olSfrp5 expression causes microphthalmia and reduction of the tectum size associated with an increase in apoptotic cell death in these structures. Furthermore, interference with the levels of olSfrp5 expression impairs the patterning of the ventral portion of the optic cup, leading in some cases to a fissure coloboma. These early defects are followed by an abnormal retinal and tectal neurogenesis. In particular, only reduced numbers of photoreceptor and RGC were generated in olSfrp5 morphants retinas. The results point to an important role of olSfrp5 in visual system formation and indicate that olSfrp1 and olSfrp5, despite their overlapping expression, have only partially redundant function during eye development.
Collapse
Affiliation(s)
- Jose Maria Ruiz
- Departamento de Neurobiología Molecular Celular y del Desarrollo, Instituto Cajal, CSIC, Madrid 28002, Spain
| | | | | |
Collapse
|
109
|
Fujimura N, Taketo MM, Mori M, Korinek V, Kozmik Z. Spatial and temporal regulation of Wnt/beta-catenin signaling is essential for development of the retinal pigment epithelium. Dev Biol 2009; 334:31-45. [PMID: 19596317 DOI: 10.1016/j.ydbio.2009.07.002] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2009] [Revised: 06/30/2009] [Accepted: 07/01/2009] [Indexed: 12/23/2022]
Abstract
Wnt/beta-catenin signaling is highly active in the dorsal retinal pigment epithelium (RPE) during eye development. To study the role of Wnt/beta-catenin signaling in the RPE development we used a conditional Cre/loxP system in mice to inactivate or ectopically activate Wnt/beta-catenin signaling in the RPE. Inactivation of Wnt/beta-catenin signaling results in transdifferentiation of RPE to neural retina (NR) as documented by downregulation of RPE-specific markers Mitf and Otx2 and ectopic expression of NR-specific markers Chx10 and Rx, respectively. In contrast, ectopic activation of Wnt/beta-catenin signaling results in the disruption of the RPE patterning, indicating that precise spatial and temporal regulation of Wnt/beta-catenin signaling is required for normal RPE development. Using chromatin immunoprecipitation (ChIP) and reporter gene assays we provide evidence that Otx2 and RPE-specific isoform of Mitf, Mitf-H, are direct transcriptional targets of Wnt/beta-catenin signaling. Combined, our data suggest that Wnt/beta-catenin signaling plays an essential role in development of RPE by maintaining or inducing expression of Mitf and Otx2.
Collapse
Affiliation(s)
- Naoko Fujimura
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Videnska 1083, 142 20 Prague 4, Czech Republic
| | | | | | | | | |
Collapse
|
110
|
A mutation of the WFDC1 gene is responsible for multiple ocular defects in cattle. Genomics 2009; 94:55-62. [DOI: 10.1016/j.ygeno.2009.04.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2009] [Revised: 04/07/2009] [Accepted: 04/08/2009] [Indexed: 11/18/2022]
|
111
|
Westenskow P, Piccolo S, Fuhrmann S. Beta-catenin controls differentiation of the retinal pigment epithelium in the mouse optic cup by regulating Mitf and Otx2 expression. Development 2009; 136:2505-10. [PMID: 19553286 DOI: 10.1242/dev.032136] [Citation(s) in RCA: 141] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The retinal pigment epithelium (RPE) consists of a monolayer of cuboidal, pigmented cells that is located between the retina and the choroid. The RPE is vital for growth and function of the vertebrate eye and improper development results in congenital defects, such as microphthalmia or anophthalmia, or a change of cell fate into neural retina called transdifferentiation. The transcription factors microphthalmia-associated transcription factor (Mitf) and orthodenticle homolog 2 (Otx2) are crucial for RPE development and function; however, very little is known about their regulation. Here, by using a Wnt-responsive reporter, we show that the Wnt/beta-catenin pathway is activated in the differentiating mouse RPE. Cre-mediated, RPE-specific disruption of beta-catenin after the onset of RPE specification causes severe defects, resulting in microphthalmia with coloboma, disturbed lamination, and mislocalization of adherens junction proteins. Upon beta-catenin deletion, the RPE transforms into a multilayered tissue in which the expression of Mitf and Otx2 is downregulated, while retina-specific gene expression is induced, which results in the transdifferentiation of RPE into retina. Chromatin immunoprecipitation (ChIP) and luciferase assays indicate that beta-catenin binds near to and activates potential TCF/LEF sites in the Mitf and Otx2 enhancers. We conclude that Wnt/beta-catenin signaling is required for differentiation of the RPE by directly regulating the expression of Mitf and Otx2. Our study is the first to show that an extracellular signaling pathway directly regulates the expression of RPE-specific genes such as Mitf and Otx2, and elucidates a new role for the Wnt/beta-catenin pathway in organ formation and development.
Collapse
Affiliation(s)
- Peter Westenskow
- Department of Ophthalmology and Visual Sciences, Moran Eye Center, University of Utah, Salt Lake City, UT 84132, USA
| | | | | |
Collapse
|
112
|
Lamba D, Karl M, Reh T. Neural regeneration and cell replacement: a view from the eye. Cell Stem Cell 2009; 2:538-49. [PMID: 18522847 DOI: 10.1016/j.stem.2008.05.002] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Neuronal degenerations in the retina are leading causes of blindness. Like most other areas of the CNS, the neurons of the mammalian retina are not replaced following degeneration. However, in nonmammalian vertebrates, endogenous repair processes restore neurons very efficiently, even after complete loss of the retina. We describe the phenomenon of retinal regeneration in nonmammalian vertebrates and attempts made in recent years to stimulate similar regenerative processes in the mammalian retina. In addition, we review the various strategies employed to replace lost neurons in the retina and the recent use of stem cell technologies to address problems of retinal repair.
Collapse
Affiliation(s)
- Deepak Lamba
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA
| | | | | |
Collapse
|
113
|
Functional mode of FoxD1/CBF2 for the establishment of temporal retinal specificity in the developing chick retina. Dev Biol 2009; 331:300-10. [PMID: 19450575 DOI: 10.1016/j.ydbio.2009.05.549] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2009] [Revised: 05/12/2009] [Accepted: 05/12/2009] [Indexed: 12/13/2022]
Abstract
Two winged-helix transcription factors, FoxG1 (previously called chick brain factor1, CBF1) and FoxD1 (chick brain factor2, CBF2), are expressed specifically in the nasal and temporal regions of the developing chick retina, respectively. We previously demonstrated that FoxG1 controls the expression of topographic molecules including FoxD1, and determines the regional specificity of the nasal retina. FoxD1 is known to prescribe temporal specificity, however, molecular mechanisms and downstream targets have not been elucidated. Here we addressed the genetic mechanisms for establishing temporal specificity in the developing retina using an in ovo electroporation technique. Fibroblast growth factor (Fgf) and Wnt first play pivotal roles in inducing the region-specific expression of FoxG1 and FoxD1 in the optic vesicle. Misexpression of FoxD1 represses the expression of FoxG1, GH6, SOHo1, and ephrin-A5, and induces that of EphA3 in the retina. GH6 and SOHo1 repress the expression of FoxD1. In contrast to the inhibitory effect of FoxG1 on bone morphogenic protein (BMP) signaling, FoxD1 does not alter the expression of BMP4 or BMP2. Studies with chimeric mutants of FoxD1 showed that FoxD1 acts as a transcription repressor in controlling its downstream targets in the retina. Taken together with previous findings, our data suggest that FoxG1 and FoxD1 are located at the top of the gene cascade for regional specification along the nasotemporal (anteroposterior) axis in the retina, and FoxD1 determines temporal specificity.
Collapse
|
114
|
Cell-autonomous requirement for rx function in the mammalian retina and posterior pituitary. PLoS One 2009; 4:e4513. [PMID: 19229337 PMCID: PMC2641000 DOI: 10.1371/journal.pone.0004513] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2008] [Accepted: 01/08/2009] [Indexed: 11/19/2022] Open
Abstract
Rx is a paired-like homeobox gene that is required for vertebrate eye formation. Mice lacking Rx function do not develop eyes or the posterior pituitary. To determine whether Rx is required cell autonomously in these tissues, we generated embryonic chimeras consisting of wild type and Rx−/− cells. We found that in the eye, Rx-deficient cells cannot participate in the formation of the neuroretina, retina pigment epithelium and the distal part of the optic stalk. In addition, in the ventral forebrain, Rx function is required cell autonomously for the formation of the posterior pituitary. Interestingly, Rx−/− and wild type cells segregate before the morphogenesis of these two tissues begins. Our observations suggest that Rx function is not only required for the morphogenesis of the retina and posterior pituitary, but also prior to morphogenesis, for the sorting out of cells to form distinct fields of retinal/pituitary cells.
Collapse
|
115
|
Zhou CJ, Molotkov A, Song L, Li Y, Pleasure DE, Pleasure SJ, Wang YZ. Ocular coloboma and dorsoventral neuroretinal patterning defects in Lrp6 mutant eyes. Dev Dyn 2009; 237:3681-9. [PMID: 18985738 DOI: 10.1002/dvdy.21770] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Coloboma, an ocular birth defect seen in humans and other species, is caused by incomplete closure of the optic fissure. Here, we demonstrate that genetic deletion of Lrp6, a bottleneck coreceptor in the canonical Wnt signaling pathway, results in ocular coloboma and neuroretinal patterning defects in mice. The expression of ventral neuroretinal patterning gene Vax2 was conserved but with dorsally shifted expression domains; however, the dorsal neuroretinal patterning gene Tbx5 was lost in the Lrp6-mutant eyes at embryonic day 10.5. Both Bmp4 and phosphorylated Smad 1/5/8 were also significantly attenuated in the dorsal neuroretina. In addition, the retinoic acid synthesizing enzymes Raldh1 and Raldh3 were significantly changed in the mutant eyes. Our findings suggest that defective retinal patterning causes coloboma in the Lrp6-deficient mice, and that canonical Wnt signaling plays a primary role in dorsal neuroretinal patterning and related morphogenetic movements by regulation of both Bmp and retinoic acid signaling pathways.
Collapse
Affiliation(s)
- Cheng-Ji Zhou
- Department of Cell Biology, School of Medicine, University of California, Davis, California, USA.
| | | | | | | | | | | | | |
Collapse
|
116
|
Veien ES, Rosenthal JS, Kruse-Bend RC, Chien CB, Dorsky RI. Canonical Wnt signaling is required for the maintenance of dorsal retinal identity. Development 2008; 135:4101-11. [PMID: 19004855 DOI: 10.1242/dev.027367] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Accurate retinotectal axon pathfinding depends upon the correct establishment of dorsal-ventral retinal polarity. We show that dorsal retinal gene expression is regulated by Wnt signaling in the dorsal retinal pigment epithelium (RPE). We find that a Wnt reporter transgene and Wnt pathway components are expressed in the dorsal RPE beginning at 14-16 hours post-fertilization. In the absence of Wnt signaling, tbx5 and Bmp genes initiate normal dorsal retinal expression but are not maintained. The expression of these genes is rescued by the downstream activation of Wnt signaling, and tbx5 is rescued by Bmp signaling. Furthermore, activation of Wnt signaling cannot rescue tbx5 in the absence of Bmp signaling, suggesting that Wnt signaling maintains dorsal retinal gene expression by regulating Bmp signaling. We present a model in which dorsal RPE-derived Wnt activity maintains the expression of Bmp ligands in the dorsal retina, thus coordinating the patterning of these two ocular tissues.
Collapse
Affiliation(s)
- Eric S Veien
- Department of Neurobiology and Anatomy, University of Utah, 401 MREB, 20 N. 1900 E., Salt Lake City, UT 84132, USA
| | | | | | | | | |
Collapse
|
117
|
Trimarchi JM, Harpavat S, Billings NA, Cepko CL. Thyroid hormone components are expressed in three sequential waves during development of the chick retina. BMC DEVELOPMENTAL BIOLOGY 2008; 8:101. [PMID: 18854032 PMCID: PMC2579430 DOI: 10.1186/1471-213x-8-101] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2008] [Accepted: 10/14/2008] [Indexed: 11/21/2022]
Abstract
BACKGROUND Thyroid hormone (TH) is an important developmental regulator in many tissues, including the retina. TH is activated locally via deiodinase 2 (Dio2), and it is destroyed by deiodinase 3 (Dio3). The TH receptors, TRa and TRb, mediate TH activity through hormone and DNA binding, and interactions with transcription regulators. RESULTS In the current work, the expression of these TH components was examined in the chick retina over time. Three waves of expression were characterized and found to be correlated with critical developmental events. The first wave occurred as progenitor cells began to make photoreceptors, the second as some cell types adopted a more mature location and differentiation state, and the third as Müller glia were generated. The cell types expressing the components, as well as the kinetics of expression within the cell cycle, were defined. TRb expression initiated during G2 in progenitor cells, concomitant with NeuroD and Otx2, which are expressed in early photoreceptor cells. TRb was expressed in photoreceptor cells for several days and then was reduced in expression level, as the expression of Crx, a later photoreceptor gene, became more evident. Dio3 was expressed throughout the cell cycle in progenitor cells. TRa was in most, if not all, retinal cells. Dio2 appeared transiently in a ventral (high) to dorsal gradient, likely in a subset of photoreceptor cells. CONCLUSION Multiple TH components were expressed in dynamic patterns in cycling progenitor cells and photoreceptors cells across the developing chick retina. These dynamic patterns suggest that TH is playing several roles in retinal development, both within the cycling progenitor cells and possibly with respect to the timing of differentiation of photoreceptor cells.
Collapse
Affiliation(s)
- Jeffrey M Trimarchi
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | | | - Nathan A Billings
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Constance L Cepko
- Department of Genetics and Howard Hughes Medical Institute, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| |
Collapse
|
118
|
CD138/Syndecan-1 and SSEA-1 Mark Distinct Populations of Developing Ciliary Epithelium That Are Regulated Differentially by Wnt Signal. Stem Cells 2008; 26:3162-71. [DOI: 10.1634/stemcells.2008-0303] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
119
|
Burns CJ, Zhang J, Brown EC, Van Bibber AM, Van Es J, Clevers H, Ishikawa TO, Taketo MM, Vetter ML, Fuhrmann S. Investigation of Frizzled-5 during embryonic neural development in mouse. Dev Dyn 2008; 237:1614-26. [PMID: 18489003 DOI: 10.1002/dvdy.21565] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Recent studies revealed that the Wnt receptor Frizzled-5 (Fzd5) is required for eye and retina development in zebrafish and Xenopus, however, its role during mammalian eye development is unknown. In the mouse embryo, Fzd5 is prominently expressed in the pituitary, distal optic vesicle, and optic stalk, then later in the progenitor zone of the developing retina. To elucidate the role of Fzd5 during eye development, we analyzed embryos with a germline disruption of the Fzd5 gene at E10.25, just before embryos die due to defects in yolk sac angiogenesis. We observed severe defects in optic cup morphogenesis and lens development. However, in embryos with conditional inactivation of Fzd5 using Six3-Cre, we observed no obvious early eye defects. Analysis of Axin2 mRNA expression and TCF/LEF-responsive reporter activation demonstrate that Fzd5 does not regulate the Wnt/beta-catenin pathway in the eye. Thus, the function of Fzd5 during eye development appears to be species-dependent.
Collapse
Affiliation(s)
- Carole J Burns
- Department of Neurobiology and Anatomy, John A. Moran Eye Center, University of Utah, Salt Lake City, Utah 84132, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
120
|
Cain S, Martinez G, Kokkinos MI, Turner K, Richardson RJ, Abud HE, Huelsken J, Robinson ML, de Iongh RU. Differential requirement for beta-catenin in epithelial and fiber cells during lens development. Dev Biol 2008; 321:420-33. [PMID: 18652817 DOI: 10.1016/j.ydbio.2008.07.002] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2007] [Revised: 06/27/2008] [Accepted: 07/01/2008] [Indexed: 11/18/2022]
Abstract
Recent studies implicate Wnt/beta-catenin signaling in lens differentiation (Stump, R. J., et al., 2003. A role for Wnt/beta-catenin signaling in lens epithelial differentiation. Dev Biol;259:48-61). Beta-catenin is a component of adherens junctions and functions as a transcriptional activator in canonical Wnt signaling. We investigated the effects of Cre/LoxP-mediated deletion of beta-catenin during lens development using two Cre lines that specifically deleted beta-catenin in whole lens or only in differentiated fibers, from E13.5. We found that beta-catenin was required in lens epithelium and during early fiber differentiation but appeared to be redundant in differentiated fiber cells. Complete loss of beta-catenin resulted in an abnormal and deficient epithelial layer with loss of E-cadherin and Pax6 expression as well as abnormal expression of c-Maf and p57(kip2) but not Prox1. There was also disrupted fiber cell differentiation, characterized by poor cell elongation, decreased beta-crystallin expression, epithelial cell cycle arrest at G(1)-S transition and premature cell cycle exit. Despite cell cycle arrest there was no induction of apoptosis. Mutant fiber cells displayed altered apical-basal polarity as evidenced by altered distribution of the tight junction protein, ZO1, disruption of apical actin filaments and abnormal deposition of extracellular matrix, resulting in a deficient lens capsule. Loss of beta-catenin also affected the formation of adhesion junctions as evidenced by dissociation of N-cadherin and F-actin localization in differentiating fiber cells. However, loss of beta-catenin from terminally differentiating fibers had no apparent effects on adhesion junctions between adjacent embryonic fibers. These data indicate that beta-catenin plays distinct functions during lens fiber differentiation and is involved in both Wnt signaling and adhesion-related mechanisms that regulate lens epithelium and early fiber differentiation.
Collapse
Affiliation(s)
- Sarah Cain
- Ocular Development Laboratory, Anatomy and Cell Biology Department, University of Melbourne, Victoria 3010, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
121
|
Fuhrmann S, Riesenberg AN, Mathiesen AM, Brown EC, Vetter ML, Brown NL. Characterization of a transient TCF/LEF-responsive progenitor population in the embryonic mouse retina. Invest Ophthalmol Vis Sci 2008; 50:432-40. [PMID: 18599572 DOI: 10.1167/iovs.08-2270] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE High mobility group (HMG) transcription factors of the T-cell-specific transcription factor/lymphoid enhancer binding factor (TCF/LEF) family are a class of intrinsic regulators that are dynamically expressed in the embryonic mouse retina. Activation of TCF/LEFs is a hallmark of the Wnt/beta-catenin pathway; however, the requirement for Wnt/beta-catenin and noncanonical Wnt signaling during mammalian retinal development remains unclear. The goal of the study was to characterize more fully a TCF/LEF-responsive retinal progenitor population in the mouse embryo and to correlate this with Wnt/beta-catenin signaling. METHODS TCF/LEF activation was analyzed in the TOPgal (TCF optimal promoter) reporter mouse at embryonic ages and compared to Axin2 mRNA expression, an endogenous readout of Wnt/beta-catenin signaling. Reporter expression was also examined in embryos with a retina-specific deletion of the beta-catenin gene (Ctnnb1), using Six3-Cre transgenic mice. Finally, the extent to which TOPgal cells coexpress cell cycle proteins, basic helix-loop-helix (bHLH) transcription factors, and other retinal cell markers was tested by double immunohistochemistry. RESULTS TOPgal reporter activation occurred transiently in a subpopulation of embryonic retinal progenitor cells. Axin2 was not expressed in the central retina, and TOPgal reporter expression persisted in the absence of beta-catenin. Although a proportion of TOPgal-labeled cells were proliferative, most coexpressed the cyclin-dependent kinase inhibitor p27/Kip1. CONCLUSIONS TOPgal cells give rise to the four earliest cell types: ganglion, amacrine, horizontal, and photoreceptor. TCF/LEF activation in the central retina does not correlate with Wnt/beta-catenin signaling, pointing to an alternate role for this transcription factor family during retinal development.
Collapse
Affiliation(s)
- Sabine Fuhrmann
- Department of Ophthalmology and Visual Sciences, Moran Eye Center, University of Utah, Salt Lake City, Utah 84132, USA.
| | | | | | | | | | | |
Collapse
|
122
|
Denayer T, Locker M, Borday C, Deroo T, Janssens S, Hecht A, van Roy F, Perron M, Vleminckx K. Canonical Wnt signaling controls proliferation of retinal stem/progenitor cells in postembryonic Xenopus eyes. Stem Cells 2008; 26:2063-74. [PMID: 18556512 DOI: 10.1634/stemcells.2007-0900] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Vertebrate retinal stem cells, which reside quiescently within the ciliary margin, may offer a possibility for treatment of degenerative retinopathies. The highly proliferative retinal precursor cells in Xenopus eyes are confined to the most peripheral region, called the ciliary marginal zone (CMZ). Although the canonical Wnt pathway has been implicated in the developing retina of different species, little is known about its involvement in postembryonic retinas. Using a green fluorescent protein-based Wnt-responsive reporter, we show that in transgenic Xenopus tadpoles, the canonical Wnt signaling is activated in the postembryonic CMZ. To further investigate the functional implications of this, we generated transgenic, hormone-inducible canonical Wnt pathway activating and repressing systems, which are directed to specifically intersect at the nuclear endpoint of transcriptional Wnt target gene activation. We found that postembryonic induction of the canonical Wnt pathway in transgenic retinas resulted in increased proliferation in the CMZ compartment. This is most likely due to delayed cell cycle exit, as inferred from a pulse-chase experiment on 5-bromo-2'-deoxyuridine-labeled retinal precursors. Conversely, repression of the canonical Wnt pathway inhibited proliferation of CMZ cells. Neither activation nor repression of the Wnt pathway affected the differentiated cells in the central retina. We conclude that even at postembryonic stages, the canonical Wnt signaling pathway continues to have a major function in promoting proliferation and maintaining retinal stem cells. These findings may contribute to the eventual design of vertebrate, stem cell-based retinal therapies. Disclosure of potential conflicts of interest is found at the end of this article.
Collapse
Affiliation(s)
- Tinneke Denayer
- Department of Molecular Biomedical Research, VIB, Ghent, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
123
|
Abstract
In the vertebrate retina, stem cells with prolonged proliferative capacities reside in the most peripheral region, the ciliary marginal zone (CMZ), and they persist even after the functional eye has formed. These stem cells contribute to the formation of the retinal structures during the postnatal period in vivo, or can expand as neurospheres in vitro. Despite the wealth of anatomical descriptions of the characteristics of CMZ cells, molecular mechanisms for their specification or maintenance have long been uncharacterized. Recent studies provide evidence that certain secreted signaling molecules act as key regulators at multiple steps during these processes. In this review, we discuss the molecular basis for the regulation of retinal stem cells and their related cell types, especially focusing on the role of Wnt signaling.
Collapse
Affiliation(s)
- Fumi Kubo
- RIKEN Frontier Research System, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
| | | |
Collapse
|
124
|
Davis-Silberman N, Ashery-Padan R. Iris development in vertebrates; genetic and molecular considerations. Brain Res 2008; 1192:17-28. [PMID: 17466284 DOI: 10.1016/j.brainres.2007.03.043] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2007] [Revised: 03/11/2007] [Accepted: 03/16/2007] [Indexed: 10/23/2022]
Abstract
The iris plays a key role in visual function. It regulates the amount of light entering the eye and falling on the retina and also operates in focal adjustment of closer objects. The iris is involved in circulation of the aqueous humor and hence functions in regulation of intraocular pressure. Intriguingly, iris pigmented cells possess the ability to transdifferentiate into different ocular cell types of retinal pigmented epithelium, photoreceptors and lens cells. Thus, the iris is considered a potential source for cell-replacement therapies. During embryogenesis, the iris arises from both the optic cup and the periocular mesenchyme. Its interesting mode of development includes specification of the peripheral optic cup to a non-neuronal fate, migration of cells from the surrounding periocular mesenchyme and an atypical formation of smooth muscles from the neuroectoderm. This manner of development raises some interesting general topics concerning the early patterning of the neuroectoderm, the specification and differentiation of diverse cell types and the interactions between intrinsic and extrinsic factors in the process of organogenesis. In this review, we discuss iris anatomy and development, describe major pathologies of the iris and their molecular etiology and finally summarize the recent findings on genes and signaling pathways that are involved in iris development.
Collapse
Affiliation(s)
- Noa Davis-Silberman
- Sackler Faculty of Medicine, Department of Human Molecular Genetics and Biochemistry, Tel Aviv University, Ramat Aviv 69978, Tel Aviv, Israel
| | | |
Collapse
|
125
|
Yi H, Nakamura REI, Mohamed O, Dufort D, Hackam AS. Characterization of Wnt signaling during photoreceptor degeneration. Invest Ophthalmol Vis Sci 2008; 48:5733-41. [PMID: 18055826 DOI: 10.1167/iovs.07-0097] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
PURPOSE The Wnt pathway is an essential signaling cascade that regulates multiple processes in developing and adult tissues, including differentiation, cellular survival, and stem cell proliferation. The authors recently demonstrated altered expression of Wnt pathway genes during photoreceptor death in rd1 mice, suggesting an involvement for Wnt signaling in the disease process. In this study, the authors investigated the role of Wnt signaling in retinal degeneration. METHODS The Wnt signaling reporter mouse line Tcf-LacZ was crossed with retinal degeneration rd1 mice, and beta-galactosidase expression was used to localize Wnt signaling during photoreceptor death. To analyze the role of Wnt signaling activation, primary mixed retinal cultures were prepared, and XTT and TUNEL assays were used to quantify cell death. Luciferase reporter assays were used to measure Wnt signaling. RESULTS The canonical Wnt signaling pathway was activated in Müller glia and the ganglion cell layer during rod photoreceptor degeneration in rd1/Tcf-LacZ mice. Wnt signaling was confirmed in cultured primary Müller glia. Furthermore, Wnt signaling activators protected photoreceptors in primary retinal cultures from H(2)O(2)-induced oxidative stress. The Wnt ligands Wnt5a, Wnt5b, Wnt10a, and Wnt13 were expressed in the degenerating retina and are candidate Wnt signaling activators in vivo. CONCLUSIONS This study is the first demonstration that Wnt signaling is activated in the degenerating retina and that it protects retinal cultures from oxidative stress. These data suggest that Wnt signaling is a component of the glial protective response during photoreceptor injury. Therefore, inducing Wnt activation, alone or in combination with growth factors, may increase the threshold for apoptosis and halt or delay further photoreceptor degeneration.
Collapse
Affiliation(s)
- Hyun Yi
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, FL 33136, USA
| | | | | | | | | |
Collapse
|
126
|
Mizukami M, Kanamoto T, Souchelnytskyi N, Kiuchi Y. Proteome profiling of embryo chick retina. Proteome Sci 2008; 6:3. [PMID: 18208622 PMCID: PMC2267454 DOI: 10.1186/1477-5956-6-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2007] [Accepted: 01/22/2008] [Indexed: 12/23/2022] Open
Abstract
Background Little is known regarding the molecular pathways that underlie the process of retinal development. The purpose of this study was to identify proteins which may be involved in development of retina. We used a proteomics-based approach to identify proteins that are up- or down-regulated during the development of the embryo chick retina. Results Two-dimensional gel electrophoresis was performed with the retina of embryo chicken, which was obtained from embryos of day 7 (ED7) and of day 11 (ED11). The protein spots showing significant differences were selected for identification by MALDI mass spectrometry. Thirteen proteins were differentially expressed; seven proteins were up-regulated in embryo retina of chicken at ED 11 and six proteins were down-regulated. Significant proteins were also evaluated in embryo day 15 (ED15). Some of identified proteins were known to regulate cell proliferation, cell death, transport, metabolism, organization and extracellular matrix, and others also included novel proteins. Conclusion We identified thirteen proteins which differentially expressed in embryonal retina of chicken at day 7, as compared to the retina of embryo of day 11. They were various regulatory proteins for cellular signaling.
Collapse
Affiliation(s)
- Mina Mizukami
- Department of Ophthalmology and Visual Science, Hiroshima University, Japan.
| | | | | | | |
Collapse
|
127
|
Kim J, Lauderdale JD. Overexpression of pairedless Pax6 in the retina disrupts corneal development and affects lens cell survival. Dev Biol 2008; 313:434-54. [DOI: 10.1016/j.ydbio.2007.10.043] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2006] [Revised: 10/23/2007] [Accepted: 10/26/2007] [Indexed: 12/12/2022]
|
128
|
Rossi E, Siwiec F, Yan CYI. Pattern of Wnt ligand expression during chick eye development. Braz J Med Biol Res 2007; 40:1333-8. [PMID: 17713656 DOI: 10.1590/s0100-879x2006005000155] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2006] [Accepted: 05/18/2007] [Indexed: 11/22/2022] Open
Abstract
The dorsoventral axis of the eye is determined prior to optic cup invagination. A variety of signaling pathways have been implicated in the maintenance of the optic dorsoventral axis, including, but not limited to, bone morphogenetic protein 4, Sonic Hedgehog and retinoic acid. Here, we investigated the possible contribution of Wnt ligands to the establishment or maintenance of the optic axis by analyzing their expression pattern during early chick optic development. We performed in situ hybridization of Wnt-1, Wnt-3a, Wnt-4, and Wnt-5a during the optic vesicle, early optic cup and established optic cup stages and focused our analysis on the optic region. Our data showed that Wnt-5a, but none of the others, is expressed in the dorsal region of the eye starting from the Hamburger and Hamilton stage 14 (HH14). These results are supported by cryosections of the labeled optic region, which further reveal that Wnt-5a is expressed only in the dorsal retinal pigmented epithelium. Thus, we propose that Wnt-5a is a marker for dorsal retinal pigmented epithelium in chick embryos from HH14 to HH19.
Collapse
Affiliation(s)
- E Rossi
- Departamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brasil
| | | | | |
Collapse
|
129
|
Liu H, Xu S, Wang Y, Mazerolle C, Thurig S, Coles BLK, Ren JC, Taketo MM, van der Kooy D, Wallace VA. Ciliary margin transdifferentiation from neural retina is controlled by canonical Wnt signaling. Dev Biol 2007; 308:54-67. [PMID: 17574231 DOI: 10.1016/j.ydbio.2007.04.052] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2006] [Revised: 04/09/2007] [Accepted: 04/30/2007] [Indexed: 11/30/2022]
Abstract
The epithelial layers of the ciliary body (CB) and iris are non-neural structures that differentiate from the anterior region of the eyecup, the ciliary margin (CM). We show here that activation of the canonical Wnt signaling pathway is sufficient and necessary for the normal development of anterior eye structures. Pharmacological activation of beta-catenin signaling with lithium (Li(+)) treatment in retinal explants in vitro induced the ectopic expression of the CM markers Otx1 and Msx1. Cre-mediated stabilization of beta-catenin expression in the peripheral retina in vivo induced a cell autonomous upregulation of CM markers at the expense of neural retina (NR) markers and inhibited neurogenesis. Consistent with a cell autonomous conversion to peripheral eye fates, the proliferation index in the region of the retina that expressed stabilized beta-catenin was identical to the wild-type CM and there was an expansion of CB-like structures at later stages. Conversely, Cre-mediated inactivation of beta-catenin reduced CM marker expression as well as the size of the CM and CB/iris. Aberrant CB development in both mouse models was also associated with a reduction in the number of retinal stem cells in vitro. In summary, activation of canonical Wnt signaling is sufficient to promote the development of peripheral eyecup fates at the expense of the NR and is also required for the normal development of anterior eyecup structures.
Collapse
Affiliation(s)
- Hong Liu
- Molecular Medicine Program, Ottawa Health Research Institute, 501 Smyth Road, Ottawa, Ontario, Canada K1H 8L6
| | | | | | | | | | | | | | | | | | | |
Collapse
|
130
|
Dias da Silva MR, Tiffin N, Mima T, Mikawa T, Hyer J. FGF-mediated induction of ciliary body tissue in the chick eye. Dev Biol 2007; 304:272-85. [PMID: 17275804 PMCID: PMC1863121 DOI: 10.1016/j.ydbio.2006.12.033] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2005] [Revised: 12/13/2006] [Accepted: 12/14/2006] [Indexed: 11/26/2022]
Abstract
Upon morphogenesis, the simple neuroepithelium of the optic vesicle gives rise to four basic tissues in the vertebrate optic cup: pigmented epithelium, sensory neural retina, secretory ciliary body and muscular iris. Pigmented epithelium and neural retina are established through interactions with specific environments and signals: periocular mesenchyme/BMP specifies pigmented epithelium and surface ectoderm/FGF specifies neural retina. The anterior portions (iris and ciliary body) are specified through interactions with lens although the molecular mechanisms of induction have not been deciphered. As lens is a source of FGF, we examined whether this factor was involved in inducing ciliary body. We forced the pigmented epithelium of the embryonic chick eye to express FGF4. Infected cells and their immediate neighbors were transformed into neural retina. At a distance from the FGF signal, the tissue transitioned back into pigmented epithelium. Ciliary body tissue was found in the transitioning zone. The ectopic ciliary body was never in contact with the lens tissue. In order to assess the contribution of the lens on the specification of normal ciliary body, we created optic cups in which the lens had been removed while still pre-lens ectoderm. Ciliary body tissue was identified in the anterior portion of lens-less optic cups. We propose that the ciliary body may be specified at optic vesicle stages, at the same developmental stage when the neural retina and pigmented epithelium are specified and we present a model as to how this could be accomplished through overlapping BMP and FGF signals.
Collapse
Affiliation(s)
- Magnus R Dias da Silva
- Department of Neurosurgery, Box 0520, University of California, San Francisco, CA 94143, USA
| | | | | | | | | |
Collapse
|
131
|
Regulation of norrin receptor frizzled-4 by Wnt2 in colon-derived cells. BMC Cell Biol 2007; 8:12. [PMID: 17386109 PMCID: PMC1847812 DOI: 10.1186/1471-2121-8-12] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2006] [Accepted: 03/26/2007] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Norrin is a potent Wnt pathway ligand. Aberrant activation of this signaling pathway can result in colon tumors but the role of norrin-based signaling in the genesis of colon cancer, and its relationship to activation of the pathway by traditional Wnt ligands, is not defined. RESULTS Fresh normal human colon tissue and all the cell lines studied expressed mRNA for Fz4, LRP5 and norrin, except Colo205 which lacked Fz4 expression. Canonical Wnt pathway throughput was increased slightly in NCM460 following treatment with Wnt3a CM but was inhibited by Wnt2 and Wnt1. The colon cancer cell line, RKO, responded to Wnt3a CM, Wnt2 and Wnt1 by increasing canonical Wnt pathway throughput. Wnt5a did not affect Wnt pathway throughput in either cell line. Wnt2, but not Wnt3a, abrogated Fz4 expression in NCM460, but not in RKO or another colon cancer cell line, HCT116. This effect on Fz4 was confirmed at both the RNA and protein levels via RT-PCR and a norrin binding assay. The expression of all others 9 Fz receptors did not change after treatment of NCM460 cells with Wnt2. CONCLUSION The data suggests that colonic mucosa and colon tumors may possess two autoregulatory positive Wnt feedback loops, one through canonical signals induced by Wnt:Fz interactions and one through signals resulting from norrin:Fz4 interactions. The latter interactions may be modulated via regulation of Fz4 expression by Wnt2. Retention of Fz4 by cancers, in contrast to the loss of Fz4 by normal mucosal cells, could provide a selective advantage to the tumor cells. Fz4 expression may play a critical role in responses to Wnt signaling in the tumor microenvironment.
Collapse
|