101
|
Anand R, Wai T, Baker MJ, Kladt N, Schauss AC, Rugarli E, Langer T. The i-AAA protease YME1L and OMA1 cleave OPA1 to balance mitochondrial fusion and fission. ACTA ACUST UNITED AC 2014; 204:919-29. [PMID: 24616225 PMCID: PMC3998800 DOI: 10.1083/jcb.201308006] [Citation(s) in RCA: 606] [Impact Index Per Article: 55.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
OPA1 processing by YEM1L and OMA1 is dispensable for mitochondrial fusion and instead drives mitochondrial fragmentation, which is crucial for mitochondrial integrity and quality control. Mitochondrial fusion and structure depend on the dynamin-like GTPase OPA1, whose activity is regulated by proteolytic processing. Constitutive OPA1 cleavage by YME1L and OMA1 at two distinct sites leads to the accumulation of both long and short forms of OPA1 and maintains mitochondrial fusion. Stress-induced OPA1 processing by OMA1 converts OPA1 completely into short isoforms, inhibits fusion, and triggers mitochondrial fragmentation. Here, we have analyzed the function of different OPA1 forms in cells lacking YME1L, OMA1, or both. Unexpectedly, deletion of Oma1 restored mitochondrial tubulation, cristae morphogenesis, and apoptotic resistance in cells lacking YME1L. Long OPA1 forms were sufficient to mediate mitochondrial fusion in these cells. Expression of short OPA1 forms promoted mitochondrial fragmentation, which indicates that they are associated with fission. Consistently, GTPase-inactive, short OPA1 forms partially colocalize with ER–mitochondria contact sites and the mitochondrial fission machinery. Thus, OPA1 processing is dispensable for fusion but coordinates the dynamic behavior of mitochondria and is crucial for mitochondrial integrity and quality control.
Collapse
Affiliation(s)
- Ruchika Anand
- Institute for Genetics, Center for Molecular Medicine (CMMC), and 2 Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| | | | | | | | | | | | | |
Collapse
|
102
|
Tar K, Dange T, Yang C, Yao Y, Bulteau AL, Salcedo EF, Braigen S, Bouillaud F, Finley D, Schmidt M. Proteasomes associated with the Blm10 activator protein antagonize mitochondrial fission through degradation of the fission protein Dnm1. J Biol Chem 2014; 289:12145-12156. [PMID: 24604417 DOI: 10.1074/jbc.m114.554105] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The conserved Blm10/PA200 activators bind to the proteasome core particle gate and facilitate turnover of peptides and unfolded proteins in vitro. We report here that Blm10 is required for the maintenance of functional mitochondria. BLM10 expression is induced 25-fold upon a switch from fermentation to oxidative metabolism. In the absence of BLM10, Saccharomyces cerevisiae cells exhibit a temperature-sensitive growth defect under oxidative growth conditions and produce colonies with dysfunctional mitochondria at high frequency. Loss of BLM10 leads to reduced respiratory capacity, increased mitochondrial oxidative damage, and reduced viability in the presence of oxidative stress or death stimuli. In the absence of BLM10, increased fragmentation of the mitochondrial network under oxidative stress is observed indicative of elevated activity of the mitochondrial fission machinery. The degradation of Dnm1, the main factor mediating mitochondrial fission, is impaired in the absence of BLM10 in vitro and in vivo. These data suggest that the mitochondrial functional and morphological changes observed are related to elevated Dnm1 levels. This hypothesis is supported by the finding that cells that constitutively overexpress DNM1 display the same mitochondrial defects as blm10Δ cells. The data are consistent with a model in which Blm10 proteasome-mediated turnover of Dnm1 is required for the maintenance of mitochondrial function and provides cytoprotection under conditions that induce increased mitochondrial damage and programmed cell death.
Collapse
Affiliation(s)
- Krisztina Tar
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Thomas Dange
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Ciyu Yang
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Yanhua Yao
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Anne-Laure Bulteau
- INSERM, Institute Cochin, 24 Rue du Faubourg Saint Jacques, 75014 Paris, France
| | | | - Stephen Braigen
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Frederic Bouillaud
- INSERM, Institute Cochin, 24 Rue du Faubourg Saint Jacques, 75014 Paris, France
| | - Daniel Finley
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 10115
| | - Marion Schmidt
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461.
| |
Collapse
|
103
|
Bereiter-Hahn J. Do we age because we have mitochondria? PROTOPLASMA 2014; 251:3-23. [PMID: 23794102 DOI: 10.1007/s00709-013-0515-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 05/21/2013] [Indexed: 06/02/2023]
Abstract
The process of aging remains a great riddle. Production of reactive oxygen species (ROS) by mitochondria is an inevitable by-product of respiration, which has led to a hypothesis proposing the oxidative impairment of mitochondrial components (e.g., mtDNA, proteins, lipids) that initiates a vicious cycle of dysfunctional respiratory complexes producing more ROS, which again impairs function. This does not exclude other processes acting in parallel or targets for ROS action in other organelles than mitochondria. Given that aging is defined as the process leading to death, the role of mitochondria-based impairments in those organ systems responsible for human death (e.g., the cardiovascular system, cerebral dysfunction, and cancer) is described within the context of "garbage" accumulation and increasing insulin resistance, type 2 diabetes, and glycation of proteins. Mitochondrial mass, fusion, and fission are important factors in coping with impaired function. Both biogenesis of mitochondria and their degradation are important regulatory mechanisms stimulated by physical exercise and contribute to healthy aging. The hypothesis of mitochondria-related aging should be revised to account for the limitations of the degradative capacity of the lysosomal system. The processes involved in mitochondria-based impairments are very similar across a large range of organisms. Therefore, studies on model organisms from yeast, fungi, nematodes, flies to vertebrates, and from cells to organisms also add considerably to the understanding of human aging.
Collapse
Affiliation(s)
- Jürgen Bereiter-Hahn
- Institut für Zellbiologie und Neurowissenschaften, Goethe Universität Frankfurt am Main, Max-von-Lauestrasse 13, 60438, Frankfurt am Main, Germany,
| |
Collapse
|
104
|
Bereiter-Hahn J. Mitochondrial dynamics in aging and disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2014; 127:93-131. [PMID: 25149215 DOI: 10.1016/b978-0-12-394625-6.00004-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Mitochondria are self-replicating organelles but nevertheless strongly depend on supply coded in nuclear genes. They serve many physiological demands in living cells. Supply of the cytoplasm with ATP and engagement in Ca(2+) regulation belong to the main functions of mitochondria. In large eukaryotic cells, in particular in neurons, with their long dendrites and axons, mitochondria have to move to the sites of their action. This trafficking involves several motor molecules and mechanisms to sense the sites of requirements of mitochondria. With aging and as a consequence of some diseases, mitochondrial components may be rendered dysfunctional, and mtDNA mutations arise during the course of replication and by the action of reactive oxygen species. Mutants in motor molecules engaged in trafficking and in the machinery of fusion and fission are causing severe deficiencies on the cellular level; they support neurodegeneration and, thus, cause many diseases. Frequent fusion and fission events mediate the elimination of impaired parts from mitochondria which finally will be degraded by autophagosomes. Extensive fusion provides a basis for functional complementation. Mobility of proteins and small molecules within the mitochondria is necessary to reach the functional goals of fusion and fission, although cristae and a large fraction of proteins of the respiratory complexes proved to be stable for hours after fusion and perform slow exchange of material.
Collapse
Affiliation(s)
- Jürgen Bereiter-Hahn
- Institute for Cell Biology and Neurosciences, Goethe University Frankfurt am Main, Frankfurt am Main, Germany
| |
Collapse
|
105
|
Chakraborty J, Rajamma U, Mohanakumar KP. A mitochondrial basis for Huntington's disease: therapeutic prospects. Mol Cell Biochem 2013; 389:277-91. [PMID: 24374792 DOI: 10.1007/s11010-013-1951-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2013] [Accepted: 12/19/2013] [Indexed: 01/12/2023]
Abstract
Huntington's disease (HD) is an autosomal dominant disease, with overt movement dysfunctions. Despite focused research on the basis of neurodegeneration in HD for last few decades, the mechanism for the site-specific lesion of neurons in the brain is not clear. All the explanations that partially clarify the phenomenon of neurodegeneration leads to one organelle, mitochondrion, which is severely affected in HD at the level of electron transport chain, Ca(2+) buffering efficiency and morphology. But, with the existing knowledge, it is not clear whether the cell death processes in HD initiate from mitochondria, though the Huntingtin (Htt) aggregates show close proximity to this organelle, or do some extracellular stimuli like TNFα or FasL trigger the process. Mainly because of the disparity in the different available experimental models, the results are quite confusing or at least inconsistent to a great extent. The fact remains that the mutant Htt protein was seen to be associated with mitochondria directly, and as the striatum is highly enriched with dopamine and glutamate, it may make the striatal mitochondria more vulnerable because of the presence of dopa-quinones, and due to an imbalance in Ca(2+). The current therapeutic strategies are based on symptomatic relief, and, therefore, mainly target neurotransmitter(s) and their receptors to modulate behavioral outputs, but none of them targets mitochondria or try to address the basic molecular events that cause neurons to die in discrete regions of the brain, which could probably be resulting from grave mitochondrial dysfunctions. Therefore, targeting mitochondria for their protection, while addressing symptomatic recovery, holds a great potential to tone down the progression of the disease, and to provide better relief to the patients and caretakers.
Collapse
Affiliation(s)
- J Chakraborty
- Laboratory of Clinical and Experimental Neuroscience, Division of Cell Biology & Physiology, CSIR-Indian Institute of Chemical Biology, Rooms 117&119, 4, Raja S. C. Mullick Road, Kolkata, 700 032, India
| | | | | |
Collapse
|
106
|
Park SJ, Shin JH, Jeong JI, Song JH, Jo YK, Kim ES, Lee EH, Hwang JJ, Lee EK, Chung SJ, Koh JY, Jo DG, Cho DH. Down-regulation of mortalin exacerbates Aβ-mediated mitochondrial fragmentation and dysfunction. J Biol Chem 2013; 289:2195-204. [PMID: 24324263 DOI: 10.1074/jbc.m113.492587] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Mitochondrial dynamics greatly influence the biogenesis and morphology of mitochondria. Mitochondria are particularly important in neurons, which have a high demand for energy. Therefore, mitochondrial dysfunction is strongly associated with neurodegenerative diseases. Until now various post-translational modifications for mitochondrial dynamic proteins and several regulatory proteins have explained complex mitochondrial dynamics. However, the precise mechanism that coordinates these complex processes remains unclear. To further understand the regulatory machinery of mitochondrial dynamics, we screened a mitochondrial siRNA library and identified mortalin as a potential regulatory protein. Both genetic and chemical inhibition of mortalin strongly induced mitochondrial fragmentation and synergistically increased Aβ-mediated cytotoxicity as well as mitochondrial dysfunction. Importantly we determined that the expression of mortalin in Alzheimer disease (AD) patients and in the triple transgenic-AD mouse model was considerably decreased. In contrast, overexpression of mortalin significantly suppressed Aβ-mediated mitochondrial fragmentation and cell death. Taken together, our results suggest that down-regulation of mortalin may potentiate Aβ-mediated mitochondrial fragmentation and dysfunction in AD.
Collapse
Affiliation(s)
- So Jung Park
- From the Department of East-West Medical Science, Graduate School of East-West Medical Science, Kyung Hee University, Yongin 446-701, South Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
107
|
Mitochondrial quality control: decommissioning power plants in neurodegenerative diseases. ScientificWorldJournal 2013; 2013:180759. [PMID: 24288463 PMCID: PMC3830867 DOI: 10.1155/2013/180759] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Accepted: 09/16/2013] [Indexed: 12/31/2022] Open
Abstract
The cell has an intricate quality control system to protect its mitochondria from oxidative stress. This surveillance system is multi-tiered and comprises molecules that are present inside the mitochondria, in the cytosol, and in other organelles like the nucleus and endoplasmic reticulum. These molecules cross talk with each other and protect the mitochondria from oxidative stress. Oxidative stress is a fundamental part of early disease pathogenesis of neurodegenerative diseases. These disorders also damage the cellular quality control machinery that protects the cell against oxidative stress. This exacerbates the oxidative damage and causes extensive neuronal cell death that is characteristic of neurodegeneration.
Collapse
|
108
|
Cho B, Choi SY, Cho HM, Kim HJ, Sun W. Physiological and pathological significance of dynamin-related protein 1 (drp1)-dependent mitochondrial fission in the nervous system. Exp Neurobiol 2013; 22:149-57. [PMID: 24167410 PMCID: PMC3807002 DOI: 10.5607/en.2013.22.3.149] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 09/02/2013] [Accepted: 09/02/2013] [Indexed: 12/29/2022] Open
Abstract
Mitochondria are essential for proper neuronal morphogenesis and functions, as they are the major source of energy for neural development. The dynamic morphology of mitochondria determines the key functions of mitochondria. Several regulatory proteins such as dynamin-related protein 1 (Drp1) are required to maintain mitochondrial morphology via a balance between continuous fusion and fission. Activity of Drp1, a key regulator in mitochondrial fission, is modulated by multiple post-translation modifications and receptor interactions. In addition, numerous researches have revealed that the regulation of Drp1 activity and mitochondrial dynamics is closely associated with several neurodegenerative diseases such as Alzheimer's and Parkinson's diseases. In this article, we concisely review the recent findings about the biological importance of Drp1-mediated mitochondrial fission in neurons under physiological and pathological conditions.
Collapse
Affiliation(s)
- Bongki Cho
- Department of Anatomy, Korea University College of Medicine, Seoul 136-705, Korea
| | | | | | | | | |
Collapse
|
109
|
Droescher M, Chaugule VK, Pichler A. SUMO rules: regulatory concepts and their implication in neurologic functions. Neuromolecular Med 2013; 15:639-60. [PMID: 23990202 DOI: 10.1007/s12017-013-8258-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 08/08/2013] [Indexed: 01/17/2023]
Abstract
Posttranslational modification of proteins by the small ubiquitin-like modifier (SUMO) is a potent regulator of various cellular events. Hundreds of substrates have been identified, many of them involved in vital processes like transcriptional regulation, signal transduction, protein degradation, cell cycle regulation, DNA repair, chromatin organization, and nuclear transport. In recent years, protein sumoylation increasingly attracted attention, as it could be linked to heart failure, cancer, and neurodegeneration. However, underlying mechanisms involving how modification by SUMO contributes to disease development are still scarce thus necessitating further research. This review aims to critically discuss currently available concepts of the SUMO pathway, thereby highlighting regulation in the healthy versus diseased organism, focusing on neurologic aspects. Better understanding of differential regulation in health and disease may finally allow to uncover pathogenic mechanisms and contribute to the development of disease-specific therapies.
Collapse
Affiliation(s)
- Mathias Droescher
- Department of Epigenetics, Max Planck Institute of Immunobiology and Epigenetics, Stübeweg 51, 79108, Freiburg, Germany
| | | | | |
Collapse
|
110
|
Aravamudan B, Thompson MA, Pabelick CM, Prakash YS. Mitochondria in lung diseases. Expert Rev Respir Med 2013; 7:631-46. [PMID: 23978003 DOI: 10.1586/17476348.2013.834252] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Mitochondria are autonomous cellular organelles that oversee a variety of functions such as metabolism, energy production, calcium buffering and cell fate determination. Regulation of their morphology and diverse activities beyond energy production are being recognized as playing major roles in cellular health and dysfunction. This review is aimed at summarizing what is known regarding mitochondrial contributions to pathogenesis of lung diseases. Emphasis is given to understanding the importance of structural and functional aspects of mitochondria in both normal cellular function (based on knowledge from other cell types) and in development and modulation of lung diseases such as asthma, chronic obstructive pulmonary disease, cystic fibrosis and cancer. Emerging techniques that allow examination of mitochondria, and potential strategies to target mitochondria in the treatment of lung diseases are also discussed.
Collapse
Affiliation(s)
- Bharathi Aravamudan
- Departments of Anesthesiology, Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905 USA
| | | | | | | |
Collapse
|
111
|
Abstract
Parkinson's disease (PD) is one of the most common degenerative disorders of the central nervous system that produces motor and non-motor symptoms. The majority of cases are idiopathic and characterized by the presence of Lewy bodies containing fibrillar α-synuclein. Small ubiquitin-related modifier (SUMO) immunoreactivity was observed among others in cases with PD. Key disease-associated proteins are SUMO-modified, linking this posttranslational modification to neurodegeneration. SUMOylation and SUMO-mediated mechanisms have been intensively studied in recent years, revealing nuclear and extranuclear functions for SUMO in a variety of cellular processes, including the regulation of transcriptional activity, modulation of signal transduction pathways, and response to cellular stress. This points to a role for SUMO more than just an antagonist to ubiquitin and proteasomal degradation. The identification of risk and age-at-onset gene loci was a breakthrough in PD and promoted the understanding of molecular mechanisms in the pathology. PD has been increasingly linked with mitochondrial dysfunction and impaired mitochondrial quality control. Interestingly, SUMO is involved in many of these processes and up-regulated in response to cellular stress, further emphasizing the importance of SUMOylation in physiology and disease.
Collapse
Affiliation(s)
- Katrin Eckermann
- Department of Neurology, University Medical Center Goettingen, Waldweg 33, 37073, Goettingen, Germany,
| |
Collapse
|
112
|
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by progressive cognitive decline and is the most common cause of dementia in the elderly. Histopathologically, AD features insoluble aggregates of two proteins in the brain, amyloid-β (Aβ) and the microtubule-associated protein tau, both of which have been linked to the small ubiquitin-like modifier (SUMO). A large body of research has elucidated many of the molecular and cellular pathways that underlie AD, including those involving the abnormal Aβ and tau aggregates. However, a full understanding of the etiology and pathogenesis of the disease has remained elusive. Consequently, there are currently no effective therapeutic options that can modify the disease progression and slow or stop the decline of cognitive functioning. As part of the effort to address this lacking, there needs a better understanding of the signaling pathways that become impaired under AD pathology, including the regulatory mechanisms that normally control those networks. One such mechanism involves SUMOylation, which is a post-translational modification (PTM) that is involved in regulating many aspects of cell biology and has also been found to have several critical neuron-specific roles. Early studies have indicated that the SUMO system is likely altered with AD-type pathology, which may impact Aβ levels and tau aggregation. Although still a relatively unexplored topic, SUMOylation will likely emerge as a significant factor in AD pathogenesis in ways which may be somewhat analogous to other regulatory PTMs such as phosphorylation. Thus, in addition to the upstream effects on tau and Aβ processing, there may also be downstream effects mediated by Aβ aggregates or other AD-related factors on SUMO-regulated signaling pathways. Multiple proteins that have functions relevant to AD pathology have been identified as SUMO substrates, including those involved in synaptic physiology, mitochondrial dynamics, and inflammatory signaling. Ongoing studies will determine how these SUMO-regulated functions in neurons and glial cells may be impacted by Aβ and AD pathology. Here, we present a review of the current literature on the involvement of SUMO in AD, as well as an overview of the SUMOylated proteins and pathways that are potentially dysregulated with AD pathogenesis.
Collapse
|
113
|
Ishihara N, Otera H, Oka T, Mihara K. Regulation and physiologic functions of GTPases in mitochondrial fusion and fission in mammals. Antioxid Redox Signal 2013; 19:389-99. [PMID: 22871170 DOI: 10.1089/ars.2012.4830] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
SIGNIFICANCE Mitochondria are double membrane-bound organelles with tubular network structures that are essential for oxidative ATP production and play pivotal roles in regulating calcium homeostasis and apoptosis. Furthermore, mitochondria produce large amounts of reactive oxygen species that are fatal to cellular functions through uncoupled respiration. These organelles dynamically change their morphology by frequent fusion and fission, and three types of high molecular weight GTPase proteins have been identified as core components of the fusion and fission machineries. RECENT ADVANCES Here, we review recent advances in the study of mitochondrial fission and fusion GTPases and their physiologic roles in mammalian cells. The regulation of mitochondrial dynamics coupled with a quality control system is essential for cellular homeostasis, development, and tissue differentiation. Defects of these mechanisms cause various disorders, including neurodegenerative diseases, such as Parkinson's disease, Huntington's disease, and Alzheimer's disease. CRITICAL ISSUES Although a significant amount of relevant data has accumulated on the regulation of mammalian mitochondrial fusion and fission, mechanistic molecular details and cellular functions still remain insufficiently defined. FUTURE DIRECTIONS Elucidating the physiologic roles of mitochondrial fusion and fission in highly differentiated cells using tissue-specific knockout mice remains a challenge for the future.
Collapse
Affiliation(s)
- Naotada Ishihara
- Department of Protein Biochemistry, Institute of Life Science, Kurume University, Kurume, Japan
| | | | | | | |
Collapse
|
114
|
Haun F, Nakamura T, Lipton SA. Dysfunctional Mitochondrial Dynamics in the Pathophysiology of Neurodegenerative Diseases. J Cell Death 2013; 6:27-35. [PMID: 24587691 PMCID: PMC3935363 DOI: 10.4137/jcd.s10847] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Mitochondrial dysfunction occurs in neurodegenerative diseases, however molecular mechanisms underlying this process remain elusive. Emerging evidence suggests that nitrosative stress, mediated by reactive nitrogen species (RNS), may play a role in mitochondrial pathology. Here, we review findings that highlight the abnormal mitochondrial morphology observed in many neurodegenerative disorders including Alzheimer’s, Parkinson’s, and Huntington’s diseases. One mechanism whereby RNS can affect mitochondrial function and thus neuronal survival occurs via protein S-nitrosylation, representing chemical reaction of a nitric oxide (NO) group with a critical cysteine thiol. In this review, we focus on the signaling pathway whereby S-nitrosylation of the mitochondrial fission protein Drp1 (dynamin-related protein 1; forming S-nitrosothiol (SNO)-Drp1) precipitates excessive mitochondrial fission or fragmentation and consequent bioenergetic compromise. Subsequently, the formation of SNO-Drp1 leads to synaptic damage and neuronal death. Thus, intervention in the SNO-Drp1 pathway may provide therapeutic benefit in neurodegenerative diseases.
Collapse
Affiliation(s)
- Florian Haun
- Del E. Webb Center for Neuroscience, Aging, and Stem Cell Research, Sanford-Burnham Medical Research Institute, La Jolla, CA ; Institute of Molecular Medicine and Cell Research, Albert Ludwigs University Freiburg, Freiburg, Germany ; Spemann Graduate School of Biology and Medicine, Albert Ludwigs University Freiburg, Freiburg, Germany ; Faculty of Biology, Albert Ludwigs University Freiburg, Freiburg, Germany
| | - Tomohiro Nakamura
- Del E. Webb Center for Neuroscience, Aging, and Stem Cell Research, Sanford-Burnham Medical Research Institute, La Jolla, CA
| | - Stuart A Lipton
- Del E. Webb Center for Neuroscience, Aging, and Stem Cell Research, Sanford-Burnham Medical Research Institute, La Jolla, CA
| |
Collapse
|
115
|
Silveirinha V, Stephens GJ, Cimarosti H. Molecular targets underlying SUMO-mediated neuroprotection in brain ischemia. J Neurochem 2013; 127:580-91. [PMID: 23786482 DOI: 10.1111/jnc.12347] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Revised: 06/14/2013] [Accepted: 06/17/2013] [Indexed: 01/11/2023]
Abstract
SUMOylation (small ubiquitin-like modifier conjugation) is an important post-translational modification which is becoming increasingly implicated in the altered protein dynamics associated with brain ischemia. The function of SUMOylation in cells undergoing ischemic stress and the identity of small ubiquitin-like modifier (SUMO) targets remain in most cases unknown. However, the emerging consensus is that SUMOylation of certain proteins might be part of an endogenous neuroprotective response. This review brings together the current understanding of the underlying mechanisms and downstream effects of SUMOylation in brain ischemia, including processes such as autophagy, mitophagy and oxidative stress. We focus on recent advances and controversies regarding key central nervous system proteins, including those associated with the nucleus, cytoplasm and plasma membrane, such as glucose transporters (GLUT1, GLUT4), excitatory amino acid transporter 2 glutamate transporters, K+ channels (K2P1, Kv1.5, Kv2.1), GluK2 kainate receptors, mGluR8 glutamate receptors and CB1 cannabinoid receptors, which are reported to be SUMO-modified. A discussion of the roles of these molecular targets for SUMOylation could play following an ischemic event, particularly with respect to their potential neuroprotective impact in brain ischemia, is proposed.
Collapse
Affiliation(s)
- Vasco Silveirinha
- School of Pharmacy, Hopkins Building, University of Reading, Whiteknights, Reading, UK
| | | | | |
Collapse
|
116
|
Krumova P, Weishaupt JH. Sumoylation in neurodegenerative diseases. Cell Mol Life Sci 2013; 70:2123-38. [PMID: 23007842 PMCID: PMC11113377 DOI: 10.1007/s00018-012-1158-3] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Revised: 08/30/2012] [Accepted: 09/03/2012] [Indexed: 12/12/2022]
Abstract
The yeast SUMO (small ubiquitin-like modifier) orthologue SMT3 was initially discovered in a genetic suppressors screen for the centromeric protein Mif2 (Meluh and Koshland in Mol Bio Cell 6:793-807, 1). Later, it turned out that the homologous mammalian proteins SUMO1 to SUMO4 are reversible protein modifiers that can form isopeptide bonds with lysine residues of respective target proteins (Mahajan et al. in Cell 88:97-107, 2). This was the discovery of a post-translational modification called sumoylation, which enzymatically resembles ubiquitination. However, very soon it became clear that SUMO attachments served a far more diverse role than ubiquitination. Meanwhile, numerous cellular processes are known to be subject to the impact of SUMO modification, including transcription, protein targeting, protein solubility, apoptosis or activity of various enzymes. In many instances, SUMO proteins create new protein interaction surfaces or block existing interaction domains (Geiss-Friedlander and Melchior in Nat Rev in Mol Cell Biol 8:947-956, 3). For the past few years, sumoylation attracted increasing attention as a versatile regulator of toxic protein properties in neurodegenerative diseases. In this review, we summarize the growing knowledge about the involvement of sumoylation in neurodegeneration, and discuss the underlying molecular principles affected by this multifaceted and intriguing post-translational modification.
Collapse
Affiliation(s)
- Petranka Krumova
- Neuroscience, Novartis Institutes for Biomedical Research, Novartis Pharma AG, 4002, Basel, Switzerland.
| | | |
Collapse
|
117
|
SENP3-mediated deSUMOylation of dynamin-related protein 1 promotes cell death following ischaemia. EMBO J 2013; 32:1514-28. [PMID: 23524851 PMCID: PMC3671254 DOI: 10.1038/emboj.2013.65] [Citation(s) in RCA: 174] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Accepted: 02/27/2013] [Indexed: 01/10/2023] Open
Abstract
Global increases in small ubiquitin-like modifier (SUMO)-2/3 conjugation are a neuroprotective response to severe stress but the mechanisms and specific target proteins that determine cell survival have not been identified. Here, we demonstrate that the SUMO-2/3-specific protease SENP3 is degraded during oxygen/glucose deprivation (OGD), an in vitro model of ischaemia, via a pathway involving the unfolded protein response (UPR) kinase PERK and the lysosomal enzyme cathepsin B. A key target for SENP3-mediated deSUMOylation is the GTPase Drp1, which plays a major role in regulating mitochondrial fission. We show that depletion of SENP3 prolongs Drp1 SUMOylation, which suppresses Drp1-mediated cytochrome c release and caspase-mediated cell death. SENP3 levels recover following reoxygenation after OGD allowing deSUMOylation of Drp1, which facilitates Drp1 localization at mitochondria and promotes fragmentation and cytochrome c release. RNAi knockdown of SENP3 protects cells from reoxygenation-induced cell death via a mechanism that requires Drp1 SUMOylation. Thus, we identify a novel adaptive pathway to extreme cell stress in which dynamic changes in SENP3 stability and regulation of Drp1 SUMOylation are crucial determinants of cell fate.
Collapse
|
118
|
Sun Z, Hu S, Luo Q, Ye D, Hu D, Chen F. Overexpression of SENP3 in oral squamous cell carcinoma and its association with differentiation. Oncol Rep 2013; 29:1701-6. [PMID: 23467634 PMCID: PMC3658864 DOI: 10.3892/or.2013.2318] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Accepted: 12/20/2012] [Indexed: 11/06/2022] Open
Abstract
Small ubiquitin-like modifier (SUMO) modification is an important post-translational protein modification that can be reversed by SUMO-specific proteases (SENPs); however, the physiological function of SENPs remains largely unexplored, and little is known about the regulation of SENPs themselves. As one of the crucial members of the SUMO system, SENP3 is essential for rRNA processing and cell proliferation. In the present study, we analysed the expression of SENP3 in human oral squamous cell carcinoma (OSCC) and investigated the correlation between its expression and clinicopathological parameters in OSCC patients. The expression of SENP3 was higher in OSCC tissues than that in the normal mucosa adjacent to the tumor, and a modest increase in reactive oxygen species (ROS) regulated SENP3 stability and localization. ROS induced SENP3 redistribution from the nucleoli to the nucleoplasm. Taken together, these results indicated that the expression level of SENP3 may be associated with the differentiation of OSCC and that SENP3 may play an important role in the development of OSCC under oxidative stress.
Collapse
Affiliation(s)
- Zujun Sun
- Department of Clinical Laboratories, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, PR China
| | | | | | | | | | | |
Collapse
|
119
|
Otera H, Ishihara N, Mihara K. New insights into the function and regulation of mitochondrial fission. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:1256-68. [PMID: 23434681 DOI: 10.1016/j.bbamcr.2013.02.002] [Citation(s) in RCA: 366] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 02/01/2013] [Accepted: 02/03/2013] [Indexed: 11/18/2022]
Abstract
Mitochondrial morphology changes dynamically by coordinated fusion and fission and cytoskeleton-based transport. Cycles of outer and inner membrane fusion and fission are required for the exchange of damaged mitochondrial genome DNA, proteins, and lipids with those of healthy mitochondria to maintain robust mitochondrial structure and function. These dynamics are crucial for cellular life and death, because they are essential for cellular development and homeostasis, as well as apoptosis. Disruption of these functions leads to cellular dysfunction, resulting in neurologic disorders and metabolic diseases. The cytoplasmic dynamin-related GTPase Drp1 plays a key role in mitochondrial fission, while Mfn1, Mfn2 and Opa1 are involved in fusion reaction. Here, we review current knowledge regarding the regulation and physiologic relevance of Drp1-dependent mitochondrial fission: the initial recruitment and assembly of Drp1 on the mitochondrial fission foci, regulation of Drp1 activity by post-translational modifications, and the role of mitochondrial fission in cell pathophysiology.
Collapse
Affiliation(s)
- Hidenori Otera
- Department of Molecular Biology, Kyushu University, Fukuoka, Japan
| | | | | |
Collapse
|
120
|
Hickey CM, Wilson NR, Hochstrasser M. Function and regulation of SUMO proteases. Nat Rev Mol Cell Biol 2013; 13:755-66. [PMID: 23175280 DOI: 10.1038/nrm3478] [Citation(s) in RCA: 506] [Impact Index Per Article: 42.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Covalent attachment of small ubiquitin-like modifier (SUMO) to proteins is highly dynamic, and both SUMO-protein conjugation and cleavage can be regulated. Protein desumoylation is carried out by SUMO proteases, which control cellular mechanisms ranging from transcription and cell division to ribosome biogenesis. Recent advances include the discovery of two novel classes of SUMO proteases, insights regarding SUMO protease specificity, and revelations of previously unappreciated SUMO protease functions in several key cellular pathways. These developments, together with new connections between SUMO proteases and the recently discovered SUMO-targeted ubiquitin ligases (STUbLs), make this an exciting period to study these enzymes.
Collapse
Affiliation(s)
- Christopher M Hickey
- Department of Molecular Biophysics and Biochemistry, Yale University, 266 Whitney Avenue, New Haven, Connecticut 06520, USA
| | | | | |
Collapse
|
121
|
Figge MT, Osiewacz HD, Reichert AS. Quality control of mitochondria during aging: is there a good and a bad side of mitochondrial dynamics? Bioessays 2013; 35:314-22. [PMID: 23359437 DOI: 10.1002/bies.201200125] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Maintenance of functional mitochondria is essential in order to prevent degenerative processes leading to disease and aging. Mitochondrial dynamics plays a crucial role in ensuring mitochondrial quality but may also generate and spread molecular damage through a population of mitochondria. Computational simulations suggest that this dynamics is advantageous when mitochondria are not or only marginally damaged. In contrast, at a higher degree of damage, mitochondrial dynamics may be disadvantageous. Deceleration of fusion-fission cycles could be one way to adapt to this situation and to delay a further decline in mitochondrial quality. However, this adaptive response makes the mitochondrial network more vulnerable to additional molecular damage. The "mitochondrial infectious damage adaptation" (MIDA) model explains a number of inconsistent and counterintuitive data such as the "clonal expansion" of mutant mitochondrial DNA. We propose that mitochondrial dynamics is a double-edged sword and suggest ways to test this experimentally.
Collapse
Affiliation(s)
- Marc Thilo Figge
- Applied Systems Biology, HKI-Center for Systems Biology of Infection, Leibniz-Institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute and Friedrich Schiller University, Jena, Germany.
| | | | | |
Collapse
|
122
|
Zhan M, Brooks C, Liu F, Sun L, Dong Z. Mitochondrial dynamics: regulatory mechanisms and emerging role in renal pathophysiology. Kidney Int 2013; 83:568-81. [PMID: 23325082 PMCID: PMC3612360 DOI: 10.1038/ki.2012.441] [Citation(s) in RCA: 312] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Mitochondria are a class of dynamic organelles that constantly undergo fission and fusion. Mitochondrial dynamics is governed by a complex molecular machinery and finely tuned by regulatory proteins. During cell injury or stress, the dynamics is shifted to fission, resulting in mitochondrial fragmentation, which contributes to mitochondrial damage and consequent cell injury and death. Emerging evidence has suggested a role of mitochondrial fragmentation in the pathogenesis of renal diseases including acute kidney injury and diabetic nephropathy. A better understanding of the regulation of mitochondrial dynamics and its pathogenic changes may unveil novel therapeutic strategies.
Collapse
Affiliation(s)
- Ming Zhan
- Department of Nephrology, Second Xiangya Hospital, Central South University, Changsha, China
| | | | | | | | | |
Collapse
|
123
|
Takamura H, Koyama Y, Matsuzaki S, Yamada K, Hattori T, Miyata S, Takemoto K, Tohyama M, Katayama T. TRAP1 controls mitochondrial fusion/fission balance through Drp1 and Mff expression. PLoS One 2012; 7:e51912. [PMID: 23284813 PMCID: PMC3527369 DOI: 10.1371/journal.pone.0051912] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Accepted: 11/07/2012] [Indexed: 11/18/2022] Open
Abstract
Mitochondria are dynamic organelles that change in response to extracellular stimuli. These changes are essential for normal mitochondrial/cellular function and are controlled by a tight balance between two antagonistic pathways that promote fusion and fission. Although some molecules have been identified to mediate the mitochondrial fusion and fission process, the underlying mechanisms remain unclear. Tumor necrosis factor receptor-associated protein 1 (TRAP1) is a mitochondrial molecule that regulates a variety of mitochondrial functions. Here, we examined the role of TRAP1 in the regulation of morphology. Stable TRAP1 knockdown cells showed abnormal mitochondrial morphology, and we observed significant decreases in dynamin-related protein 1 (Drp1) and mitochondrial fission factor (Mff), mitochondrial fission proteins. Similar results were obtained by transient knockdown of TRAP1 in two different cell lines, SH-SY5Y neuroblastoma cells and KNS-42 glioma cells. However, TRAP1 knockdown did not affect expression levels of fusion proteins. The reduction in Drp1 and Mff protein levels was rescued following treatment with the proteasome inhibitor MG132. These results suggest that TRAP1 regulates the expression of fission proteins and controls mitochondrial fusion/fission, which affects mitochondrial/cellular function.
Collapse
Affiliation(s)
- Hironori Takamura
- Molecular Research Center for Children's Mental Development, United Graduate School of Child Development, Osaka University, Suita, Osaka, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
124
|
Cai R, Yu T, Huang C, Xia X, Liu X, Gu J, Xue S, Yeh ETH, Cheng J. SUMO-specific protease 1 regulates mitochondrial biogenesis through PGC-1α. J Biol Chem 2012; 287:44464-70. [PMID: 23152500 DOI: 10.1074/jbc.m112.422626] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Peroxisome proliferator-activated receptor γ (PPARγ) coactivator 1α (PGC-1α) is a master regulator of mitochondrial biogenesis in response to changes in the cellular environment, physiological or pathological status of mammals. PGC-1α is known to be modified by SUMO (Small Ubiquitin-like Modifier). However, it is not known whether SUMOylation could affect the function of PGC-1α in mitochondrial biogenesis and that how PGC-1α SUMOylation is regulated. In this study, we have identified the role of Sentrin/SUMO-specific protease 1 (SENP1) as a specific SUMO protease to regulate SUMOylation status of PGC-1α. More importantly, we have also found that SENP1 promotes PGC-1α transcription activity, which is essential for the expression of mitochondrial genes and subsequently mitochondrial biogenesis. Thus, we reveal that the SUMOylation of PGC-1α controlled by SENP1 plays an important role in mitochondrial biogenesis and function.
Collapse
Affiliation(s)
- Rong Cai
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | | | | | | | | | | | | | | | | |
Collapse
|
125
|
Li Y, Zhang Q, Wei Q, Zhang Y, Ling K, Hu J. SUMOylation of the small GTPase ARL-13 promotes ciliary targeting of sensory receptors. J Cell Biol 2012; 199:589-98. [PMID: 23128241 PMCID: PMC3494855 DOI: 10.1083/jcb.201203150] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Accepted: 10/10/2012] [Indexed: 11/22/2022] Open
Abstract
Primary cilia serve as cellular antenna for various sensory signaling pathways. However, how the sensory receptors are properly targeted to the ciliary surface remains poorly understood. Here, we show that UBC-9, the sole E2 small ubiquitin-like modifier (SUMO)-conjugating enzyme, physically interacts with and SUMOylates the C terminus of small GTPase ARL-13, the worm orthologue of ARL13B that mutated in ciliopathy Joubert syndrome. Mutations that totally abolish the SUMOylation of ARL-13 do not affect its established role in ciliogenesis, but fail to regulate the proper ciliary targeting of various sensory receptors and consequently compromise the corresponding sensory functions. Conversely, constitutively SUMOylated ARL-13 fully rescues all ciliary defects of arl-13-null animals. Furthermore, SUMOylation modification of human ARL13B is required for the ciliary entry of polycystin-2, the protein mutated in autosomal dominant polycystic kidney disease. Our data reveal a novel but conserved role for the SUMOylation modification of ciliary small GTPase ARL13B in specifically regulating the proper ciliary targeting of various sensory receptors.
Collapse
Affiliation(s)
- Yujie Li
- Department of Biochemistry and Molecular Biology, Division of Nephrology and Hypertension, and Department of Internal Medicine, Mayo Translational Polycystic Kidney Disease (PKD) Center, Mayo Clinic, Rochester, MN 55905
| | - Qing Zhang
- Department of Biochemistry and Molecular Biology, Division of Nephrology and Hypertension, and Department of Internal Medicine, Mayo Translational Polycystic Kidney Disease (PKD) Center, Mayo Clinic, Rochester, MN 55905
| | - Qing Wei
- Department of Biochemistry and Molecular Biology, Division of Nephrology and Hypertension, and Department of Internal Medicine, Mayo Translational Polycystic Kidney Disease (PKD) Center, Mayo Clinic, Rochester, MN 55905
| | - Yuxia Zhang
- Department of Biochemistry and Molecular Biology, Division of Nephrology and Hypertension, and Department of Internal Medicine, Mayo Translational Polycystic Kidney Disease (PKD) Center, Mayo Clinic, Rochester, MN 55905
| | - Kun Ling
- Department of Biochemistry and Molecular Biology, Division of Nephrology and Hypertension, and Department of Internal Medicine, Mayo Translational Polycystic Kidney Disease (PKD) Center, Mayo Clinic, Rochester, MN 55905
| | - Jinghua Hu
- Department of Biochemistry and Molecular Biology, Division of Nephrology and Hypertension, and Department of Internal Medicine, Mayo Translational Polycystic Kidney Disease (PKD) Center, Mayo Clinic, Rochester, MN 55905
| |
Collapse
|
126
|
Thomas KJ, Jacobson MR. Defects in mitochondrial fission protein dynamin-related protein 1 are linked to apoptotic resistance and autophagy in a lung cancer model. PLoS One 2012; 7:e45319. [PMID: 23028930 PMCID: PMC3447926 DOI: 10.1371/journal.pone.0045319] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 08/20/2012] [Indexed: 11/22/2022] Open
Abstract
Evasion of apoptosis is implicated in almost all aspects of cancer progression, as well as treatment resistance. In this study, resistance to apoptosis was identified in tumorigenic lung epithelial (A549) cells as a consequence of defects in mitochondrial and autophagic function. Mitochondrial function is determined in part by mitochondrial morphology, a process regulated by mitochondrial dynamics whereby the joining of two mitochondria, fusion, inhibits apoptosis while fission, the division of a mitochondrion, initiates apoptosis. Mitochondrial morphology of A549 cells displayed an elongated phenotype–mimicking cells deficient in mitochondrial fission protein, Dynamin-related protein 1 (Drp1). A549 cells had impaired Drp1 mitochondrial recruitment and decreased Drp1-dependent fission. Cytochrome c release and caspase-3 and PARP cleavage were impaired both basally and with apoptotic stimuli in A549 cells. Increased mitochondrial mass was observed in A549 cells, suggesting defects in mitophagy (mitochondrial selective autophagy). A549 cells had decreased LC3-II lipidation and lysosomal inhibition suggesting defects in autophagy occur upstream of lysosomal degradation. Immunostaining indicated mitochondrial localized LC3 punctae in A549 cells increased after mitochondrial uncoupling or with a combination of mitochondrial depolarization and ectopic Drp1 expression. Increased inhibition of apoptosis in A549 cells is correlated with impeded mitochondrial fission and mitophagy. We suggest mitochondrial fission defects contribute to apoptotic resistance in A549 cells.
Collapse
Affiliation(s)
- Kelly Jean Thomas
- Biological Sciences Department, Colorado Mesa University, Grand Junction, Colorado, United States of America.
| | | |
Collapse
|
127
|
Zhan T, Poppelreuther M, Ehehalt R, Füllekrug J. Overexpressed FATP1, ACSVL4/FATP4 and ACSL1 increase the cellular fatty acid uptake of 3T3-L1 adipocytes but are localized on intracellular membranes. PLoS One 2012; 7:e45087. [PMID: 23024797 PMCID: PMC3443241 DOI: 10.1371/journal.pone.0045087] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Accepted: 08/17/2012] [Indexed: 01/23/2023] Open
Abstract
Long chain acyl-CoA synthetases are essential enzymes of lipid metabolism, and have also been implicated in the cellular uptake of fatty acids. It is controversial if some or all of these enzymes have an additional function as fatty acid transporters at the plasma membrane. The most abundant acyl-CoA synthetases in adipocytes are FATP1, ACSVL4/FATP4 and ACSL1. Previous studies have suggested that they increase fatty acid uptake by direct transport across the plasma membrane. Here, we used a gain-of-function approach and established FATP1, ACSVL4/FATP4 and ACSL1 stably expressing 3T3-L1 adipocytes by retroviral transduction. All overexpressing cell lines showed increased acyl-CoA synthetase activity and fatty acid uptake. FATP1 and ACSVL4/FATP4 localized to the endoplasmic reticulum by confocal microscopy and subcellular fractionation whereas ACSL1 was found on mitochondria. Insulin increased fatty acid uptake but without changing the localization of FATP1 or ACSVL4/FATP4. We conclude that overexpressed acyl-CoA synthetases are able to facilitate fatty acid uptake in 3T3-L1 adipocytes. The intracellular localization of FATP1, ACSVL4/FATP4 and ACSL1 indicates that this is an indirect effect. We suggest that metabolic trapping is the mechanism behind the influence of acyl-CoA synthetases on cellular fatty acid uptake.
Collapse
Affiliation(s)
- Tianzuo Zhan
- Molecular Cell Biology Laboratory, Internal Medicine IV, University of Heidelberg, Heidelberg, Germany
| | - Margarete Poppelreuther
- Molecular Cell Biology Laboratory, Internal Medicine IV, University of Heidelberg, Heidelberg, Germany
| | - Robert Ehehalt
- Molecular Cell Biology Laboratory, Internal Medicine IV, University of Heidelberg, Heidelberg, Germany
| | - Joachim Füllekrug
- Molecular Cell Biology Laboratory, Internal Medicine IV, University of Heidelberg, Heidelberg, Germany
- * E-mail:
| |
Collapse
|
128
|
Pangare M, Makino A. Mitochondrial function in vascular endothelial cell in diabetes. J Smooth Muscle Res 2012; 48:1-26. [PMID: 22504486 DOI: 10.1540/jsmr.48.1] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Micro- and macrovascular complications are commonly seen in diabetic patients and endothelial dysfunction contributes to the development and progression of the complications. Abnormal functions in endothelial cells lead to the increase in vascular tension and atherosclerosis, followed by systemic hypertension as well as increased incidence of ischemia and stroke in diabetic patients. Mitochondria are organelles serving as a source of energy production and as regulators of cell survival (e.g., apoptosis and cell development) and ion homeostasis (e.g., H(+), Ca(2+)). Endothelial mitochondria are mainly responsible for generation of reactive oxygen species (ROS) and maintaining the Ca(2+) concentration in the cytosol. There is increasing evidence that mitochondrial morphological and functional changes are implicated in vascular endothelial dysfunction. Enhanced mitochondrial fission and/or attenuated fusion lead to mitochondrial fragmentation and disrupt the endothelial physiological function. Abnormal mitochondrial biogenesis and disturbance of mitochondrial autophagy increase the accumulation of damaged mitochondria, such as irreversibly depolarized or leaky mitochondria, and facilitate cell death. Augmented mitochondrial ROS production and Ca(2+) overload in mitochondria not only cause the maladaptive effect on the endothelial function, but also are potentially detrimental to cell survival. In this article, we review the physiological and pathophysiological role of mitochondria in endothelial function with special focus on diabetes.
Collapse
Affiliation(s)
- Meenal Pangare
- University of Illinois at Chicago, Chicago, IL 60612, USA
| | | |
Collapse
|
129
|
Zhao J, Lendahl U, Nistér M. Regulation of mitochondrial dynamics: convergences and divergences between yeast and vertebrates. Cell Mol Life Sci 2012; 70:951-76. [PMID: 22806564 PMCID: PMC3578726 DOI: 10.1007/s00018-012-1066-6] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Revised: 06/18/2012] [Accepted: 06/19/2012] [Indexed: 12/20/2022]
Abstract
In eukaryotic cells, the shape of mitochondria can be tuned to various physiological conditions by a balance of fusion and fission processes termed mitochondrial dynamics. Mitochondrial dynamics controls not only the morphology but also the function of mitochondria, and therefore is crucial in many aspects of a cell’s life. Consequently, dysfunction of mitochondrial dynamics has been implicated in a variety of human diseases including cancer. Several proteins important for mitochondrial fusion and fission have been discovered over the past decade. However, there is emerging evidence that there are as yet unidentified proteins important for these processes and that the fusion/fission machinery is not completely conserved between yeast and vertebrates. The recent characterization of several mammalian proteins important for the process that were not conserved in yeast, may indicate that the molecular mechanisms regulating and controlling the morphology and function of mitochondria are more elaborate and complex in vertebrates. This difference could possibly be a consequence of different needs in the different cell types of multicellular organisms. Here, we review recent advances in the field of mitochondrial dynamics. We highlight and discuss the mechanisms regulating recruitment of cytosolic Drp1 to the mitochondrial outer membrane by Fis1, Mff, and MIEF1 in mammals and the divergences in regulation of mitochondrial dynamics between yeast and vertebrates.
Collapse
Affiliation(s)
- Jian Zhao
- Department of Oncology-Pathology, Karolinska Institutet, CCK R8:05, Karolinska University Hospital Solna, 171 76, Stockholm, Sweden,
| | | | | |
Collapse
|
130
|
Abstract
EHD {EH [Eps15 (epidermal growth factor receptor substrate 15) homology]-domain-containing} proteins participate in several endocytic events, such as the internalization and the recycling processes. There are four EHD proteins in mammalian cells, EHD1–EHD4, each with diverse roles in the recycling pathway of endocytosis. EHD2 is a plasma-membrane-associated member of the EHD family that regulates internalization. Since several endocytic proteins have been shown to undergo nucleocytoplasmic shuttling and have been assigned roles in regulation of gene expression, we tested the possibility that EHD proteins also shuttle to the nucleus. Our results showed that, among the three EHD proteins (EHD1–EHD3) that were tested, only EHD2 accumulates in the nucleus under nuclear export inhibition treatment. Moreover, the presence of a NLS (nuclear localization signal) was essential for its entry into the nucleus. Nuclear exit of EHD2 depended partially on its NES (nuclear export signal). Elimination of a potential SUMOylation site in EHD2 resulted in a major accumulation of the protein in the nucleus, indicating the involvement of SUMOylation in the nuclear exit of EHD2. We confirmed the SUMOylation of EHD2 by employing co-immunoprecipitation and the yeast two-hybrid system. Using GAL4-based transactivation assay as well as a KLF7 (Krüppel-like factor 7)-dependent transcription assay of the p21WAF1/Cip1 [CDKN1A (cyclin-dependent kinase inhibitor 1A)] gene, we showed that EHD2 represses transcription. qRT-PCR (quantitative real-time PCR) of RNA from cells overexpressing EHD2 or of RNA from cells knocked down for EHD2 confirmed that EHD2 represses transcription of the p21WAF1/Cip1 gene.
Collapse
|
131
|
DeSUMOylation Controls Insulin Exocytosis in Response to Metabolic Signals. Biomolecules 2012; 2:269-81. [PMID: 24970137 PMCID: PMC4030845 DOI: 10.3390/biom2020269] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Revised: 05/14/2012] [Accepted: 05/16/2012] [Indexed: 12/25/2022] Open
Abstract
The secretion of insulin by pancreatic islet β-cells plays a pivotal role in glucose homeostasis and diabetes. Recent work suggests an important role for SUMOylation in the control of insulin secretion from β-cells. In this paper we discuss mechanisms whereby (de)SUMOylation may control insulin release by modulating β-cell function at one or more key points; and particularly through the acute and reversible regulation of the exocytotic machinery. Furthermore, we postulate that the SUMO-specific protease SENP1 is an important mediator of insulin exocytosis in response to NADPH, a metabolic secretory signal and major determinant of β-cell redox state. Dialysis of mouse β-cells with NADPH efficiently amplifies β-cell exocytosis even when extracellular glucose is low; an effect that is lost upon knockdown of SENP1. Conversely, over-expression of SENP1 itself augments β-cell exocytosis in a redox-dependent manner. Taken together, we suggest that (de)SUMOylation represents an important mechanism that acutely regulates insulin secretion and that SENP1 can act as an amplifier of insulin exocytosis.
Collapse
|
132
|
Ryu SW, Choi K, Yoon J, Kim S, Choi C. Endoplasmic reticulum-specific BH3-only protein BNIP1 induces mitochondrial fragmentation in a Bcl-2- and Drp1-dependent manner. J Cell Physiol 2012; 227:3027-35. [DOI: 10.1002/jcp.23044] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
133
|
Manning Fox JE, Hajmrle C, Macdonald PE. Novel roles of SUMO in pancreatic β-cells: thinking outside the nucleus. Can J Physiol Pharmacol 2012; 90:765-70. [PMID: 22486776 DOI: 10.1139/y11-134] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The endocrine pancreas is critically important in the regulation of energy metabolism, with defective insulin secretion from pancreatic islet β-cells a major contributing factor to the development of type 2 diabetes. Small ubiquitin-like modifier (SUMO) proteins have been demonstrated to covalently modify a wide range of target proteins, mediating a broad range of cellular processes. While the effects of SUMOylation on β-cell gene transcription have been previously reviewed, recent reports indicate roles for SUMO outside of the nucleus. In this review we shall focus on the reported non-nuclear roles of SUMOylation in the regulation of β-cells, including SUMOylation as a novel signaling pathway in the acute regulation of insulin secretion.
Collapse
Affiliation(s)
- Jocelyn E Manning Fox
- Department of Pharmacology and Alberta Diabetes Institute, Li Ka Shing Centre, University of Alberta, Edmonton, AB T6G 2E1, Canada.
| | | | | |
Collapse
|
134
|
Oettinghaus B, Licci M, Scorrano L, Frank S. Less than perfect divorces: dysregulated mitochondrial fission and neurodegeneration. Acta Neuropathol 2012; 123:189-203. [PMID: 22179580 DOI: 10.1007/s00401-011-0930-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Revised: 12/06/2011] [Accepted: 12/07/2011] [Indexed: 12/29/2022]
Abstract
Research efforts during the last decade have deciphered the basic molecular mechanisms governing mitochondrial fusion and fission. We now know that in mammalian cells mitochondrial fission is mediated by the large GTPase dynamin-related protein 1 (Drp1) acting in concert with outer mitochondrial membrane (OMM) proteins such as Fis1, Mff, and Mief1. It is also generally accepted that organelle fusion depends on the action of three large GTPases: mitofusins (Mfn1, Mfn2) mediating membrane fusion on the OMM level, and Opa1 which is essential for inner mitochondrial membrane fusion. Significantly, mutations in Drp1, Mfn2, and Opa1 have causally been linked to neurodegenerative conditions. Despite this knowledge, crucial questions such as to how fission of the inner and outer mitochondrial membranes are coordinated and how these processes are integrated into basic physiological processes such as apoptosis and autophagy remain to be answered in detail. In this review, we will focus on what is currently known about the mechanism of mitochondrial fission and explore the pathophysiological consequences of dysregulated organelle fission with a special focus on neurodegenerative conditions, including Alzheimer's, Huntington's and Parkinson's disease, as well as ischemic brain damage.
Collapse
Affiliation(s)
- Björn Oettinghaus
- Department of Cell Physiology and Metabolism, University of Geneva Medical School, Switzerland
| | | | | | | |
Collapse
|
135
|
Cell signaling and mitochondrial dynamics: Implications for neuronal function and neurodegenerative disease. Neurobiol Dis 2012; 51:13-26. [PMID: 22297163 DOI: 10.1016/j.nbd.2012.01.009] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Revised: 01/09/2012] [Accepted: 01/12/2012] [Indexed: 11/22/2022] Open
Abstract
Nascent evidence indicates that mitochondrial fission, fusion, and transport are subject to intricate regulatory mechanisms that intersect with both well-characterized and emerging signaling pathways. While it is well established that mutations in components of the mitochondrial fission/fusion machinery can cause neurological disorders, relatively little is known about upstream regulators of mitochondrial dynamics and their role in neurodegeneration. Here, we review posttranslational regulation of mitochondrial fission/fusion enzymes, with particular emphasis on dynamin-related protein 1 (Drp1), as well as outer mitochondrial signaling complexes involving protein kinases and phosphatases. We also review recent evidence that mitochondrial dynamics has profound consequences for neuronal development and synaptic transmission and discuss implications for clinical translation.
Collapse
|
136
|
Bettermann K, Benesch M, Weis S, Haybaeck J. SUMOylation in carcinogenesis. Cancer Lett 2011; 316:113-25. [PMID: 22138131 DOI: 10.1016/j.canlet.2011.10.036] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Revised: 10/15/2011] [Accepted: 10/26/2011] [Indexed: 10/15/2022]
Abstract
SUMOylation is a post-translational modification characterized by covalent and reversible binding of small ubiquitin-like modifier (SUMO) to a target protein. In mammals, four different isoforms, termed SUMO-1, -2, -3 and -4 have been identified so far. SUMO proteins are critically involved in the modulation of nuclear organization and cell viability. Their expression is significantly increased in processes associated with carcinogenesis such as cell growth, differentiation, senescence, oxidative stress and apoptosis. Little is known about the role of SUMOylation in cancer development. Therefore the present review focuses on possible implications of SUMOylation in carcinogenesis highlighting its impact as an important regulatory cell cycle protein. Moreover, novel opportunities for therapeutic approaches are discussed. The differential expression levels, the target protein preferences and the function of the SUMO pathway in different cancer subtypes raises unexpected issues questioning our understanding of the implication of SUMO in carcinogenesis.
Collapse
|
137
|
Zungu M, Schisler J, Willis MS. All the little pieces. -Regulation of mitochondrial fusion and fission by ubiquitin and small ubiquitin-like modifer and their potential relevance in the heart.-. Circ J 2011; 75:2513-21. [PMID: 22001293 DOI: 10.1253/circj.cj-11-0967] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Mitochondria are dynamic organelles that undergo a constant cycle of division and fusion to maintain their function. The process of mitochondrial fusion has the effect of mixing their content, allowing complementation of protein components, mtDNA repair, and distribution of metabolic intermediates. Fission, on the other hand, enables mitochondria to increase in number and capacity, and to segregate mitochondria for autophagy by the lysosome ("mitophagy"). Disruption of these protein quality control mechanisms has recently been identified in multiple cardiac diseases, including cardiac hypertrophy, heart failure, dilated cardiomyopathy, and ischemic heart disease, and is intimately tied to mitochondrial control of apoptosis. Proteins that regulate mitochondrial fusion and fission have been discovered, including Mfn1, Mfn2, and Opa1 (fusion) and Drp1 and Fis1 (fission). In this review, we discuss how these proteins are regulated by post-translational modification with ubiquitin and SUMO (small ubiquitin-like modifier). We then present what is known about the ubiquitin and SUMO ligases that regulate these post-translational modifications and regulation of mitochondrial fusion and fission, exploring their potential as therapeutic targets of cardiac disease.
Collapse
Affiliation(s)
- Makhosazane Zungu
- Department of Pathology & Laboratory Medicine, University of North Carolina, Chapel Hill, NC, USA
| | | | | |
Collapse
|
138
|
Wilkerson DC, Sankar U. Mitochondria: A sulfhydryl oxidase and fission GTPase connect mitochondrial dynamics with pluripotency in embryonic stem cells. Int J Biochem Cell Biol 2011; 43:1252-6. [DOI: 10.1016/j.biocel.2011.05.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Revised: 04/26/2011] [Accepted: 05/07/2011] [Indexed: 10/18/2022]
|
139
|
Wang J. Cardiac function and disease: emerging role of small ubiquitin-related modifier. WILEY INTERDISCIPLINARY REVIEWS. SYSTEMS BIOLOGY AND MEDICINE 2011; 3:446-57. [PMID: 21197655 PMCID: PMC3110591 DOI: 10.1002/wsbm.130] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Small ubiquitin-related modifiers, or SUMOs, have emerged as versatile regulators of many biological functions that do so by covalent attachment to a variety of substrates via enzymatic reactions. SUMO conjugation has also been shown to be involved in a number of human pathogenic processes. More recent advances in the SUMO field have indicated a potential role for SUMO conjugation pathway in cardiogenesis. This advanced review will describe the basic features of the SUMO conjugation pathway and will summarize the most recent studies implicating the influence of the sumoylation pathway in cardiac function under both physiological and pathological conditions. WIREs Syst Biol Med 2011 3 446-457 DOI: 10.1002/wsbm.130
Collapse
Affiliation(s)
- Jun Wang
- Center for Stem Cell Engineering, Department of Basic Research Laboratories, Texas Heart Institute, Houston, TX, USA.
| |
Collapse
|
140
|
Reddy PH, Reddy TP, Manczak M, Calkins MJ, Shirendeb U, Mao P. Dynamin-related protein 1 and mitochondrial fragmentation in neurodegenerative diseases. BRAIN RESEARCH REVIEWS 2011; 67:103-18. [PMID: 21145355 PMCID: PMC3061980 DOI: 10.1016/j.brainresrev.2010.11.004] [Citation(s) in RCA: 297] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Revised: 11/30/2010] [Accepted: 11/30/2010] [Indexed: 01/12/2023]
Abstract
The purpose of this article is to review the recent developments of abnormal mitochondrial dynamics, mitochondrial fragmentation, and neuronal damage in neurodegenerative diseases, including Alzheimer's, Parkinson's, Huntington's, and amyotrophic lateral sclerosis. The GTPase family of proteins, including fission proteins, dynamin related protein 1 (Drp1), mitochondrial fission 1 (Fis1), and fusion proteins (Mfn1, Mfn2 and Opa1) are essential to maintain mitochondrial fission and fusion balance, and to provide necessary adenosine triphosphate to neurons. Among these, Drp1 is involved in several important aspects of mitochondria, including shape, size, distribution, remodeling, and maintenance of mitochondria in mammalian cells. In addition, recent advancements in molecular, cellular, electron microscopy, and confocal imaging studies revealed that Drp1 is associated with several cellular functions, including mitochondrial and peroxisomal fragmentation, phosphorylation, SUMOylation, ubiquitination, and cell death. In the last two decades, tremendous progress has been made in researching mitochondrial dynamics, in yeast, worms, and mammalian cells; and this research has provided evidence linking Drp1 to neurodegenerative diseases. Researchers in the neurodegenerative disease field are beginning to recognize the possible involvement of Drp1 in causing mitochondrial fragmentation and abnormal mitochondrial dynamics in neurodegenerative diseases. This article summarizes research findings relating Drp1 to mitochondrial fission and fusion, in yeast, worms, and mammals. Based on findings from the Reddy laboratory and others', we propose that mutant proteins of neurodegenerative diseases, including AD, PD, HD, and ALS, interact with Drp1, activate mitochondrial fission machinery, fragment mitochondria excessively, and impair mitochondrial transport and mitochondrial dynamics, ultimately causing mitochondrial dysfunction and neuronal damage.
Collapse
Affiliation(s)
- P Hemachandra Reddy
- Neurogenetics Laboratory, Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, 505 NW 185th Avenue, Beaverton, OR 97006, USA.
| | | | | | | | | | | |
Collapse
|
141
|
Abstract
The structure and function of the mitochondrial network is regulated by mitochondrial biogenesis, fission, fusion, transport and degradation. A well-maintained balance of these processes (mitochondrial dynamics) is essential for neuronal signaling, plasticity and transmitter release. Core proteins of the mitochondrial dynamics machinery play important roles in the regulation of apoptosis, and mutations or abnormal expression of these factors are associated with inherited and age-dependent neurodegenerative disorders. In Parkinson's disease (PD), oxidative stress and mitochondrial dysfunction underlie the development of neuropathology. The recessive Parkinsonism-linked genes PTEN-induced kinase 1 (PINK1) and Parkin maintain mitochondrial integrity by regulating diverse aspects of mitochondrial function, including membrane potential, calcium homeostasis, cristae structure, respiratory activity, and mtDNA integrity. In addition, Parkin is crucial for autophagy-dependent clearance of dysfunctional mitochondria. In the absence of PINK1 or Parkin, cells often develop fragmented mitochondria. Whereas excessive fission may cause apoptosis, coordinated induction of fission and autophagy is believed to facilitate the removal of damaged mitochondria through mitophagy, and has been observed in some types of cells. Compensatory mechanisms may also occur in mice lacking PINK1 that, in contrast to cells and Drosophila, have only mild mitochondrial dysfunction and lack dopaminergic neuron loss. A better understanding of the relationship between the specific changes in mitochondrial dynamics/turnover and cell death will be instrumental to identify potentially neuroprotective pathways steering PINK1-deficient cells towards survival. Such pathways may be manipulated in the future by specific drugs to treat PD and perhaps other neurodegenerative disorders characterized by abnormal mitochondrial function and dynamics.
Collapse
Affiliation(s)
- Hansruedi Büeler
- Department of Anatomy and Neurobiology, University of Kentucky, 800 Rose Street, Lexington, KY 40536, USA.
| |
Collapse
|
142
|
Dai XQ, Plummer G, Casimir M, Kang Y, Hajmrle C, Gaisano HY, Manning Fox JE, MacDonald PE. SUMOylation regulates insulin exocytosis downstream of secretory granule docking in rodents and humans. Diabetes 2011; 60:838-47. [PMID: 21266332 PMCID: PMC3046844 DOI: 10.2337/db10-0440] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
OBJECTIVE The reversible attachment of small ubiquitin-like modifier (SUMO) proteins controls target localization and function. We examined an acute role for the SUMOylation pathway in downstream events mediating insulin secretion. RESEARCH DESIGN AND METHODS We studied islets and β-cells from mice and human donors, as well as INS-1 832/13 cells. Insulin secretion, intracellular Ca(2+), and β-cell exocytosis were monitored after manipulation of the SUMOylation machinery. Granule localization was imaged by total internal reflection fluorescence and electron microscopy; immunoprecipitation and Western blotting were used to examine the soluble NSF attachment receptor (SNARE) complex formation and SUMO1 interaction with synaptotagmin VII. RESULTS SUMO1 impairs glucose-stimulated insulin secretion by blunting the β-cell exocytotic response to Ca(2+). The effect of SUMO1 to impair insulin secretion and β-cell exocytosis is rapid and does not require altered gene expression or insulin content, is downstream of granule docking at the plasma membrane, and is dependent on SUMO-conjugation because the deSUMOylating enzyme, sentrin/SUMO-specific protease (SENP)-1, rescues exocytosis. SUMO1 coimmunoprecipitates with the Ca(2+) sensor synaptotagmin VII, and this is transiently lost upon glucose stimulation. SENP1 overexpression also disrupts the association of SUMO1 with synaptotagmin VII and mimics the effect of glucose to enhance exocytosis. Conversely, SENP1 knockdown impairs exocytosis at stimulatory glucose levels and blunts glucose-dependent insulin secretion from mouse and human islets. CONCLUSIONS SUMOylation acutely regulates insulin secretion by the direct and reversible inhibition of β-cell exocytosis in response to intracellular Ca(2+) elevation. The SUMO protease, SENP1, is required for glucose-dependent insulin secretion.
Collapse
Affiliation(s)
- Xiao-Qing Dai
- Department of Pharmacology and Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Greg Plummer
- Department of Pharmacology and Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Marina Casimir
- Department of Pharmacology and Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Youhou Kang
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Catherine Hajmrle
- Department of Pharmacology and Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | | | - Jocelyn E. Manning Fox
- Department of Pharmacology and Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Patrick E. MacDonald
- Department of Pharmacology and Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
- Corresponding author: Patrick E. MacDonald,
| |
Collapse
|
143
|
Livnat-Levanon N, Glickman MH. Ubiquitin–Proteasome System and mitochondria — Reciprocity. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2011; 1809:80-7. [DOI: 10.1016/j.bbagrm.2010.07.005] [Citation(s) in RCA: 150] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Revised: 07/20/2010] [Accepted: 07/21/2010] [Indexed: 10/19/2022]
|
144
|
Abstract
Mitochondria are at the center of cellular energy metabolism and regulate cell life and death. The cell biological aspect of mitochondria, especially mitochondrial dynamics, has drawn much attention through implications in human pathology, including neurological disorders and metabolic diseases. Mitochondrial fission and fusion are the main processes governing the morphological plasticity and are controlled by multiple factors, including mechanochemical enzymes and accessory proteins. Emerging evidence suggests that mitochondrial dynamics plays an important role in metabolism-secretion coupling in pancreatic β-cells as well as complications of diabetes. This review describes an overview of mechanistic and functional aspects of mitochondrial fission and fusion, and comments on the recent advances connecting mitochondrial dynamics with diabetes and diabetic complications.
Collapse
Affiliation(s)
- Yisang Yoon
- Department of Anesthesiology, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA.
| | | | | | | |
Collapse
|
145
|
Otera H, Mihara K. Molecular mechanisms and physiologic functions of mitochondrial dynamics. J Biochem 2011; 149:241-51. [PMID: 21233142 DOI: 10.1093/jb/mvr002] [Citation(s) in RCA: 198] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Mitochondria are highly dynamic organelles that continuously change their shape through frequent fusion, fission and movement throughout the cell, and these dynamics are crucial for the life and death of the cells as they have been linked to apoptosis, maintenance of cellular homeostasis, and ultimately to neurologic disorders and metabolic diseases. Over the past decade, a growing number of novel proteins that regulate mitochondrial dynamics have been discovered. Large GTPase family proteins and their regulators control these aspects of mitochondrial dynamics. In this review, we briefly summarize the current knowledge about molecular machineries regulating mitochondrial fusion/fission and the role of mitochondrial dynamics in cell pathophysiology.
Collapse
Affiliation(s)
- Hidenori Otera
- Department of Molecular Biology, Graduate School of Medical Science, Kyushu University, Fukuoka, Japan
| | | |
Collapse
|
146
|
Hattersley N, Shen L, Jaffray EG, Hay RT. The SUMO protease SENP6 is a direct regulator of PML nuclear bodies. Mol Biol Cell 2011; 22:78-90. [PMID: 21148299 PMCID: PMC3016979 DOI: 10.1091/mbc.e10-06-0504] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2010] [Revised: 10/18/2010] [Accepted: 10/26/2010] [Indexed: 11/17/2022] Open
Abstract
Promyelocytic leukemia protein (PML) is the core component of PML-nuclear bodies (PML NBs). The small ubiquitin-like modifier (SUMO) system (and, in particular, SUMOylation of PML) is a critical component in the formation and regulation of PML NBs. SUMO protease SENP6 has been shown previously to be specific for SUMO-2/3-modified substrates and shows preference for SUMO polymers. Here, we further investigate the substrate specificity of SENP6 and show that it is also capable of cleaving mixed chains of SUMO-1 and SUMO-2/3. Depletion of SENP6 results in accumulation of endogenous SUMO-2/3 and SUMO-1 conjugates, and immunofluorescence analysis shows accumulation of SUMO and PML in an increased number of PML NBs. Although SENP6 depletion drastically increases the size of PML NBs, the organizational structure of the body is not affected. Mutation of the catalytic cysteine of SENP6 results in its accumulation in PML NBs, and biochemical analysis indicates that SUMO-modified PML is a substrate of SENP6.
Collapse
Affiliation(s)
- Neil Hattersley
- Wellcome Trust Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, DD1 5EH, Scotland, United Kingdom
| | - Linnan Shen
- Wellcome Trust Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, DD1 5EH, Scotland, United Kingdom
| | - Ellis G. Jaffray
- Wellcome Trust Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, DD1 5EH, Scotland, United Kingdom
| | - Ronald T. Hay
- Wellcome Trust Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, DD1 5EH, Scotland, United Kingdom
| |
Collapse
|
147
|
Abstract
Mitochondria are dynamic organelles that constantly fuse and divide. These processes (collectively termed mitochondrial dynamics) are important for mitochondrial inheritance and for the maintenance of mitochondrial functions. The core components of the evolutionarily conserved fusion and fission machineries have now been identified, and mechanistic studies have revealed the first secrets of the complex processes that govern fusion and fission of a double membrane-bound organelle. Mitochondrial dynamics was recently recognized as an important constituent of cellular quality control. Defects have detrimental consequences on bioenergetic supply and contribute to the pathogenesis of neurodegenerative diseases. These findings open exciting new directions to explore mitochondrial biology.
Collapse
|
148
|
Mitochondrial fission/fusion dynamics and apoptosis. Mitochondrion 2010; 10:640-8. [DOI: 10.1016/j.mito.2010.08.005] [Citation(s) in RCA: 186] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Revised: 08/04/2010] [Accepted: 08/04/2010] [Indexed: 11/18/2022]
|
149
|
Jahani-Asl A, Pilon-Larose K, Xu W, MacLaurin JG, Park DS, McBride HM, Slack RS. The mitochondrial inner membrane GTPase, optic atrophy 1 (Opa1), restores mitochondrial morphology and promotes neuronal survival following excitotoxicity. J Biol Chem 2010; 286:4772-82. [PMID: 21041314 DOI: 10.1074/jbc.m110.167155] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Mitochondrial dynamics have been extensively studied in the context of classical cell death models involving Bax-mediated cytochrome c release. Excitotoxic neuronal loss is a non-classical death signaling pathway that occurs following overactivation of glutamate receptors independent of Bax activation. Presently, the role of mitochondrial dynamics in the regulation of excitotoxicity remains largely unknown. Here, we report that NMDA-induced excitotoxicity results in defects in mitochondrial morphology as evident by the presence of excessive fragmented mitochondria, cessation of mitochondrial fusion, and cristae dilation. Up-regulation of the mitochondrial inner membrane GTPase, Opa1, is able to restore mitochondrial morphology and protect neurons against excitotoxic injury. Opa1 functions downstream of the calcium-dependent protease, calpain. Inhibition of calpain activity by calpastatin, an endogenous calpain inhibitor, significantly rescued mitochondrial defects and maintained neuronal survival. Opa1 was required for calpastatin-mediated neuroprotection because the enhanced survival found following NMDA-induced toxicity was significantly reduced upon loss of Opa1. Our results define a mechanism whereby breakdown of the mitochondrial network mediated through loss of Opa1 function contributes to neuronal death following excitotoxic neuronal injury. These studies suggest Opa1 as a potential therapeutic target to promote neuronal survival following acute brain damage and neurodegenerative diseases.
Collapse
Affiliation(s)
- Arezu Jahani-Asl
- Department of Cellular and Molecular Medicine, University of Ottawa Heart Institute, University of Ottawa, Ontario K1H 8M5, Canada
| | | | | | | | | | | | | |
Collapse
|
150
|
Marchiani S, Tamburrino L, Giuliano L, Nosi D, Sarli V, Gandini L, Piomboni P, Belmonte G, Forti G, Baldi E, Muratori M. Sumo1-ylation of human spermatozoa and its relationship with semen quality. ACTA ACUST UNITED AC 2010; 34:581-93. [DOI: 10.1111/j.1365-2605.2010.01118.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|