101
|
Abstract
Half a century ago, when the free radical theory of aging was first proposed, the damaging effects of reactive oxygen species (ROS) were in the focus of attention and considered the single most important determinant of aging. Two decades later, however, the disposable soma theory of aging redirected the attention to the potential impact of cellular maintenance and repair pathways that are both genetically and environmentally determined and are counteracting the damaging effects of ROS. In the present paper, recent experimental data linking DNA repair pathways with the aging process are summarised. Special attention is paid to poly(ADP-ribosyl)ation, a DNA-damage driven posttranslational modification of proteins.
Collapse
Affiliation(s)
- Alexander Bürkle
- Molecular Toxicology Group, University of Konstanz, Box X911, D-78457, Konstanz, Germany.
| |
Collapse
|
102
|
Kusumoto R, Muftuoglu M, Bohr VA. The role of WRN in DNA repair is affected by post-translational modifications. Mech Ageing Dev 2007; 128:50-7. [PMID: 17116323 DOI: 10.1016/j.mad.2006.11.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Werner syndrome (WS) is an autosomal recessive progeroid disease characterized by genomic instability. WRN gene encodes one of the RecQ helicase family proteins, WRN, which has ATPase, helicase, exonuclease and single stranded DNA annealing activities. There is accumulating evidence suggesting that WRN contributes to the maintenance of genomic integrity through its involvement in DNA repair, replication and recombination. The role of WRN in these pathways can be modulated by its post-translational modifications in response to DNA damage. Here, we review the functional consequences of post-translational modifications on WRN as well as specific DNA repair pathways where WRN is involved and discuss how these modifications affect DNA repair pathways.
Collapse
Affiliation(s)
- Rika Kusumoto
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, 5600 Nathan Shock Drive, Baltimore, MD 21224, USA
| | | | | |
Collapse
|
103
|
Kim JS, Heale JT, Zeng W, Kong X, Krasieva TB, Ball AR, Yokomori K. In situ analysis of DNA damage response and repair using laser microirradiation. Methods Cell Biol 2007; 82:377-407. [PMID: 17586265 DOI: 10.1016/s0091-679x(06)82013-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A proper response to DNA damage is critical for the maintenance of genome integrity. However, it is difficult to study the in vivo kinetics and factor requirements of the damage recognition process in mammalian cells. In order to address how the cell reacts to DNA damage, we utilized a second harmonic (532 nm) pulsed Nd:YAG laser to induce highly concentrated damage in a small area in interphase cell nuclei and cytologically analyzed both protein recruitment and modification. Our results revealed for the first time the sequential recruitment of factors involved in two major DNA double-strand break (DSB) repair pathways, non-homologous end-joining (NHEJ) and homologous recombination (HR), and the cell cycle-specific recruitment of the sister chromatid cohesion complex cohesin to the damage site. In this chapter, the strategy developed to study the DNA damage response using the 532-nm Nd:YAG laser will be summarized.
Collapse
Affiliation(s)
- Jong-Soo Kim
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, California 92697, USA
| | | | | | | | | | | | | |
Collapse
|
104
|
Jiao R, Harrigan JA, Shevelev I, Dietschy T, Selak N, Indig FE, Piotrowski J, Janscak P, Bohr VA, Stagljar I. The Werner syndrome protein is required for recruitment of chromatin assembly factor 1 following DNA damage. Oncogene 2006; 26:3811-22. [PMID: 17173071 DOI: 10.1038/sj.onc.1210150] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The Werner syndrome protein (WRN) and chromatin assembly factor 1 (CAF-1) are both involved in the maintenance of genome stability. In response to DNA-damaging signals, both of these proteins relocate to sites where DNA synthesis occurs. However, the interaction between WRN and CAF-1 has not yet been investigated. In this report, we show that WRN interacts physically with the largest subunit of CAF-1, hp150, in vitro and in vivo. Although hp150 does not alter WRN catalytic activities in vitro, and the chromatin assembly activity of CAF-1 is not affected in the absence of WRN in vivo, this interaction may have an important role during the cellular response to DNA replication fork blockage and/or DNA damage signals. In hp150 RNA-mediated interference (RNAi) knockdown cells, WRN partially formed foci following hydroxyurea (HU) treatment. However, in the absence of WRN, hp150 did not relocate to form foci following exposure to HU and ultraviolet light. Thus, our results demonstrate that WRN responds to DNA damage before CAF-1 and suggest that WRN may recruit CAF-1, via interaction with hp150, to DNA damage sites during DNA synthesis.
Collapse
Affiliation(s)
- R Jiao
- National Laboratory of Biomacromolecules and State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, The Chinese Academy of Sciences, Beijing, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
105
|
Kitano K, Yoshihara N, Hakoshima T. Crystal structure of the HRDC domain of human Werner syndrome protein, WRN. J Biol Chem 2006; 282:2717-28. [PMID: 17148451 DOI: 10.1074/jbc.m610142200] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Werner syndrome is a human premature aging disorder characterized by chromosomal instability. The disease is caused by the functional loss of WRN, a member of the RecQ-helicase family that plays an important role in DNA metabolic pathways. WRN contains four structurally folded domains comprising an exonuclease, a helicase, a winged-helix, and a helicase-and-ribonuclease D/C-terminal (HRDC) domain. In contrast to the accumulated knowledge pertaining to the biochemical functions of the three N-terminal domains, the function of C-terminal HRDC remains unknown. In this study, the crystal structure of the human WRN HRDC domain has been determined. The domain forms a bundle of alpha-helices similar to those of Saccharomyces cerevisiae Sgs1 and Escherichia coli RecQ. Surprisingly, the extra ten residues at each of the N and C termini of the domain were found to participate in the domain architecture by forming an extended portion of the first helix alpha1, and a novel looping motif that traverses straight along the domain surface, respectively. The motifs combine to increase the domain surface of WRN HRDC, which is larger than that of Sgs1 and E. coli. In WRN HRDC, neither of the proposed DNA-binding surfaces in Sgs1 or E. coli is conserved, and the domain was shown to lack DNA-binding ability in vitro. Moreover, the domain was shown to be thermostable and resistant to protease digestion, implying independent domain evolution in WRN. Coupled with the unique long linker region in WRN, the WRN HRDC may be adapted to play a distinct function in WRN that involves protein-protein interactions.
Collapse
Affiliation(s)
- Ken Kitano
- Structural Biology Laboratory, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | | | | |
Collapse
|
106
|
Yoshimura M, Kohzaki M, Nakamura J, Asagoshi K, Sonoda E, Hou E, Prasad R, Wilson SH, Tano K, Yasui A, Lan L, Seki M, Wood RD, Arakawa H, Buerstedde JM, Hochegger H, Okada T, Hiraoka M, Takeda S. Vertebrate POLQ and POLbeta cooperate in base excision repair of oxidative DNA damage. Mol Cell 2006; 24:115-25. [PMID: 17018297 PMCID: PMC1868411 DOI: 10.1016/j.molcel.2006.07.032] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2006] [Revised: 07/02/2006] [Accepted: 07/28/2006] [Indexed: 01/01/2023]
Abstract
Base excision repair (BER) plays an essential role in protecting cells from mutagenic base damage caused by oxidative stress, hydrolysis, and environmental factors. POLQ is a DNA polymerase, which appears to be involved in translesion DNA synthesis (TLS) past base damage. We disrupted POLQ, and its homologs HEL308 and POLN in chicken DT40 cells, and also created polq/hel308 and polq/poln double mutants. We found that POLQ-deficient mutants exhibit hypersensitivity to oxidative base damage induced by H(2)O(2), but not to UV or cisplatin. Surprisingly, this phenotype was synergistically increased by concomitant deletion of the major BER polymerase, POLbeta. Moreover, extracts from a polq null mutant cell line show reduced BER activity, and POLQ, like POLbeta, accumulated rapidly at sites of base damage. Accordingly, POLQ and POLbeta share an overlapping function in the repair of oxidative base damage. Taken together, these results suggest a role for vertebrate POLQ in BER.
Collapse
Affiliation(s)
- Michio Yoshimura
- Department of Radiation Genetics, CREST, Japan Science and Technology Laboratory, Graduate School of Medicine, Kyoto University, Yoshida Konoe, Sakyo-ku, Kyoto 606-8501
- Department of Radiation Oncology and Image-Applied Therapy, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawaharacho, Sakyo-ku, Kyoto 606-8507
| | - Masaoki Kohzaki
- Department of Radiation Genetics, CREST, Japan Science and Technology Laboratory, Graduate School of Medicine, Kyoto University, Yoshida Konoe, Sakyo-ku, Kyoto 606-8501
- Research Reactor Institute, Kyoto University, 2 Asashironishi, Kumatoricho, Sennan-gun, Osaka 590-0494, Japan
| | - Jun Nakamura
- Department of Environmental Sciences and Engineering, The University of North Carolina, Chapel Hill, North Carolina 27599
| | - Kenjiro Asagoshi
- Laboratory of Structural Biology, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709
| | - Eiichiro Sonoda
- Department of Radiation Genetics, CREST, Japan Science and Technology Laboratory, Graduate School of Medicine, Kyoto University, Yoshida Konoe, Sakyo-ku, Kyoto 606-8501
| | - Esther Hou
- Laboratory of Structural Biology, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709
| | - Rajendra Prasad
- Laboratory of Structural Biology, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709
| | - Samuel H. Wilson
- Laboratory of Structural Biology, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709
| | - Keizo Tano
- Research Reactor Institute, Kyoto University, 2 Asashironishi, Kumatoricho, Sennan-gun, Osaka 590-0494, Japan
| | - Akira Yasui
- Department of Molecular Genetics, Institute of Development, Aging, and Cancer, Tohoku University, Seiryomachi 4-1, Sendai 980-8575, Japan
| | - Li Lan
- Department of Molecular Genetics, Institute of Development, Aging, and Cancer, Tohoku University, Seiryomachi 4-1, Sendai 980-8575, Japan
| | - Mineaki Seki
- University of Pittsburgh, Hillman Cancer Center, 5117 Centre Avenue, Research Pavilion Suite 2.6, Pittsburgh, Pennsylvania 15213
| | - Richard D. Wood
- University of Pittsburgh, Hillman Cancer Center, 5117 Centre Avenue, Research Pavilion Suite 2.6, Pittsburgh, Pennsylvania 15213
| | - Hiroshi Arakawa
- Institute of Molecular Radiobiology, GSF, Ingolstädter Landstrasse 1, D-85764 Neuherberg, Munich, Germany
| | - Jean-Marie Buerstedde
- Institute of Molecular Radiobiology, GSF, Ingolstädter Landstrasse 1, D-85764 Neuherberg, Munich, Germany
| | - Helfrid Hochegger
- Department of Radiation Genetics, CREST, Japan Science and Technology Laboratory, Graduate School of Medicine, Kyoto University, Yoshida Konoe, Sakyo-ku, Kyoto 606-8501
| | - Takashi Okada
- Department of Radiation Genetics, CREST, Japan Science and Technology Laboratory, Graduate School of Medicine, Kyoto University, Yoshida Konoe, Sakyo-ku, Kyoto 606-8501
- Department of Urology, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawaharacho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Masahiro Hiraoka
- Department of Radiation Oncology and Image-Applied Therapy, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawaharacho, Sakyo-ku, Kyoto 606-8507
| | - Shunichi Takeda
- Department of Radiation Genetics, CREST, Japan Science and Technology Laboratory, Graduate School of Medicine, Kyoto University, Yoshida Konoe, Sakyo-ku, Kyoto 606-8501
- *Correspondence:
| |
Collapse
|
107
|
Sharma S, Doherty K, Brosh R. Mechanisms of RecQ helicases in pathways of DNA metabolism and maintenance of genomic stability. Biochem J 2006; 398:319-37. [PMID: 16925525 PMCID: PMC1559444 DOI: 10.1042/bj20060450] [Citation(s) in RCA: 196] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Helicases are molecular motor proteins that couple the hydrolysis of NTP to nucleic acid unwinding. The growing number of DNA helicases implicated in human disease suggests that their vital specialized roles in cellular pathways are important for the maintenance of genome stability. In particular, mutations in genes of the RecQ family of DNA helicases result in chromosomal instability diseases of premature aging and/or cancer predisposition. We will discuss the mechanisms of RecQ helicases in pathways of DNA metabolism. A review of RecQ helicases from bacteria to human reveals their importance in genomic stability by their participation with other proteins to resolve DNA replication and recombination intermediates. In the light of their known catalytic activities and protein interactions, proposed models for RecQ function will be summarized with an emphasis on how this distinct class of enzymes functions in chromosomal stability maintenance and prevention of human disease and cancer.
Collapse
Affiliation(s)
- Sudha Sharma
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, 5600 Nathan Shock Drive, Baltimore, MD 21224, U.S.A
| | - Kevin M. Doherty
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, 5600 Nathan Shock Drive, Baltimore, MD 21224, U.S.A
| | - Robert M. Brosh
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, 5600 Nathan Shock Drive, Baltimore, MD 21224, U.S.A
- To whom correspondence should be addressed (email )
| |
Collapse
|
108
|
Toczylowski T, Yan H. Mechanistic analysis of a DNA end processing pathway mediated by the Xenopus Werner syndrome protein. J Biol Chem 2006; 281:33198-205. [PMID: 16959775 DOI: 10.1074/jbc.m605044200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The first step of homology-dependent repair of DNA double-strand breaks is the strand-specific processing of DNA ends to generate 3' single-strand tails. Despite its importance, the molecular mechanism underlying end processing is poorly understood in eukaryotic cells. We have taken a biochemical approach to investigate DNA end processing in nucleoplasmic extracts derived from the unfertilized eggs of Xenopus laevis. We found that double-strand DNA ends are specifically degraded in the 5' --> 3' direction in this system. The reaction consists of two steps: an ATP-dependent unwinding of double-strand ends and an ATP-independent 5' --> 3' degradation of single-strand tails. We also found that the Xenopus Werner syndrome protein, a member of the RecQ helicase family, plays an important role in DNA end processing. Mechanistically, Xenopus Werner syndrome protein (xWRN) is required for the unwinding of DNA ends but not for the degradation of single-strand tails. The xWRN-mediated end processing is remarkably similar to the end processing that has been proposed for the Escherichia coli RecQ helicase and RecJ single-strand nuclease, suggesting that this mechanism might be conserved in prokaryotes and eukaryotes.
Collapse
|
109
|
Woo LL, Futami K, Shimamoto A, Furuichi Y, Frank KM. The Rothmund-Thomson gene product RECQL4 localizes to the nucleolus in response to oxidative stress. Exp Cell Res 2006; 312:3443-57. [PMID: 16949575 DOI: 10.1016/j.yexcr.2006.07.023] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2006] [Revised: 07/20/2006] [Accepted: 07/21/2006] [Indexed: 11/20/2022]
Abstract
Mutations in the RECQL4 helicase gene have been linked to Rothmund-Thomson syndrome (RTS), which is characterized by poikiloderma, growth deficiency, and a predisposition to cancer. Examination of RECQL4 subcellular localization in live cells demonstrated a nucleoplasmic pattern and, to a lesser degree, staining in nucleoli. Analysis of RECQL4-GFP deletion mutants revealed two nuclear localization regions in the N-terminal region of RECQL4 and a nucleolar localization signal at amino acids 376-386. RECQL4 localization did not change after treatment with the DNA-damaging agents bleomycin, etoposide, UV irradiation and gamma irradiation, in contrast to the Bloom and Werner syndrome helicases that relocate to distinct nuclear foci after damage. However, in a significant number of cells exposed to hydrogen peroxide or streptonigrin, RECQL4 accumulated in nucleoli. Using a T7 phage display screen, we determined that RECQL4 interacts with poly(ADP-ribose) polymerase-1 (PARP-1), a nuclear enzyme that promotes genomic integrity through its involvement in DNA repair and signaling pathways. The RECQL4 nucleolar localization was inhibited by pretreatment with a PARP-1 inhibitor. The C-terminal portion of RECQL4 was found to be an in vitro substrate for PARP-1. These results demonstrate changes in the intracellular localization of RECQL4 in response to oxidative stress and identify an interaction between RECQL4 and PARP-1.
Collapse
Affiliation(s)
- Leslie L Woo
- Department of Pathology, University of Chicago, MC1089, Chicago, IL 60637, USA
| | | | | | | | | |
Collapse
|
110
|
Karmakar P, Seki M, Kanamori M, Hashiguchi K, Ohtsuki M, Murata E, Inoue E, Tada S, Lan L, Yasui A, Enomoto T. BLM is an early responder to DNA double-strand breaks. Biochem Biophys Res Commun 2006; 348:62-9. [PMID: 16876111 DOI: 10.1016/j.bbrc.2006.07.037] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2006] [Accepted: 07/05/2006] [Indexed: 11/23/2022]
Abstract
Bloom syndrome (BS) is an autosomal recessive disorder characterized by a marked predisposition to cancer and elevated genomic instability. The defective protein in BS, BLM, is a member of the RecQ helicase family and is believed to function in various DNA transactions, including in replication, repair, and recombination. Here, we show that both endogenous and overexpressed human BLM accumulates at sites of laser light-induced DNA double-strand breaks within 10s and colocalizes with gammaH2AX and ATM. Like its RecQ helicase family member, WRN, the defective protein in Werner syndrome, dissection of the BLM protein revealed that its HRDC domain is sufficient for its recruitment to the damaged sites. In addition, we confirmed that the C-terminal region spanning amino acids 1250-1292 within the HRDC domain is necessary for BLM recruitment. To identify additional proteins required for the recruitment of BLM, we examined the recruitment of BLM in various mutants generated from chicken DT40 cells and found that the early accumulation of BLM was not dependent on the presence of ATM, RAD17, DNA-PKcs, NBS1, XRCC3, RAD52, RAD54, or WRN. Thus, HRDC domain in DNA helicases is a common early responder to DNA double-strand breaks, enabling BLM and WRN to be involved in DNA repair.
Collapse
Affiliation(s)
- Parimal Karmakar
- Molecular Cell Biology Laboratory, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
111
|
Abstract
Werner syndrome (WS) is a segmental progeroid syndrome in which patients display pleiotropic features of aging seen in the normal population. The advent of positional cloning in the 1990s markedly accelerated the identification of human disease-causing genes. In 1996, mutations in WRN, which was shown to encode a new, putative member of the family of RecQ DNA helicases, were identified in four patients as the cause of WS. Ten years after the identification of WRN, what have we learned about its role in WS, and its contribution to normal aging?
Collapse
Affiliation(s)
- Fuki M Hisama
- Department of Neurology, Yale University, New Haven, CT 06520, USA.
| | | | | |
Collapse
|
112
|
Sasakawa N, Fukui T, Waga S. Accumulation of FFA-1, the Xenopus homolog of Werner helicase, and DNA polymerase delta on chromatin in response to replication fork arrest. J Biochem 2006; 140:95-103. [PMID: 16798775 DOI: 10.1093/jb/mvj130] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Werner syndrome is a genetic disorder characterized by premature aging and cancer-prone symptoms, and is caused by mutation of the WRN gene. WRN is a member of the RecQ helicase family and is thought to function in processes implicated in DNA replication and repair to maintain genome stability; however, its precise function is still unclear. We found that replication fork arrest markedly enhances chromatin binding of focus-forming activity 1 (FFA-1), a Xenopus WRN homolog, in Xenopus egg extracts. In addition to FFA-1, DNA polymerase delta (Poldelta) and replication protein A, but not DNA polymerase epsilon and proliferating cell nuclear antigen, accumulated increasingly on replication-arrested chromatin. Elevated accumulation of these proteins was dependent on formation of pre-replicative complexes (pre-RCs). Double-strand break (DSB) formation also enhanced chromatin binding of FFA-1, but not Poldelta, independently of pre-RC formation. In contrast to FFA-1, chromatin binding of Xenopus Bloom syndrome helicase (xBLM) only slightly increased after replication arrest or DSB formation. Thus, WRN-specific, distinct processes can be reproduced in the in vitro system in egg extracts, and this system is useful for biochemical analysis of WRN functions during DNA metabolism.
Collapse
Affiliation(s)
- Noriko Sasakawa
- Department of Biology, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043
| | | | | |
Collapse
|
113
|
Huang S, Lee L, Hanson NB, Lenaerts C, Hoehn H, Poot M, Rubin CD, Chen DF, Yang CC, Juch H, Dorn T, Spiegel R, Oral EA, Abid M, Battisti C, Lucci-Cordisco E, Neri G, Steed EH, Kidd A, Isley W, Showalter D, Vittone JL, Konstantinow A, Ring J, Meyer P, Wenger SL, von Herbay A, Wollina U, Schuelke M, Huizenga CR, Leistritz DF, Martin GM, Mian IS, Oshima J. The spectrum of WRN mutations in Werner syndrome patients. Hum Mutat 2006; 27:558-67. [PMID: 16673358 PMCID: PMC1868417 DOI: 10.1002/humu.20337] [Citation(s) in RCA: 174] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The International Registry of Werner syndrome (www.wernersyndrome.org) has been providing molecular diagnosis of the Werner syndrome (WS) for the past decade. The present communication summarizes, from among 99 WS subjects, the spectrum of 50 distinct mutations discovered by our group and by others since the WRN gene (also called RECQL2 or REQ3) was first cloned in 1996; 25 of these have not previously been published. All WRN mutations reported thus far have resulted in the elimination of the nuclear localization signal at the C-terminus of the protein, precluding functional interactions in the nucleus; thus, all could be classified as null mutations. We now report two new mutations in the N-terminus that result in instability of the WRN protein. Clinical data confirm that the most penetrant phenotype is bilateral ocular cataracts. Other cardinal signs were seen in more than 95% of the cases. The median age of death, previously reported to be in the range of 46-48 years, is 54 years. Lymphoblastoid cell lines (LCLs) have been cryopreserved from the majority of our index cases, including material from nuclear pedigrees. These, as well as inducible and complemented hTERT (catalytic subunit of human telomerase) immortalized skin fibroblast cell lines are available to qualified investigators.
Collapse
Affiliation(s)
- Shurong Huang
- Department of Pathology, University of Washington, Seattle, Washington 98195-7470, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
114
|
Cheng WH, Kusumoto R, Opresko PL, Sui X, Huang S, Nicolette ML, Paull TT, Campisi J, Seidman M, Bohr VA. Collaboration of Werner syndrome protein and BRCA1 in cellular responses to DNA interstrand cross-links. Nucleic Acids Res 2006; 34:2751-60. [PMID: 16714450 PMCID: PMC1464112 DOI: 10.1093/nar/gkl362] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Cells deficient in the Werner syndrome protein (WRN) or BRCA1 are hypersensitive to DNA interstrand cross-links (ICLs), whose repair requires nucleotide excision repair (NER) and homologous recombination (HR). However, the roles of WRN and BRCA1 in the repair of DNA ICLs are not understood and the molecular mechanisms of ICL repair at the processing stage have not yet been established. This study demonstrates that WRN helicase activity, but not exonuclease activity, is required to process DNA ICLs in cells and that WRN cooperates with BRCA1 in the cellular response to DNA ICLs. BRCA1 interacts directly with WRN and stimulates WRN helicase and exonuclease activities in vitro. The interaction between WRN and BRCA1 increases in cells treated with DNA cross-linking agents. WRN binding to BRCA1 was mapped to BRCA1 452–1079 amino acids. The BRCA1/BARD1 complex also associates with WRN in vivo and stimulates WRN helicase activity on forked and Holliday junction substrates. These findings suggest that WRN and BRCA1 act in a coordinated manner to facilitate repair of DNA ICLs.
Collapse
Affiliation(s)
| | | | | | | | - Shurong Huang
- Lawrence Berkeley National Laboratory, BerkeleyCA 94720, USA
| | - Matthew L. Nicolette
- Department of Molecular Genetics and Microbiology, University of Texas at AustinAustin, TX 78712, USA
| | - Tanya T. Paull
- Department of Molecular Genetics and Microbiology, University of Texas at AustinAustin, TX 78712, USA
| | - Judith Campisi
- Lawrence Berkeley National Laboratory, BerkeleyCA 94720, USA
| | | | - Vilhelm A. Bohr
- To whom correspondence should be addressed. Tel: +1 410 558 8162; Fax: +1 410 558 8157;
| |
Collapse
|
115
|
Perry JJP, Yannone SM, Holden LG, Hitomi C, Asaithamby A, Han S, Cooper PK, Chen DJ, Tainer JA. WRN exonuclease structure and molecular mechanism imply an editing role in DNA end processing. Nat Struct Mol Biol 2006; 13:414-22. [PMID: 16622405 DOI: 10.1038/nsmb1088] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2006] [Accepted: 03/17/2006] [Indexed: 01/24/2023]
Abstract
WRN is unique among the five human RecQ DNA helicases in having a functional exonuclease domain (WRN-exo) and being defective in the premature aging and cancer-related disorder Werner syndrome. Here, we characterize WRN-exo crystal structures, biochemical activity and participation in DNA end joining. Metal-ion complex structures, active site mutations and activity assays reveal a nuclease mechanism mediated by two metal ions. The DNA end-binding Ku70/80 complex specifically stimulates WRN-exo activity, and structure-based mutational inactivation of WRN-exo alters DNA end joining in human cells. We furthermore establish structural and biochemical similarities of WRN-exo to DnaQ-family replicative proofreading exonucleases, describing WRN-specific adaptations consistent with double-stranded DNA specificity and functionally important conformational changes. These results indicate WRN-exo is a human DnaQ family member and support DnaQ-like proofreading activities stimulated by Ku70/80, with implications for WRN functions in age-related pathologies and maintenance of genomic integrity.
Collapse
Affiliation(s)
- J Jefferson P Perry
- Department of Molecular Biology and Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
116
|
Guay D, Gaudreault I, Massip L, Lebel M. Formation of a nuclear complex containing the p53 tumor suppressor, YB-1, and the Werner syndrome gene product in cells treated with UV light. Int J Biochem Cell Biol 2006; 38:1300-13. [PMID: 16584908 DOI: 10.1016/j.biocel.2006.01.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2005] [Revised: 12/23/2005] [Accepted: 01/16/2006] [Indexed: 12/27/2022]
Abstract
YB-1 is a multifunctional protein involved in the regulation of transcription, translation, and mRNA splicing. In recent years, several laboratories have demonstrated that YB-1 is also directly involved in the cellular response to genotoxic stress. Accordingly, one report has indicated that the Werner syndrome gene product (WRN) is eluted from an YB-1 affinity chromatography column. Werner syndrome is a rare disorder characterized by the premature onset of a number of age-related diseases, including cancer. The gene responsible for Werner syndrome encodes a DNA helicase/exonuclease protein believed to be involved in some aspect of DNA repair with p53. In this study, we demonstrate that the tumor suppressor, p53, bridges the WRN and YB-1 proteins in vitro. Microscopic analyses of fluorescent-tagged proteins and co-immunoprecipitation experiments confirmed the formation of an YB-1/p53/WRN complex in human cells, but only after treatment with UV light. We also confirmed that p53 is a major player in the translocation of GFP-YB-1 fusion proteins from the cytoplasm to several nuclear foci containing WRN proteins upon UV irradiation. Such translocation did not occur in cells treated with the topoisomerase inhibitor, etoposide, or the radiomimetic drug, bleomycin. Such results suggest that an YB-1/p53/WRN complex is formed in response to the emergence of specific DNA lesions in cells.
Collapse
Affiliation(s)
- David Guay
- Centre de Recherche en Cancérologie de l'Université Laval, Hôpital Hôtel-Dieu de Québec, Centre Hospitalier Universitaire de Québec, 9 McMahon St, Que., Canada G1R 2J6
| | | | | | | |
Collapse
|