101
|
Autophagy as a Homeostatic Mechanism in Response to Stress Conditions in the Central Nervous System. Mol Neurobiol 2019; 56:6594-6608. [DOI: 10.1007/s12035-019-1546-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 03/12/2019] [Indexed: 12/11/2022]
|
102
|
Gao X, Yang J, Li Y, Yu M, Liu S, Han Y, Lu X, Jin C, Wu S, Cai Y. Lanthanum chloride induces autophagy in rat hippocampus through ROS-mediated JNK and AKT/mTOR signaling pathways. Metallomics 2019; 11:439-453. [DOI: 10.1039/c8mt00295a] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Lanthanum (La) can cause central nervous system damage in rats and lead to learning and memory impairment, but the relevant mechanisms have not been fully elucidated.
Collapse
|
103
|
Ryter SW, Bhatia D, Choi ME. Autophagy: A Lysosome-Dependent Process with Implications in Cellular Redox Homeostasis and Human Disease. Antioxid Redox Signal 2019; 30:138-159. [PMID: 29463101 PMCID: PMC6251060 DOI: 10.1089/ars.2018.7518] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 02/20/2018] [Indexed: 12/12/2022]
Abstract
SIGNIFICANCE Autophagy, a lysosome-dependent homeostatic process inherent to cells and tissues, has emerging significance in the pathogenesis of human disease. This process enables the degradation and turnover of cytoplasmic substrates via membrane-dependent sequestration in autophagic vesicles (autophagosomes) and subsequent lysosomal delivery of cargo. Recent Advances: Selective forms of autophagy can target specific substrates (e.g., organelles, protein aggregates, and lipids) for processing. Autophagy is highly regulated by oxidative stress, including exposure to altered oxygen tension, by direct and indirect mechanisms, and contributes to inducible defenses against oxidative stress. Mitochondrial autophagy (mitophagy) plays a critical role in the oxidative stress response, through maintenance of mitochondrial integrity. CRITICAL ISSUES Autophagy can impact a number of vital cellular processes including inflammation and adaptive immunity, host defense, lipid metabolism and storage, mitochondrial homeostasis, and clearance of aggregated proteins, all which may be of significance in human disease. Autophagy can exert both maladaptive and adaptive roles in disease pathogenesis, which may also be influenced by autophagy impairment. This review highlights the essential roles of autophagy in human diseases, with a focus on diseases in which oxidative stress or inflammation play key roles, including human lung, liver, kidney and heart diseases, metabolic diseases, and diseases of the cardiovascular and neural systems. FUTURE DIRECTIONS Investigations that further elucidate the complex role of autophagy in the pathogenesis of disease will facilitate targeting this pathway for therapies in specific diseases.
Collapse
Affiliation(s)
- Stefan W. Ryter
- Division of Pulmonary and Critical Care Medicine, Weill Cornell Medicine, New York, New York
| | - Divya Bhatia
- Division of Nephrology and Hypertension, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, New York
| | - Mary E. Choi
- Division of Nephrology and Hypertension, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, New York
- NewYork-Presbyterian Hospital, Weill Cornell Medical Center, New York, New York
| |
Collapse
|
104
|
Fan P, Xie XH, Chen CH, Peng X, Zhang P, Yang C, Wang YT. Molecular Regulation Mechanisms and Interactions Between Reactive Oxygen Species and Mitophagy. DNA Cell Biol 2018; 38:10-22. [PMID: 30556744 DOI: 10.1089/dna.2018.4348] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The generation of reactive oxygen species (ROS) in response to oxidative stress has important effects on cell development, normal function, and survival. It may cause oxidative damage to intracellular macromolecular substances and mitochondria through several signaling pathways. However, the damaged mitochondria promote further ROS generation, creating a vicious cycle that can cause cellular injury. In addition, excessive ROS produced by damaged mitochondria can trigger mitophagy, a process that can scavenge impaired mitochondria and reduce ROS level to maintain stable mitochondrial function in cells. Therefore, mitophagy heaps maintain cellular homeostasis under oxidative stress. In this article, we review recent advances in cellular damage caused by excessive ROS, the mechanism of mitophagy, and the close relationship between ROS and mitophagy. This review provides a new perspective on therapeutic strategies for related diseases.
Collapse
Affiliation(s)
- Pan Fan
- 1 Department of Spine Center, Zhongda Hospital, Medical School, Southeast University , Nanjing, Jiangsu, China
| | - Xing-Hui Xie
- 1 Department of Spine Center, Zhongda Hospital, Medical School, Southeast University , Nanjing, Jiangsu, China
| | - Chang-Hong Chen
- 2 Department of Orthopaedic Surgery, Jiangyin Hospital of Traditional Chinese Medicine , Wuxi, Jiangsu, China
| | - Xin Peng
- 1 Department of Spine Center, Zhongda Hospital, Medical School, Southeast University , Nanjing, Jiangsu, China
| | - Po Zhang
- 1 Department of Spine Center, Zhongda Hospital, Medical School, Southeast University , Nanjing, Jiangsu, China
| | - Cheng Yang
- 1 Department of Spine Center, Zhongda Hospital, Medical School, Southeast University , Nanjing, Jiangsu, China
| | - Yun-Tao Wang
- 1 Department of Spine Center, Zhongda Hospital, Medical School, Southeast University , Nanjing, Jiangsu, China
| |
Collapse
|
105
|
Li X, Gao M, He Y, Xiong B, Liu H, Gu L. Intersectin-Cdc42 interaction is required for orderly meiosis in porcine oocytes. J Cell Physiol 2018; 234:7492-7497. [PMID: 30478952 DOI: 10.1002/jcp.27510] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 09/10/2018] [Indexed: 11/10/2022]
Abstract
Intersectins (ITSNs) have been shown to act as adaptor proteins that govern multiple cellular events via regulating Cdc42 activity. However, it remains to be determined whether the ITSN-Cdc42 pathway is functional in porcine oocytes. To address this question, we used a small molecule, ZCL278, to selectively disrupt the ITSN2-Cdc42 interaction. In the present study, we find that porcine oocytes exposed to ZCL278 are unable to completely progress through meiosis. Meanwhile, the spindle defects and chromosomal congression failure are frequently detected in these oocytes. In support of this, we observed the accumulated distribution of vesicle-like ITSN2 signals around the chromosome/spindle region during porcine oocyte maturation. In addition, our results also showed that inhibition of the ITSN-Cdc42 interaction impairs the actin polymerization in porcine oocytes. In summary, the findings support a model where ITSNs, through the interaction with Cdc42, modulates the assembly of meiotic apparatus and actin polymerization, consequently ensuring the orderly meiotic progression during porcine oocyte maturation.
Collapse
Affiliation(s)
- Xiaoyan Li
- College of Animal Science & Technology, Nanjing Agricultural University, Nanjing, China
| | - Min Gao
- College of Animal Science & Technology, Nanjing Agricultural University, Nanjing, China
| | - Yongfu He
- College of Animal Science & Technology, Nanjing Agricultural University, Nanjing, China
| | - Bo Xiong
- College of Animal Science & Technology, Nanjing Agricultural University, Nanjing, China
| | - Honglin Liu
- College of Animal Science & Technology, Nanjing Agricultural University, Nanjing, China
| | - Ling Gu
- College of Animal Science & Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
106
|
Luo Z, Xu X, Sho T, Zhang J, Xu W, Yao J, Xu J. ROS-induced autophagy regulates porcine trophectoderm cell apoptosis, proliferation, and differentiation. Am J Physiol Cell Physiol 2018; 316:C198-C209. [PMID: 30485137 DOI: 10.1152/ajpcell.00256.2018] [Citation(s) in RCA: 138] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Significant embryo loss remains a serious problem in pig production. Reactive oxygen species (ROS) play a critical role in embryonic implantation and placentation. However, the potential mechanism of ROS on porcine trophectoderm (pTr) cell fate during the peri-implantation period has not been investigated. This study aimed to elucidate the effects of ROS on pTr cell phenotypes and the regulatory role in cell attachment and differentiation. Herein, results showed that exogenous H2O2 inhibited pTr cell viability, arrested the cell cycle at S and G2/M phases, and increased cell apoptosis and autophagy protein light chain 3B and Beclin-1, whereas these effects were reversed by different concentrations of N-acetyl-l-cysteine (NAC) posttreatment. In addition, NAC abolished H2O2-induced autophagic flux, inhibited intracellular and mitochondrial ROS, and restored expression of genes important for mitochondrial DNA and biogenesis, cell attachment, and differentiation. NAC reversed H2O2-activated MAPK and Akt/mammalian target of rapamycin pathways in dose-dependent manners. Furthermore, analyses with pharmacological and RNA interference approaches suggested that autophagy regulated cell apoptosis and gene expression of caudal-related homeobox 2 and IL-1β. Collectively, these results provide new insights into the role of the ROS-induced autophagy in pTr cell apoptosis, attachment, and differentiation, indicating a promising target for decreasing porcine conceptus loss during the peri-implantation period.
Collapse
Affiliation(s)
- Zhen Luo
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Veterinary Biotechnology , Shanghai , China
| | - Xue Xu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Veterinary Biotechnology , Shanghai , China
| | - Takami Sho
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Veterinary Biotechnology , Shanghai , China
| | - Jing Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Veterinary Biotechnology , Shanghai , China
| | - Weina Xu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Veterinary Biotechnology , Shanghai , China
| | - Jianbo Yao
- Division of Animal and Nutritional Sciences, West Virginia University , Morgantown, West Virginia
| | - Jianxiong Xu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Veterinary Biotechnology , Shanghai , China
| |
Collapse
|
107
|
MicroRNA expression profiling of dibenzalacetone (DBA) treated intracellular amastigotes of Leishmania donovani. Exp Parasitol 2018; 193:5-19. [DOI: 10.1016/j.exppara.2018.07.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 07/19/2018] [Accepted: 07/30/2018] [Indexed: 11/19/2022]
|
108
|
Chiang PJ, Wu SM, Tseng MJ, Huang PJ. Automated Bright Field Segmentation of Cells and Vacuoles Using Image Processing Technique. Cytometry A 2018; 93:1004-1018. [PMID: 30230197 DOI: 10.1002/cyto.a.23595] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 07/18/2018] [Accepted: 07/30/2018] [Indexed: 12/19/2022]
Abstract
Understanding the mechanisms and other variants of programmed cell death will help provide deeper insight into various disease processes. Although complex procedures are required to distinguish each type of cell death, the formation of vacuoles is one of the important features in some process of cell death under different conditions. Thus, monitoring and counting the number of vacuoles and the ratio of cells with vacuoles is a commonly used method to indicate and quantify the efficacy of the therapy. Several studies have shown that image processing can provide a quick, convenient and precise mean of performing cell detection. Hence, this study uses an image processing technique to detect and quantify vacuolated cells without the need for dyes. The system both counts the number of vacuolated cells and determines the ratio of cells with vacuoles. The performance of the proposed image processing system was evaluated using 38 images. It has been shown that a strong correlation exists between the automated counts and the manual counts. Furthermore, the absolute percentage errors between automated counts and manual counts for cell detection and vacuolated cell detection using data pooled from all images are 3.61 and 3.33%, respectively. A user-friendly graphical user interface (GUI) is also developed and freely available for download, providing researchers in biomedicine with a more convenient instrument for vacuolization analysis.
Collapse
Affiliation(s)
- Pei-Ju Chiang
- Department of Mechanical Engineering and Advanced Institute of Manufacturing with High-Tech Innovations, National Chung Cheng University, Chia-Yi, Taiwan, ROC
| | - Shao-Ming Wu
- Department of Mechanical Engineering and Advanced Institute of Manufacturing with High-Tech Innovations, National Chung Cheng University, Chia-Yi, Taiwan, ROC
| | - Min-Jen Tseng
- Department of Biomedical Sciences and Institute of Molecular Biology, National Chung Cheng University, Chia-Yi, Taiwan, ROC
| | - Pin-Jie Huang
- Department of Biomedical Sciences and Institute of Molecular Biology, National Chung Cheng University, Chia-Yi, Taiwan, ROC
| |
Collapse
|
109
|
Giorgi C, Marchi S, Simoes IC, Ren Z, Morciano G, Perrone M, Patalas-Krawczyk P, Borchard S, Jȩdrak P, Pierzynowska K, Szymański J, Wang DQ, Portincasa P, Wȩgrzyn G, Zischka H, Dobrzyn P, Bonora M, Duszynski J, Rimessi A, Karkucinska-Wieckowska A, Dobrzyn A, Szabadkai G, Zavan B, Oliveira PJ, Sardao VA, Pinton P, Wieckowski MR. Mitochondria and Reactive Oxygen Species in Aging and Age-Related Diseases. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2018; 340:209-344. [PMID: 30072092 PMCID: PMC8127332 DOI: 10.1016/bs.ircmb.2018.05.006] [Citation(s) in RCA: 256] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Aging has been linked to several degenerative processes that, through the accumulation of molecular and cellular damage, can progressively lead to cell dysfunction and organ failure. Human aging is linked with a higher risk for individuals to develop cancer, neurodegenerative, cardiovascular, and metabolic disorders. The understanding of the molecular basis of aging and associated diseases has been one major challenge of scientific research over the last decades. Mitochondria, the center of oxidative metabolism and principal site of reactive oxygen species (ROS) production, are crucial both in health and in pathogenesis of many diseases. Redox signaling is important for the modulation of cell functions and several studies indicate a dual role for ROS in cell physiology. In fact, high concentrations of ROS are pathogenic and can cause severe damage to cell and organelle membranes, DNA, and proteins. On the other hand, moderate amounts of ROS are essential for the maintenance of several biological processes, including gene expression. In this review, we provide an update regarding the key roles of ROS-mitochondria cross talk in different fundamental physiological or pathological situations accompanying aging and highlighting that mitochondrial ROS may be a decisive target in clinical practice.
Collapse
Affiliation(s)
- Carlotta Giorgi
- Department of Morphology Surgery and Experimental Medicine, Section of Pathology Oncology and Experimental Biology, Interdisciplinary Center for the Study of Inflammation (ICSI), Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Saverio Marchi
- Department of Morphology Surgery and Experimental Medicine, Section of Pathology Oncology and Experimental Biology, Interdisciplinary Center for the Study of Inflammation (ICSI), Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Ines C.M. Simoes
- Department of Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Ziyu Ren
- Department of Cell and Developmental Biology, Consortium for Mitochondrial Research, University College London, London, United Kingdom
| | - Giampaolo Morciano
- Department of Morphology Surgery and Experimental Medicine, Section of Pathology Oncology and Experimental Biology, Interdisciplinary Center for the Study of Inflammation (ICSI), Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
- Cecilia Hospital, GVM Care & Research, 48033 Cotignola, Ravenna, Italy
- Maria Pia Hospital, GVM Care & Research, Torino, Italy
| | - Mariasole Perrone
- Department of Morphology Surgery and Experimental Medicine, Section of Pathology Oncology and Experimental Biology, Interdisciplinary Center for the Study of Inflammation (ICSI), Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Paulina Patalas-Krawczyk
- Department of Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Sabine Borchard
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Paulina Jȩdrak
- Department of Molecular Biology, University of Gdańsk, Gdańsk, Poland
| | | | - Jȩdrzej Szymański
- Department of Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - David Q. Wang
- Department of Medicine, Division of Gastroenterology and Liver Diseases, Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Piero Portincasa
- Clinica Medica “A. Murri”, Dept. of Biomedical Sciences & Human Oncology, University of Bari "Aldo Moro" Medical School, Bari, Italy
| | - Grzegorz Wȩgrzyn
- Department of Molecular Biology, University of Gdańsk, Gdańsk, Poland
| | - Hans Zischka
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Toxicology and Environmental Hygiene, Technical University Munich, Munich, Germany
| | - Pawel Dobrzyn
- Department of Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Massimo Bonora
- Departments of Cell Biology and Gottesman Institute for Stem Cell & Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Jerzy Duszynski
- Department of Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Alessandro Rimessi
- Department of Morphology Surgery and Experimental Medicine, Section of Pathology Oncology and Experimental Biology, Interdisciplinary Center for the Study of Inflammation (ICSI), Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | | | | | - Gyorgy Szabadkai
- Department of Cell and Developmental Biology, Consortium for Mitochondrial Research, University College London, London, United Kingdom
- The Francis Crick Institute, London, United Kingdom
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Barbara Zavan
- Cecilia Hospital, GVM Care & Research, 48033 Cotignola, Ravenna, Italy
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Paulo J. Oliveira
- CNC - Center for Neuroscience and Cell Biology, UC-Biotech, Biocant Park, University of Coimbra, Cantanhede, Portugal
| | - Vilma A. Sardao
- CNC - Center for Neuroscience and Cell Biology, UC-Biotech, Biocant Park, University of Coimbra, Cantanhede, Portugal
| | - Paolo Pinton
- Department of Morphology Surgery and Experimental Medicine, Section of Pathology Oncology and Experimental Biology, Interdisciplinary Center for the Study of Inflammation (ICSI), Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
- Cecilia Hospital, GVM Care & Research, 48033 Cotignola, Ravenna, Italy
| | - Mariusz R. Wieckowski
- Department of Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
110
|
Chauhan IS, Rao GS, Shankar J, Chauhan LKS, Kapadia GJ, Singh N. Chemoprevention of Leishmaniasis: In-vitro antiparasitic activity of dibenzalacetone, a synthetic curcumin analog leads to apoptotic cell death in Leishmania donovani. Parasitol Int 2018; 67:627-636. [PMID: 29913255 DOI: 10.1016/j.parint.2018.06.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 04/27/2018] [Accepted: 06/08/2018] [Indexed: 01/23/2023]
Abstract
Curcumin is the major phenolic compound found in turmeric, a dry powder of rhizomes and roots of the plant, Curcuma longa L., which is widely used as spice and food colorant around the world, and in herbal medicinal practice in Asian countries. The present study reports the leishmanicidal activity of trans-dibenzalacetone (DBA), a synthetic monoketone analog of curcumin, against Leishmania donovani parasites. We for the first time report the antiproliferative effect of a curcumin analog (DBA) on the intracellular amastigotes of L. donovani, the clinically more relevant stage of the parasite than its promastigotes stage. The leishmanicidal effect of DBA was further confirmed by scanning and transmission electron microscopies. Cell growth was arrested in G0/G1 phase with increased concentration of cytosolic calcium and dissipation of mitochondrial membrane potential. Further, the unique trypanothione/trypanothione reductase (TR) system of Leishmania cells was significantly inhibited by DBA. This economically synthesizable simple monoketone analog of curcumin has the potential for field use against visceral leishmaniasis which is currently widespread in tropical and subtropical developing countries of the world. In conclusion, we have identified an analog of curcumin for potential applications against leishmaniasis, based on its strong antiparasitic activity and low toxicity. This curcumin analog compares favorably, at least in vitro, with the existing medication miltefosine.
Collapse
Affiliation(s)
- Indira Singh Chauhan
- Biochemistry Division, CSIR Central Drug Research Institute, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - G Subba Rao
- Global Biotechnology Resource Center, 145 Rosewood Drive, Streamwood, IL 60107, USA
| | - Jai Shankar
- Transmission Electron Microscopy, CSIR Indian Institute of Toxicology Research, Mahatma Gandhi Marg, Lucknow 226001, India
| | - Lalit Kumar Singh Chauhan
- Transmission Electron Microscopy, CSIR Indian Institute of Toxicology Research, Mahatma Gandhi Marg, Lucknow 226001, India
| | - Govind J Kapadia
- Department of Pharmaceutical Sciences, College of Pharmacy, Howard University, Washington, DC 20059, USA
| | - Neeloo Singh
- Biochemistry Division, CSIR Central Drug Research Institute, Jankipuram Extension, Sitapur Road, Lucknow 226031, India.
| |
Collapse
|
111
|
Dihydronortanshinone, a natural product, alleviates LPS-induced inflammatory response through NF-κB, mitochondrial ROS, and MAPK pathways. Toxicol Appl Pharmacol 2018; 355:1-8. [PMID: 29906494 DOI: 10.1016/j.taap.2018.06.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 05/30/2018] [Accepted: 06/10/2018] [Indexed: 12/21/2022]
Abstract
Inflammation is considered to be the common pathophysiological basis for a series of diseases. Documented data showed the anti-inflammatory effects of Salvia miltiorrhiza Bunge (Danshen), a traditional herb. The pharmacological activities of dihydronortanshinone (DNT), a tanshinone isolated from Danshen, remain unknown. In this study, the anti-inflammatory effects and underlying mechanisms of DNT were investigated with a lipopolysaccharide (LPS)-induced RAW264.7 macrophage model. DNT significantly suppressed LPS-induced inflammatory mediators such as nitrite oxide (NO), tumor necrosis factor α (TNF-α), interleukin 6 (IL-6), inducible nitric oxide synthase (iNOS). LPS-induced reactive oxygen species (ROS) generation was inhibited by DNT, rotenone (Rot), thenoyltrifluoroacetone (TTFA), and antimycin A (AA). Furthermore, DNT inhibited LPS-induced NF-κBp65 phosphorylation, nuclear translocation, as well as JNK1/2 and p38MAPK phosphorylation. In addition, DNT interrupted Toll-like receptor 4 (TLR4) dimerization and molecular docking results suggested that it was buried in the pocket of TLR4-MD2 complex. In conclusion, DNT inhibited LPS-induced inflammation mainly through NF-κB, mitochondrial ROS, and MAPK pathways possibly mediated by interfering LPS-TLR4-MD2 complex.
Collapse
|
112
|
Organophosphate pesticide chlorpyrifos impairs STAT1 signaling to induce dopaminergic neurotoxicity: Implications for mitochondria mediated oxidative stress signaling events. Neurobiol Dis 2018; 117:82-113. [PMID: 29859868 DOI: 10.1016/j.nbd.2018.05.019] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 04/26/2018] [Accepted: 05/29/2018] [Indexed: 01/13/2023] Open
Abstract
The organophosphate (OP) pesticide chlorpyrifos (CPF), used in agricultural settings, induces developmental and neurological impairments. Recent studies using in vitro cell culture models have reported CPF exposure to have a positive association with mitochondria-mediated oxidative stress response and dopaminergic cell death; however, the mechanism by which mitochondrial reactive oxygen species (ROS) contribute to dopaminergic cell death remains unclear. Therefore, we hypothesized that STAT1, a transcription factor, causes apoptotic dopaminergic cell death via mitochondria-mediated oxidative stress mechanisms. Here we show that exposure of dopaminergic neuronal cells such as N27 cells (immortalized murine mesencephalic dopaminergic cells) to CPF resulted in a dose-dependent increase in apoptotic cell death as measured by MTS assay and DNA fragmentation. Similar effects were observed in CPF-treated human dopaminergic neuronal cells (LUHMES cells), with an associated increase in mitochondrial dysfunction. Moreover, CPF (10 μM) induced time-dependent increase in STAT1 activation coincided with the collapse of mitochondrial transmembrane potential, increase in ROS generation, proteolytic cleavage of protein kinase C delta (PKCδ), inhibition of the mitochondrial basal oxygen consumption rate (OCR), with a concomitant reduction in ATP-linked OCR and reserve capacity, increase in Bax/Bcl-2 ratio and enhancement of autophagy. Additionally, by chromatin immunoprecipitation (ChIP), we demonstrated that STAT1 bound to a putative regulatory sequence in the NOX1 and Bax promoter regions in response to CPF in N27 cells. Interestingly, overexpression of non-phosphorylatable STAT1 mutants (STAT1Y701F and STAT1S727A) but not STAT1 WT construct attenuated the cleavage of PKCδ and ultimately cell death in CPF-treated cells. Furthermore, small interfering RNA knockdown demonstrated STAT1 to be a critical regulator of autophagy and mitochondria-mediated proapoptotic cell signaling events after CPF treatment in N27 cells. Finally, oral administration of CPF (5 mg/kg) in postnatal rats (PNDs 27-61) induced motor deficits, and nigrostriatal dopaminergic neurodegeneration with a concomitant induction of STAT1-dependent proapoptotic cell signaling events. Conversely, co-treatment with mitoapocynin (a mitochondrially-targeted antioxidant) and CPF rescued motor deficits, and restored dopaminergic neuronal survival via abrogation of STAT1-dependent proapoptotic cell signaling events. Taken together, our study identifies a novel mechanism by which STAT1 regulates mitochondria-mediated oxidative stress response, PKCδ activation and autophagy. In this context, the phosphorylation of Tyrosine 701 and Serine 727 in STAT1 was found to be essential for PKCδ cleavage. By attenuating mitochondrial-derived ROS, mitoapocynin may have therapeutic applications for reversing CPF-induced dopaminergic neurotoxicity and associated neurobehavioral deficits as well as neurodegenerative diseases.
Collapse
|
113
|
Wang H, Cheng Q, Li X, Hu F, Han L, Zhang H, Li L, Ge J, Ying X, Guo X, Wang Q. Loss of TIGAR Induces Oxidative Stress and Meiotic Defects in Oocytes from Obese Mice. Mol Cell Proteomics 2018; 17:1354-1364. [PMID: 29776966 DOI: 10.1074/mcp.ra118.000620] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 04/25/2018] [Indexed: 12/26/2022] Open
Abstract
Maternal obesity has been reported to impair oocyte quality in mice, however, the underlying mechanisms remain unclear. In the present study, by conducting a comparative proteomic analysis, we identified a reduced expression of TIGAR (TP53-induced glycolysis and apoptosis regulator) protein in ovulated oocytes from high-fat diet (HFD)-fed mice. Specific depletion of TIGAR in mouse oocytes results in the marked elevation of reactive oxygen species (ROS) levels and the failure of meiotic apparatus assembly. Importantly, forced expression of TIGAR in HFD oocytes not only attenuates ROS production, but also partly prevents spindle disorganization and chromosome misalignment during meiosis. Meantime, we noted that TIGAR knockdown in oocytes induces a strong activation of autophagy, whereas overexpression of TIGAR significantly reduces the LC3 accumulation in HFD oocytes. By anti-oxidant treatment, we further demonstrated that such an autophagic response is dependent on the TIGAR-controlled ROS production. In summary, our data indicate a role for TIGAR in modulating redox homeostasis during oocyte maturation, and uncover that loss of TIGAR is a critical pathway mediating the effects of maternal obesity on oocyte quality.
Collapse
Affiliation(s)
- Haichao Wang
- From the ‡State Key Laboratory of Reproductive Medicine, Nanjing Medical University
| | - Qing Cheng
- §Departement of Obstetrics, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University
| | - Xiaoyan Li
- From the ‡State Key Laboratory of Reproductive Medicine, Nanjing Medical University.,¶College of Animal Science & Technology, Nanjing Agricultural University
| | - Feifei Hu
- ‖Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China, 210000
| | - Longsen Han
- From the ‡State Key Laboratory of Reproductive Medicine, Nanjing Medical University
| | - Hao Zhang
- From the ‡State Key Laboratory of Reproductive Medicine, Nanjing Medical University
| | - Ling Li
- From the ‡State Key Laboratory of Reproductive Medicine, Nanjing Medical University
| | - Juan Ge
- From the ‡State Key Laboratory of Reproductive Medicine, Nanjing Medical University
| | - Xiaoyan Ying
- ‖Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China, 210000
| | - Xuejiang Guo
- From the ‡State Key Laboratory of Reproductive Medicine, Nanjing Medical University;
| | - Qiang Wang
- From the ‡State Key Laboratory of Reproductive Medicine, Nanjing Medical University;
| |
Collapse
|
114
|
Yamamoto K, Ikenaka Y, Ichise T, Bo T, Ishizuka M, Yasui H, Hiraoka W, Yamamori T, Inanami O. Evaluation of mitochondrial redox status and energy metabolism of X-irradiated HeLa cells by LC/UV, LC/MS/MS and ESR. Free Radic Res 2018; 52:648-660. [PMID: 29620489 DOI: 10.1080/10715762.2018.1460472] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
To evaluate the metabolic responses in tumour cells exposed to ionizing radiation, oxygen consumption rate (OCR), cellular lipid peroxidation, cellular energy status (intracellular nucleotide pool and ATP production), and mitochondrial reactive oxygen species (ROS), semiquinone (SQ), and iron-sulphur (Fe-S) cluster levels were evaluated in human cervical carcinoma HeLa cells at 12 and 24 h after X-irradiation. LC/MS/MS analysis showed that levels of 8-iso PGF2α and 5-iPF2α-VI, lipid peroxidation products of membrane arachidonic acids, were not altered significantly in X-irradiated cells, although mitochondrial ROS levels and OCR significantly increased in the cells at 24 h after irradiation. LC/UV analysis revealed that intracellular AMP, ADP, and ATP levels increased significantly after X-irradiation, but adenylate energy charge (adenylate energy charge (AEC) = [ATP + 0.5 × ADP]/[ATP + ADP + AMP]) remained unchanged after X-irradiation. In low-temperature electron spin resonance (ESR) spectra of HeLa cells, the presence of mitochondrial SQ at g = 2.004 and Fe-S cluster at g = 1.941 was observed and X-irradiation enhanced the signal intensity of SQ but not of the Fe-S cluster. Furthermore, this radiation-induced increase in SQ signal intensity disappeared on treatment with rotenone, which inhibits electron transfer from Fe-S cluster to SQ in complex I. From these results, it was suggested that an increase in OCR and imbalance in SQ and Fe-S cluster levels, which play a critical role in the mitochondrial electron transport chain (ETC), occur after X-irradiation, resulting in an increase in ATP production and ROS leakage from the activated mitochondrial ETC.
Collapse
Affiliation(s)
- Kumiko Yamamoto
- a Laboratory of Radiation Biology, Department of Applied Veterinary Sciences, Faculty of Veterinary Medicine , Hokkaido University , Sapporo , Japan
| | - Yoshinori Ikenaka
- b Laboratory of Toxicology, Department of Environmental Veterinary Science, Faculty of Veterinary Medicine , Hokkaido University , Sapporo , Japan
| | - Takahiro Ichise
- b Laboratory of Toxicology, Department of Environmental Veterinary Science, Faculty of Veterinary Medicine , Hokkaido University , Sapporo , Japan
| | - Tomoki Bo
- a Laboratory of Radiation Biology, Department of Applied Veterinary Sciences, Faculty of Veterinary Medicine , Hokkaido University , Sapporo , Japan
| | - Mayumi Ishizuka
- b Laboratory of Toxicology, Department of Environmental Veterinary Science, Faculty of Veterinary Medicine , Hokkaido University , Sapporo , Japan
| | - Hironobu Yasui
- c Central Institute of Isotope Science , Hokkaido University , Sapporo , Japan
| | - Wakako Hiraoka
- d Laboratory of Biophysics , School of Science and Technology, Meiji University , Kawasaki , Japan
| | - Tohru Yamamori
- a Laboratory of Radiation Biology, Department of Applied Veterinary Sciences, Faculty of Veterinary Medicine , Hokkaido University , Sapporo , Japan
| | - Osamu Inanami
- a Laboratory of Radiation Biology, Department of Applied Veterinary Sciences, Faculty of Veterinary Medicine , Hokkaido University , Sapporo , Japan
| |
Collapse
|
115
|
Pellacani C, Costa LG. Role of autophagy in environmental neurotoxicity. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 235:791-805. [PMID: 29353798 DOI: 10.1016/j.envpol.2017.12.102] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 12/08/2017] [Accepted: 12/25/2017] [Indexed: 06/07/2023]
Abstract
Human exposure to neurotoxic pollutants (e.g. metals, pesticides and other chemicals) is recognized as a key risk factor in the pathogenesis of neurodegenerative disorders. Emerging evidence indicates that an alteration in autophagic pathways may be correlated with the onset of the neurotoxicity resulting from chronic exposure to these pollutants. In fact, autophagy is a natural process that permits to preserving cell homeostasis, through the seizure and degradation of the cytosolic damaged elements. However, when an excessive level of intracellular damage is reached, the autophagic process may also induce cell death. A correct modulation of specific stages of autophagy is important to maintain the correct balance in the organism. In this review, we highlight the critical role that autophagy plays in neurotoxicity induced by the most common classes of environmental contaminants. The understanding of this mechanism may be helpful to discover a potential therapeutic strategy to reduce side effects induced by these compounds.
Collapse
Affiliation(s)
- C Pellacani
- Dept. of Medicine and Surgery, University of Parma, Parma, Italy.
| | - L G Costa
- Dept. of Medicine and Surgery, University of Parma, Parma, Italy; Dept. of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| |
Collapse
|
116
|
Robke L, Futamura Y, Konstantinidis G, Wilke J, Aono H, Mahmoud Z, Watanabe N, Wu YW, Osada H, Laraia L, Waldmann H. Discovery of the novel autophagy inhibitor aumitin that targets mitochondrial complex I. Chem Sci 2018; 9:3014-3022. [PMID: 29732085 PMCID: PMC5916016 DOI: 10.1039/c7sc05040b] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 02/20/2018] [Indexed: 12/14/2022] Open
Abstract
Macroautophagy is a conserved eukaryotic process for degradation of cellular components in response to lack of nutrients. It is involved in the development of diseases, notably cancer and neurological disorders including Parkinson's disease. Small molecule autophagy modulators have proven to be valuable tools to dissect and interrogate this crucial metabolic pathway and are in high demand. Phenotypic screening for autophagy inhibitors led to the discovery of the novel autophagy inhibitor aumitin. Target identification and confirmation revealed that aumitin inhibits mitochondrial respiration by targeting complex I. We show that inhibition of autophagy by impairment of mitochondrial respiration is general for several mitochondrial inhibitors that target different mitochondrial complexes. Our findings highlight the importance of mitochondrial respiration for autophagy regulation.
Collapse
Affiliation(s)
- Lucas Robke
- Max-Planck-Institute of Molecular Physiology , Department of Chemical Biology , Otto-Hahn-Str. 11 , 44227 Dortmund , Germany
- Faculty of Chemistry and Chemical Biology , TU Dortmund University , Otto-Hahn-Str. 4a , 44227 Dortmund , Germany .
- RIKEN-Max Planck Joint Research Division for Systems Chemical Biology , RIKEN CSRS , 2-1, Hirosawa, Wako , Saitama 351-0198 , Japan
| | - Yushi Futamura
- Chemical Biology Research Group , RIKEN CSRS , 2-1, Hirosawa, Wako , Saitama 351-0198 , Japan
| | - Georgios Konstantinidis
- Chemical Genomics Centre of the Max-Planck-Society , Otto-Hahn-Str. 15 , 44227 Dortmund , Germany
| | - Julian Wilke
- Max-Planck-Institute of Molecular Physiology , Department of Chemical Biology , Otto-Hahn-Str. 11 , 44227 Dortmund , Germany
- Faculty of Chemistry and Chemical Biology , TU Dortmund University , Otto-Hahn-Str. 4a , 44227 Dortmund , Germany .
| | - Harumi Aono
- Chemical Biology Research Group , RIKEN CSRS , 2-1, Hirosawa, Wako , Saitama 351-0198 , Japan
| | - Zhwan Mahmoud
- Faculty of Chemistry and Chemical Biology , TU Dortmund University , Otto-Hahn-Str. 4a , 44227 Dortmund , Germany .
| | - Nobumoto Watanabe
- RIKEN-Max Planck Joint Research Division for Systems Chemical Biology , RIKEN CSRS , 2-1, Hirosawa, Wako , Saitama 351-0198 , Japan
- Bio-Active Compounds Discovery Research Unit , RIKEN CSRS , 2-1, Hirosawa, Wako , Saitama 351-0198 , Japan
| | - Yao-Wen Wu
- Chemical Genomics Centre of the Max-Planck-Society , Otto-Hahn-Str. 15 , 44227 Dortmund , Germany
| | - Hiroyuki Osada
- RIKEN-Max Planck Joint Research Division for Systems Chemical Biology , RIKEN CSRS , 2-1, Hirosawa, Wako , Saitama 351-0198 , Japan
- Chemical Biology Research Group , RIKEN CSRS , 2-1, Hirosawa, Wako , Saitama 351-0198 , Japan
| | - Luca Laraia
- Max-Planck-Institute of Molecular Physiology , Department of Chemical Biology , Otto-Hahn-Str. 11 , 44227 Dortmund , Germany
| | - Herbert Waldmann
- Max-Planck-Institute of Molecular Physiology , Department of Chemical Biology , Otto-Hahn-Str. 11 , 44227 Dortmund , Germany
- Faculty of Chemistry and Chemical Biology , TU Dortmund University , Otto-Hahn-Str. 4a , 44227 Dortmund , Germany .
| |
Collapse
|
117
|
Abstract
Reactive oxygen species (ROS) are well known for their role in mediating both physiological and pathophysiological signal transduction. Enzymes and subcellular compartments that typically produce ROS are associated with metabolic regulation, and diseases associated with metabolic dysfunction may be influenced by changes in redox balance. In this review, we summarize the current literature surrounding ROS and their role in metabolic and inflammatory regulation, focusing on ROS signal transduction and its relationship to disease progression. In particular, we examine ROS production in compartments such as the cytoplasm, mitochondria, peroxisome, and endoplasmic reticulum and discuss how ROS influence metabolic processes such as proteasome function, autophagy, and general inflammatory signaling. We also summarize and highlight the role of ROS in the regulation metabolic/inflammatory diseases including atherosclerosis, diabetes mellitus, and stroke. In order to develop therapies that target oxidative signaling, it is vital to understand the balance ROS signaling plays in both physiology and pathophysiology, and how manipulation of this balance and the identity of the ROS may influence cellular and tissue homeostasis. An increased understanding of specific sources of ROS production and an appreciation for how ROS influence cellular metabolism may help guide us in the effort to treat cardiovascular diseases.
Collapse
Affiliation(s)
- Steven J Forrester
- From the Division of Cardiology, Department of Medicine, Emory University, Atlanta GA
| | - Daniel S Kikuchi
- From the Division of Cardiology, Department of Medicine, Emory University, Atlanta GA
| | - Marina S Hernandes
- From the Division of Cardiology, Department of Medicine, Emory University, Atlanta GA
| | - Qian Xu
- From the Division of Cardiology, Department of Medicine, Emory University, Atlanta GA
| | - Kathy K Griendling
- From the Division of Cardiology, Department of Medicine, Emory University, Atlanta GA.
| |
Collapse
|
118
|
Choi YJ, Gurunathan S, Kim D, Jang HS, Park WJ, Cho SG, Park C, Song H, Seo HG, Kim JH. Rapamycin ameliorates chitosan nanoparticle-induced developmental defects of preimplantation embryos in mice. Oncotarget 2018; 7:74658-74677. [PMID: 27463007 PMCID: PMC5342693 DOI: 10.18632/oncotarget.10813] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 07/14/2016] [Indexed: 12/26/2022] Open
Abstract
Chitosan nanoparticles (CSNPs) are used as drug or gene delivery vehicles. However, a detailed understanding of the effects of CSNPs on embryonic development remains obscure. Here, we show that CSNPs can be internalized into mouse blastocysts, such as the zona pellucida, the perivitelline space, and the cytoplasm. Consequently, CSNPs-induced endoplasmic reticulum (ER) stress increases both of Bip/Grp78, Chop, Atf4, Perk, and Ire1a mRNAs expression levels, and reactive oxygen species. Moreover, CSNPs show double- and multi-membraned autophagic vesicles, and lead to cell death of blastocoels. Conversely, treatment with rapamycin, which plays an important role as a central regulator of cellular proliferation and stress responses, decreased CSNPs-induced mitochondrial Ca+2 overloading, apoptosis, oxidative stress, ER stress, and autophagy. In vivo studies demonstrated that CSNPs injection has significant toxic effect on primordial and developing follicles. Notably, rapamycin rescued oxidative stress-induced embryonic defects via modulating gene expression of sirtuin and mammalian target of rapamycin. Interestingly, CSNPs treatment alters epigenetic reprogramming in mouse embryos. Overall, these observations suggest that rapamycin treatment could ameliorate CSNPs-induced developmental defects in preimplantation embryos. The data from this study would facilitate to understand the toxicity of these CSNPs, and enable the engineering of safer nanomaterials for therapeutic applications.
Collapse
Affiliation(s)
- Yun-Jung Choi
- Department of Stem Cell and Regenerative Biotechnology, Humanized Pig Research Center (SRC), Konkuk University, Seoul, Republic of Korea
| | - Sangiliyandi Gurunathan
- Department of Stem Cell and Regenerative Biotechnology, Humanized Pig Research Center (SRC), Konkuk University, Seoul, Republic of Korea
| | - DaSom Kim
- Department of Stem Cell and Regenerative Biotechnology, Humanized Pig Research Center (SRC), Konkuk University, Seoul, Republic of Korea
| | - Hyung Seok Jang
- Department of Pathology, Hanyang University Medical Center, Wangsimni-ro, Seongdong-gu, Seoul, Republic of Korea
| | - Woo-Jin Park
- Department of Stem Cell and Regenerative Biotechnology, Humanized Pig Research Center (SRC), Konkuk University, Seoul, Republic of Korea
| | - Ssang-Goo Cho
- Department of Stem Cell and Regenerative Biotechnology, Humanized Pig Research Center (SRC), Konkuk University, Seoul, Republic of Korea
| | - Chankyu Park
- Department of Stem Cell and Regenerative Biotechnology, Humanized Pig Research Center (SRC), Konkuk University, Seoul, Republic of Korea
| | - Hyuk Song
- Department of Stem Cell and Regenerative Biotechnology, Humanized Pig Research Center (SRC), Konkuk University, Seoul, Republic of Korea
| | - Han Geuk Seo
- Department of Stem Cell and Regenerative Biotechnology, Humanized Pig Research Center (SRC), Konkuk University, Seoul, Republic of Korea
| | - Jin-Hoi Kim
- Department of Stem Cell and Regenerative Biotechnology, Humanized Pig Research Center (SRC), Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
119
|
Huang K, Chen Y, Zhang R, Wu Y, Ma Y, Fang X, Shen S. Honokiol induces apoptosis and autophagy via the ROS/ERK1/2 signaling pathway in human osteosarcoma cells in vitro and in vivo. Cell Death Dis 2018; 9:157. [PMID: 29410403 PMCID: PMC5833587 DOI: 10.1038/s41419-017-0166-5] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 11/16/2017] [Accepted: 11/17/2017] [Indexed: 12/14/2022]
Abstract
Osteosarcoma is the most common primary malignant tumor of bone, the long-term survival of which has stagnated in the past several decades. In the present study, we investigated the anticancer effect of honokiol (HNK), an active component isolated and purified from the magnolia officinalis on human osteosarcoma cells. Our results showed that honokiol caused dose-dependent and time-dependent cell death in human osteosarcoma cells. The types of cell death induced by honokiol were primarily autophagy and apoptosis. Furthermore, honokiol induced G0/G1 phase arrest, elevated the levels of glucose-regulated protein (GRP)-78, an endoplasmic reticular stress (ERS)-associated protein, and increased the production of intracellular reactive oxygen species (ROS). In contrast, reducing production of intracellular ROS using N-acetylcysteine, a scavenger of ROS, concurrently suppressed honokiol-induced cellular apoptosis, autophagy, and cell cycle arrest. Consequently, honokiol stimulated phosphorylation of extracellular signal-regulated kinase (ERK)1/2. Furthermore, pretreatment of osteosarcoma cells with PD98059, an inhibitor of ERK1/2, inhibited honokiol-induced apoptosis and autophagy. Finally, honokiol suppressed tumor growth in the mouse xenograft model. Taken together, our results revealed that honokiol caused G0/G1 phase arrest, induced apoptosis, and autophagy via the ROS/ERK1/2 signaling pathway in human osteosarcoma cells. Honokiol is therefore a promising candidate for development of antitumor drugs targeting osteosarcoma.
Collapse
Affiliation(s)
- Kangmao Huang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, 3 East Qingchun Road, Hangzhou, 310016, China
| | - Yanyan Chen
- Department of Surgical Oncology, First Affiliated Hospital, Medical College of Zhejiang University, Hangzhou, 310003, China
| | - Rui Zhang
- Department of Neurosurgery, Children's hospital of Nanjing Medical University, Nanjing City, China
| | - Yizheng Wu
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, 3 East Qingchun Road, Hangzhou, 310016, China
| | - Yan Ma
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, 3 East Qingchun Road, Hangzhou, 310016, China
| | - Xiangqian Fang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, 3 East Qingchun Road, Hangzhou, 310016, China.
| | - Shuying Shen
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, 3 East Qingchun Road, Hangzhou, 310016, China.
| |
Collapse
|
120
|
Inhibition of autophagy-attenuated calcium oxalate crystal-induced renal tubular epithelial cell injury in vivo and in vitro. Oncotarget 2017; 9:4571-4582. [PMID: 29435125 PMCID: PMC5796996 DOI: 10.18632/oncotarget.23383] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 11/15/2017] [Indexed: 11/25/2022] Open
Abstract
Accumulating evidence suggests that autophagy is involved in the pathophysiological processes of kidney diseases. However, the role of autophagy in the formation of calcium oxalate (CaOx) nephrolithiasis remains unclear. In this study, we investigated the effects of autophagy on renal tubular epithelial cell injury induced by CaOx crystals in vivo and in vitro. We first observed that the expression levels of LC3-II and BECN1 and number of autophagic vacuoles were markedly increased in the renal tissue of CaOx stone patients. We subsequently found that exposure of HK-2 cells to CaOx crystals could increase LC3-II and BECN1 expression as well as the number of GFP-LC3 dots and autophagic vacuoles in a dose- and time-dependent manner. In addition, our results suggest that CaOx crystals induced autophagy, at least in part, via activation of the reactive oxygen species (ROS) pathway in HK-2 cells. Furthermore, inhibition of autophagy using 3-methyladenine or siRNA knockdown of BECN1 attenuated CaOx crystal-induced HK-2 cells injury. However, enhancing autophagic activity with rapamycin exerted an opposite effect. Taken together, our results demonstrate that autophagy is essential for CaOx crystal-induced renal tubular epithelial cell injury and that inhibition of autophagy could be a novel therapeutic strategy for CaOx nephrolithiasis.
Collapse
|
121
|
C-Phycocyanin protects against mitochondrial dysfunction and oxidative stress in parthenogenetic porcine embryos. Sci Rep 2017; 7:16992. [PMID: 29208995 PMCID: PMC5717099 DOI: 10.1038/s41598-017-17287-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 11/10/2017] [Indexed: 12/17/2022] Open
Abstract
C-Phycocyanin (CP) is a biliprotein enriched in blue-green algae that is known to possess antioxidant, anti-apoptosis, anti-inflammatory, and radical-scavenging properties in somatic cells. However, the protective effect of CP on porcine embryo developmental competence in vitro remains unclear. In the present study, we investigated the effect of CP on the development of early porcine embryos as well as its underlying mechanisms. Different concentrations of CP (2, 5, 8, 10 μg/mL) were added to porcine zygote medium 5 during in vitro culture. The results showed that 5 μg/mL CP significantly increased blastocyst formation and hatching rate. Blastocyst formation and quality were significantly increased in the 50 μM H2O2 treatment group following 5 μg/mL CP addition. CP prevented the H2O2-induced compromise of mitochondrial membrane potential, release of cytochrome c from the mitochondria, and reactive oxygen species generation. Furthermore, apoptosis, DNA damage level, and autophagy in the blastocysts were attenuated by supplementation of CP in the H2O2-induced oxidative injury group compared to in controls. These results suggest that CP has beneficial effects on the development of porcine parthenotes by attenuating mitochondrial dysfunction and oxidative stress.
Collapse
|
122
|
Moura-Martiniano NO, Machado-Ferreira E, Gazêta GS, Soares CAG. Relative transcription of autophagy-related genes in Amblyomma sculptum and Rhipicephalus microplus ticks. EXPERIMENTAL & APPLIED ACAROLOGY 2017; 73:401-428. [PMID: 29181673 DOI: 10.1007/s10493-017-0193-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 11/17/2017] [Indexed: 06/07/2023]
Abstract
Ticks endure stressful off-host periods and perform as vectors of a diversity of infectious agents, thus engaging pathways that expectedly demand for autophagy. Little is known of ticks' autophagy, a conserved eukaryotic machinery assisting in homeostasis processes that also participates in tissue-dependent metabolic functions. Here, the autophagy-related ATG4 (autophagin-1), ATG6 (beclin-1) and ATG8 (LC3) mRNAs from the human diseases vector Amblyomma sculptum and the cattle-tick Rhipicephalus microplus were identified. Comparative qPCR quantifications evidenced different transcriptional status for the ATG genes in the salivary glands (SG), ovaries and intestines of actively feeding ticks. These ATGs had increased relative transcription under nutrient-deprivation, as determined by validation tests with R. microplus embryo-derivative cells BME26 and A. sculptum SG explants incubations in HBSS. Starvation lead to 4-31.8× and ~ 60-500× increments on the ATGs mRNA loads in BME26 and A. sculptum SG explants, respectively. PI3K inhibitor 3MA treatment also affected ATGs expression in BME26. Some ATGs were more transcribed in the SGs than in the ovaries of cattle-ticks. Amblyomma sculptum/R. microplus interspecific comparisons showed that ATG4 and ATG6 were 0.18× less expressed in A. sculptum SGs, but ~ 10-100× more expressed in their ovaries when compared to R. microplus organs. ATG4 and ATG8a transcript loads were ~ 120× and ~ 40× higher, respectively, in A. sculptum intestines when compared to cattle-ticks of similar weight category. ATGs expression in A. sculptum intestines increased with tick weight, indicating Atgs contribution to intracellular blood digestion. Possible roles of the autophagy machinery and their organ-specific expression profile on vector biology are discussed.
Collapse
Affiliation(s)
- Nicole O Moura-Martiniano
- Laboratório de Genética Molecular de Eucariontes e Simbiontes, Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Erik Machado-Ferreira
- Laboratório de Genética Molecular de Eucariontes e Simbiontes, Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gilberto S Gazêta
- Laboratório de Referência Nacional em Vetores das Riquetsioses, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Carlos Augusto Gomes Soares
- Laboratório de Genética Molecular de Eucariontes e Simbiontes, Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
- , Ilha do Fundão, CCS, Bloco A, Lab. A2-120. Rua Professor Rodolpho Paulo Rocco S/N, Rio de Janeiro, RJ, 21941-617, Brazil.
| |
Collapse
|
123
|
Sul OJ, Park HJ, Son HJ, Choi HS. Lipopolysaccharide (LPS)-Induced Autophagy Is Responsible for Enhanced Osteoclastogenesis. Mol Cells 2017; 40:880-887. [PMID: 29145718 PMCID: PMC5712518 DOI: 10.14348/molcells.2017.0230] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 10/12/2017] [Accepted: 10/16/2017] [Indexed: 11/27/2022] Open
Abstract
We hypothesized that inflammation affects number and activity of osteoclasts (OCs) via enhancing autophagy. Lipopolysaccharide (LPS) induced autophagy, osteoclastogenesis, and cytoplasmic reactive oxygen species (ROS) in bone marrow-derived macrophages that were pre-stimulated with receptor activator of nuclear factor-κB ligand. An autophagy inhibitor, 3-methyladenine (3-MA) decreased LPS-induced OC formation and bone resorption, indicating that autophagy is responsible for increasing number and activity of OCs upon LPS stimulus. Knockdown of autophagy-related protein 7 attenuated the effect of LPS on OC-specific genes, supporting a role of LPS as an autophagy inducer in OC. Removal of ROS decreased LPS-induced OC formation as well as autophagy. However, 3-MA did not affect LPS-induced ROS levels, suggesting that ROS act upstream of phosphatidylinositol-4,5-bisphosphate 3-kinase in LPS-induced autophagy. Our results suggest the possible use of autophagy inhibitors targeting OCs to reduce inflammatory bone loss.
Collapse
Affiliation(s)
- Ok-Joo Sul
- Department of Biological Sciences, University of Ulsan, Ulsan 44610,
Korea
| | - Hyun-Jung Park
- Department of Biological Sciences, University of Ulsan, Ulsan 44610,
Korea
| | - Ho-Jung Son
- Department of Biological Sciences, University of Ulsan, Ulsan 44610,
Korea
| | - Hye-Seon Choi
- Department of Biological Sciences, University of Ulsan, Ulsan 44610,
Korea
| |
Collapse
|
124
|
Chandramani-Shivalingappa P, Bhandari M, Wiechert SA, Gilbertie J, Jones DE, Sponseller BA. Induction of Reactive Intermediates and Autophagy-Related Proteins upon Infection of Macrophages with Rhodococcus equi. SCIENTIFICA 2017; 2017:8135737. [PMID: 29230347 PMCID: PMC5688232 DOI: 10.1155/2017/8135737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 10/01/2017] [Indexed: 06/07/2023]
Abstract
Rhodococcus equi (R. equi) is an intracellular macrophage-tropic pathogen with potential for causing fatal pyogranulomatous pneumonia in foals between 1 and 6 months of age. In this study, we sought to determine whether infection of macrophages with R. equi could lead to the induction of autophagy. Murine bone marrow derived macrophages (BMDM) were infected with R. equi for various time intervals and analyzed for upregulation of autophagy proteins and accumulation of autophagosomes relative to uninfected controls. Western blot analysis showed a progressive increase in LC3-II and Beclin1 levels in a time-dependent manner. The functional accumulation of autophagosomes detected with monodansylcadaverine further supported the enhanced induction of autophagy in BMDM infected with R. equi. In addition, infection of BMDM with R. equi induced generation of reactive oxygen species (ROS) in a time-dependent manner. These data are consistent with reports documenting the role of ROS in induction of autophagy and indicate that the infection of macrophages by R. equi elicits innate host defense mechanisms.
Collapse
Affiliation(s)
- Prashanth Chandramani-Shivalingappa
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
- Division of Pulmonary, Critical Care, and Sleep Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Mahesh Bhandari
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
| | - Sarah A. Wiechert
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
| | - Jessica Gilbertie
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
| | - Douglas E. Jones
- Department of Veterinary Pathology, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
| | - Brett A. Sponseller
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
125
|
Lee Y, Kwon I, Jang Y, Song W, Cosio-Lima LM, Roltsch MH. Potential signaling pathways of acute endurance exercise-induced cardiac autophagy and mitophagy and its possible role in cardioprotection. J Physiol Sci 2017; 67:639-654. [PMID: 28685325 PMCID: PMC5684252 DOI: 10.1007/s12576-017-0555-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 06/20/2017] [Indexed: 02/06/2023]
Abstract
Cardiac myocytes are terminally differentiated cells and possess extremely limited regenerative capacity; therefore, preservation of mature cardiac myocytes throughout the individual's entire life span contributes substantially to healthy living. Autophagy, a lysosome-dependent cellular catabolic process, is essential for normal cardiac function and mitochondria maintenance. Therefore, it may be reasonable to hypothesize that if endurance exercise promotes cardiac autophagy and mitochondrial autophagy or mitophagy, exercise-induced cardiac autophagy (EICA) or exercise-induced cardiac mitophagy (EICM) may confer propitious cellular environment and thus protect the heart against detrimental stresses, such as an ischemia-reperfusion (I/R) injury. However, although the body of evidence supporting EICA and EICM is growing, the molecular mechanisms of EICA and EICM and their possible roles in cardioprotection against an I/R injury are poorly understood. Here, we introduce the general mechanisms of autophagy in an attempt to integrate potential molecular pathways of EICA and EICM and also highlight a potential insight into EICA and EICM in cardioprotection against an I/R insult.
Collapse
Affiliation(s)
- Youngil Lee
- Molecular and Cellular Exercise Physiology Laboratory, Department of Exercise Science and Community Health, University of West Florida, 11000 University Parkway, Pensacola, FL, 32514, USA.
| | - Insu Kwon
- Molecular and Cellular Exercise Physiology Laboratory, Department of Exercise Science and Community Health, University of West Florida, 11000 University Parkway, Pensacola, FL, 32514, USA
| | - Yongchul Jang
- Molecular and Cellular Exercise Physiology Laboratory, Department of Exercise Science and Community Health, University of West Florida, 11000 University Parkway, Pensacola, FL, 32514, USA
| | - Wankeun Song
- Molecular and Cellular Exercise Physiology Laboratory, Department of Exercise Science and Community Health, University of West Florida, 11000 University Parkway, Pensacola, FL, 32514, USA
| | - Ludmila M Cosio-Lima
- Molecular and Cellular Exercise Physiology Laboratory, Department of Exercise Science and Community Health, University of West Florida, 11000 University Parkway, Pensacola, FL, 32514, USA
| | - Mark H Roltsch
- Molecular and Cellular Exercise Physiology Laboratory, Department of Exercise Science and Community Health, University of West Florida, 11000 University Parkway, Pensacola, FL, 32514, USA
| |
Collapse
|
126
|
Elkis Y, Cohen M, Yaffe E, Satmary-Tusk S, Feldman T, Hikri E, Nyska A, Feiglin A, Ofran Y, Shpungin S, Nir U. A novel Fer/FerT targeting compound selectively evokes metabolic stress and necrotic death in malignant cells. Nat Commun 2017; 8:940. [PMID: 29038547 PMCID: PMC5643328 DOI: 10.1038/s41467-017-00832-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 07/28/2017] [Indexed: 12/31/2022] Open
Abstract
Disruption of the reprogrammed energy management system of malignant cells is a prioritized goal of targeted cancer therapy. Two regulators of this system are the Fer kinase, and its cancer cell specific variant, FerT, both residing in subcellular compartments including the mitochondrial electron transport chain. Here, we show that a newly developed inhibitor of Fer and FerT, E260, selectively evokes metabolic stress in cancer cells by imposing mitochondrial dysfunction and deformation, and onset of energy-consuming autophagy which decreases the cellular ATP level. Notably, Fer was also found to associate with PARP-1 and E260 disrupted this association thereby leading to PARP-1 activation. The cooperative intervention with these metabolic pathways leads to energy crisis and necrotic death in malignant, but not in normal human cells, and to the suppression of tumors growth in vivo. Thus, E260 is a new anti-cancer agent which imposes metabolic stress and cellular death in cancer cells. The tyrosine-kinases Fer/FerT associate with the mitochondrial electron transport chain in cancer cells supporting their metabolic reprogramming. Here the authors discover a compound that disrupts Fer /FerT activity and selectively induces cell death of cancer cell lines displaying anti-tumor activity in vivo.
Collapse
Affiliation(s)
- Yoav Elkis
- The Mina and Everard Goodman Faculty of Life-Sciences, Bar-Ilan University, Ramat-Gan, 52900, Israel
| | - Moshe Cohen
- The Mina and Everard Goodman Faculty of Life-Sciences, Bar-Ilan University, Ramat-Gan, 52900, Israel
| | - Etai Yaffe
- The Mina and Everard Goodman Faculty of Life-Sciences, Bar-Ilan University, Ramat-Gan, 52900, Israel
| | - Shirly Satmary-Tusk
- The Mina and Everard Goodman Faculty of Life-Sciences, Bar-Ilan University, Ramat-Gan, 52900, Israel
| | - Tal Feldman
- The Mina and Everard Goodman Faculty of Life-Sciences, Bar-Ilan University, Ramat-Gan, 52900, Israel
| | - Elad Hikri
- The Mina and Everard Goodman Faculty of Life-Sciences, Bar-Ilan University, Ramat-Gan, 52900, Israel
| | - Abraham Nyska
- Consultant in Toxicological Pathology, Timrat, and Sackler School of Medicine, Tel Aviv University, Tel Aviv, 36576, Israel
| | - Ariel Feiglin
- The Mina and Everard Goodman Faculty of Life-Sciences, Bar-Ilan University, Ramat-Gan, 52900, Israel
| | - Yanay Ofran
- The Mina and Everard Goodman Faculty of Life-Sciences, Bar-Ilan University, Ramat-Gan, 52900, Israel
| | - Sally Shpungin
- The Mina and Everard Goodman Faculty of Life-Sciences, Bar-Ilan University, Ramat-Gan, 52900, Israel
| | - Uri Nir
- The Mina and Everard Goodman Faculty of Life-Sciences, Bar-Ilan University, Ramat-Gan, 52900, Israel.
| |
Collapse
|
127
|
Liang Y, Zhou T, Chen Y, Lin D, Jing X, Peng S, Zheng D, Zeng Z, Lei M, Wu X, Huang K, Yang L, Xiao S, Liu J, Tao E. Rifampicin inhibits rotenone-induced microglial inflammation via enhancement of autophagy. Neurotoxicology 2017; 63:137-145. [PMID: 28986232 DOI: 10.1016/j.neuro.2017.09.015] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 09/30/2017] [Accepted: 09/30/2017] [Indexed: 12/16/2022]
Abstract
Mitochondrial and autophagic dysfunction, as well as neuroinflammation, are associated with the pathophysiology of Parkinson's disease (PD). Rotenone, an inhibitor of mitochondrial complex I, has been associated as an environmental neurotoxin related to PD. Our previous studies reported that rifampicin inhibited microglia activation and production of proinflammatory mediators induced by rotenone, but the precise mechanism has not been completely elucidated. BV2 cells were pretreated for 2h with rifampicin followed by 0.1μM rotenone, alone or in combination with chloroquine. Here, we demonstrate that rifampicin pretreatment alleviated rotenone induced release of IL-1β and IL-6, and its effects were suppressed when autophagy was inhibited by chloroquine. Moreover, preconditioning with 50μM rifampicin significantly increased viability of SH-SY5Y cells cocultured with rotenone-treated BV2 cells in the transwell coculture system. Chloroquine partially abolished the neuroprotective effects of rifampicin pretreatment. Rifampicin pretreatment significantly reversed rotenone-induced mitochondrial membrane potential reduction and reactive oxygen species accumulation. We suggest that the mechanism for rifampicin-mediated anti-inflammatory and antioxidant effects is the enhancement of autophagy. Indeed, the ratio of LC3-II/LC3-I in rifampicin-pretreated BV2 cells was significantly higher than that in cells without pretreatment. Fluorescence and electron microscopy analyses indicate an increase of lysosomes colocalized with mitochondria in cells pretreated with rifampicin, which confirms that the damaged mitochondria were cleared through autophagy (mitophagy). Taken together, the data provide further evidence that rifampicin exerts neuroprotection against rotenone-induced microglia inflammation, partially through the autophagy pathway. Modulation of autophagy by rifampicin is a novel therapeutic strategy for PD.
Collapse
Affiliation(s)
- Yanran Liang
- Department of Neurology, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou 510080, China
| | - Tianen Zhou
- Department of Emergency, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou 510080, China
| | - Ying Chen
- Department of Neurology, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou 510080, China
| | - Danyu Lin
- Department of Neurology, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou 510080, China
| | - Xiuna Jing
- Department of Neurology, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou 510080, China
| | - Sudan Peng
- Department of Neurology, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou 510080, China
| | - Dezhi Zheng
- Department of Neurology, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou 510080, China
| | - Zhifen Zeng
- Department of Neurology, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou 510080, China
| | - Ming Lei
- Department of Neurology, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou 510080, China
| | - Xia Wu
- Department of Neurology, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou 510080, China
| | - Kaixun Huang
- Department of Neurology, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou 510080, China
| | - Lianhong Yang
- Department of Neurology, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou 510080, China
| | - Songhua Xiao
- Department of Neurology, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou 510080, China
| | - Jun Liu
- Department of Neurology, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou 510080, China
| | - Enxiang Tao
- Department of Neurology, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou 510080, China.
| |
Collapse
|
128
|
Yuan YG, Gurunathan S. Combination of graphene oxide-silver nanoparticle nanocomposites and cisplatin enhances apoptosis and autophagy in human cervical cancer cells. Int J Nanomedicine 2017; 12:6537-6558. [PMID: 28919753 PMCID: PMC5592952 DOI: 10.2147/ijn.s125281] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Cisplatin (Cis) is a widely used chemotherapeutic drug for treating a variety of cancers, due to its ability to induce cell death in cancer cells significantly. Recently, graphene and its modified nanocomposites have gained much interest in cancer therapy, due to their unique physicochemical properties. The objective of this study was to investigate the combination effect of Cis and a reduced graphene oxide-silver nanoparticle nanocomposite (rGO-AgNPs) in human cervical cancer (HeLa) cells. MATERIALS AND METHODS We synthesized AgNPs, rGO, and rGO-AgNP nanocomposites using C-phycocyanin. The synthesized nanomaterials were characterized using various analytical techniques. The anticancer properties of the Cis, rGO-AgNPs, and combination of Cis and rGO-AgNPs were evaluated using a series of cellular assays, such as cell viability, cell proliferation, LDH leakage, reactive oxygen species generation, and cellular levels of oxidative and antioxidative stress markers such as malondialdehyde, glutathione, SOD, and CAT. The expression of proapoptotic, antiapoptotic, and autophagy genes were measured using real-time reverse-transcription polymerase chain reaction. RESULTS The synthesized AgNPs were well dispersed, homogeneous, and spherical, with an average size of 10 nm and uniformly distributed on graphene sheets. Cis, GO, rGO, AgNPs, and rGO-AgNPs inhibited cell viability in a dose-dependent manner. The combination of Cis and rGO-AgNPs showed significant effects on cell proliferation, cytotoxicity, and apoptosis. The combination of Cis and rGO-AgNPs had more pronounced effects on the expression of apoptotic and autophagy genes, and also significantly induced the accumulation of autophagosomes and autophagolysosomes, which was associated with the generation of reactive oxygen species. CONCLUSION Our findings substantiated rGO-AgNPs strongly potentiating Cis-induced cytotoxicity, apoptosis, and autophagy in HeLa cells, and hence rGO-AgNPs could be potentially applied to cervical cancer treatment as a powerful synergistic agent with Cis or any other chemotherapeutic agents.
Collapse
Affiliation(s)
- Yu-Guo Yuan
- College of Veterinary Medicine/Animal Science and Technology/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China.,Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, China
| | - Sangiliyandi Gurunathan
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
129
|
Zhao Y, Li ETS, Wang M. Alisol B 23-acetate induces autophagic-dependent apoptosis in human colon cancer cells via ROS generation and JNK activation. Oncotarget 2017; 8:70239-70249. [PMID: 29050275 PMCID: PMC5642550 DOI: 10.18632/oncotarget.19605] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 06/16/2017] [Indexed: 01/13/2023] Open
Abstract
Alisol B 23-acetate (AB23A), a natural triterpenoid from the rhizome of Alisma orientale, a Chinese medicinal herb, has multiple physiological activities including anticancer. However, its effect on human colon cancer and the underlying mechanism are not clear. Here, we reported for the first time that AB23A induced cell cycle G1 phase arrest and apoptotic cell death in colon cancer cells. Autophagy also occurred in AB23A-treated HCT116 cells as evidenced by the accumulation of microtubule-associated protein 1 light chain 3 form II (LC3-II) and degradation of SQSTM1/p62. An autophagy inhibitor, 3-methyladenine (3-MA) was found to attenuate AB23A-mediated autophagy, apoptosis, and cell death, indicating that AB23A-induced apoptotic response was dependent on the induction of autophagy. In addition, the treatment of HCT116 cells with AB23A resulted in the generation of reactive oxygen species (ROS) and phosphorylation of c-Jun N-terminal kinase (JNK). A ROS scavenger, N-acetylcysteine (NAC) and a JNK-specific inhibitor, SP600125 attenuated AB23A-induced autophagy and apoptotic cell death. Moreover, NAC was able to eliminate AB23A-induced JNK phosphorylation. This finding provides a novel mechanism of action of AB23A in colon cancer HCT116 cells that AB23A induces autophagic-dependent apoptotic cell death in colon cancer cells, at least in part, though the accumulation of intracellular ROS and subsequent activation of JNK.
Collapse
Affiliation(s)
- Yueliang Zhao
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Edmund T S Li
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Mingfu Wang
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
130
|
Wang H, Huwaimel B, Verma K, Miller J, Germain TM, Kinarivala N, Pappas D, Brookes PS, Trippier PC. Synthesis and Antineoplastic Evaluation of Mitochondrial Complex II (Succinate Dehydrogenase) Inhibitors Derived from Atpenin A5. ChemMedChem 2017; 12:1033-1044. [PMID: 28523727 DOI: 10.1002/cmdc.201700196] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 05/15/2017] [Indexed: 12/14/2022]
Abstract
Mitochondrial complex II (CII) is an emerging target for numerous human diseases. Sixteen analogues of the CII inhibitor natural product atpenin A5 were prepared to evaluate the structure-activity relationship of the C5 pyridine side chain. The side chain ketone moiety was determined to be pharmacophoric, engendering a bioactive conformation. One analogue, 1-(2,4-dihydroxy-5,6-dimethoxypyridin-3-yl)hexan-1-one (16 c), was found to have a CII IC50 value of 64 nm, to retain selectivity for CII over mitochondrial complex I (>156-fold), and to possess a ligand-lipophilicity efficiency (LLE) of 5.62, desirable metrics for a lead compound. This derivative and other highly potent CII inhibitors show potent and selective anti-proliferative activity in multiple human prostate cancer cell lines under both normoxia and hypoxia, acting to inhibit mitochondrial electron transport.
Collapse
Affiliation(s)
- Hezhen Wang
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, School of Pharmacy, Amarillo, TX, 79106, USA
| | - Bader Huwaimel
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, School of Pharmacy, Amarillo, TX, 79106, USA
| | - Kshitij Verma
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, School of Pharmacy, Amarillo, TX, 79106, USA
| | - James Miller
- Department of Anesthesiology, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Todd M Germain
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, 79409, USA
| | - Nihar Kinarivala
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, School of Pharmacy, Amarillo, TX, 79106, USA
| | - Dimitri Pappas
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, 79409, USA
| | - Paul S Brookes
- Department of Anesthesiology, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Paul C Trippier
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, School of Pharmacy, Amarillo, TX, 79106, USA.,Center for Chemical Biology, Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, 79409, USA
| |
Collapse
|
131
|
Son S, Ko SK, Jang M, Lee JK, Kwon MC, Kang DH, Ryoo IJ, Lee JS, Hong YS, Kim BY, Jang JH, Ahn JS. Polyketides and Anthranilic Acid Possessing 6-Deoxy-α-l-talopyranose from a Streptomyces Species. JOURNAL OF NATURAL PRODUCTS 2017; 80:1378-1386. [PMID: 28406643 DOI: 10.1021/acs.jnatprod.6b01059] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A bioassay-guided investigation in conjunction with chemical screening led to the isolation of three new glycosides, ulleungoside (1), 2-methylaminobenzoyl 6-deoxy-α-l-talopyranoside (2), and naphthomycinoside (3), along with three known secondary metabolites (5-7) from Streptomyces sp. KCB13F030. Their structures were elucidated by detailed NMR and MS spectroscopic analyses. Absolute configurational analysis of the sugar units based on the magnitudes of the coupling constants, NOESY correlations, chemical derivatization, and optical rotation measurements revealed that compounds 1-3 and 5 incorporate the rare deoxyhexose 6-deoxy-α-l-talopyranose. The absolute configuration of a polyketide extender unit of 3 was determined by applying the J-based configuration analysis and modified Mosher's method. Ulleungoside (1) and naphthomycin A (7) showed in vitro inhibitory effects against indoleamine 2,3-dioxygenase activity. Further bioevaluation revealed that compounds 1 and 7 had moderate antiproliferative activities against several cancer cell lines, and compounds 5 and 6, which are members of the piericidin family, induced autophagosome accumulation.
Collapse
Affiliation(s)
- Sangkeun Son
- Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology , Cheongju 28116, Korea
- Department of Biomolecular Science, University of Science and Technology , Daejeon 34141, Korea
| | - Sung-Kyun Ko
- Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology , Cheongju 28116, Korea
- Department of Biomolecular Science, University of Science and Technology , Daejeon 34141, Korea
| | - Mina Jang
- Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology , Cheongju 28116, Korea
- Department of Biomolecular Science, University of Science and Technology , Daejeon 34141, Korea
| | - Jae Kyoung Lee
- Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology , Cheongju 28116, Korea
| | - Min Cheol Kwon
- Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology , Cheongju 28116, Korea
- Department of Biomolecular Science, University of Science and Technology , Daejeon 34141, Korea
| | - Dong Hyo Kang
- Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology , Cheongju 28116, Korea
- Department of Biomolecular Science, University of Science and Technology , Daejeon 34141, Korea
| | - In-Ja Ryoo
- Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology , Cheongju 28116, Korea
| | - Jung-Sook Lee
- Department of Biomolecular Science, University of Science and Technology , Daejeon 34141, Korea
- Korean Collection for Type Cultures, Korea Research Institute of Bioscience and Biotechnology , Jeongeup 56212, Korea
| | - Young-Soo Hong
- Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology , Cheongju 28116, Korea
- Department of Biomolecular Science, University of Science and Technology , Daejeon 34141, Korea
| | - Bo Yeon Kim
- Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology , Cheongju 28116, Korea
- Department of Biomolecular Science, University of Science and Technology , Daejeon 34141, Korea
| | - Jae-Hyuk Jang
- Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology , Cheongju 28116, Korea
- Department of Biomolecular Science, University of Science and Technology , Daejeon 34141, Korea
| | - Jong Seog Ahn
- Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology , Cheongju 28116, Korea
- Department of Biomolecular Science, University of Science and Technology , Daejeon 34141, Korea
| |
Collapse
|
132
|
Bal-Price A, Meek MEB. Adverse outcome pathways: Application to enhance mechanistic understanding of neurotoxicity. Pharmacol Ther 2017; 179:84-95. [PMID: 28529068 PMCID: PMC5869951 DOI: 10.1016/j.pharmthera.2017.05.006] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Recent developments have prompted the transition of empirically based testing of late stage toxicity in animals for a range of different endpoints including neurotoxicity to more efficient and predictive mechanistically based approaches with greater emphasis on measurable key events early in the progression of disease. The adverse outcome pathway (AOP) has been proposed as a simplified organizational construct to contribute to this transition by linking molecular initiating events and earlier (more predictive) key events at lower levels of biological organization to disease outcomes. As such, AOPs are anticipated to facilitate the compilation of information to increase mechanistic understanding of pathophysiological pathways that are responsible for human disease. In this review, the sequence of key events resulting in adverse outcome (AO) defined as parkinsonian motor impairment and learning and memory deficit in children, triggered by exposure to environmental chemicals has been briefly described using the AOP framework. These AOPs follow convention adopted in an Organization for Economic Cooperation and Development (OECD) AOP development program, publically available, to permit tailored application of AOPs for a range of different purposes. Due to the complexity of disease pathways, including neurodegenerative disorders, a specific symptom of the disease (e.g. parkinsonian motor deficit) is considered as the AO in a developed AOP. Though the description is necessarily limited by the extent of current knowledge, additional characterization of involved pathways through description of related AOPs interlinked into networks for the same disease has potential to contribute to more holistic and mechanistic understanding of the pathophysiological pathways involved, possibly leading to the mechanism-based reclassification of diseases, thus facilitating more personalized treatment.
Collapse
Affiliation(s)
- Anna Bal-Price
- European Commission Joint Research Centre, Directorate F - Health, Consumers and Reference Materials, Ispra, Italy.
| | - M E Bette Meek
- McLaughlin Centre for Risk Science, University of Ottawa, Ottawa, Canada
| |
Collapse
|
133
|
Kulkarni YM, Kaushik V, Azad N, Wright C, Rojanasakul Y, O'Doherty G, Iyer AKV. Autophagy-Induced Apoptosis in Lung Cancer Cells by a Novel Digitoxin Analog. J Cell Physiol 2017; 231:817-28. [PMID: 26264876 DOI: 10.1002/jcp.25129] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 08/07/2015] [Indexed: 12/25/2022]
Abstract
We have synthesized a novel derivative of Digitoxin, termed "MonoD", which demonstrates cytotoxic effects in lung cancer cells with much higher potency as compared to Digitoxin. Our data show that within 1 h of MonoD treatment, H460 cells showed increased oxidative stress, increased formation of autophagic vacuoles, and increased expression of pro-autophagic markers Beclin-1 and LC3-II. Cells pretreated with MnTBAP, a superoxide scavenger not only lowered superoxide production, but also had lower levels of LC3-II and Beclin-1. Prolonged treatment with MonoD-induced apoptosis in lung cancer cells. We investigated MonoD-dependent regulation of Akt and Bcl2, proteins that are known regulators of both autophagy and apoptosis. Molecular and pharmacologic inhibitors of Bcl2 and Akt, when combined with MonoD, led to higher expression of LC3-II and Beclin-1 as compared to MonoD alone, suggesting a repressive effect for these proteins in MonoD-dependent autophagy. Pretreatment of cells with an autophagy inhibitor repressed the apoptotic potential of MonoD, confirming that early autophagic flux is important to drive apoptosis. Therapeutic entities such as MonoD that target multiple pathways such as autophagy and apoptosis may prove advantageous over current therapies that have unimodal basis for action and may drive sustained tumor regression, which is highly desirable. J. Cell. Physiol. 231: 817-828, 2016. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Yogesh M Kulkarni
- Department of Pharmaceutical Sciences, School of Pharmacy, Hampton University, Hampton, Virginia
| | - Vivek Kaushik
- Department of Pharmaceutical Sciences, School of Pharmacy, Hampton University, Hampton, Virginia
| | - Neelam Azad
- Department of Pharmaceutical Sciences, School of Pharmacy, Hampton University, Hampton, Virginia
| | - Clayton Wright
- Department of Pharmaceutical Sciences, School of Pharmacy, Hampton University, Hampton, Virginia
| | - Yon Rojanasakul
- Department of Pharmaceutical and Pharmacological Sciences, West Virginia University, Morgantown, Virginia
| | - George O'Doherty
- Department of Chemistry, Northeastern University, Boston, Massachusetts
| | - Anand Krishnan V Iyer
- Department of Pharmaceutical Sciences, School of Pharmacy, Hampton University, Hampton, Virginia
| |
Collapse
|
134
|
Kameyama K, Motoyama K, Tanaka N, Yamashita Y, Higashi T, Arima H. Induction of mitophagy-mediated antitumor activity with folate-appended methyl-β-cyclodextrin. Int J Nanomedicine 2017; 12:3433-3446. [PMID: 28496320 PMCID: PMC5417668 DOI: 10.2147/ijn.s133482] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Mitophagy is the specific autophagic elimination system of mitochondria, which regulates cellular survival via the removal of damaged mitochondria. Recently, we revealed that folate-appended methyl-β-cyclodextrin (FA-M-β-CyD) provides selective antitumor activity in folate receptor-α (FR-α)-expressing cells by the induction of autophagy. In this study, to gain insight into the detailed mechanism of this antitumor activity, we focused on the induction of mitophagy by the treatment of FR-α-expressing tumor cells with FA-M-β-CyD. In contrast to methyl-β-cyclodextrin, FA-M-β-CyD entered KB cells, human epithelial cells from a fatal cervical carcinoma (FR-α (+)) through FR-α-mediated endocytosis. The transmembrane potential of isolated mitochondria after treatment with FA-M-β-CyD was significantly elevated. In addition, FA-M-β-CyD lowered adenosine triphosphate (ATP) production and promoted reactive oxygen species production in KB cells (FR-α (+)). Importantly, FA-M-β-CyD enhanced light chain 3 (LC3) conversion (LC3-I to LC3-II) in KB cells (FR-α (+)) and induced PTEN-induced putative kinase 1 (PINK1) protein expression, which is involved in the induction of mitophagy. Furthermore, FA-M-β-CyD had potent antitumor activity in BALB/c nu/nu mice xenografted with KB cells (FR-α (+)) without any significant side effects. Taken together, these findings demonstrate that the autophagic cell death elicited by FA-M-β-CyD could be associated with mitophagy induced by an impaired mitochondrial function.
Collapse
Affiliation(s)
- Kazuhisa Kameyama
- Department of Physical Pharmaceutics, Graduate School of Pharmaceutical Sciences
| | - Keiichi Motoyama
- Department of Physical Pharmaceutics, Graduate School of Pharmaceutical Sciences
| | - Nao Tanaka
- Department of Physical Pharmaceutics, Graduate School of Pharmaceutical Sciences
| | - Yuki Yamashita
- Department of Physical Pharmaceutics, Graduate School of Pharmaceutical Sciences
| | - Taishi Higashi
- Department of Physical Pharmaceutics, Graduate School of Pharmaceutical Sciences
| | - Hidetoshi Arima
- Department of Physical Pharmaceutics, Graduate School of Pharmaceutical Sciences.,Program for Leading Graduate Schools "HIGO (Health Life Science: Interdisciplinary and Glocal Oriented) Program," Kumamoto University, Kumamoto, Japan
| |
Collapse
|
135
|
Cystatin SN inhibits auranofin-induced cell death by autophagic induction and ROS regulation via glutathione reductase activity in colorectal cancer. Cell Death Dis 2017; 8:e2682. [PMID: 28300829 PMCID: PMC5386512 DOI: 10.1038/cddis.2017.100] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 02/09/2017] [Accepted: 02/14/2017] [Indexed: 12/12/2022]
Abstract
Cystatin SN (CST1) is a specific inhibitor belonging to the cystatin superfamily that controls the proteolytic activities of cysteine proteases such as cathepsins. Our previous study showed that high CST1 expression enhances tumor metastasis and invasiveness in colorectal cancer. Recently, auranofin (AF), a gold(I)-containing thioredoxin reductase 1 (TrxR1) inhibitor, has been used clinically to treat rheumatoid arthritis. AF is a proteasome-associated deubiquitinase inhibitor and can act as an anti-tumor agent. In this study, we investigated whether CST1 expression induces autophagy and tumor cell survival. We also investigated the therapeutic effects of AF as an anti-tumor agent in colorectal cancer (CRC) cells. We found that CRC cells expressing high levels of CST1 undergo increased autophagy and exhibit chemotherapeutic resistance to AF-induced cell death, while those expressing low levels of CST1 are sensitive to AF. We also observed that knockdown of CST1 in high-CST1 CRC cells using CST1-specific small interfering RNAs attenuated autophagic activation and restored AF-induced cell mortality. Conversely, the overexpression of CST1 increased autophagy and viability in cells expressing low levels of CST1. Interestingly, high expression of CST1 attenuates AF-induced cell death by inhibiting intracellular reactive oxygen species (ROS) generation, as demonstrated by the fact that the blockage of ROS production reversed AF-induced cell death in CRC cells. In addition, upregulation of CST1 expression increased cellular glutathione reductase (GR) activity, reducing the cellular redox state and inducing autophagy in AF-treated CRC cells. These results suggest that high CST1 expression may be involved in autophagic induction and protects from AF-induced cell death by inhibition of ROS generation through the regulation of GR activity.
Collapse
|
136
|
Yin H, Sun G, Yang Q, Chen C, Qi Q, Wang H, Li J. NLRX1 accelerates cisplatin-induced ototoxity in HEI-OC1 cells via promoting generation of ROS and activation of JNK signaling pathway. Sci Rep 2017; 7:44311. [PMID: 28287190 PMCID: PMC5347132 DOI: 10.1038/srep44311] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 02/07/2017] [Indexed: 02/06/2023] Open
Abstract
Nucleotide-binding domain and leucine-rich-repeat-containing family member X1 (NLRX1), located in mitochondria, can recognize cytoplasmic pattern recognition receptors and is tightly related to reactive oxygen species (ROS) production, mitochondrial function, apoptosis and inflammation. The present study was designed to explore whether NLRX1 expresses in HEI-OC1 cells and, if so, to investigate the possible correlations between NLRX1 and cisplatin-induced ototoxity in vitro. Here, we report that NLRX1 was specifically localized to mitochondria in the cytoplasm of HEI-OC1 cells and its expression was increased concurrent with the increase of ROS production and occurrence of apoptosis in HEI-OC1 cells in response to cisplatin stimulus. NLRX1 overexpression led to a higher apoptosis in HEI-OC1 cells treated with cisplatin, whereas, NLRX silencing decreased cisplatin induced apoptosis. Mechanistic studies showed that NLRX1 activated mitochondrial apoptosis pathway as well as promoted ROS generation and JNK activation. Either inhibition of ROS generation or JNK signaling significantly prevented NLRX1-mediated mitochondrial apoptosis in HEI-OC1cells. In addition, NLRX1 expression was confirmed in cochlear explants. The findings from this work reveal that NLRX1 sensitizes HEI-OC1 cells to cisplatin-induced apoptosis via activation of ROS/JNK signaling pathway, suggesting that NLRX1 acts as an important regulator of the cisplatin-elicited ototoxity.
Collapse
Affiliation(s)
- Haiyan Yin
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250021, P.R. China.,Department of Pathology and Pathophysiology, Shandong University, Cheeloo Healthy Science Center, Jinan, 250012, P.R. China
| | - Gaoying Sun
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250021, P.R. China.,Shandong Provincial Key Laboratory of Otology, Jinan, 250021, P.R. China
| | - Qianqian Yang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250021, P.R. China.,Department of Pathology and Pathophysiology, Shandong University, Cheeloo Healthy Science Center, Jinan, 250012, P.R. China
| | - Chen Chen
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250021, P.R. China.,Department of Pathology and Pathophysiology, Shandong University, Cheeloo Healthy Science Center, Jinan, 250012, P.R. China
| | - Qi Qi
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250021, P.R. China.,Department of Pathology and Pathophysiology, Shandong University, Cheeloo Healthy Science Center, Jinan, 250012, P.R. China
| | - Haibo Wang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250021, P.R. China.,Shandong Provincial Key Laboratory of Otology, Jinan, 250021, P.R. China
| | - Jianfeng Li
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250021, P.R. China.,Department of Pathology and Pathophysiology, Shandong University, Cheeloo Healthy Science Center, Jinan, 250012, P.R. China.,Shandong Provincial Key Laboratory of Otology, Jinan, 250021, P.R. China
| |
Collapse
|
137
|
Galadari S, Rahman A, Pallichankandy S, Thayyullathil F. Reactive oxygen species and cancer paradox: To promote or to suppress? Free Radic Biol Med 2017; 104:144-164. [PMID: 28088622 DOI: 10.1016/j.freeradbiomed.2017.01.004] [Citation(s) in RCA: 657] [Impact Index Per Article: 82.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 12/16/2016] [Accepted: 01/03/2017] [Indexed: 02/07/2023]
Abstract
Reactive oxygen species (ROS), a group of highly reactive ions and molecules, are increasingly being appreciated as powerful signaling molecules involved in the regulation of a variety of biological processes. Indeed, their role is continuously being delineated in a variety of pathophysiological conditions. For instance, cancer cells are shown to have increased ROS levels in comparison to their normal counterparts. This is partly due to an enhanced metabolism and mitochondrial dysfunction in cancer cells. The escalated ROS generation in cancer cells contributes to the biochemical and molecular changes necessary for the tumor initiation, promotion and progression, as well as, tumor resistance to chemotherapy. Therefore, increased ROS in cancer cells may provide a unique opportunity to eliminate cancer cells via elevating ROS to highly toxic levels intracellularly, thereby, activating various ROS-induced cell death pathways, or inhibiting cancer cell resistance to chemotherapy. Such results can be achieved by using agents that either increase ROS generation, or inhibit antioxidant defense, or even a combination of both. In fact, a large variety of anticancer drugs, and some of those currently under clinical trials, effectively kill cancer cells and overcome drug resistance via enhancing ROS generation and/or impeding the antioxidant defense mechanism. This review focuses on our current understanding of the tumor promoting (tumorigenesis, angiogenesis, invasion and metastasis, and chemoresistance) and the tumor suppressive (apoptosis, autophagy, and necroptosis) functions of ROS, and highlights the potential mechanism(s) involved. It also sheds light on a very novel and an actively growing field of ROS-dependent cell death mechanism referred to as ferroptosis.
Collapse
Affiliation(s)
- Sehamuddin Galadari
- Cell Signaling Laboratory, Department of Biochemistry, College of Medicine and Health Sciences, UAE University, P.O. Box 17666, Al Ain, Abu Dhabi, UAE; Al Jalila Foundation Research Centre, P.O. Box 300100, Dubai, UAE.
| | - Anees Rahman
- Cell Signaling Laboratory, Department of Biochemistry, College of Medicine and Health Sciences, UAE University, P.O. Box 17666, Al Ain, Abu Dhabi, UAE.
| | - Siraj Pallichankandy
- Cell Signaling Laboratory, Department of Biochemistry, College of Medicine and Health Sciences, UAE University, P.O. Box 17666, Al Ain, Abu Dhabi, UAE.
| | - Faisal Thayyullathil
- Cell Signaling Laboratory, Department of Biochemistry, College of Medicine and Health Sciences, UAE University, P.O. Box 17666, Al Ain, Abu Dhabi, UAE.
| |
Collapse
|
138
|
Cancer Cell Mitochondria Targeting by Pancratistatin Analogs is Dependent on Functional Complex II and III. Sci Rep 2017; 7:42957. [PMID: 28220885 PMCID: PMC5318952 DOI: 10.1038/srep42957] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 01/17/2017] [Indexed: 11/16/2022] Open
Abstract
Enhanced mitochondrial stability and decreased dependence on oxidative phosphorylation confer an acquired resistance to apoptosis in cancer cells, but may present opportunities for therapeutic intervention. The compound pancratistatin (PST) has been shown to selectively induce apoptosis in cancer cells. However, its low availability in nature has hindered its clinical advancement. We synthesized PST analogs and a medium-throughput screen was completed. Analogs SVTH-7, -6, and -5 demonstrated potent anti-cancer activity greater than PST and several standard chemotherapeutics. They disrupted mitochondrial function, activated the intrinsic apoptotic pathway, and reduced growth of tumor xenografts in vivo. Interestingly, the pro-apoptotic effects of SVTH-7 on cancer cells and mitochondria were abrogated with the inhibition of mitochondrial complex II and III, suggesting mitochondrial or metabolic vulnerabilities may be exploited by this analog. This work provides a scaffold for characterizing distinct mitochondrial and metabolic features of cancer cells and reveals several lead compounds with high therapeutic potential.
Collapse
|
139
|
Sidlauskas K, Sidlauskiene R, Li N, Liobikas J. 5-Hydroxy-1,4-naphthalenedione exerts anticancer effects on glioma cells through interaction with the mitochondrial electron transport chain. Neurosci Lett 2017; 639:207-214. [PMID: 28069455 DOI: 10.1016/j.neulet.2017.01.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 01/04/2017] [Accepted: 01/05/2017] [Indexed: 01/19/2023]
Abstract
Survival of patients with glioblastoma remains within the range of several months despite advances in therapeutic options. We have already shown that 5-hydroxy-1,4-naphthalenedione (juglone) exerts antiproliferative, anti-invasive, and cytotoxic effects on glioma C6 cells. Here, we further revealed that juglone is relatively selective to glioma cells as compared to the normal glial culture, and investigated its mechanisms of action. The incubation of glioma C6 cells with juglone generated high levels of reactive oxygen species (ROS). The produced ROS accounted for the anticancer effect of juglone as antioxidant N-acetylcysteine reduced both cytotoxic and antiproliferative activities of juglone. Furthermore, high resolution respirometry revealed that juglone decreased oxygen consumption mainly by affecting pyruvate/malate- and glutamate/malate-induced mitochondrial respiration. The inhibition of respiratory complex I by amytal decreased juglone-triggered generation of ROS and diminished its anticancer activity. Thus, our results indicate that juglone generates ROS through interaction with respiratory complex I in glioma C6 cells, and, in turn, induces the anticancer effects.
Collapse
Affiliation(s)
- Kastytis Sidlauskas
- Laboratory of Biochemistry, Neuroscience Institute, Lithuanian University of Health Sciences, Kaunas, Lithuania; Division of Neuropathology, Institute of Neurology, University College London, UK.
| | - Ruta Sidlauskiene
- Laboratory of Biochemistry, Neuroscience Institute, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Ningning Li
- Division of Neuropathology, Institute of Neurology, University College London, UK
| | - Julius Liobikas
- Laboratory of Biochemistry, Neuroscience Institute, Lithuanian University of Health Sciences, Kaunas, Lithuania
| |
Collapse
|
140
|
Kuang L, Cao X, Lu Z. Baicalein Protects against Rotenone-Induced Neurotoxicity through Induction of Autophagy. Biol Pharm Bull 2017; 40:1537-1543. [DOI: 10.1248/bpb.b17-00392] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Lianghong Kuang
- Department of Neurology, Renmin Hospital of Wuhan University
| | - Xiongbin Cao
- Department of Neurology, Renmin Hospital of Wuhan University
| | - Zuneng Lu
- Department of Neurology, Renmin Hospital of Wuhan University
| |
Collapse
|
141
|
Białas AJ, Sitarek P, Miłkowska-Dymanowska J, Piotrowski WJ, Górski P. The Role of Mitochondria and Oxidative/Antioxidative Imbalance in Pathobiology of Chronic Obstructive Pulmonary Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:7808576. [PMID: 28105251 PMCID: PMC5220474 DOI: 10.1155/2016/7808576] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Accepted: 10/23/2016] [Indexed: 12/12/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is a common preventable and treatable disease, characterized by persistent airflow limitation that is usually progressive and associated with an enhanced chronic inflammatory response in the airways and the lung to noxious particles or gases. The major risk factor of COPD, which has been proven in many studies, is the exposure to cigarette smoke. However, it is 15-20% of all smokers who develop COPD. This is why we should recognize the pathobiology of COPD as involving a complex interaction between several factors, including genetic vulnerability. Oxidant-antioxidant imbalance is recognized as one of the significant factors in COPD pathogenesis. Numerous exogenous and endogenous sources of ROS are present in pathobiology of COPD. One of endogenous sources of ROS is mitochondria. Although leakage of electrons from electron transport chain and forming of ROS are the effect of physiological functioning of mitochondria, there are various intra- and extracellular factors which may increase this amount and significantly contribute to oxidative-antioxidative imbalance. With the coexistence with impaired antioxidant defence, all these issues lead to oxidative and carbonyl stress. Both of these states play a significant role in pathobiology of COPD and may account for development of major comorbidities of this disease.
Collapse
Affiliation(s)
- Adam Jerzy Białas
- Department of Pneumology and Allergy, 1st Chair of Internal Medicine, Medical University of Lodz, Łódź, Poland
- Healthy Aging Research Centre (HARC), Medical University of Lodz, Łódź, Poland
| | - Przemysław Sitarek
- Department of Biology and Pharmaceutical Botany, Medical University of Łódź, Łódź, Poland
| | - Joanna Miłkowska-Dymanowska
- Department of Pneumology and Allergy, 1st Chair of Internal Medicine, Medical University of Lodz, Łódź, Poland
- Healthy Aging Research Centre (HARC), Medical University of Lodz, Łódź, Poland
| | - Wojciech Jerzy Piotrowski
- Department of Pneumology and Allergy, 1st Chair of Internal Medicine, Medical University of Lodz, Łódź, Poland
- Healthy Aging Research Centre (HARC), Medical University of Lodz, Łódź, Poland
| | - Paweł Górski
- Department of Pneumology and Allergy, 1st Chair of Internal Medicine, Medical University of Lodz, Łódź, Poland
- Healthy Aging Research Centre (HARC), Medical University of Lodz, Łódź, Poland
| |
Collapse
|
142
|
Enhanced cytotoxic activity of doxorubicin through the inhibition of autophagy in triple negative breast cancer cell line. Biochim Biophys Acta Gen Subj 2016; 1861:49-57. [PMID: 27842219 DOI: 10.1016/j.bbagen.2016.11.013] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 11/01/2016] [Accepted: 11/10/2016] [Indexed: 01/24/2023]
Abstract
BACKGROUND The outcome of triple negative breast cancer is still poor and requires improvement with better therapy options. Autophagy has recently been shown to play a role in anticancer drug resistance. Therefore, we investigated if the effectiveness of doxorubicin was augmented by the inhibition of autophagy. METHODS MDA-MB-231 was used as a model cell line for triple negative breast cancer and 3-methyladenine was used as an inhibitor of autophagy. Cells were treated with 0.46-1.84μM doxorubicin and 2.5-10μM 3-methyladenine for 48h. Cell death mode was examined with M30 and M65 ELISA assays. ROS level and LDH activity was examined and the cellular acidic compartment of cells was monitored by acridine orange staining. The expression of various autophagy and apoptosis related proteins/genes were evaluated with Western blotting and RT-qPCR respectively. RESULTS Synergism was observed between the compounds (CI value<1.0). RT-qPCR analysis revealed that the combination resulted in a down-regulation of autophagy-related genes. Moreover, the combination resulted in a different cell death modality, upregulating necroptosis-related genes. This suggests that the mode of cell death may switch from apoptosis to necroptosis, which is a more severe form of cell death, when autophagy is inhibited. These results were further confirmed at protein level by Western blotting. CONCLUSION Inhibition of autophagy seems to sensitize triple negative breast cancer cells to doxorubicin, warranting further in vivo studies for the proof of this concept. GENERAL SIGNIFICANCE Autophagy has a key role in drug resistance in MDA-MB-231 cells. Therefore combinatorial approaches may effectively overcome resistance.
Collapse
|
143
|
Liemburg-Apers DC, Wagenaars JAL, Smeitink JAM, Willems PHGM, Koopman WJH. Acute stimulation of glucose influx upon mitoenergetic dysfunction requires LKB1, AMPK, Sirt2 and mTOR-RAPTOR. J Cell Sci 2016; 129:4411-4423. [PMID: 27793977 DOI: 10.1242/jcs.194480] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 10/24/2016] [Indexed: 12/20/2022] Open
Abstract
Mitochondria play a central role in cellular energy production, and their dysfunction can trigger a compensatory increase in glycolytic flux to sustain cellular ATP levels. Here, we studied the mechanism of this homeostatic phenomenon in C2C12 myoblasts. Acute (30 min) mitoenergetic dysfunction induced by the mitochondrial inhibitors piericidin A and antimycin A stimulated Glut1-mediated glucose uptake without altering Glut1 (also known as SLC2A1) mRNA or plasma membrane levels. The serine/threonine liver kinase B1 (LKB1; also known as STK11) and AMP-activated protein kinase (AMPK) played a central role in this stimulation. In contrast, ataxia-telangiectasia mutated (ATM; a potential AMPK kinase) and hydroethidium (HEt)-oxidizing reactive oxygen species (ROS; increased in piericidin-A- and antimycin-A-treated cells) appeared not to be involved in the stimulation of glucose uptake. Treatment with mitochondrial inhibitors increased NAD+ and NADH levels (associated with a lower NAD+:NADH ratio) but did not affect the level of Glut1 acetylation. Stimulation of glucose uptake was greatly reduced by chemical inhibition of Sirt2 or mTOR-RAPTOR. We propose that mitochondrial dysfunction triggers LKB1-mediated AMPK activation, which stimulates Sirt2 phosphorylation, leading to activation of mTOR-RAPTOR and Glut1-mediated glucose uptake.
Collapse
Affiliation(s)
- Dania C Liemburg-Apers
- Department of Biochemistry (286), Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6500HB, Nijmegen, The Netherlands.,Centre for Systems Biology and Bioenergetics, Radboud University and Radboud University Medical Center, 6500HB, Nijmegen, The Netherlands.,Department of Pediatrics, Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, 6525GA, Nijmegen, The Netherlands
| | - Jori A L Wagenaars
- Department of Biochemistry (286), Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6500HB, Nijmegen, The Netherlands.,Centre for Systems Biology and Bioenergetics, Radboud University and Radboud University Medical Center, 6500HB, Nijmegen, The Netherlands.,Department of Pediatrics, Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, 6525GA, Nijmegen, The Netherlands
| | - Jan A M Smeitink
- Centre for Systems Biology and Bioenergetics, Radboud University and Radboud University Medical Center, 6500HB, Nijmegen, The Netherlands.,Department of Pediatrics, Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, 6525GA, Nijmegen, The Netherlands
| | - Peter H G M Willems
- Department of Biochemistry (286), Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6500HB, Nijmegen, The Netherlands.,Centre for Systems Biology and Bioenergetics, Radboud University and Radboud University Medical Center, 6500HB, Nijmegen, The Netherlands.,Department of Pediatrics, Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, 6525GA, Nijmegen, The Netherlands
| | - Werner J H Koopman
- Department of Biochemistry (286), Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6500HB, Nijmegen, The Netherlands .,Centre for Systems Biology and Bioenergetics, Radboud University and Radboud University Medical Center, 6500HB, Nijmegen, The Netherlands.,Department of Pediatrics, Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, 6525GA, Nijmegen, The Netherlands
| |
Collapse
|
144
|
Autophagy and the invisible line between life and death. Eur J Cell Biol 2016; 95:598-610. [PMID: 28340912 DOI: 10.1016/j.ejcb.2016.10.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 10/24/2016] [Accepted: 10/24/2016] [Indexed: 02/07/2023] Open
Abstract
For a considerable time cell death has been considered to represent mutually exclusive states with cell death modalities that are governed by their inherent and unique mode of action involving specific molecular entities and have therefore been studied primarily in isolation. It is now, however, becoming increasingly clear that these modalities are regulated by similar pathways and share a number of initiator and effector molecules that control both cell death as well as cell survival mechanisms, demanding a newly aligned and integrative approach of cell death assessment. Frequently cell death is triggered through a dual action that incorporates signaling events associated with more than one death modality. Apoptosis and necrosis regularly co-operate in a tightly balanced interplay that involves autophagy to serve context dependently either as a pro-survival or a pro-death mechanism. In this review we will assess current cell death modalities and their molecular overlap with the goal of clarifying the controversial role of autophagy in the cell death response. By dissecting the key molecular pathways and their positioning within a network of regulatory signalling hubs and checkpoints we discuss a distinct approach that integrates autophagy with a resultant cell death manifestation. In doing so, former classifications of cell death modalities fade and reveal the intricate molecular proportions and complexities of the cell death response that may contribute towards an enhanced means of cell death control.
Collapse
|
145
|
Chen Z, Liu X, Ma S. The Roles of Mitochondria in Autophagic Cell Death. Cancer Biother Radiopharm 2016; 31:269-276. [PMID: 27754749 DOI: 10.1089/cbr.2016.2057] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Zongyan Chen
- Key Laboratory of Radiobiology (Ministry of Health), School of Public Health, Jilin University, Changchun, China
- Department of Diagnostic Imaging, Center for Radiological Research, Weihai Chest Hospital, Weihai, China
| | - Xiaodong Liu
- Key Laboratory of Radiobiology (Ministry of Health), School of Public Health, Jilin University, Changchun, China
- Department of Radiation Oncology, Center for Radiological Research, The 2nd Hospital Affiliated to Jilin University, Changchun, China
| | - Shumei Ma
- Key Laboratory of Radiobiology (Ministry of Health), School of Public Health, Jilin University, Changchun, China
| |
Collapse
|
146
|
Kanonidis EI, Roy MM, Deighton RF, Le Bihan T. Protein Co-Expression Analysis as a Strategy to Complement a Standard Quantitative Proteomics Approach: Case of a Glioblastoma Multiforme Study. PLoS One 2016; 11:e0161828. [PMID: 27571357 PMCID: PMC5003355 DOI: 10.1371/journal.pone.0161828] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 08/14/2016] [Indexed: 12/21/2022] Open
Abstract
Although correlation network studies from co-expression analysis are increasingly popular, they are rarely applied to proteomics datasets. Protein co-expression analysis provides a complementary view of underlying trends, which can be overlooked by conventional data analysis. The core of the present study is based on Weighted Gene Co-expression Network Analysis applied to a glioblastoma multiforme proteomic dataset. Using this method, we have identified three main modules which are associated with three different membrane associated groups; mitochondrial, endoplasmic reticulum, and a vesicle fraction. The three networks based on protein co-expression were assessed against a publicly available database (STRING) and show a statistically significant overlap. Each of the three main modules were de-clustered into smaller networks using different strategies based on the identification of highly connected networks, hierarchical clustering and enrichment of Gene Ontology functional terms. Most of the highly connected proteins found in the endoplasmic reticulum module were associated with redox activity while a core of the unfolded protein response was identified in addition to proteins involved in oxidative stress pathways. The proteins composing the electron transfer chain were found differently affected with proteins from mitochondrial Complex I being more down-regulated than proteins from Complex III. Finally, the two pyruvate kinases isoforms show major differences in their co-expressed protein networks suggesting roles in different cellular locations.
Collapse
Affiliation(s)
- Evangelos I. Kanonidis
- SynthSys and School of Biological Sciences, Waddington building, University of Edinburgh, Edinburgh, United Kingdom, EH9 3BF
| | - Marcia M. Roy
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh United Kingdom, EH16 4SB
| | - Ruth F. Deighton
- Edinburgh Medical School: Deanery of Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom, EH8 9AG
| | - Thierry Le Bihan
- SynthSys and School of Biological Sciences, Waddington building, University of Edinburgh, Edinburgh, United Kingdom, EH9 3BF
- * E-mail:
| |
Collapse
|
147
|
Abstract
SIGNIFICANCE A common link between all forms of acute and chronic kidney injuries, regardless of species, is enhanced generation of reactive oxygen species (ROS) and reactive nitrogen species (RNS) during injury/disease progression. While low levels of ROS and RNS are required for prosurvival signaling, cell proliferation and growth, and vasoreactivity regulation, an imbalance of ROS and RNS generation and elimination leads to inflammation, cell death, tissue damage, and disease/injury progression. RECENT ADVANCES Many aspects of renal oxidative stress still require investigation, including clarification of the mechanisms which prompt ROS/RNS generation and subsequent renal damage. However, we currently have a basic understanding of the major features of oxidative stress pathology and its link to kidney injury/disease, which this review summarizes. CRITICAL ISSUES The review summarizes the critical sources of oxidative stress in the kidney during injury/disease, including generation of ROS and RNS from mitochondria, NADPH oxidase, and inducible nitric oxide synthase. The review next summarizes the renal antioxidant systems that protect against oxidative stress, including superoxide dismutase and catalase, the glutathione and thioredoxin systems, and others. Next, we describe how oxidative stress affects kidney function and promotes damage in every nephron segment, including the renal vessels, glomeruli, and tubules. FUTURE DIRECTIONS Despite the limited success associated with the application of antioxidants for treatment of kidney injury/disease thus far, preventing the generation and accumulation of ROS and RNS provides an ideal target for potential therapeutic treatments. The review discusses the shortcomings of antioxidant treatments previously used and the potential promise of new ones. Antioxid. Redox Signal. 25, 119-146.
Collapse
Affiliation(s)
- Brian B Ratliff
- 1 Department of Medicine, Renal Research Institute , New York Medical College, Valhalla, New York.,2 Department of Physiology, Renal Research Institute , New York Medical College, Valhalla, New York
| | - Wasan Abdulmahdi
- 2 Department of Physiology, Renal Research Institute , New York Medical College, Valhalla, New York
| | - Rahul Pawar
- 1 Department of Medicine, Renal Research Institute , New York Medical College, Valhalla, New York
| | - Michael S Wolin
- 2 Department of Physiology, Renal Research Institute , New York Medical College, Valhalla, New York
| |
Collapse
|
148
|
Fusaric acid induces mitochondrial stress in human hepatocellular carcinoma (HepG2) cells. Toxicon 2016; 119:336-44. [PMID: 27390038 DOI: 10.1016/j.toxicon.2016.07.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 05/24/2016] [Accepted: 07/01/2016] [Indexed: 01/30/2023]
Abstract
Fusarium spp are common contaminants of maize and produce many mycotoxins, including the fusariotoxin fusaric acid (FA). FA is a niacin related compound, chelator of divalent cations, and mediates toxicity via oxidative stress and possible mitochondrial dysregulation. Sirtuin 3 (SIRT3) is a stress response deacetylase that maintains proper mitochondrial function. We investigated the effect of FA on SIRT3 and oxidative and mitochondrial stress pathways in the hepatocellular carcinoma (HepG2) cell line. We determined FA toxicity (24 h incubation; IC50 = 104 μg/ml) on mitochondrial output, cellular and mitochondrial stress responses, mitochondrial biogenesis and markers of cell death using spectrophotometry, luminometry, qPCR and western blots. FA caused a dose dependent decrease in metabolic activity along with significant depletion of intracellular ATP. FA induced a significant increase in lipid peroxidation, despite up-regulation of the antioxidant transcription factor, Nrf2. FA significantly decreased expression of SIRT3 mRNA with a concomitant decrease in protein expression. Lon protease was also significantly down-regulated. FA induced aberrant mitochondrial biogenesis as evidenced by significantly decreased protein expressions of: PGC-1α, p-CREB, NRF1 and HSP70. Finally, FA activated apoptosis as noted by the significantly increased activity of caspases 3/7 and also induced cellular necrosis. This study provides insight into the molecular mechanisms of FA (a neglected mycotoxin) induced hepatotoxicity.
Collapse
|
149
|
Forkhead box O (FOXO) 3 modulates hypoxia-induced autophagy through AMPK signalling pathway in cardiomyocytes. Biosci Rep 2016; 36:BSR20160091. [PMID: 27129298 PMCID: PMC5293586 DOI: 10.1042/bsr20160091] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 04/25/2016] [Indexed: 12/19/2022] Open
Abstract
Autophagy is promoted as a response to such environmental stress conditions as ATP depletion and excessive accumulation of reactive oxygen species (ROS). Multiple signalling pathways, including AMP-activated protein kinase (AMPK), are indicated to promote autophagy in ischaemic/hypoxic (I/R) heart. However, it's far more to clarify the orchestrated cross-talk between AMPK and other signalling pathways in the autophagy. In the present study, we investigated the autophagy induction by hypoxia in Rat H9C2 cardiomyocytes with LC3-EGFP reporter, EM and Western blot analysis. Then, we examined the promotion of forkhead box O (FOXO) 3, one member of FOXO transcriptional protein family, by hypoxia in Rat H9C2 cells and determined the mediation of FOXO 3 in the hypoxia-induced autophagy in H9C2 cells. In addition, we investigated the role of AMPK signalling in the FOXO3-mediated, hypoxia-induced autophagy in H9C2 cells. It was demonstrated that hypoxia induced significant autophagy in H9C2 cells, via promoting autophagic vesicles, inducing the conversion of LC3-I to LC3-II and up-regulating autophagy-related (ATG) markers. Moreover, FOXO3 was up-regulated by the hypoxia in H9C2 cells; and the knockdown of FOXO3 significantly reduced the hypoxia-induced autophagy. In addition, AMPK signalling was significantly promoted by hypoxia in H9C2 cells, and the chemical manipulation of AMPK exerted significant influence on the hypoxia-induced autophagy and on the FOXO3 level. In conclusion, FOXO3 regulated the hypoxia-induced autophagy in cardiomyocytes, and AMPK mediated the FOXO3 promotion during the autophagy induction by hypoxia, implying the key regulatory role of FOXO3 and AMPK signalling in the hypoxia-induced autophagy in cardiomyocytes.
Collapse
|
150
|
Cui D, Shang H, Zhang X, Jiang W, Jia X. Cardiac arrest triggers hippocampal neuronal death through autophagic and apoptotic pathways. Sci Rep 2016; 6:27642. [PMID: 27273382 PMCID: PMC4897701 DOI: 10.1038/srep27642] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 05/19/2016] [Indexed: 12/31/2022] Open
Abstract
The mechanism of neuronal death induced by ischemic injury remains unknown. We investigated whether autophagy and p53 signaling played a role in the apoptosis of hippocampal neurons following global cerebral ischemia-reperfusion (I/R) injury, in a rat model of 8-min asphyxial cardiac arrest (CA) and resuscitation. Increased autophagosome numbers, expression of lysosomal cathepsin B, cathepsin D, Beclin-1, and microtubule-associated protein light chain 3 (LC3) suggested autophagy in hippocampal cells. The expression of tumor suppressor protein 53 (p53) and its target genes: Bax, p53-upregulated modulator of apoptosis (PUMA), and damage-regulated autophagy modulator (DRAM) were upregulated following CA. The p53-specific inhibitor pifithrin-α (PFT-α) significantly reduced the expression of pro-apoptotic proteins (Bax and PUMA) and autophagic proteins (LC3-II and DRAM) that generally increase following CA. PFT-α also reduced hippocampal neuronal damage following CA. Similarly, 3-methyladenine (3-MA), which inhibits autophagy and bafilomycin A1 (BFA), which inhibits lysosomes, significantly inhibited hippocampal neuronal damage after CA. These results indicate that CA affects both autophagy and apoptosis, partially mediated by p53. Autophagy plays a significant role in hippocampal neuronal death induced by cerebral I/R following asphyxial-CA.
Collapse
Affiliation(s)
- Derong Cui
- Department of Anesthesiology, Shanghai Sixth People’s Hospital Affiliated with Shanghai Jiaotong University, Shanghai 200233, China
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA
| | - Hanbing Shang
- Department of Neurosurgery, Shanghai Ruijin Hospital Affiliated with Medical School of Shanghai Jiaotong University, Shanghai 200025, China
| | - Xiaoli Zhang
- Department of Anesthesiology, Shanghai Sixth People’s Hospital Affiliated with Shanghai Jiaotong University, Shanghai 200233, China
| | - Wei Jiang
- Department of Anesthesiology, Shanghai Sixth People’s Hospital Affiliated with Shanghai Jiaotong University, Shanghai 200233, China
| | - Xiaofeng Jia
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA
- Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|