101
|
Zhang X, Campbell R, Ducreux LJM, Morris J, Hedley PE, Mellado‐Ortega E, Roberts AG, Stephens J, Bryan GJ, Torrance L, Chapman SN, Prat S, Taylor MA. TERMINAL FLOWER-1/CENTRORADIALIS inhibits tuberisation via protein interaction with the tuberigen activation complex. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:2263-2278. [PMID: 32593210 PMCID: PMC7540344 DOI: 10.1111/tpj.14898] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 05/18/2020] [Accepted: 06/12/2020] [Indexed: 05/04/2023]
Abstract
Potato tuber formation is a secondary developmental programme by which cells in the subapical stolon region divide and radially expand to further differentiate into starch-accumulating parenchyma. Although some details of the molecular pathway that signals tuberisation are known, important gaps in our knowledge persist. Here, the role of a member of the TERMINAL FLOWER 1/CENTRORADIALIS gene family (termed StCEN) in the negative control of tuberisation is demonstrated for what is thought to be the first time. It is shown that reduced expression of StCEN accelerates tuber formation whereas transgenic lines overexpressing this gene display delayed tuberisation and reduced tuber yield. Protein-protein interaction studies (yeast two-hybrid and bimolecular fluorescence complementation) demonstrate that StCEN binds components of the recently described tuberigen activation complex. Using transient transactivation assays, we show that the StSP6A tuberisation signal is an activation target of the tuberigen activation complex, and that co-expression of StCEN blocks activation of the StSP6A gene by StFD-Like-1. Transcriptomic analysis of transgenic lines misexpressing StCEN identifies early transcriptional events in tuber formation. These results demonstrate that StCEN suppresses tuberisation by directly antagonising the function of StSP6A in stolons, identifying StCEN as a breeding marker to improve tuber initiation and yield through the selection of genotypes with reduced StCEN expression.
Collapse
Affiliation(s)
- Xing Zhang
- College of Life Science and TechnologyHuazhong Agricultural UniversityWuhan430070China
| | - Raymond Campbell
- Cell and Molecular SciencesThe James Hutton InstituteInvergowrie, DundeeDD2 5DAUK
| | | | - Jennifer Morris
- Cell and Molecular SciencesThe James Hutton InstituteInvergowrie, DundeeDD2 5DAUK
| | - Pete E. Hedley
- Cell and Molecular SciencesThe James Hutton InstituteInvergowrie, DundeeDD2 5DAUK
| | - Elena Mellado‐Ortega
- Cell and Molecular SciencesThe James Hutton InstituteInvergowrie, DundeeDD2 5DAUK
| | - Alison G. Roberts
- Cell and Molecular SciencesThe James Hutton InstituteInvergowrie, DundeeDD2 5DAUK
| | - Jennifer Stephens
- Cell and Molecular SciencesThe James Hutton InstituteInvergowrie, DundeeDD2 5DAUK
| | - Glenn J. Bryan
- Cell and Molecular SciencesThe James Hutton InstituteInvergowrie, DundeeDD2 5DAUK
| | - Lesley Torrance
- Cell and Molecular SciencesThe James Hutton InstituteInvergowrie, DundeeDD2 5DAUK
- School of BiologyBiomolecular Sciences BuildingUniversity of St AndrewsNorth HaughSt AndrewsFifeY16 9STUK
| | - Sean N. Chapman
- Cell and Molecular SciencesThe James Hutton InstituteInvergowrie, DundeeDD2 5DAUK
| | - Salomé Prat
- Centro Nacional de BiotecnologíaC/Darwin no. 3, Campus de CantoblancoMadrid28049Spain
| | - Mark A. Taylor
- Cell and Molecular SciencesThe James Hutton InstituteInvergowrie, DundeeDD2 5DAUK
| |
Collapse
|
102
|
Soyk S, Benoit M, Lippman ZB. New Horizons for Dissecting Epistasis in Crop Quantitative Trait Variation. Annu Rev Genet 2020; 54:287-307. [PMID: 32870731 DOI: 10.1146/annurev-genet-050720-122916] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Uncovering the genes, variants, and interactions underlying crop diversity is a frontier in plant genetics. Phenotypic variation often does not reflect the cumulative effect of individual gene mutations. This deviation is due to epistasis, in which interactions between alleles are often unpredictable and quantitative in effect. Recent advances in genomics and genome-editing technologies are elevating the study of epistasis in crops. Using the traits and developmental pathways that were major targets in domestication and breeding, we highlight how epistasis is central in guiding the behavior of the genetic variation that shapes quantitative trait variation. We outline new strategies that illuminate how quantitative epistasis from modified gene dosage defines background dependencies. Advancing our understanding of epistasis in crops can reveal new principles and approaches to engineering targeted improvements in agriculture.
Collapse
Affiliation(s)
- Sebastian Soyk
- Center for Integrative Genomics, University of Lausanne, CH-1005 Lausanne, Switzerland;
| | - Matthias Benoit
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA; .,Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Zachary B Lippman
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA; .,Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| |
Collapse
|
103
|
Sun M, Li H, Li Y, Xiang H, Liu Y, He Y, Qi M, Li T. Tomato YABBY2b controls plant height through regulating indole-3-acetic acid-amido synthetase (GH3.8) expression. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 297:110530. [PMID: 32563468 DOI: 10.1016/j.plantsci.2020.110530] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 05/14/2020] [Accepted: 05/16/2020] [Indexed: 05/11/2023]
Abstract
Dwarfing is a desirable agronomic trait in cultivation management. Dwarf plants are lodging-resistant, compact, and perform well under high-density planting. The use of dwarf genetic resources is one approach to improve crop yield. YABBY2b in tomato (Solanum lycopersicum) encodes a transcription factor that regulates plant height. In this study, we created YABBY2b knockout mutant lines, and the resulting yabby2b plants exhibited reduced height and smaller flowers and fruits. The RNA-seq analysis showed that 17 genes responding to gibberellin and auxin were differentially expressed. We hypothesized that indole-3-acetic acid-amido synthetase GH3.8 (GH3.8) played a crucial role in the resulting yabby2b dwarf phenotype. Further analysis showed that YABBY2b suppresses GH3.8 gene expression by directly binding to its promoter, and that this contributes to auxin-mediated repression of GH3.8. Moreover, the silencing of GH3.8 led to increased plant height. Combined, our data suggest that YABBY2b may positively regulate plant height in tomato by inhibiting the expression of growth suppressor GH3.8.
Collapse
Affiliation(s)
- Meihua Sun
- Horticulture Department, Shenyang Agricultural University, No. 120 Dongling Road, Shenhe District 110866, PR China; National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), No. 120 Dongling Road, Shenhe District 110866, PR China; Key Laboratory of Protected Horticulture (Shenyang Agricultural University), Ministry of Education, No. 120 Dongling Road, Shenhe District 110866, PR China.
| | - Hui Li
- Key Laboratory of Agricultural Biotechnology of Liaoning Province, College of Bioscience and Biotechnology, No. 120 Dongling Road, Shenhe District 110866, PR China.
| | - Yanbing Li
- Horticulture Department, Shenyang Agricultural University, No. 120 Dongling Road, Shenhe District 110866, PR China; National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), No. 120 Dongling Road, Shenhe District 110866, PR China; Key Laboratory of Protected Horticulture (Shenyang Agricultural University), Ministry of Education, No. 120 Dongling Road, Shenhe District 110866, PR China.
| | - Hengzuo Xiang
- Horticulture Department, Shenyang Agricultural University, No. 120 Dongling Road, Shenhe District 110866, PR China; National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), No. 120 Dongling Road, Shenhe District 110866, PR China; Key Laboratory of Protected Horticulture (Shenyang Agricultural University), Ministry of Education, No. 120 Dongling Road, Shenhe District 110866, PR China.
| | - Yudong Liu
- Horticulture Department, Shenyang Agricultural University, No. 120 Dongling Road, Shenhe District 110866, PR China; National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), No. 120 Dongling Road, Shenhe District 110866, PR China; Key Laboratory of Protected Horticulture (Shenyang Agricultural University), Ministry of Education, No. 120 Dongling Road, Shenhe District 110866, PR China.
| | - Yi He
- National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), No. 120 Dongling Road, Shenhe District 110866, PR China; Key Laboratory of Protected Horticulture (Shenyang Agricultural University), Ministry of Education, No. 120 Dongling Road, Shenhe District 110866, PR China
| | - Mingfang Qi
- Horticulture Department, Shenyang Agricultural University, No. 120 Dongling Road, Shenhe District 110866, PR China; National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), No. 120 Dongling Road, Shenhe District 110866, PR China; Key Laboratory of Protected Horticulture (Shenyang Agricultural University), Ministry of Education, No. 120 Dongling Road, Shenhe District 110866, PR China.
| | - Tianlai Li
- Horticulture Department, Shenyang Agricultural University, No. 120 Dongling Road, Shenhe District 110866, PR China; National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), No. 120 Dongling Road, Shenhe District 110866, PR China; Key Laboratory of Protected Horticulture (Shenyang Agricultural University), Ministry of Education, No. 120 Dongling Road, Shenhe District 110866, PR China.
| |
Collapse
|
104
|
Safaei M, Olfati JA, Hamidoghli Y, Rabiei B, Yamamoto E, Shirasawa K. Four genetic loci control compact plant size with yellow pear-shaped fruit in ornamental tomato (Solanum lycopersicum L.). THE PLANT GENOME 2020; 13:e20017. [PMID: 33016615 DOI: 10.1002/tpg2.20017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 03/02/2020] [Accepted: 03/05/2020] [Indexed: 06/11/2023]
Abstract
Tomato is an attractive fruiting vegetable crop that can be used as an ornamental plant. Agronomical traits have been subjected to extensive genetic dissection to enhance vegetable breeding programs. By contrast, there are few genetic studies of ornamental traits for the development of ornamental tomato varieties. To investigate genetic loci linked to desired ornamental traits, we performed genetic analyses using an intraspecific mapping population that segregated for fruit color (yellow or red), fruit shape (round or pear), and plant height (high or compact). A genetic map was constructed with 965 single nucleotide polymorphisms (SNPs) and 33 simple sequence repeat markers. Subsequent linkage analysis using quantitative locus analysis and genome-wide association study detected four genetic loci for the three selected traits, all of which were located near the reported genes. We performed KASP-kompetitive allele-specific PCR-to develop SNP markers that were tightly linked to the four loci. Highly accurate genotyping data were obtained from the four SNPs across 187 F2 plants, which enabled us to select two lines with homozygous alleles for compact plant size and yellow pear-shaped fruits. These newly developed SNP markers and genetic strategies could be used to accelerate breeding programs for ornamental tomato plants.
Collapse
Affiliation(s)
- Meysam Safaei
- Department of Horticultural Sciences, Faculty of Agricultural Sciences, University of Guilan, Rasht, Guilan, Iran
- Department of Frontier Research and Development, Kazusa DNA Research Institute, Kisarazu, Chiba, 292-0818, Japan
| | - Jamal-Ali Olfati
- Department of Horticultural Sciences, Faculty of Agricultural Sciences, University of Guilan, Rasht, Guilan, Iran
| | - Yousef Hamidoghli
- Department of Horticultural Sciences, Faculty of Agricultural Sciences, University of Guilan, Rasht, Guilan, Iran
| | - Babak Rabiei
- Department of Agronomy and Plant Breeding, Faculty of Agricultural Sciences, University of Guilan, Rasht, Gilan Province, Iran
| | - Eiji Yamamoto
- Department of Frontier Research and Development, Kazusa DNA Research Institute, Kisarazu, Chiba, 292-0818, Japan
| | - Kenta Shirasawa
- Department of Frontier Research and Development, Kazusa DNA Research Institute, Kisarazu, Chiba, 292-0818, Japan
| |
Collapse
|
105
|
Rowland SD, Zumstein K, Nakayama H, Cheng Z, Flores AM, Chitwood DH, Maloof JN, Sinha NR. Leaf shape is a predictor of fruit quality and cultivar performance in tomato. THE NEW PHYTOLOGIST 2020; 226:851-865. [PMID: 31880321 PMCID: PMC7187315 DOI: 10.1111/nph.16403] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 12/14/2019] [Indexed: 05/04/2023]
Abstract
Commercial tomato (Solanum lycopersicum) is one of the most widely grown vegetable crops worldwide. Heirloom tomatoes retain extensive genetic diversity and a considerable range of fruit quality and leaf morphological traits. Here the role of leaf morphology was investigated for its impact on fruit quality. Heirloom cultivars were grown in field conditions, and BRIX by yield (BY) and other traits were measured over a 14-wk period. The complex relationships among these morphological and physiological traits were evaluated using partial least-squares path modeling, and a consensus model was developed. Photosynthesis contributed strongly to vegetative biomass and sugar content of fruits but had a negative impact on yield. Conversely leaf shape, specifically rounder leaves, had a strong positive impact on both fruit sugar content and yield. Cultivars such as Stupice and Glacier, with very round leaves, had the highest performance in both fruit sugar and yield. Our model accurately predicted BY for two commercial cultivars using leaf shape data as input. This study revealed the importance of leaf shape to fruit quality in tomato, with rounder leaves having significantly improved fruit quality. This correlation was maintained across a range of diverse genetic backgrounds and shows the importance of leaf morphology in tomato crop improvement.
Collapse
Affiliation(s)
| | | | - Hokuto Nakayama
- Department of Plant BiologyUniversity of CaliforniaDavisCA95616USA
- Gradute School of ScienceUniversity of TokyoHongo Bunkyo‐kuTokyo113‐0033Japan
| | - Zizhang Cheng
- College of ScienceSichuan Agriculture UniversityYaanSichuan Province625014China
| | - Amber M. Flores
- Department of Plant BiologyUniversity of CaliforniaDavisCA95616USA
| | - Daniel H. Chitwood
- Department of Plant BiologyUniversity of CaliforniaDavisCA95616USA
- Department of HorticultureMichigan State UniversityEast LansingMI48824USA
| | - Julin N. Maloof
- Department of Plant BiologyUniversity of CaliforniaDavisCA95616USA
| | - Neelima R. Sinha
- Department of Plant BiologyUniversity of CaliforniaDavisCA95616USA
| |
Collapse
|
106
|
Robledo JM, Medeiros D, Vicente MH, Azevedo AA, Thompson AJ, Peres LEP, Ribeiro DM, Araújo WL, Zsögön A. Control of water-use efficiency by florigen. PLANT, CELL & ENVIRONMENT 2020; 43:76-86. [PMID: 31691316 DOI: 10.1111/pce.13664] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/05/2019] [Accepted: 10/07/2019] [Indexed: 06/10/2023]
Abstract
A major issue in modern agriculture is water loss through stomata during photosynthetic carbon assimilation. In water-limited ecosystems, annual plants have strategies to synchronize their growth and reproduction to the availability of water. Some species or ecotypes of flowers are early to ensure that their life cycles are completed before the onset of late season terminal drought ("drought escape"). This accelerated flowering correlates with low water-use efficiency (WUE). The molecular players and physiological mechanisms involved in this coordination are not fully understood. We analyzed WUE using gravimetry, gas exchange, and carbon isotope discrimination in florigen deficient (sft mutant), wild-type (Micro-Tom), and florigen over-expressing (SFT-ox) tomato lines. Increased florigen expression led to accelerated flowering time and reduced WUE. The low WUE of SFT-ox was driven by higher stomatal conductance and thinner leaf blades. This florigen-driven effect on WUE appears be independent of abscisic acid (ABA). Our results open a new avenue to increase WUE in crops in an ABA-independent manner. Manipulation of florigen levels could allow us to produce crops with a life cycle synchronized to water availability.
Collapse
Affiliation(s)
- Jessenia M Robledo
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Brazil
| | - David Medeiros
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Mateus H Vicente
- Laboratory of Hormonal Control of Plant Development. Departamento de Ciências Biológicas (LCB), Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, Piracicaba, Brazil
| | - Aristéa A Azevedo
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Andrew J Thompson
- Cranfield Soil and Agrifood Institute, Cranfield University, Bedfordshire, UK
| | - Lázaro E P Peres
- Laboratory of Hormonal Control of Plant Development. Departamento de Ciências Biológicas (LCB), Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, Piracicaba, Brazil
| | - Dimas M Ribeiro
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Wagner L Araújo
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Agustin Zsögön
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Brazil
| |
Collapse
|
107
|
Jiang Y, Zhu Y, Zhang L, Su W, Peng J, Yang X, Song H, Gao Y, Lin S. EjTFL1 Genes Promote Growth but Inhibit Flower Bud Differentiation in Loquat. FRONTIERS IN PLANT SCIENCE 2020; 11:576. [PMID: 32528491 PMCID: PMC7247538 DOI: 10.3389/fpls.2020.00576] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 04/17/2020] [Indexed: 05/14/2023]
Abstract
TERMINAL FLOWER1 (TFL1), a key factor belonging to the phosphatidyl ethanolamine-binding protein (PEBP) family, controls flowering time and inflorescence architecture in some plants. However, the role of TFL1 in loquat remains unknown. In this study, we cloned two TFL1-like genes (EjTFL1-1 and EjTFL1-2) with conserved deduced amino acid sequences from cultivated loquat (Eriobotrya japonica Lindl.). First, we determined that flower bud differentiation occurs at the end of June and early July, and then comprehensively analyzed the temporal and spatial expression patterns of these EjTFL1s during loquat growth and development. We observed the contrasting expression trends for EjTFL1s and EjAP1s (APETALA 1) in shoot apices, and EjTFL1s were mainly expressed in young tissues. In addition, short-day and exogenous GA3 treatments promoted the expression of EjTFL1s, and no flower bud differentiation was observed after these treatments in loquat. Moreover, EjTFL1s were localized to the cytoplasm and nucleus, and both interacted with another flowering transcription factor, EjFD, in the nucleus, and EjTFL1s-EjFD complex significantly repressed the promoter activity of EjAP1-1. The two EjTFL1s were overexpressed in wild-type Arabidopsis thaliana Col-0, which delayed flowering time, promoted stem elongation, increased the number of branches, and also affected flower and silique phenotypes. In conclusion, our results suggested that EjTFL1-1 and EjTFL1-2 do not show the same pattern of expression whereas both are able of inhibiting flower bud differentiation and promoting vegetative growth in loquat by integrating GA3 and photoperiod signals. These findings provide useful clues for analyzing the flowering regulatory network of loquat and provide meaningful references for flowering regulation research of other woody fruit trees.
Collapse
Affiliation(s)
- Yuanyuan Jiang
- Henry Fok College of Biology and Agriculture, Shaoguan University, Shaoguan, China
- Key Laboratory of South China Horticultural Crop Biology and Germplasm Enhancement, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Yunmei Zhu
- Key Laboratory of South China Horticultural Crop Biology and Germplasm Enhancement, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Ling Zhang
- Key Laboratory of South China Horticultural Crop Biology and Germplasm Enhancement, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Wenbing Su
- Key Laboratory of South China Horticultural Crop Biology and Germplasm Enhancement, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Jiangrong Peng
- Key Laboratory of South China Horticultural Crop Biology and Germplasm Enhancement, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Xianghui Yang
- Key Laboratory of South China Horticultural Crop Biology and Germplasm Enhancement, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Huwei Song
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology Around Hongze Lake, Huaiyin Normal University, Huai’an, China
| | - Yongshun Gao
- Key Laboratory of South China Horticultural Crop Biology and Germplasm Enhancement, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou, China
- Beijing Academy of Forestry and Pomology Sciences, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- *Correspondence: Yongshun Gao,
| | - Shunquan Lin
- Key Laboratory of South China Horticultural Crop Biology and Germplasm Enhancement, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou, China
- Shunquan Lin,
| |
Collapse
|
108
|
Zhang D, Wang X, Li S, Wang C, Gosney MJ, Mickelbart MV, Ma J. A Post-domestication Mutation, Dt2, Triggers Systemic Modification of Divergent and Convergent Pathways Modulating Multiple Agronomic Traits in Soybean. MOLECULAR PLANT 2019; 12:1366-1382. [PMID: 31152912 DOI: 10.1016/j.molp.2019.05.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 04/28/2019] [Accepted: 05/19/2019] [Indexed: 05/28/2023]
Abstract
The semi-determinate stem growth habit in leguminous crops, similar to the "green revolution" semi-dwarf trait in cereals, is a key plant architecture trait that affects several other traits determining grain yield. In soybean semi-determinacy is modulated by a post-domestication gain-of-function mutation in the gene, Dt2, which encodes an MADS-box transcription factor. However, its role in systemic modification of stem growth and other traits is unknown. In this study, we show that Dt2 functions not only as a direct repressor of Dt1, which prevents terminal flowering, but also as a direct activator of putative floral integrator/identity genes including GmSOC1, GmAP1, and GmFUL, which likely promote flowering. We also demonstrate that Dt2 functions as a direct repressor of the putative drought-responsive transcription factor gene GmDREB1D, and as a direct activator of GmSPCH and GmGRP7, which are potentially associated with asymmetric division of young epidermal cells and stomatal opening, respectively, and may affect the plant's water-use efficiency (WUE). Intriguingly, Dt2 was found to be a direct activator or repressor of the precursors of eight microRNAs targeting genes potentially associated with meristem maintenance, flowering time, stomatal density, WUE, and/or stress responses. This study thus reveals the molecular basis of pleiotropy associated with plant productivity, adaptability, and environmental resilience.
Collapse
Affiliation(s)
- Dajian Zhang
- Department of Agronomy, Purdue University, West Lafayette, IN 47907, USA; College of Agronomy, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Xutong Wang
- Department of Agronomy, Purdue University, West Lafayette, IN 47907, USA
| | - Shuo Li
- Department of Agronomy, Purdue University, West Lafayette, IN 47907, USA; School of Life Sciences, Shandong University, Qingdao, Shandong 266237, China
| | - Chaofan Wang
- College of Agronomy, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Michael J Gosney
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA
| | - Michael V Mickelbart
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA; Center for Plant Biology, Purdue University, West Lafayette, IN 47907, USA
| | - Jianxin Ma
- Department of Agronomy, Purdue University, West Lafayette, IN 47907, USA; Center for Plant Biology, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
109
|
Dalvi VS, Patil YA, Krishna B, Sane PV, Sane AP. Indeterminate growth of the umbel inflorescence and bulb is associated with increased expression of the TFL1 homologue, AcTFL1, in onion. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 287:110165. [PMID: 31481221 DOI: 10.1016/j.plantsci.2019.110165] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 06/02/2019] [Accepted: 06/04/2019] [Indexed: 05/24/2023]
Abstract
TERMINAL FLOWER1 (TFL1) is a key gene for maintenance of vegetative and inflorescence indeterminacy and architecture. In onion, flowering and bulbing are two distinct developmental phases, each under complex environmental regulatory control. We have identified two CEN/TFL1-like genes from onion designated as AcTFL1 and AcCEN1. AcTFL1 is expressed during bulbing and inflorescence development with expression increasing with indeterminate growth of the umbel and the bulb suggesting possible conservation of function. Increase in AcTFL1 expression during umbel growth is associated with a simultaneous reduction in expression of AcLFY. Expression of AcTFL1 within the bulb is lowest in the outermost layers and highest in the innermost (youngest) layers. Bulb storage at room temperature or in cold leads to a gradual reduction in AcTFL1 levels in the meristem-containing tissues, the decrease being faster in the variety not requiring vernalization. Constitutive expression of AcTFL1, but not AcCEN1 complements the Arabidopsis tfl1-14 mutant and delays flowering in wild type suggesting conservation of the AcTFL1 function even in the distantly related Arabidopsis. Taken together, AcTFL1 appears to be the functional counterpart of TFL1 and regulates indeterminate growth of the umbel inflorescence as well as bulb development in onion.
Collapse
Affiliation(s)
- Vijayendra S Dalvi
- Division of Plant Molecular Biology, Jain R&D laboratory, Jain Irrigation Systems Ltd, Agripark, Jain Hills, Shirsoli Road, Jalgaon, 425 001, India
| | - Yogesh A Patil
- Division of Plant Molecular Biology, Jain R&D laboratory, Jain Irrigation Systems Ltd, Agripark, Jain Hills, Shirsoli Road, Jalgaon, 425 001, India
| | - Bal Krishna
- Division of Plant Molecular Biology, Jain R&D laboratory, Jain Irrigation Systems Ltd, Agripark, Jain Hills, Shirsoli Road, Jalgaon, 425 001, India.
| | - Prafullachandra V Sane
- Division of Plant Molecular Biology, Jain R&D laboratory, Jain Irrigation Systems Ltd, Agripark, Jain Hills, Shirsoli Road, Jalgaon, 425 001, India
| | - Aniruddha P Sane
- Plant Gene Expression Lab, CSIR-National Botanical Research Institute, Lucknow, 226001, India.
| |
Collapse
|
110
|
Eshed Y, Lippman ZB. Revolutions in agriculture chart a course for targeted breeding of old and new crops. Science 2019; 366:science.aax0025. [PMID: 31488704 DOI: 10.1126/science.aax0025] [Citation(s) in RCA: 162] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The dominance of the major crops that feed humans and their livestock arose from agricultural revolutions that increased productivity and adapted plants to large-scale farming practices. Two hormone systems that universally control flowering and plant architecture, florigen and gibberellin, were the source of multiple revolutions that modified reproductive transitions and proportional growth among plant parts. Although step changes based on serendipitous mutations in these hormone systems laid the foundation, genetic and agronomic tuning were required for broad agricultural benefits. We propose that generating targeted genetic variation in core components of both systems would elicit a wider range of phenotypic variation. Incorporating this enhanced diversity into breeding programs of conventional and underutilized crops could help to meet the future needs of the human diet and promote sustainable agriculture.
Collapse
Affiliation(s)
- Yuval Eshed
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel.
| | - Zachary B Lippman
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA. .,Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
| |
Collapse
|
111
|
Shcherban AB. Prospects for marker-associated selection in tomato <i>Solanum lycopersicum</i> L. Vavilovskii Zhurnal Genet Selektsii 2019. [DOI: 10.18699/vj19.522] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The review gives a brief description of tomato, one of the main objects of olericulture for Siberia. The data on the main directions in the breeding of this culture, such as resistance to various pathogens, the nutritional properties of fruits, the timing of their maturation and storage are generalized. A separate chapter is devoted to the use of various types of DNA markers for constructing detailed genetic maps of the specified object, which, along with full-genome sequencing data, can be used to screen for genes responsible for breeding traits. Most of these traits, especially specific resistance to one or another pathogen, were transferred to the cultivated tomato by crossing with wild species, therefore, special attention was paid in the article to identifying and marking resistance genes to a variety of viral, fungal and bacterial pathogens occurring in Western Siberia and adjacent areas. Another important aspect for breeding is the nutrient content of tomato fruits, including carotenoids, vitamins, sugars, organic acids, etc. Recently, due to modern technologies of sequencing, SNP-genotyping, the development of new bioinformatic approaches, it has become possible to establish genetic cascades determining the biochemical composition of tomato fruits, to identify key genes that can be used in the future for marker-associated selection of nutritional value. And, finally, genetic works devoted to the problem of the optimal dates of fruit ripening in certain climatic conditions and their prolonged storage without loss of quality are discussed.
Collapse
|
112
|
Wu L, Li F, Deng Q, Zhang S, Zhou Q, Chen F, Liu B, Bao M, Liu G. Identification and Characterization of the FLOWERING LOCUS T/TERMINAL FLOWER 1 Gene Family in Petunia. DNA Cell Biol 2019; 38:982-995. [PMID: 31411493 DOI: 10.1089/dna.2019.4720] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The phosphatidylethanolamine-binding protein (PEBP) gene family exists in all eukaryote kingdoms, with three subfamilies: FT (FLOWERING LOCUS T)-like, TFL1 (TERMINAL FLOWER 1)-like, and MFT (MOTHER OF FT AND TFL1)-like. FT genes promote flowering, TFL1 genes act as a repressor of the floral transition, and MFT genes have functions in flowering promotion and regulating seed germination. We identified and characterized orthologs of the Arabidopsis FT/TFL1 gene family in petunia to elucidate their expression patterns and evolution. Thirteen FT/TFL1-like genes were isolated from petunia, with the five FT-like genes mainly expressed in leaves. The circadian rhythms of five FT-like genes and PhCO (petunia CONSTANS ortholog) were figured out. The expression of PhFT1 was contrary to that of PhFT2, PhFT3, PhFT4, and PhFT5. PhCO had a circadian clock different from Arabidopsis CO, but coincided with PhFT1; it decreased in daytime and accumulated at night. Two of the FT-like genes with differential circadian rhythm and higher expression levels, PhFT1 and PhFT4, were used to transform Arabidopsis. Eventually, overexpressing PhFT1 strongly delayed flowering, whereas overexpression of PhFT4 produced extremely early-flowering phenotype. Different from previous reports, PhTFL1a, PhTFL1b, and PhTFL1c were relatively highly expressed in roots. Taken together, this study demonstrates that petunia FT-like genes, like FT, are able to respond to photoperiod. The expression pattern of FT/TFL1 gene family in petunia contributes to a new insight into the functional evolution of this gene family.
Collapse
Affiliation(s)
- Lan Wu
- Key Laboratory of Horticultural Plant Biology, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Fei Li
- Key Laboratory of Horticultural Plant Biology, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Qiaohong Deng
- Key Laboratory of Horticultural Plant Biology, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China.,CottonConnect China Co., Ltd, Shijiazhuang, China
| | - Sisi Zhang
- Key Laboratory of Horticultural Plant Biology, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China.,Wuhan Institute of Landscape Architecture, Wuhan, China
| | - Qin Zhou
- Key Laboratory of Horticultural Plant Biology, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Feng Chen
- Key Laboratory of Horticultural Plant Biology, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Baojun Liu
- Key Laboratory of Horticultural Plant Biology, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Manzhu Bao
- Key Laboratory of Horticultural Plant Biology, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Guofeng Liu
- Deparment of Botany, Guangzhou Institute of Forestry and Landscape Architecture, Guangzhou, China
| |
Collapse
|
113
|
Wen C, Zhao W, Liu W, Yang L, Wang Y, Liu X, Xu Y, Ren H, Guo Y, Li C, Li J, Weng Y, Zhang X. CsTFL1 inhibits determinate growth and terminal flower formation through interaction with CsNOT2a in cucumber. Development 2019; 146:dev180166. [PMID: 31320327 PMCID: PMC6679365 DOI: 10.1242/dev.180166] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 06/21/2019] [Indexed: 12/11/2022]
Abstract
Cucumber (Cucumis sativus L.) is an important vegetable crop that carries on vegetative growth and reproductive growth simultaneously. Indeterminate growth is favourable for fresh market under protected environments, whereas determinate growth is preferred for pickling cucumber in the once-over mechanical harvest system. The genetic basis of determinacy is largely unknown in cucumber. In this study, map-based cloning of the de locus showed that the determinate growth habit is caused by a non-synonymous SNP in CsTFL1CsTFL1 is expressed in the subapical regions of the shoot apical meristem, lateral meristem and young stems. Ectopic expression of CsTFL1 rescued the terminal flower phenotype in the Arabidopsis tfl1-11 mutant and delayed flowering in wild-type Arabidopsis Knockdown of CsTFL1 resulted in determinate growth and formation of terminal flowers in cucumber. Biochemical analyses indicated that CsTFL1 interacts with a homolog of the miRNA biogenesis gene CsNOT2a; CsNOT2a interacts with FDP. Cucumber CsFT directly interacts with CsNOT2a and CsFD, and CsFD interacts with two 14-3-3 proteins. These data suggest that CsTFL1 competes with CsFT for interaction with CsNOT2a-CsFDP to inhibit determinate growth and terminal flower formation in cucumber.
Collapse
Affiliation(s)
- Changlong Wen
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agricultural and Forestry Sciences, Beijing Key Laboratory of Vegetable Germplasms Improvement, National Engineering Research Center for Vegetables, Beijing 100097, China
- Department of Horticulture, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Wensheng Zhao
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China
| | - Weilun Liu
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agricultural and Forestry Sciences, Beijing Key Laboratory of Vegetable Germplasms Improvement, National Engineering Research Center for Vegetables, Beijing 100097, China
| | - Luming Yang
- Department of Horticulture, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Yuhui Wang
- Department of Horticulture, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Xingwang Liu
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China
| | - Yong Xu
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agricultural and Forestry Sciences, Beijing Key Laboratory of Vegetable Germplasms Improvement, National Engineering Research Center for Vegetables, Beijing 100097, China
| | - Huazhong Ren
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China
| | - Yangdong Guo
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China
| | - Cong Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jigang Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yiqun Weng
- Department of Horticulture, University of Wisconsin-Madison, Madison, WI 53706, USA
- USDA-ARS, Vegetable Crops Research Unit, 1575 Linden Drive, Madison, WI 53706, USA
| | - Xiaolan Zhang
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China
| |
Collapse
|
114
|
Manrique S, Friel J, Gramazio P, Hasing T, Ezquer I, Bombarely A. Genetic insights into the modification of the pre-fertilization mechanisms during plant domestication. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:3007-3019. [PMID: 31152173 DOI: 10.1093/jxb/erz231] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Accepted: 05/02/2019] [Indexed: 05/26/2023]
Abstract
Plant domestication is the process of adapting plants to human use by selecting specific traits. The selection process often involves the modification of some components of the plant reproductive mechanisms. Allelic variants of genes associated with flowering time, vernalization, and the circadian clock are responsible for the adaptation of crops, such as rice, maize, barley, wheat, and tomato, to non-native latitudes. Modifications in the plant architecture and branching have been selected for higher yields and easier harvests. These phenotypes are often produced by alterations in the regulation of the transition of shoot apical meristems to inflorescences, and then to floral meristems. Floral homeotic mutants are responsible for popular double-flower phenotypes in Japanese cherries, roses, camellias, and lilies. The rise of peloric flowers in ornamentals such as snapdragon and florists' gloxinia is associated with non-functional alleles that control the relative expansion of lateral and ventral petals. Mechanisms to force outcrossing such as self-incompatibility have been removed in some tree crops cultivars such as almonds and peaches. In this review, we revisit some of these important concepts from the plant domestication perspective, focusing on four topics related to the pre-fertilization mechanisms: flowering time, inflorescence architecture, flower development, and pre-fertilization self-incompatibility mechanisms.
Collapse
Affiliation(s)
- Silvia Manrique
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | - James Friel
- Genetics and Biotechnology Laboratory, Plant and AgriBioscience Research Center (PABC), Ryan Institute, National University of Ireland Galway, Galway, Ireland
- School of Plant and Environmental Sciences (SPES), Virginia Tech, Blacksburg, VA, USA
| | - Pietro Gramazio
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana (COMAV), Universitat Politècnica de València, Valencia, Spain
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Tomas Hasing
- School of Plant and Environmental Sciences (SPES), Virginia Tech, Blacksburg, VA, USA
| | - Ignacio Ezquer
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | - Aureliano Bombarely
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
- School of Plant and Environmental Sciences (SPES), Virginia Tech, Blacksburg, VA, USA
| |
Collapse
|
115
|
Bi Z, Tahir AT, Huang H, Hua Y. Cloning and functional analysis of five TERMINAL FLOWER 1/CENTRORADIALIS-like genes from Hevea brasiliensis. PHYSIOLOGIA PLANTARUM 2019; 166:612-627. [PMID: 30069883 DOI: 10.1111/ppl.12808] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 07/12/2018] [Accepted: 07/17/2018] [Indexed: 05/14/2023]
Abstract
Five TERMINAL FLOWER 1 (TFL1)/CENTRORADIALIS (CEN)-like genes were isolated and characterized from rubber tree (Hevea brasiliensis). All genes, except HbCEN1, were found to have conserved genomic organization, characteristic of the phosphatidyl ethanolamine-binding protein (PEBP) family. Overexpression of all of them delayed flowering and altered flower architecture compared with the wild-type (wt) counterpart. In addition, as premature-flowering of the terminal bud was successfully overcome in the tfl1-1 mutant of Arabidopsis, all these genes have a potential function similar to TFL1. Quantitative reverse transcriptase-polymerase chain reaction analysis showed higher expressions of HbCEN1 and HbCEN2 in the shoot apices and stems of both immature and mature rubber trees than in reproductive organs. HbTFL1-1 and HbTFL1-2 expression was confined to roots of 3-month-old seedlings and HbTFL1-3 was significantly higher in the shoot apices of these seedlings. These results suggested that HbCEN1 and HbCEN2 could be associated with the development of vegetative growth, whereas HbTFL1-1, HbTFL1-2 and HbTFL1-3 seem to be mainly related with maintenance of juvenility. In addition, four of the five genes displayed variable diurnal expression, HbTFL1-1 and HbTFL1-3 being mainly expressed during the night whereas HbCEN1 and HbCEN2 showed irregular diurnal rhythms.
Collapse
Affiliation(s)
- Zhenghong Bi
- Key Laboratory of Rubber Biology of the Ministry of Agriculture, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, 571737, China
| | - Ayesha T Tahir
- Department of Biosciences, COMSATS University, Islamabad, Pakistan
| | - Huasun Huang
- Key Laboratory of Rubber Biology of the Ministry of Agriculture, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, 571737, China
| | - Yuwei Hua
- Key Laboratory of Rubber Biology of the Ministry of Agriculture, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, 571737, China
| |
Collapse
|
116
|
Identification and Characterization of EI ( Elongated Internode) Gene in Tomato ( Solanum lycopersicum). Int J Mol Sci 2019; 20:ijms20092204. [PMID: 31060285 PMCID: PMC6540210 DOI: 10.3390/ijms20092204] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 05/02/2019] [Accepted: 05/03/2019] [Indexed: 02/04/2023] Open
Abstract
Internode length is an important agronomic trait affecting plant architecture and crop yield. However, few genes for internode elongation have been identified in tomato. In this study, we characterized an elongated internode inbred line P502, which is a natural mutant of the tomato cultivar 05T606. The mutant P502 exhibits longer internode and higher bioactive GA concentration compared with wild-type 05T606. Genetic analysis suggested that the elongated internode trait is controlled by quantitative trait loci (QTL). Then, we identified a major QTL on chromosome 2 based on molecular markers and bulked segregant analysis (BSA). The locus was designated as EI (Elongated Internode), which explained 73.6% genetic variance. The EI was further mapped to a 75.8-kb region containing 10 genes in the reference Heinz 1706 genome. One single nucleotide polymorphism (SNP) in the coding region of solyc02g080120.1 was identified, which encodes gibberellin 2-beta-dioxygenase 7 (SlGA2ox7). SlGA2ox7, orthologous to AtGA2ox7 and AtGA2ox8, is involved in the regulation of GA degradation. Overexpression of the wild EI gene in mutant P502 caused a dwarf phenotype with a shortened internode. The difference of EI expression levels was not significant in the P502 and wild-type, but the expression levels of GA biosynthetic genes including CPS, KO, KAO, GA20ox1, GA20ox2, GA20ox4, GA3ox1, GA2ox1, GA2ox2, GA2ox4, and GA2ox5, were upregulated in mutant P502. Our results may provide a better understanding of the genetics underlying the internode elongation and valuable information to improve plant architecture of the tomato.
Collapse
|
117
|
Périlleux C, Bouché F, Randoux M, Orman-Ligeza B. Turning Meristems into Fortresses. TRENDS IN PLANT SCIENCE 2019; 24:431-442. [PMID: 30853243 DOI: 10.1016/j.tplants.2019.02.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/25/2019] [Accepted: 02/04/2019] [Indexed: 05/18/2023]
Abstract
TERMINAL FLOWER1 (TFL1) was named from knockout Arabidopsis thaliana mutants in which the inflorescence abnormally terminates into a flower. In wild type plants, the expression of TFL1 in the center of the inflorescence meristem represses the flower meristem identity genes LEAFY (LFY) and APETALA1 (AP1) to maintain indeterminacy. LFY and AP1 are activated by flowering signals that antagonize TFL1. Its characterization in numerous species revealed that the TFL1-mediated regulation of meristem fate has broader impacts on plant development than originally depicted in A. thaliana. By blocking floral transition, TFL1 genes participate in the control of juvenility, shoot growth pattern, inflorescence architecture, and the establishment of life history strategies. Here, we contextualize the role of the TFL1-mediated protection of meristem indeterminacy throughout plant development.
Collapse
Affiliation(s)
| | | | - Marie Randoux
- University of Liège, InBioS-PhytoSYSTEMS, Liège, Belgium
| | - Beata Orman-Ligeza
- University of Liège, InBioS-PhytoSYSTEMS, Liège, Belgium; Current address: National Institute of Agricultural Botany, Cambridge, UK
| |
Collapse
|
118
|
Varkonyi‐Gasic E, Wang T, Voogd C, Jeon S, Drummond RSM, Gleave AP, Allan AC. Mutagenesis of kiwifruit CENTRORADIALIS-like genes transforms a climbing woody perennial with long juvenility and axillary flowering into a compact plant with rapid terminal flowering. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:869-880. [PMID: 30302894 PMCID: PMC6587708 DOI: 10.1111/pbi.13021] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 09/27/2018] [Accepted: 10/07/2018] [Indexed: 05/08/2023]
Abstract
Annualization of woody perennials has the potential to revolutionize the breeding and production of fruit crops and rapidly improve horticultural species. Kiwifruit (Actinidia chinensis) is a recently domesticated fruit crop with a short history of breeding and tremendous potential for improvement. Previously, multiple kiwifruit CENTRORADIALIS (CEN)-like genes have been identified as potential repressors of flowering. In this study, CRISPR/Cas9- mediated manipulation enabled functional analysis of kiwifruit CEN-like genes AcCEN4 and AcCEN. Mutation of these genes transformed a climbing woody perennial, which develops axillary inflorescences after many years of juvenility, into a compact plant with rapid terminal flower and fruit development. The number of affected genes and alleles and severity of detected mutations correlated with the precocity and change in plant stature, suggesting that a bi-allelic mutation of either AcCEN4 or AcCEN may be sufficient for early flowering, whereas mutations affecting both genes further contributed to precocity and enhanced the compact growth habit. CRISPR/Cas9-mediated mutagenesis of AcCEN4 and AcCEN may be a valuable means to engineer Actinidia amenable for accelerated breeding, indoor farming and cultivation as an annual crop.
Collapse
Affiliation(s)
- Erika Varkonyi‐Gasic
- The New Zealand Institute for Plant & Food Research Limited (Plant & Food Research)AucklandNew Zealand
| | - Tianchi Wang
- The New Zealand Institute for Plant & Food Research Limited (Plant & Food Research)AucklandNew Zealand
| | - Charlotte Voogd
- The New Zealand Institute for Plant & Food Research Limited (Plant & Food Research)AucklandNew Zealand
| | - Subin Jeon
- The New Zealand Institute for Plant & Food Research Limited (Plant & Food Research)AucklandNew Zealand
| | - Revel S. M. Drummond
- The New Zealand Institute for Plant & Food Research Limited (Plant & Food Research)AucklandNew Zealand
| | - Andrew P. Gleave
- The New Zealand Institute for Plant & Food Research Limited (Plant & Food Research)AucklandNew Zealand
| | - Andrew C. Allan
- The New Zealand Institute for Plant & Food Research Limited (Plant & Food Research)AucklandNew Zealand
- School of Biological SciencesUniversity of AucklandAucklandNew Zealand
| |
Collapse
|
119
|
Nunoo J, Quartey E, Amoatey H, Klu G. Effect of recurrent irradiation on the improvement of a variant line of wild tomato (Solanum pimpinellifolium). JOURNAL OF RADIATION RESEARCH AND APPLIED SCIENCES 2019. [DOI: 10.1016/j.jrras.2014.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- J. Nunoo
- Biotechnology and Nuclear Agriculture Research Institute (BNARI), P.O. Box LG 80, Legon, Accra, Ghana
| | - E.K. Quartey
- Biotechnology and Nuclear Agriculture Research Institute (BNARI), P.O. Box LG 80, Legon, Accra, Ghana
| | - H.M. Amoatey
- School of Nuclear and Allied Sciences (SNAS) of University of Ghana, Legon P.O. Box AE 1, Atomic Energy, Accra, Ghana
| | - G.Y.P. Klu
- School of Nuclear and Allied Sciences (SNAS) of University of Ghana, Legon P.O. Box AE 1, Atomic Energy, Accra, Ghana
| |
Collapse
|
120
|
Hufford MB, Berny Mier Y Teran JC, Gepts P. Crop Biodiversity: An Unfinished Magnum Opus of Nature. ANNUAL REVIEW OF PLANT BIOLOGY 2019; 70:727-751. [PMID: 31035827 DOI: 10.1146/annurev-arplant-042817-040240] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Crop biodiversity is one of the major inventions of humanity through the process of domestication. It is also an essential resource for crop improvement to adapt agriculture to ever-changing conditions like global climate change and consumer preferences. Domestication and the subsequent evolution under cultivation have profoundly shaped the genetic architecture of this biodiversity. In this review, we highlight recent advances in our understanding of crop biodiversity. Topics include the reduction of genetic diversity during domestication and counteracting factors, a discussion of the relationship between parallel phenotypic and genotypic evolution, the role of plasticity in genotype × environment interactions, and the important role subsistence farmers play in actively maintaining crop biodiversity and in participatory breeding. Linking genotype and phenotype remains the holy grail of crop biodiversity studies.
Collapse
Affiliation(s)
- Matthew B Hufford
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa 50011-1020, USA;
| | | | - Paul Gepts
- Department of Plant Sciences, University of California, Davis, California 95616-8780, USA; ,
| |
Collapse
|
121
|
Yu X, Liu H, Sang N, Li Y, Zhang T, Sun J, Huang X. Identification of cotton MOTHER OF FT AND TFL1 homologs, GhMFT1 and GhMFT2, involved in seed germination. PLoS One 2019; 14:e0215771. [PMID: 31002698 PMCID: PMC6474632 DOI: 10.1371/journal.pone.0215771] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 04/08/2019] [Indexed: 12/02/2022] Open
Abstract
Plant phosphatidylethanolamine-binding protein (PEBP) is comprised of three clades: FLOWERING LOCUS T (FT), TERMINAL FLOWER1 (TFL1) and MOTHER OF FT AND TFL1 (MFT). FT/TFL1-like clades regulate identities of the determinate and indeterminate meristems, and ultimately affect flowering time and plant architecture. MFT is generally considered to be the ancestor of FT/TFL1, but its function is not well understood. Here, two MFT homoeologous gene pairs in Gossypium hirsutum, GhMFT1-A/D and GhMFT2-A/D, were identified by genome-wide identification of MFT-like genes. Detailed expression analysis revealed that GhMFT1 and GhMFT2 homoeologous genes were predominately expressed in ovules, and their expression increased remarkably during ovule development but decreased quickly during seed germination. Expressions of GhMFT1 and GhMFT2 homoeologous genes in germinating seeds were upregulated in response to abscisic acid (ABA), and their expressions also responded to gibberellin (GA). In addition, ectopic overexpression of GhMFT1 and GhMFT2 in Arabidopsis inhibited seed germination at the early stage. Gene transcription analysis showed that ABA metabolism genes ABA-INSENSITIVE3 (ABI3) and ABI5, GA signal transduction pathway genes REPRESSOR OF ga1-3 (RGA) and RGA-LIKE2 (RGL2) were all upregulated in the 35S:GhMFT1 and 35S:GhMFT2 transgenic Arabidopsis seeds. GhMFT1 and GhMFT2 localize in the cytoplasm and nucleus, and both interact with a cotton bZIP transcription factor GhFD, suggesting that both of GhMFT1, 2 have similar intracellular regulation mechanisms. Taken together, the results suggest that GhMFT1 and GhMFT2 may act redundantly and differentially in the regulation of seed germination.
Collapse
Affiliation(s)
- Xiuli Yu
- The Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi, Xinjiang, China
- Special Plant Genomics Laboratory, College of Life Sciences, Shihezi University, Shihezi, Xinjiang, China
| | - Hui Liu
- Special Plant Genomics Laboratory, College of Life Sciences, Shihezi University, Shihezi, Xinjiang, China
| | - Na Sang
- The Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi, Xinjiang, China
- Special Plant Genomics Laboratory, College of Life Sciences, Shihezi University, Shihezi, Xinjiang, China
| | - Yunfei Li
- Special Plant Genomics Laboratory, College of Life Sciences, Shihezi University, Shihezi, Xinjiang, China
| | - Tingting Zhang
- Special Plant Genomics Laboratory, College of Life Sciences, Shihezi University, Shihezi, Xinjiang, China
| | - Jie Sun
- The Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi, Xinjiang, China
| | - Xianzhong Huang
- Special Plant Genomics Laboratory, College of Life Sciences, Shihezi University, Shihezi, Xinjiang, China
| |
Collapse
|
122
|
Nunes-Nesi A, Alseekh S, de Oliveira Silva FM, Omranian N, Lichtenstein G, Mirnezhad M, González RRR, Sabio Y Garcia J, Conte M, Leiss KA, Klinkhamer PGL, Nikoloski Z, Carrari F, Fernie AR. Identification and characterization of metabolite quantitative trait loci in tomato leaves and comparison with those reported for fruits and seeds. Metabolomics 2019; 15:46. [PMID: 30874962 PMCID: PMC6420416 DOI: 10.1007/s11306-019-1503-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Accepted: 01/12/2019] [Indexed: 01/10/2023]
Abstract
INTRODUCTION To date, most studies of natural variation and metabolite quantitative trait loci (mQTL) in tomato have focused on fruit metabolism, leaving aside the identification of genomic regions involved in the regulation of leaf metabolism. OBJECTIVE This study was conducted to identify leaf mQTL in tomato and to assess the association of leaf metabolites and physiological traits with the metabolite levels from other tissues. METHODS The analysis of components of leaf metabolism was performed by phenotypying 76 tomato ILs with chromosome segments of the wild species Solanum pennellii in the genetic background of a cultivated tomato (S. lycopersicum) variety M82. The plants were cultivated in two different environments in independent years and samples were harvested from mature leaves of non-flowering plants at the middle of the light period. The non-targeted metabolite profiling was obtained by gas chromatography time-of-flight mass spectrometry (GC-TOF-MS). With the data set obtained in this study and already published metabolomics data from seed and fruit, we performed QTL mapping, heritability and correlation analyses. RESULTS Changes in metabolite contents were evident in the ILs that are potentially important with respect to stress responses and plant physiology. By analyzing the obtained data, we identified 42 positive and 76 negative mQTL involved in carbon and nitrogen metabolism. CONCLUSIONS Overall, these findings allowed the identification of S. lycopersicum genome regions involved in the regulation of leaf primary carbon and nitrogen metabolism, as well as the association of leaf metabolites with metabolites from seeds and fruits.
Collapse
Affiliation(s)
- Adriano Nunes-Nesi
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil.
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Golm, OT, Germany.
| | - Saleh Alseekh
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Golm, OT, Germany
- Center of Plant System Biology and Biotechnology (CPSBB), Plovdiv, Bulgaria
| | | | - Nooshin Omranian
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Golm, OT, Germany
- Center of Plant System Biology and Biotechnology (CPSBB), Plovdiv, Bulgaria
| | - Gabriel Lichtenstein
- Instituto de Biotecnología, Instituto Nacional de Tecnología Agropecuaría, Consejo Nacional de Investigaciones Científicas y Técnicas, B1712WAA, Castelar, Argentina
| | - Mohammad Mirnezhad
- Plant Ecology, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE, Leiden, The Netherlands
| | - Roman R Romero González
- Plant Ecology, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE, Leiden, The Netherlands
| | - Julia Sabio Y Garcia
- Instituto de Biotecnología, Instituto Nacional de Tecnología Agropecuaría, Consejo Nacional de Investigaciones Científicas y Técnicas, B1712WAA, Castelar, Argentina
| | - Mariana Conte
- Instituto de Biotecnología, Instituto Nacional de Tecnología Agropecuaría, Consejo Nacional de Investigaciones Científicas y Técnicas, B1712WAA, Castelar, Argentina
| | - Kirsten A Leiss
- Plant Ecology, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE, Leiden, The Netherlands
- Business Unit Horticulture, Wageningen University & Research, Postbus 20, 2665 ZG, Bleiswijk, The Netherlands
| | - Peter G L Klinkhamer
- Plant Ecology, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE, Leiden, The Netherlands
| | - Zoran Nikoloski
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Golm, OT, Germany
- Bioinformatics Group, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Fernando Carrari
- Instituto de Biotecnología, Instituto Nacional de Tecnología Agropecuaría, Consejo Nacional de Investigaciones Científicas y Técnicas, B1712WAA, Castelar, Argentina
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-UBA-CONICET), Universidad de Buenos Aires, Ciudad Universitaria, C1428EHA Buenos Aires, Argentina
- Facultad de Agronomía, Cátedra de Genética, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Golm, OT, Germany
- Center of Plant System Biology and Biotechnology (CPSBB), Plovdiv, Bulgaria
| |
Collapse
|
123
|
Zhang J, Wang Y, Naeem M, Zhu M, Li J, Yu X, Hu Z, Chen G. An AGAMOUS MADS-box protein, SlMBP3, regulates the speed of placenta liquefaction and controls seed formation in tomato. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:909-924. [PMID: 30481310 DOI: 10.1093/jxb/ery418] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Accepted: 11/18/2018] [Indexed: 05/25/2023]
Abstract
AGAMOUS (AG) MADS-box transcription factors have been shown to play crucial roles in floral organ and fruit development in angiosperms. Here, we isolated a tomato (Solanum lycopersicum) AG MADS-box gene SlMBP3 and found that it is preferentially expressed in flowers and during early fruit developmental stages in the wild-type (WT), and in the Nr (never ripe) and rin (ripening inhibitor) mutants. Its transcripts are notably accumulated in the pistils; transcripts abundance decrease during seed and placental development, increasing again during flower development. SlMBP3-RNAi tomato plants displayed fleshy placenta without locular gel and extremely malformed seeds with no seed coat, while SlMBP3-overexpressing plants exhibited advanced liquefaction of the placenta and larger seeds. Enzymatic activities related to cell wall modification, and the contents of cell wall components and pigments were dramatically altered in the placentas of SlMBP3-RNAi compared with the WT. Alterations in these physiological features were also observed in the placentas of SlMBP3-overexpressing plants. The lignin content of mature seeds in SlMBP3-RNAi lines was markedly lower than that in the WT. RNA-seq and qRT-PCR analyses revealed that genes involved in seed development and the biosynthesis of enzymes related to cell wall modification, namely gibberellin, indole-3-acetic acid, and abscisic acid were down-regulated in the SlMBP3-RNAi lines. Taking together, our results demonstrate that SlMBP3 is involved in the regulation of placenta and seed development in tomato.
Collapse
Affiliation(s)
- Jianling Zhang
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, People's Republic of China
| | - Yicong Wang
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, People's Republic of China
| | - Muhammad Naeem
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, People's Republic of China
| | - Mingku Zhu
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, People's Republic of China
| | - Jing Li
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, People's Republic of China
| | - Xiaohui Yu
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, People's Republic of China
| | - Zongli Hu
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, People's Republic of China
| | - Guoping Chen
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, People's Republic of China
| |
Collapse
|
124
|
Balanzà V, Martínez-Fernández I, Sato S, Yanofsky MF, Ferrándiz C. Inflorescence Meristem Fate Is Dependent on Seed Development and FRUITFULL in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2019; 10:1622. [PMID: 31921264 PMCID: PMC6930240 DOI: 10.3389/fpls.2019.01622] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 11/18/2019] [Indexed: 05/07/2023]
Abstract
After a vegetative phase, plants initiate the floral transition in response to both environmental and endogenous cues to optimize reproductive success. During this process, the vegetative shoot apical meristem (SAM), which was producing leaves and branches, becomes an inflorescence SAM and starts producing flowers. Inflorescences can be classified in two main categories, depending on the fate of the inflorescence meristem: determinate or indeterminate. In determinate inflorescences, the SAM differentiates directly, or after the production of a certain number of flowers, into a flower, while in indeterminate inflorescences the SAM remains indeterminate and produces continuously new flowers. Even though indeterminate inflorescences have an undifferentiated SAM, the number of flowers produced by a plant is not indefinite and is characteristic of each species, indicating that it is under genetic control. In Arabidopsis thaliana and other species with indeterminate inflorescences, the end of flower production occurs by a regulated proliferative arrest of inflorescence meristems on all reproductive branches that is reminiscent of a state of induced dormancy and does not involve the determination of the SAM. This process is controlled genetically by the FRUITFULL-APETALA2 (FUL-AP2) pathway and by a correlative control exerted by the seeds through a mechanism not well understood yet. In the absence of seeds, meristem proliferative arrest does not occur, and the SAM remains actively producing flowers until it becomes determinate, differentiating into a terminal floral structure. Here we show that the indeterminate growth habit of Arabidopsis inflorescences is a facultative condition imposed by the meristematic arrest directed by FUL and the correlative signal of seeds. The terminal differentiation of the SAM when seed production is absent correlates with the induction of AGAMOUS expression in the SAM. Moreover, terminal flower formation is strictly dependent on the activity of FUL, as it was never observed in ful mutants, regardless of the fertility of the plant or the presence/absence of the AG repression exerted by APETALA2 related factors.
Collapse
Affiliation(s)
- Vicente Balanzà
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas, Universidad Politécnica de Valencia, Valencia, Spain
| | - Irene Martínez-Fernández
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas, Universidad Politécnica de Valencia, Valencia, Spain
| | - Shusei Sato
- Division of Biological Sciences, University of California San Diego, San Diego, CA, United States
| | - Martin F. Yanofsky
- Division of Biological Sciences, University of California San Diego, San Diego, CA, United States
| | - Cristina Ferrándiz
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas, Universidad Politécnica de Valencia, Valencia, Spain
- *Correspondence: Cristina Ferrándiz,
| |
Collapse
|
125
|
Moraes TS, Dornelas MC, Martinelli AP. FT/TFL1: Calibrating Plant Architecture. FRONTIERS IN PLANT SCIENCE 2019; 10:97. [PMID: 30815003 PMCID: PMC6381015 DOI: 10.3389/fpls.2019.00097] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 01/21/2019] [Indexed: 05/14/2023]
Abstract
There is a very large diversity in plant architecture in nature. Over the past few years, novel theoretical concepts and analytical methods have emerged as powerful tools to understand important aspects of plant architecture. Plant architecture depends on the relative arrangement of three types of organs: leaves, shoots, and flowers. During plant development, the architecture is modulated by the balance of two homologous proteins: FLOWERING LOCUS T (FT) and TERMINAL FLOWER 1 (TFL1). The FT/TFL1 balance defines the plant growth habit as indeterminate or determinate by modulating the pattern of formation of vegetative and reproductive structures in the apical and axillary meristems. Here, we present a summarized review of plant architecture and primarily focus on the FT/TFL1 balance and its effect on plant form and development. We also propose passion fruit as a suitable model plant to study the effect of FT/TFL1 genes on plant architecture.
Collapse
Affiliation(s)
- Tatiana Souza Moraes
- Laboratório de Biotecnologia Vegetal, Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Piracicaba, Brazil
| | - Marcelo Carnier Dornelas
- Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, Brazil
| | - Adriana Pinheiro Martinelli
- Laboratório de Biotecnologia Vegetal, Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Piracicaba, Brazil
- *Correspondence: Adriana Pinheiro Martinelli,
| |
Collapse
|
126
|
Yazdani M, Sun Z, Yuan H, Zeng S, Thannhauser TW, Vrebalov J, Ma Q, Xu Y, Fei Z, Van Eck J, Tian S, Tadmor Y, Giovannoni JJ, Li L. Ectopic expression of ORANGE promotes carotenoid accumulation and fruit development in tomato. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:33-49. [PMID: 29729208 PMCID: PMC6330546 DOI: 10.1111/pbi.12945] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 04/04/2018] [Accepted: 04/28/2018] [Indexed: 05/10/2023]
Abstract
Carotenoids are critically important to plants and humans. The ORANGE (OR) gene is a key regulator for carotenoid accumulation, but its physiological roles in crops remain elusive. In this study, we generated transgenic tomato ectopically overexpressing the Arabidopsis wild-type OR (AtORWT ) and a 'golden SNP'-containing OR (AtORHis ). We found that AtORHis initiated chromoplast formation in very young fruit and stimulated carotenoid accumulation at all fruit developmental stages, uncoupled from other ripening activities. The elevated levels of carotenoids in the AtOR lines were distributed in the same subplastidial fractions as in wild-type tomato, indicating an adaptive response of plastids to sequester the increased carotenoids. Microscopic analysis revealed that the plastid sizes were increased in both AtORWT and AtORHis lines at early fruit developmental stages. Moreover, AtOR overexpression promoted early flowering, fruit set and seed production. Ethylene production and the expression of ripening-associated genes were also significantly increased in the AtOR transgenic fruit at ripening stages. RNA-Seq transcriptomic profiling highlighted the primary effects of OR overexpression on the genes in the processes related to RNA, protein and signalling in tomato fruit. Taken together, these results expand our understanding of OR in mediating carotenoid accumulation in plants and suggest additional roles of OR in affecting plastid size as well as flower and fruit development, thus making OR a target gene not only for nutritional biofortification of agricultural products but also for alteration of horticultural traits.
Collapse
Affiliation(s)
- Mohammad Yazdani
- Robert W. Holley Center for Agriculture and HealthUSDA‐ARSCornell UniversityIthacaNYUSA
- Plant Breeding and Genetics SectionSchool of Integrative Plant ScienceCornell UniversityIthacaNYUSA
| | - Zhaoxia Sun
- Plant Breeding and Genetics SectionSchool of Integrative Plant ScienceCornell UniversityIthacaNYUSA
- College of AgricultureInstitute of Agricultural BioengineeringShanxi Agricultural UniversityTaiguShanxiChina
| | - Hui Yuan
- Robert W. Holley Center for Agriculture and HealthUSDA‐ARSCornell UniversityIthacaNYUSA
- Plant Breeding and Genetics SectionSchool of Integrative Plant ScienceCornell UniversityIthacaNYUSA
| | - Shaohua Zeng
- Plant Breeding and Genetics SectionSchool of Integrative Plant ScienceCornell UniversityIthacaNYUSA
- Guangdong Provincial Key Laboratory of Applied BotanySouth China Botanical GardenChinese Academy of SciencesGuangzhouChina
| | | | | | - Qiyue Ma
- Boyce Thompson InstituteCornell UniversityIthacaNYUSA
| | - Yimin Xu
- Boyce Thompson InstituteCornell UniversityIthacaNYUSA
| | - Zhangjun Fei
- Robert W. Holley Center for Agriculture and HealthUSDA‐ARSCornell UniversityIthacaNYUSA
- Boyce Thompson InstituteCornell UniversityIthacaNYUSA
| | - Joyce Van Eck
- Plant Breeding and Genetics SectionSchool of Integrative Plant ScienceCornell UniversityIthacaNYUSA
- Boyce Thompson InstituteCornell UniversityIthacaNYUSA
| | - Shiping Tian
- Key Laboratory of Plant ResourcesInstitute of BotanyChinese Academy of SciencesBeijingChina
| | - Yaakov Tadmor
- Plant Science InstituteIsraeli Agricultural Research OrganizationNewe Yaar Research CenterRamat YishaiIsrael
| | - James J. Giovannoni
- Robert W. Holley Center for Agriculture and HealthUSDA‐ARSCornell UniversityIthacaNYUSA
- Boyce Thompson InstituteCornell UniversityIthacaNYUSA
| | - Li Li
- Robert W. Holley Center for Agriculture and HealthUSDA‐ARSCornell UniversityIthacaNYUSA
- Plant Breeding and Genetics SectionSchool of Integrative Plant ScienceCornell UniversityIthacaNYUSA
| |
Collapse
|
127
|
Brog YM, Osorio S, Yichie Y, Alseekh S, Bensal E, Kochevenko A, Zamir D, Fernie AR. A Solanum neorickii introgression population providing a powerful complement to the extensively characterized Solanum pennellii population. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 97:391-403. [PMID: 30230636 PMCID: PMC7379295 DOI: 10.1111/tpj.14095] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 09/01/2018] [Accepted: 09/04/2018] [Indexed: 05/31/2023]
Abstract
We present a complementary resource for trait fine-mapping in tomato to those based on the intra-specific cross between cultivated tomato and the wild tomato species Solanum pennellii, which have been extensively used for quantitative genetics in tomato over the last 20 years. The current population of backcross inbred lines (BILs) is composed of 107 lines derived after three backcrosses of progeny of the wild species Solanum neorickii (LA2133) and cultivated tomato (cultivar TA209) and is freely available to the scientific community. These S. neorickii BILs were genotyped using the 10K SolCAP single nucleotide polymorphism chip, and 3111 polymorphic markers were used to map recombination break points relative to the physical map of Solanum lycopersicum. The BILs harbor on average 4.3 introgressions per line, with a mean introgression length of 34.7 Mbp, allowing partitioning of the genome into 340 bins and thereby facilitating rapid trait mapping. We demonstrate the power of using this resource in comparison with archival data from the S. pennellii resources by carrying out metabolic quantitative trait locus analysis following gas chromatography-mass spectrometry on fruits harvested from the S. neorickii BILs. The metabolic candidate genes phenylalanine ammonia-lyase and cystathionine gamma-lyase were then tested and validated in F2 populations and via agroinfiltration-based overexpression in order to exemplify the fidelity of this method in identifying the genes that drive tomato metabolic phenotypes.
Collapse
Affiliation(s)
- Yaacov Micha Brog
- Faculty of AgricultureThe Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture at the Hebrew University of JerusalemRehovot76100Israel
| | - Sonia Osorio
- Department of Molecular Biology and BiochemistryInstituto de Hortofruticultura Subtropical y Mediterránea ‘La Mayora’ – University of Malaga – Consejo Superior de Investigaciones Científicas (IHSM‐UMA‐CSIC)Campus de Teatinos29071MálagaSpain
- Max‐Planck‐Institute of Molecular Plant PhysiologyAm Mühlenberg 114476Potsdam‐GolmGermany
| | - Yoav Yichie
- Faculty of AgricultureThe Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture at the Hebrew University of JerusalemRehovot76100Israel
| | - Saleh Alseekh
- Max‐Planck‐Institute of Molecular Plant PhysiologyAm Mühlenberg 114476Potsdam‐GolmGermany
- Center of Plant Systems Biology and Biotechnology4000PlovdivBulgaria
| | - Elad Bensal
- Faculty of AgricultureThe Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture at the Hebrew University of JerusalemRehovot76100Israel
| | - Andriy Kochevenko
- Max‐Planck‐Institute of Molecular Plant PhysiologyAm Mühlenberg 114476Potsdam‐GolmGermany
| | - Dani Zamir
- Faculty of AgricultureThe Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture at the Hebrew University of JerusalemRehovot76100Israel
| | - Alisdair R. Fernie
- Max‐Planck‐Institute of Molecular Plant PhysiologyAm Mühlenberg 114476Potsdam‐GolmGermany
- Center of Plant Systems Biology and Biotechnology4000PlovdivBulgaria
| |
Collapse
|
128
|
Rothan C, Diouf I, Causse M. Trait discovery and editing in tomato. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 97:73-90. [PMID: 30417464 DOI: 10.1111/tpj.14152] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 10/08/2018] [Accepted: 10/30/2018] [Indexed: 06/09/2023]
Abstract
Tomato (Solanum lycopersicum), which is used for both processing and fresh markets, is a major crop species that is the top ranked vegetable produced over the world. Tomato is also a model species for research in genetics, fruit development and disease resistance. Genetic resources available in public repositories comprise the 12 wild related species and thousands of landraces, modern cultivars and mutants. In addition, high quality genome sequences are available for cultivated tomato and for several wild relatives, hundreds of accessions have been sequenced, and databases gathering sequence data together with genetic and phenotypic data are accessible to the tomato community. Major breeding goals are productivity, resistance to biotic and abiotic stresses, and fruit sensorial and nutritional quality. New traits, including resistance to various biotic and abiotic stresses and root architecture, are increasingly being studied. Several major mutations and quantitative trait loci (QTLs) underlying traits of interest in tomato have been uncovered to date and, thanks to new populations and advances in sequencing technologies, the pace of trait discovery has considerably accelerated. In recent years, clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 gene editing (GE) already proved its remarkable efficiency in tomato for engineering favorable alleles and for creating new genetic diversity by gene disruption, gene replacement, and precise base editing. Here, we provide insight into the major tomato traits and underlying causal genetic variations discovered so far and review the existing genetic resources and most recent strategies for trait discovery in tomato. Furthermore, we explore the opportunities offered by CRISPR/Cas9 and their exploitation for trait editing in tomato.
Collapse
Affiliation(s)
- Christophe Rothan
- INRA and University of Bordeaux, UMR 1332 Biologie du Fruit et Pathologie, F-33140, Villenave d'Ornon, France
| | - Isidore Diouf
- INRA, UR1052, Génétique et Amélioration des Fruits et Légumes, CS60094, F-84143, Montfavet, France
| | - Mathilde Causse
- INRA, UR1052, Génétique et Amélioration des Fruits et Légumes, CS60094, F-84143, Montfavet, France
| |
Collapse
|
129
|
Chen W, Yao J, Li Y, Zhao L, Liu J, Guo Y, Wang J, Yuan L, Liu Z, Lu Y, Zhang Y. Nulliplex-branch, a TERMINAL FLOWER 1 ortholog, controls plant growth habit in cotton. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2019; 132:97-112. [PMID: 30288552 DOI: 10.1007/s00122-018-3197-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Accepted: 09/25/2018] [Indexed: 06/08/2023]
Abstract
Nulliplex-branch (nb) mutants in cotton display a specific architecture. The gene responsible for the nb phenotype was identified, and its modulation mode was further studied. Plant architecture is an important agronomic factor influencing various traits such as yield and variety adaptability in crop plants. Cotton (Gossypium) simultaneously displays monopodial and sympodial growth. Nulliplex-branch (nb) mutants showing determinate sympodial shoots have been reported in both G. hirsutum (Ghnb) and G. barbadense (Gbnb). In this study, the gene responsible for the nb phenotype was identified. GhNB and GbNB were found to be allelic loci and are TERMINAL FLOWER 1 orthologs on the Dt subgenome, though the At copies remain native. Sequencing and association analyses identified four (Gh-nb1-Gh-nb4) and one (Gb-nb1) type of point mutation in the coding sequences of Ghnb and Gbnb, respectively. The NB gene was mainly expressed in the root and shoot apex, and expression rhythms were also observed in these tissues, suggesting that the expression of the NB gene could be regulated by photoperiod. Constitutive overexpression of GhNB suppresses the differentiation of the reproductive shoots. Knockout of both copies of GhNB caused the main and lateral shoots to terminate in flowers, which is a more determinate architecture than that of the nb mutants and implies that its function might be dosage dependent. A protein lipid overlay assay indicated that the amino acid substitutions in Gh-nb1 and Gb-nb1 weaken the ligand-binding activity of the NB protein in vitro. These findings suggest that the NB gene plays crucial roles in regulating the determinacy of shoots, and the modulation of this gene should constitute an effective crop improvement approach through adjusting the growth habit of cotton.
Collapse
Affiliation(s)
- Wei Chen
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Jinbo Yao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Yan Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Lanjie Zhao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Jie Liu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Yan Guo
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Junyi Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Li Yuan
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Ziyang Liu
- Art and Science College, University of Saskatchewan, Saskatoon, S7N 5A5, Canada
| | - Youjun Lu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Yongshan Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China.
| |
Collapse
|
130
|
Prewitt SF, Ayre BG, McGarry RC. Cotton CENTRORADIALIS/TERMINAL FLOWER 1/SELF-PRUNING genes functionally diverged to differentially impact plant architecture. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:5403-5417. [PMID: 30202979 PMCID: PMC6255698 DOI: 10.1093/jxb/ery324] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 08/28/2018] [Indexed: 05/29/2023]
Abstract
Genes of the CENTRORADIALIS/TERMINAL FLOWER 1/SELF-PRUNING (CETS) family influence meristem identity by controlling the balance between indeterminate and determinate growth, thereby profoundly impacting plant architecture. Artificial selection during cotton (Gossypium hirsutum) domestication converted photoperiodic trees to the day-neutral shrubs widely cultivated today. To understand the regulation of cotton architecture and exploit these principles to enhance crop productivity, we characterized the CETS gene family from tetraploid cotton. We demonstrate that genes of the TERMINAL FLOWER 1 (TFL1)-like clade show different roles in regulating growth patterns. Cotton has five TFL1-like genes: SELF-PRUNING (GhSP) is a single gene whereas there are two TFL1-like and BROTHER OF FT (BFT)-like genes, and these duplications are specific to the cotton lineage. All genes of the cotton TFL1-like clade delay flowering when ectopically expressed in transgenic Arabidopsis, with the strongest phenotypes failing to produce functional flowers. GhSP, GhTFL1-L2, and GhBFT-L2 rescue the early flowering Attfl1-14 mutant phenotype, and the encoded polypeptides interact with a cotton FD protein. Heterologous promoter::GUS fusions illustrate differences in the regulation of these genes, suggesting that genes of the GhTFL1-like clade may not act redundantly. Characterizations of the GhCETS family provide strategies for nuanced control of plant growth.
Collapse
Affiliation(s)
- Sarah F Prewitt
- BioDiscovery Institute, Department of Biological Sciences, University of North Texas, Union Circle, Denton, TX, USA
| | - Brian G Ayre
- BioDiscovery Institute, Department of Biological Sciences, University of North Texas, Union Circle, Denton, TX, USA
| | - Roisin C McGarry
- BioDiscovery Institute, Department of Biological Sciences, University of North Texas, Union Circle, Denton, TX, USA
| |
Collapse
|
131
|
Liu D, Teng Z, Kong J, Liu X, Wang W, Zhang X, Zhai T, Deng X, Wang J, Zeng J, Xiao Y, Guo K, Zhang J, Liu D, Wang W, Zhang Z. Natural variation in a CENTRORADIALIS homolog contributed to cluster fruiting and early maturity in cotton. BMC PLANT BIOLOGY 2018; 18:286. [PMID: 30458710 PMCID: PMC6245773 DOI: 10.1186/s12870-018-1518-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 11/07/2018] [Indexed: 05/20/2023]
Abstract
BACKGROUND Plant architecture and the vegetative-reproductive transition have major impacts on the agronomic success of crop plants, but genetic mechanisms underlying these traits in cotton (Gossypium spp.) have not been identified. RESULTS We identify four natural mutations in GoCEN-Dt associated with cluster fruiting (cl) and early maturity. The situ hybridization shows that GhCEN is preferentially expressed in cotton shoot apical meristems (SAM) of the main stem and axillary buds. Constitutive GhCEN-Dt overexpression suppresses the transition of the cotton vegetative apex to a reproductive shoot. Silencing GoCEN leads to early flowering and determinate growth, and in tetraploids causes the main stem to terminate in a floral bud, a novel phenotype that exemplifies co-adaptation of polyploid subgenomes and suggests new research and/or crop improvement approaches. Natural cl variations are enriched in cottons adapted to high latitudes with short frost-free periods, indicating that mutants of GoCEN have been strongly selected for early maturity. CONCLUSION We show that the cotton gene GoCEN-Dt, a homolog of Antirrhinum CENTRORADIALIS, is responsible for determinate growth habit and cluster fruiting. Insight into the genetic control of branch and flower differentiation offers new approaches to develop early maturing cultivars of cotton and other crops with plant architecture appropriate for mechanical harvesting.
Collapse
Affiliation(s)
- Dexin Liu
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716 People’s Republic of China
| | - Zhonghua Teng
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716 People’s Republic of China
| | - Jie Kong
- Institute of Economic Crops, Xinjiang Academy of Agricultural Sciences, urumqi, Xinjiang 830091 People’s Republic of China
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193 People’s Republic of China
| | - Xueying Liu
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716 People’s Republic of China
| | - Wenwen Wang
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716 People’s Republic of China
| | - Xiao Zhang
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716 People’s Republic of China
| | - Tengfei Zhai
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716 People’s Republic of China
| | - Xianping Deng
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716 People’s Republic of China
| | - Jinxia Wang
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716 People’s Republic of China
| | - Jianyan Zeng
- Biotechnology Research Center, Southwest University, Chongqing, 400716 People’s Republic of China
| | - Yuehua Xiao
- Biotechnology Research Center, Southwest University, Chongqing, 400716 People’s Republic of China
| | - Kai Guo
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716 People’s Republic of China
| | - Jian Zhang
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716 People’s Republic of China
| | - Dajun Liu
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716 People’s Republic of China
| | - Weiran Wang
- Institute of Economic Crops, Xinjiang Academy of Agricultural Sciences, urumqi, Xinjiang 830091 People’s Republic of China
| | - Zhengsheng Zhang
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716 People’s Republic of China
| |
Collapse
|
132
|
Zhang Y, Li Q, Cui Y, Liu Z, Chen Z, He Y, Mei J, Xiong Q, Li X, Qian W. Genetic characterization and fine mapping for multi-inflorescence in Brassica napus L. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2018; 131:2311-2319. [PMID: 30073399 DOI: 10.1007/s00122-018-3153-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 07/23/2018] [Indexed: 06/08/2023]
Abstract
A major QTL for multi-inflorescence was mapped to a 27.18-kb region on A05 in Brassica napus by integrating QTL mapping, microarray analysis and whole-genome sequencing. Multi-inflorescence is a desirable trait for the genetic improvement of rapeseed (Brassica napus L.). However, the genetic mechanism underlying the multi-inflorescence trait is not well understood. In the present study, a doubled haploid (DH) population derived from a cross between single- and multi-inflorescence lines was investigated for the penetrance of multi-inflorescence across 3 years and genotyped with 257 simple sequence repeat and sequence-related amplified polymorphism loci. A major quantitative trait locus (QTL) for penetrance of multi-inflorescence was mapped to a 9.31-Mb region on chromosome A05, explaining 45.81% of phenotypic variance on average. Subsequently, 13 single-inflorescence and 15 multi-inflorescence DH lines were genotyped with the Brassica microarray, and the QTL interval of multi-inflorescence was narrowed to a 0.74-Mb region with 37 successive single nucleotide polymorphisms between single- and multi-inflorescence groups. A 27.18-kb QTL interval was detected by screening 420 recessive F2 individuals with genome-specific markers. These results will be valuable for gene cloning and molecular breeding of multi-inflorescence in rapeseed.
Collapse
Affiliation(s)
- Yongjing Zhang
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China
| | - Qinfei Li
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China
| | - Yixin Cui
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China
| | - Zhi Liu
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China
| | - Zhifu Chen
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China
| | - Yajun He
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China
| | - Jiaqin Mei
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China
| | - Qing Xiong
- College of Computer and Information Science, Southwest University, Chongqing, 400715, China
| | - Xiaorong Li
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China.
- College of Pharmaceutical Sciences and Chinese Medicine, Southwest University, Chongqing, 400715, China.
| | - Wei Qian
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
133
|
Plackett AR, Conway SJ, Hewett Hazelton KD, Rabbinowitsch EH, Langdale JA, Di Stilio VS. LEAFY maintains apical stem cell activity during shoot development in the fern Ceratopteris richardii. eLife 2018; 7:39625. [PMID: 30355440 PMCID: PMC6200394 DOI: 10.7554/elife.39625] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 09/22/2018] [Indexed: 12/29/2022] Open
Abstract
During land plant evolution, determinate spore-bearing axes (retained in extant bryophytes such as mosses) were progressively transformed into indeterminate branching shoots with specialized reproductive axes that form flowers. The LEAFY transcription factor, which is required for the first zygotic cell division in mosses and primarily for floral meristem identity in flowering plants, may have facilitated developmental innovations during these transitions. Mapping the LEAFY evolutionary trajectory has been challenging, however, because there is no functional overlap between mosses and flowering plants, and no functional data from intervening lineages. Here, we report a transgenic analysis in the fern Ceratopteris richardii that reveals a role for LEAFY in maintaining cell divisions in the apical stem cells of both haploid and diploid phases of the lifecycle. These results support an evolutionary trajectory in which an ancestral LEAFY module that promotes cell proliferation was progressively co-opted, adapted and specialized as novel shoot developmental contexts emerged. The first plants colonized land around 500 million years ago. These plants had simple shoots with no branches, similar to the mosses that live today. Later on, some plants evolved more complex structures including branched shoots and flowers (collectively known as the “flowering plants”). Ferns are a group of plants that evolved midway between the mosses and flowering plants and have branched shoots but no flowers. The gradual transition from simple to more complex plant structures required changes to the way in which cells divide and grow within plant shoots. Whereas animals produce new cells throughout their body, most plant cells divide in areas known as meristems. All plants grow from embryos, which contain meristems that will form the roots and shoots of the mature plant. A gene called LEAFY is required for cells in moss embryos to divide. However, in flowering plants LEAFY does not carry out this role, instead it is only required to make the meristems that produce flowers. How did LEAFY transition from a general role in embryos to a more specialized role in making flowers? To address this question, Plackett, Conway et al. studied the two LEAFY genes in a fern called Ceratopteris richardii. The experiments showed that at least one of these LEAFY genes was active in the meristems of fern shoots throughout the lifespan of the plant. The shoots of ferns with less active LEAFY genes could not form the leaves seen in normal C. richardii plants. This suggests that as land plants evolved, the role of LEAFY changed from forming embryos to forming complex shoot structures. Most of our major crops are flowering plants. By understanding how the role of LEAFY has changed over the evolution of land plants, it might be possible to manipulate LEAFY genes in crop plants to alter shoot structures to better suit specific environments.
Collapse
Affiliation(s)
- Andrew Rg Plackett
- Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
| | | | | | | | - Jane A Langdale
- Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
| | | |
Collapse
|
134
|
Zsögön A, Čermák T, Naves ER, Notini MM, Edel KH, Weinl S, Freschi L, Voytas DF, Kudla J, Peres LEP. De novo domestication of wild tomato using genome editing. Nat Biotechnol 2018; 36:nbt.4272. [PMID: 30272678 DOI: 10.1038/nbt.4272] [Citation(s) in RCA: 404] [Impact Index Per Article: 57.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 09/12/2018] [Indexed: 01/19/2023]
Abstract
Breeding of crops over millennia for yield and productivity has led to reduced genetic diversity. As a result, beneficial traits of wild species, such as disease resistance and stress tolerance, have been lost. We devised a CRISPR-Cas9 genome engineering strategy to combine agronomically desirable traits with useful traits present in wild lines. We report that editing of six loci that are important for yield and productivity in present-day tomato crop lines enabled de novo domestication of wild Solanum pimpinellifolium. Engineered S. pimpinellifolium morphology was altered, together with the size, number and nutritional value of the fruits. Compared with the wild parent, our engineered lines have a threefold increase in fruit size and a tenfold increase in fruit number. Notably, fruit lycopene accumulation is improved by 500% compared with the widely cultivated S. lycopersicum. Our results pave the way for molecular breeding programs to exploit the genetic diversity present in wild plants.
Collapse
Affiliation(s)
- Agustin Zsögön
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Tomáš Čermák
- Department of Genetics, Cell Biology and Development, Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| | | | - Marcela Morato Notini
- Departamento de Ciências Biológicas, Escola Superior de Agricultura "Luiz de Queiroz," Universidade de São Paulo, Piracicaba, Brazil
| | - Kai H Edel
- Institut für Biologie und Biotechnologie der Pflanzen, Universität Münster, Münster, Germany
| | - Stefan Weinl
- Institut für Biologie und Biotechnologie der Pflanzen, Universität Münster, Münster, Germany
| | - Luciano Freschi
- Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Daniel F Voytas
- Department of Genetics, Cell Biology and Development, Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| | - Jörg Kudla
- Institut für Biologie und Biotechnologie der Pflanzen, Universität Münster, Münster, Germany
| | - Lázaro Eustáquio Pereira Peres
- Departamento de Ciências Biológicas, Escola Superior de Agricultura "Luiz de Queiroz," Universidade de São Paulo, Piracicaba, Brazil
| |
Collapse
|
135
|
Affiliation(s)
- Luca Comai
- Department of Plant Biology and Genome Center, University of California Davis, Davis, CA, USA.
| |
Collapse
|
136
|
Lemmon ZH, Reem NT, Dalrymple J, Soyk S, Swartwood KE, Rodriguez-Leal D, Van Eck J, Lippman ZB. Rapid improvement of domestication traits in an orphan crop by genome editing. NATURE PLANTS 2018; 4:766-770. [PMID: 30287957 DOI: 10.1038/s41477-018-0259-x] [Citation(s) in RCA: 275] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 08/21/2018] [Indexed: 05/21/2023]
Abstract
Genome editing holds great promise for increasing crop productivity, and there is particular interest in advancing breeding in orphan crops, which are often burdened by undesirable characteristics resembling wild relatives. We developed genomic resources and efficient transformation in the orphan Solanaceae crop 'groundcherry' (Physalis pruinosa) and used clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein-9 nuclease (Cas9) (CRISPR-Cas9) to mutate orthologues of tomato domestication and improvement genes that control plant architecture, flower production and fruit size, thereby improving these major productivity traits. Thus, translating knowledge from model crops enables rapid creation of targeted allelic diversity and novel breeding germplasm in distantly related orphan crops.
Collapse
Affiliation(s)
| | | | | | - Sebastian Soyk
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | | | | | - Joyce Van Eck
- The Boyce Thompson Institute, Ithaca, NY, USA.
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA.
| | - Zachary B Lippman
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA.
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA.
| |
Collapse
|
137
|
Schorderet M, Duvvuru Muni RR, Fiebig A, Reinhardt D. Deregulation of MADS-box transcription factor genes in a mutant defective in the WUSCHEL-LIKE HOMEOBOX gene EVERGREEN of Petunia hybrida. PLANT SIGNALING & BEHAVIOR 2018; 13:e1471299. [PMID: 29995575 PMCID: PMC6207418 DOI: 10.1080/15592324.2018.1471299] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 04/24/2018] [Indexed: 05/14/2023]
Abstract
Angiosperm inflorescences develop in two fundamentally different ways. In monopodial plants, for example in Arabidopsis thaliana, the flowers are initiated as lateral appendages of a central indeterminate inflorescence meristem. In sympodial plants, flowers arise by terminal differentiation of the inflorescence meristem, while further inflorescence development proceeds from new sympodial meristems that are generated at the flank of the terminal flower. We have used the sympodial model species Petunia hybrida to investigate inflorescence development. Here, we describe a mutant, bonsai (bns), which is defective in flower formation, inflorescence branching, and control of meristem size. Detailed microscopic analysis revealed that bns meristems retain vegetative charateristics including spiral phyllotaxis. Consistent with a block in flower formation, bns mutants exhibit a deregulated expression of various MADS-box genes. Molecular analysis revealed that the bns mutant carries a transposon insertion in the previously described EVERGREEN (EVG) gene, which belongs to the WUSCHEL-LIKE HOMEOBOX (WOX) transcription factor gene family. EVG falls in the WOX9 subfamily, which has diverse developmental functions in angiosperms. The comparison of WOX9 orthologues in five model species for flowering shows that these genes play functionally divergent roles in monopodial and sympodial plants, indicating that the WOX9 regulatory node may have played an important role in the evolution of shoot architecture.
Collapse
Affiliation(s)
- M. Schorderet
- Dept. of Biology, University of Fribourg, Fribourg, Switzerland
| | - R. R. Duvvuru Muni
- Dept. of Biology, University of Fribourg, Fribourg, Switzerland
- Monsanto Holdings Private Limited, Mfar Manyata Tech Park, Nagavara, Bangalore, India
| | - A. Fiebig
- Research Group Bioinformatics and Information Technology, Department Breeding Research, Leibniz Institute of Plant Genetics and CropPlant Research (IPK) Gatersleben, Seeland, Germany
| | | |
Collapse
|
138
|
Zhang J, Hu Z, Wang Y, Yu X, Liao C, Zhu M, Chen G. Suppression of a tomato SEPALLATA MADS-box gene, SlCMB1, generates altered inflorescence architecture and enlarged sepals. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 272:75-87. [PMID: 29807608 DOI: 10.1016/j.plantsci.2018.03.031] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 02/20/2018] [Accepted: 03/29/2018] [Indexed: 06/08/2023]
Abstract
The SEPALLATA (SEP) MADS-box transcription factors play essential roles in reproductive growth, especially in floral organ differentiation. Here, SlCMB1, a tomato SEP MADS-box gene, was isolated. SlCMB1 is noticeably expressed in inflorescences and flowers. Its transcript levels were higher in sepals than in other floral organs and decreased during sepal development. Tomato plants with reduced SlCMB1 mRNA levels displayed longer, branched and indeterminate inflorescences that exhibited a transition from reproductive to vegetative growth and enlarged and abnormally fused sepals. The transcript levels of genes known to regulate the development of inflorescence architecture and sepal size in tomato were dramatically changed. In addition, the expression levels of cell elongation-related and gibberellin biosynthetic genes also showed significant differences between the transgenic lines and the wild type, and the GA content of the peduncle in the transgenic lines was higher than that in the wild type. Yeast two-hybrid assay showed that SlCMB1 could interact individually with MC, J, AP2a and SlMBP21. Overall, our results indicate that SlCMB1 is an important regulator involved in the development of inflorescence architecture and sepal size in tomato plants.
Collapse
Affiliation(s)
- Jianling Zhang
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, People's Republic of China.
| | - Zongli Hu
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, People's Republic of China.
| | - Yunshu Wang
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, People's Republic of China.
| | - Xiaohui Yu
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, People's Republic of China.
| | - Changguang Liao
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, People's Republic of China.
| | - Mingku Zhu
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, People's Republic of China.
| | - Guoping Chen
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, People's Republic of China.
| |
Collapse
|
139
|
Zhang S, Yu H, Wang K, Zheng Z, Liu L, Xu M, Jiao Z, Li R, Liu X, Li J, Cui X. Detection of major loci associated with the variation of 18 important agronomic traits between Solanum pimpinellifolium and cultivated tomatoes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 95:312-323. [PMID: 29738097 DOI: 10.1111/tpj.13952] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 04/13/2018] [Indexed: 06/08/2023]
Abstract
Wild species can be used to improve various agronomic traits in cultivars; however, a limited understanding of the genetic basis underlying the morphological differences between wild and cultivated species hinders the integration of beneficial traits from wild species. In the present study, we generated and sequenced recombinant inbred lines (RILs, 201 F10 lines) derived from a cross between Solanum pimpinellifolium and Solanum lycopersicum tomatoes. Based on a high-resolution recombination bin map to uncover major loci determining the phenotypic variance between wild and cultivated tomatoes, 104 significantly associated loci were identified for 18 agronomic traits. On average, these loci explained ~39% of the phenotypic variance of the RILs. We further generated near-isogenic lines (NILs) for four identified loci, and the lines exhibited significant differences for the associated traits. We found that two loci could improve the flower number and inflorescence architecture in the cultivar following introgression of the wild-species alleles. These findings allowed us to construct a trait-locus network to help explain the correlations among different traits based on the pleiotropic or linked loci. Our results provide insights into the morphological changes between wild and cultivated tomatoes, and will help to identify key genes governing important agronomic traits for the molecular selection of elite tomato varieties.
Collapse
Affiliation(s)
- Shuaibin Zhang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Hong Yu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ketao Wang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Zheng Zheng
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Industrial Crops Research Institute, Henan Academy of Agricultural Sciences, Huayuan Road 116, Zhengzhou, 450002, Henan, China
| | - Lei Liu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Meng Xu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zhicheng Jiao
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Ren Li
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiyan Liu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jiayang Li
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xia Cui
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
140
|
Zhang Y, Wang L, Gao Y, Li D, Yu J, Zhou R, Zhang X. Genetic dissection and fine mapping of a novel dt gene associated with determinate growth habit in sesame. BMC Genet 2018; 19:38. [PMID: 29902971 PMCID: PMC6003200 DOI: 10.1186/s12863-018-0614-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 04/18/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND As an important oil crop, growth habit of sesame (Sesamum indicum L.) is naturally indeterminate, which brings about asynchronous maturity of capsules and causes loss of yield. RESULTS The genetic basis of determinate growth habit in sesame was investigated by classical genetic analysis through multiple populations, results revealed that it was controlled by an unique recessive gene. The genotyping by sequencing (GBS) approach was employed for high-throughput SNP identification and genotyping in the F2 population, then a high density bin map was constructed, the map was 1086.403 cM in length, which consisted of 1184 bins (13,679 SNPs), with an average of 0.918 cM between adjacent bins. Based on bin mapping in conjunction with SSR markers analysis in targeted region, the novel sesame determinacy gene was mapped on LG09 in a genome region of 41 kb. CONCLUSIONS This study dissected genetic basis of determinate growth habit in sesame, constructed a new high-density bin map and mapped a novel determinacy gene. Results of this study demonstrate that we employed an optimized approach to get fine-accuracy, high-resolution and high-efficiency mapping result in sesame. The findings provided important foundation for sesame determinacy gene cloning and were expected to be applied in breeding for cultivars suited to mechanized production.
Collapse
Affiliation(s)
- Yanxin Zhang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, No.2 Xudong 2nd Rd, Wuhan, 430062, China
| | - Linhai Wang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, No.2 Xudong 2nd Rd, Wuhan, 430062, China
| | - Yuan Gao
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, No.2 Xudong 2nd Rd, Wuhan, 430062, China
| | - Donghua Li
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, No.2 Xudong 2nd Rd, Wuhan, 430062, China
| | - Jingyin Yu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, No.2 Xudong 2nd Rd, Wuhan, 430062, China
| | - Rong Zhou
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, No.2 Xudong 2nd Rd, Wuhan, 430062, China
| | - Xiurong Zhang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, No.2 Xudong 2nd Rd, Wuhan, 430062, China.
| |
Collapse
|
141
|
Trevaskis B. Developmental Pathways Are Blueprints for Designing Successful Crops. FRONTIERS IN PLANT SCIENCE 2018; 9:745. [PMID: 29922318 PMCID: PMC5996307 DOI: 10.3389/fpls.2018.00745] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 05/15/2018] [Indexed: 05/29/2023]
Abstract
Genes controlling plant development have been studied in multiple plant systems. This has provided deep insights into conserved genetic pathways controlling core developmental processes including meristem identity, phase transitions, determinacy, stem elongation, and branching. These pathways control plant growth patterns and are fundamentally important to crop biology and agriculture. This review describes the conserved pathways that control plant development, using Arabidopsis as a model. Historical examples of how plant development has been altered through selection to improve crop performance are then presented. These examples, drawn from diverse crops, show how the genetic pathways controlling development have been modified to increase yield or tailor growth patterns to suit local growing environments or specialized crop management practices. Strategies to apply current progress in genomics and developmental biology to future crop improvement are then discussed within the broader context of emerging trends in plant breeding. The ways that knowledge of developmental processes and understanding of gene function can contribute to crop improvement, beyond what can be achieved by selection alone, are emphasized. These include using genome re-sequencing, mutagenesis, and gene editing to identify or generate novel variation in developmental genes. The expanding scope for comparative genomics, the possibility to engineer new developmental traits and new approaches to resolve gene-gene or gene-environment interactions are also discussed. Finally, opportunities to integrate fundamental research and crop breeding are highlighted.
Collapse
Affiliation(s)
- Ben Trevaskis
- CSIRO Agriculture and Food, Black Mountain Science and Innovation Park, Canberra, ACT, Australia
| |
Collapse
|
142
|
Pickersgill B. Parallel vs. Convergent Evolution in Domestication and Diversification of Crops in the Americas. Front Ecol Evol 2018. [DOI: 10.3389/fevo.2018.00056] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
143
|
Zhao W, Gu R, Che G, Cheng Z, Zhang X. CsTFL1b may regulate the flowering time and inflorescence architecture in cucumber (Cucumis sativus L.). Biochem Biophys Res Commun 2018; 499:307-313. [PMID: 29574158 DOI: 10.1016/j.bbrc.2018.03.153] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 03/20/2018] [Indexed: 01/22/2023]
Abstract
Cucumber is an important vegetable with indeterminate growth habit which is beneficial to its yield. In this study, we cloned the TFL1 homolog CsTFL1b in cucumber. CsTFL1b shares highly sequence similarity to TFL1 from Arabidopsis and has conservative histidine amino acid residue which is necessary for TFL1 function. However, phylogenetic analysis suggested that cucurbits TFL1s (CsTFL1b of cucumber and CmTFL1 of melon) formed a subclade which is far from the AtTFL1 in Arabidopsis or CEN in Antirrhinum. CsTFL1b was highest expressed in male flower but barely expressed in SAM which was different from TFL1 in Arabidopsis with highly transcription accumulation in SAM and CsTFL1b was located in nucleus and cytoplasm. Upon ectopic expression of CsTFL1b in Arabidopsis, the flowering time of transgenic plants was significantly delayed in both wild type and tfl1-11 mutant background but the terminal flower phenotype of tfl1-11 mutant was partially rescued. These results may underlie the discrepant function of CsTFL1b in cucumber from that in Arabidopsis.
Collapse
Affiliation(s)
- Wensheng Zhao
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, 100193, China
| | - Ran Gu
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, 100193, China
| | - Gen Che
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, 100193, China
| | - Zhihua Cheng
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, 100193, China
| | - Xiaolan Zhang
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
144
|
Patil HB, Chaurasia AK, Azeez A, Krishna B, Subramaniam VR, Sane AP, Sane PV. Characterization of two TERMINAL FLOWER1 homologs PgTFL1 and PgCENa from pomegranate (Punica granatum L.). TREE PHYSIOLOGY 2018; 38:772-784. [PMID: 29281116 DOI: 10.1093/treephys/tpx154] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 11/04/2017] [Indexed: 05/27/2023]
Abstract
FLOWERING LOCUS T (FT) and TERMINAL FLOWER1/CENTRORADIALIS (TFL1/CEN) are the key regulators of flowering time in plants with FT promoting flowering and TFL1 repressing flowering. TFL1 also controls floral meristem identity and its maintenance. In this study we have characterized two pomegranate (Punica granatum L.) TFL1/CEN-like genes designated as PgTFL1 and PgCENa. The expression of PgTFL1 and PgCENa fluctuated through alternate pruning and flowering cycles, being highly expressed during the vegetative phase (immediately after pruning) and decreasing gradually in the months thereafter such that their lowest levels, especially for PgCENa coincided with the flowering phase. Both the genes are able to functionally suppress the Arabidopsis tfl1-14 mutant flowering defect. Their expression in Arabidopsis resulted in delayed flowering time, increased plant height and leaf number, branches and shoot buds as compared with wild type, suggesting that PgTFL1 and PgCENa are bonafide homologs of TFL1. However, both the genes show distinct expression patterns, being expressed differentially in vegetative shoot apex and floral bud samples. While PgTFL1 expression was low in vegetative shoot apex and high in flower bud, PgCENa expression showed the opposite trend. These results suggest that the two TFL1s in pomegranate may be utilized to control distinct developmental processes, namely repression of flowering by PgCENa and development and growth of the reproductive tissues by PgTFL1 via distinct temporal and developmental regulation of their expression.
Collapse
Affiliation(s)
- Hemant B Patil
- Plant Molecular Biology Lab, Jain R&D Lab, Jain Hills, Jain Irrigation Systems Limited, Jalgaon 425001, India
| | - Akhilesh K Chaurasia
- Plant Molecular Biology Lab, Jain R&D Lab, Jain Hills, Jain Irrigation Systems Limited, Jalgaon 425001, India
| | - Abdul Azeez
- Plant Molecular Biology Lab, Jain R&D Lab, Jain Hills, Jain Irrigation Systems Limited, Jalgaon 425001, India
| | - Bal Krishna
- Plant Molecular Biology Lab, Jain R&D Lab, Jain Hills, Jain Irrigation Systems Limited, Jalgaon 425001, India
| | - V R Subramaniam
- Plant Molecular Biology Lab, Jain R&D Lab, Jain Hills, Jain Irrigation Systems Limited, Jalgaon 425001, India
| | - Aniruddha P Sane
- Plant Gene Expression Lab, CSIR-National Botanical Research Institute, Lucknow 226001, India
| | - Prafullachandra V Sane
- Plant Molecular Biology Lab, Jain R&D Lab, Jain Hills, Jain Irrigation Systems Limited, Jalgaon 425001, India
| |
Collapse
|
145
|
Abstract
Shoot architecture is determined by the organization and activities of apical, axillary, intercalary, secondary, and inflorescence meristems and by the subsequent development of stems, leaves, shoot branches, and inflorescences. In this review, we discuss the unifying principles of hormonal and genetic control of shoot architecture including advances in our understanding of lateral branch outgrowth; control of stem elongation, thickness, and angle; and regulation of inflorescence development. We focus on recent progress made mainly in Arabidopsis thaliana, rice, pea, maize, and tomato, including the identification of new genes and mechanisms controlling shoot architecture. Key advances include elucidation of mechanisms by which strigolactones, auxins, and genes such as IDEAL PLANT ARCHITECTURE1 and TEOSINTE BRANCHED1 control shoot architecture. Knowledge now available provides a foundation for rational approaches to crop breeding and the generation of ideotypes with defined architectural features to improve performance and productivity.
Collapse
Affiliation(s)
- Bing Wang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China;
| | - Steven M Smith
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China;
- School of Natural Sciences, University of Tasmania, Hobart 7001, Australia;
| | - Jiayang Li
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China;
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
146
|
Takisawa R, Nakazaki T, Nunome T, Fukuoka H, Kataoka K, Saito H, Habu T, Kitajima A. The parthenocarpic gene Pat-k is generated by a natural mutation of SlAGL6 affecting fruit development in tomato (Solanum lycopersicum L.). BMC PLANT BIOLOGY 2018; 18:72. [PMID: 29699487 PMCID: PMC5921562 DOI: 10.1186/s12870-018-1285-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Accepted: 04/10/2018] [Indexed: 05/23/2023]
Abstract
BACKGROUND Parthenocarpy is a desired trait in tomato because it can overcome problems with fruit setting under unfavorable environmental conditions. A parthenocarpic tomato cultivar, 'MPK-1', with a parthenocarpic gene, Pat-k, exhibits stable parthenocarpy that produces few seeds. Because 'MPK-1' produces few seeds, seedlings are propagated inefficiently via cuttings. It was reported that Pat-k is located on chromosome 1. However, the gene had not been isolated and the relationship between the parthenocarpy and low seed set in 'MPK-1' remained unclear. In this study, we isolated Pat-k to clarify the relationship between parthenocarpy and low seed set in 'MPK-1'. RESULTS Using quantitative trait locus (QTL) analysis for parthenocarpy and seed production, we detected a major QTL for each trait on nearly the same region of the Pat-k locus on chromosome 1. To isolate Pat-k, we performed fine mapping using an F4 population following the cross between a non-parthenocarpic cultivar, 'Micro-Tom' and 'MPK-1'. The results showed that Pat-k was located in the 529 kb interval between two markers, where 60 genes exist. By using data from a whole genome re-sequencing and genome sequence analysis of 'MPK-1', we could identify that the SlAGAMOUS-LIKE 6 (SlAGL6) gene of 'MPK-1' was mutated by a retrotransposon insertion. The transcript level of SlAGL6 was significantly lower in ovaries of 'MPK-1' than a non-parthenocarpic cultivar. From these results, we could conclude that Pat-k is SlAGL6, and its down-regulation in 'MPK-1' causes parthenocarpy and low seed set. In addition, we observed abnormal micropyles only in plants homozygous for the 'MPK-1' allele at the Pat-k/SlAGL6 locus. This result suggests that Pat-k/SlAGL6 is also related to ovule formation and that the low seed set in 'MPK-1' is likely caused by abnormal ovule formation through down-regulation of Pat-k/SlAGL6. CONCLUSIONS Pat-k is identical to SlAGL6, and its down-regulation causes parthenocarpy and low seed set in 'MPK-1'. Moreover, down-regulation of Pat-k/SlAGL6 could cause abnormal ovule formation, leading to a reduction in the number of seeds.
Collapse
Affiliation(s)
- Rihito Takisawa
- Graduate School of Agriculture, Kyoto University, Kizugawa, 619-0218 Japan
| | - Tetsuya Nakazaki
- Graduate School of Agriculture, Kyoto University, Kizugawa, 619-0218 Japan
| | - Tsukasa Nunome
- NARO Institute of Vegetable and Floriculture Science, Tsu, 514-2392 Japan
| | - Hiroyuki Fukuoka
- NARO Institute of Vegetable and Tea Science, Tsu, 514-2392 Japan
| | - Keiko Kataoka
- Graduate School of Agriculture, Ehime University, Matsuyama, 790-8566 Japan
| | - Hiroki Saito
- Graduate School of Agriculture, Kyoto University, Kizugawa, 619-0218 Japan
- Present Address: Tropical Agriculture Research Front Japan International Research Center Agricultural Sciences, 1091-1, Kawarabaru, Aza Maezato, Ishigaki, Okinawa 907-0002 Japan
| | - Tsuyoshi Habu
- Graduate School of Agriculture, Ehime University, Matsuyama, 790-8566 Japan
| | - Akira Kitajima
- Graduate School of Agriculture, Kyoto University, Kizugawa, 619-0218 Japan
| |
Collapse
|
147
|
Si Z, Liu H, Zhu J, Chen J, Wang Q, Fang L, Gao F, Tian Y, Chen Y, Chang L, Liu B, Han Z, Zhou B, Hu Y, Huang X, Zhang T. Mutation of SELF-PRUNING homologs in cotton promotes short-branching plant architecture. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:2543-2553. [PMID: 29547987 PMCID: PMC5920339 DOI: 10.1093/jxb/ery093] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 03/12/2018] [Indexed: 05/19/2023]
Abstract
In cotton, the formation of fruiting branches affects both plant architecture and fiber yield. Here, we report map-based cloning of the axillary flowering mutation gene (GbAF) that causes bolls to be borne directly on the main plant stem in Gossypium barbadense, and of the clustered boll mutation gene (cl1) in G. hirsutum. Both mutant alleles were found to represent point mutations at the Cl1 locus. Therefore, we propose that the GbAF mutation be referred to as cl1b. These Cl1 loci correspond to homologs of tomato SELF-PRUNING (SP), i.e. Gossypium spp. SP (GoSP) genes. In tetraploid cottons, single monogenic mutation of either duplicate GoSP gene (one in the A and one in the D subgenome) is associated with the axillary cluster flowering phenotype, although the shoot-indeterminate state of the inflorescence is maintained. By contrast, silencing of both GoSPs leads to the termination of flowering or determinate plants. The architecture of axillary flowering cotton allows higher planting density, contributing to increased fiber yield. Taken together the results provide new insights into the underlying mechanism of branching in cotton species, and characterization of GoSP genes may promote the development of compact cultivars to increase global cotton production.
Collapse
Affiliation(s)
- Zhanfeng Si
- Agronomy Department, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Hui Liu
- Special Plant Genomics Laboratory, College of Life Sciences, University of Shihezi, Shihezi, Xinjiang, China
| | - Jiankun Zhu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R & D Engineering Center (the Ministry of Education), College of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Jiedan Chen
- Agronomy Department, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Qiong Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R & D Engineering Center (the Ministry of Education), College of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Lei Fang
- Agronomy Department, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R & D Engineering Center (the Ministry of Education), College of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Fengkai Gao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R & D Engineering Center (the Ministry of Education), College of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Yue Tian
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R & D Engineering Center (the Ministry of Education), College of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Yali Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R & D Engineering Center (the Ministry of Education), College of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Lijing Chang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R & D Engineering Center (the Ministry of Education), College of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Bingliang Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R & D Engineering Center (the Ministry of Education), College of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Zegang Han
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R & D Engineering Center (the Ministry of Education), College of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Baoliang Zhou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R & D Engineering Center (the Ministry of Education), College of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Yan Hu
- Agronomy Department, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R & D Engineering Center (the Ministry of Education), College of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Xianzhong Huang
- Special Plant Genomics Laboratory, College of Life Sciences, University of Shihezi, Shihezi, Xinjiang, China
- Correspondence: or
| | - Tianzhen Zhang
- Agronomy Department, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R & D Engineering Center (the Ministry of Education), College of Agriculture, Nanjing Agricultural University, Nanjing, China
- Correspondence: or
| |
Collapse
|
148
|
Rajabu CA, Kennedy GG, Ndunguru J, Ateka EM, Tairo F, Hanley-Bowdoin L, Ascencio-Ibáñez JT. Lanai: A small, fast growing tomato variety is an excellent model system for studying geminiviruses. J Virol Methods 2018. [PMID: 29530481 PMCID: PMC5904752 DOI: 10.1016/j.jviromet.2018.03.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Florida Lanai is a tomato variety suitable for virus-host interaction studies. Florida-Lanai was infected by geminiviruses delivered by different methods. Florida-Lanai shows distinct measurable symptoms for different geminiviruses. Florida-Lanai has a small size, rapid growth and is easy to maintain. Florida-Lanai is an excellent choice for comparing geminivirus infections.
Geminiviruses are devastating single-stranded DNA viruses that infect a wide variety of crops in tropical and subtropical areas of the world. Tomato, which is a host for more than 100 geminiviruses, is one of the most affected crops. Developing plant models to study geminivirus-host interaction is important for the design of virus management strategies. In this study, “Florida Lanai” tomato was broadly characterized using three begomoviruses (Tomato yellow leaf curl virus, TYLCV; Tomato mottle virus, ToMoV; Tomato golden mosaic virus, TGMV) and a curtovirus (Beet curly top virus, BCTV). Infection rates of 100% were achieved by agroinoculation of TYLCV, ToMoV or BCTV. Mechanical inoculation of ToMoV or TGMV using a microsprayer as well as whitefly transmission of TYLCV or ToMoV also resulted in 100% infection frequencies. Symptoms appeared as early as four days post inoculation when agroinoculation or bombardment was used. Symptoms were distinct for each virus and a range of features, including plant height, flower number, fruit number, fruit weight and ploidy, was characterized. Due to its small size, rapid growth, ease of characterization and maintenance, and distinct responses to different geminiviruses, “Florida Lanai” is an excellent choice for comparing geminivirus infection in a common host.
Collapse
Affiliation(s)
- C A Rajabu
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh NC, 27695, USA; Department of Horticulture, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - G G Kennedy
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh NC, 27695, USA
| | - J Ndunguru
- Mikocheni Agricultural Research Institute, Dar es Salaam, Tanzania
| | - E M Ateka
- Department of Horticulture, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - F Tairo
- Mikocheni Agricultural Research Institute, Dar es Salaam, Tanzania
| | - L Hanley-Bowdoin
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh NC, 27695, USA
| | - J T Ascencio-Ibáñez
- Department of Molecular and Structural Biochemistry, North Carolina State University, Polk Hall 132, Box 7622, NCSU Campus, Raleigh NC, 27695, USA.
| |
Collapse
|
149
|
Cheng X, Li G, Tang Y, Wen J. Dissection of genetic regulation of compound inflorescence development in Medicago truncatula. Development 2018; 145:dev.158766. [PMID: 29361570 DOI: 10.1242/dev.158766] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 01/02/2018] [Indexed: 12/15/2022]
Abstract
Development of inflorescence architecture is controlled by genetic regulatory networks. TERMINAL FLOWER1 (TFL1), APETALA1 (AP1), LEAFY (LFY) and FRUITFULL (FUL) are core regulators for inflorescence development. To understand the regulation of compound inflorescence development, we characterized mutants of corresponding orthologous genes, MtTFL1, MtAP1, SINGLE LEAFLET1 (SGL1) and MtFULc, in Medicago truncatula, and analyzed expression patterns of these genes. Results indicate that MtTFL1, MtFULc, MtAP1 and SGL1 play specific roles in identity determination of primary inflorescence meristems, secondary inflorescence meristems, floral meristems and common primordia, respectively. Double mutation of MtTFL1 and MtFULc transforms compound inflorescences to simple flowers, whereas single mutation of MtTFL1 changes the inflorescence branching pattern from monopodial to sympodial. Double mutant mtap1sgl1 completely loses floral meristem identity. We conclude that inflorescence architecture in M. truncatula is controlled by spatiotemporal expression of MtTFL1, MtFULc, MtAP1 and SGL1 through reciprocal repression. Although this regulatory network shares similarity with the pea model, it has specificity in regulating inflorescence architecture in Mtruncatula This study establishes M. truncatula as an excellent genetic model for understanding compound inflorescence development in related legume crops.
Collapse
Affiliation(s)
- Xiaofei Cheng
- Noble Research Institute, 2510 Sam Noble Parkway, Ardmore, OK 73401, USA
| | - Guifen Li
- Noble Research Institute, 2510 Sam Noble Parkway, Ardmore, OK 73401, USA
| | - Yuhong Tang
- Noble Research Institute, 2510 Sam Noble Parkway, Ardmore, OK 73401, USA
| | - Jiangqi Wen
- Noble Research Institute, 2510 Sam Noble Parkway, Ardmore, OK 73401, USA
| |
Collapse
|
150
|
Higuchi Y. Florigen and anti-florigen: flowering regulation in horticultural crops. BREEDING SCIENCE 2018; 68:109-118. [PMID: 29681753 PMCID: PMC5903977 DOI: 10.1270/jsbbs.17084] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 10/17/2017] [Indexed: 05/20/2023]
Abstract
Flowering time regulation has significant effects on the agricultural and horticultural industries. Plants respond to changing environments and produce appropriate floral inducers (florigens) or inhibitors (anti-florigens) that determine flowering time. Recent studies have demonstrated that members of two homologous proteins, FLOWERING LOCUS T (FT) and TERMINAL FLOWER 1 (TFL1), act as florigen and anti-florigen, respectively. Studies in diverse plant species have revealed universal but diverse roles of the FT/TFL1 gene family in many developmental processes. Recent studies in several crop species have revealed that modification of flowering responses, either due to mutations in the florigen/anti-florigen gene itself, or by modulation of the regulatory pathway, is crucial for crop domestication. The FT/TFL1 gene family could be an important potential breeding target in many crop species.
Collapse
|