101
|
Mavila N, Tang Y, Berlind J, Ramani K, Wang J, Mato JM, Lu SC. Prohibitin 1 Acts As a Negative Regulator of Wingless/Integrated-Beta-Catenin Signaling in Murine Liver and Human Liver Cancer Cells. Hepatol Commun 2018; 2:1583-1600. [PMID: 30556043 PMCID: PMC6287485 DOI: 10.1002/hep4.1257] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 08/20/2018] [Indexed: 12/12/2022] Open
Abstract
Prohibitin1 (PHB1) is a mitochondrial chaperone with diverse functions that include cell proliferation, apoptosis, and mitochondrial homoeostasis. Liver‐specific Phb1 knockout (KO) mice develop spontaneous injury and hepatocellular carcinoma (HCC). Our previous work demonstrated that PHB1 negatively regulates the H19‐insulin‐like growth factor 2 (IGF2)‐H19‐IGF2 axis signaling pathway and E‐box activity in hepatocytes and HCC cells. Phb1 KO livers exhibited increased expression of multiple wingless/integrated (WNT) target genes compared to control littermates. Therefore, we hypothesized that PHB1 is a negative regulator of WNT‐beta‐catenin signaling in the liver. Analysis of livers from Phb1 KO mice demonstrated an activation of the WNT‐beta‐catenin pathway as determined by phosphorylation of glycogen synthase kinase 3 (GSK3)betaserine [Ser]9 and protein kinase B (AKT)Ser473. Phb1 KO livers showed increased messenger RNA (mRNA) levels of multiple WNT ligands, with Wnt7a (79‐fold), Wnt10a (12‐fold), and Wnt16 (48‐fold) being most highly overexpressed compared to control littermates. Subcellular fractionation of liver cells from Phb1 KO mice indicated that hepatocytes are the main source of WNT ligands. Immunostaining and cellular colocalization analysis of Phb1 KO livers demonstrated expression of WNT7a, WNT10a, and WNT16 in hepatocytes. Chromatin immunoprecipitation revealed increased binding of transcription factor E2F1 (E2F1) to the Wnt10a promoter in Phb1 KO livers and WNT9A in HepG2 cells. PHB1 silencing in HepG2 cells activated WNT signaling, whereas its overexpression caused inactivation of this pathway. PHB1 silencing in HepG2 cells induced the expression of multiple WNT ligands of which WNT9A induction was partly regulated through E2F1. Conclusion: PHB1 acts as a negative regulator of WNT signaling, and its down‐regulation causes the induction of multiple WNT ligands and downstream activation of canonical WNT‐beta‐catenin signaling in murine liver and human HCC cells, in part through E2F1.
Collapse
Affiliation(s)
- Nirmala Mavila
- Division of Digestive and Liver Diseases, Department of Medicine Cedars Sinai Medical Center Los Angeles CA.,Division of Applied Cell Biology and Physiology, Department of Biomedical Sciences Cedars Sinai Medical Center Los Angeles CA
| | - Yuanyuan Tang
- Division of Digestive and Liver Diseases, Department of Medicine Cedars Sinai Medical Center Los Angeles CA.,Department of Oncology The Second Xiangya Hospital, Central South University Changsha China
| | - Joshua Berlind
- Division of Digestive and Liver Diseases, Department of Medicine Cedars Sinai Medical Center Los Angeles CA
| | - Komal Ramani
- Division of Digestive and Liver Diseases, Department of Medicine Cedars Sinai Medical Center Los Angeles CA.,Division of Applied Cell Biology and Physiology, Department of Biomedical Sciences Cedars Sinai Medical Center Los Angeles CA
| | - Jiaohong Wang
- Division of Digestive and Liver Diseases, Department of Medicine Cedars Sinai Medical Center Los Angeles CA
| | - José M Mato
- CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas Technology Park of Bizkaia Derio Spain
| | - Shelly C Lu
- Division of Digestive and Liver Diseases, Department of Medicine Cedars Sinai Medical Center Los Angeles CA
| |
Collapse
|
102
|
Schneider A, Ochsenreiter T. Failure is not an option - mitochondrial genome segregation in trypanosomes. J Cell Sci 2018; 131:131/18/jcs221820. [PMID: 30224426 DOI: 10.1242/jcs.221820] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Unlike most other model eukaryotes, Trypanosoma brucei and its relatives have a single mitochondrion with a single-unit mitochondrial genome that is termed kinetoplast DNA (kDNA). Replication of the kDNA is coordinated with the cell cycle. During binary mitochondrial fission and prior to cytokinesis, the replicated kDNA has to be faithfully segregated to the daughter organelles. This process depends on the tripartite attachment complex (TAC) that physically links the kDNA across the two mitochondrial membranes with the basal body of the flagellum. Thus, the TAC couples segregation of the replicated kDNA with segregation of the basal bodies of the old and the new flagellum. In this Review, we provide an overview of the role of the TAC in kDNA inheritance in T. brucei We focus on recent advances regarding the molecular composition of the TAC, and discuss how the TAC is assembled and how its subunits are targeted to their respective TAC subdomains. Finally, we will contrast the segregation of the single-unit kDNA in trypanosomes to mitochondrial genome inheritance in yeast and mammals, both of which have numerous mitochondria that each contain multiple genomes.
Collapse
Affiliation(s)
- André Schneider
- Department of Chemistry and Biochemistry, University of Bern, Freiestr. 3, CH-3012 Bern, Switzerland
| | - Torsten Ochsenreiter
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, Bern CH-3012, Switzerland
| |
Collapse
|
103
|
Simile MM, Latte G, Feo CF, Feo F, Calvisi DF, Pascale RM. Alterations of methionine metabolism in hepatocarcinogenesis: the emergent role of glycine N-methyltransferase in liver injury. Ann Gastroenterol 2018; 31:552-560. [PMID: 30174391 PMCID: PMC6102450 DOI: 10.20524/aog.2018.0288] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 05/02/2018] [Indexed: 12/30/2022] Open
Abstract
The methionine and folate cycles play a fundamental role in cell physiology and their alteration is involved in liver injury and hepatocarcinogenesis. Glycine N-methyltransferase is implicated in methyl group supply, DNA methylation, and nucleotide biosynthesis. It regulates the cellular S-adenosylmethionine/S-adenosylhomocysteine ratio and S-adenosylmethionine-dependent methyl transfer reactions. Glycine N-methyltransferase is absent in fast-growing hepatocellular carcinomas and present at a low level in slower growing HCC ones. The mechanism of tumor suppression by glycine N-methyltransferase is not completely known. Glycine N-methyltransferase inhibits hepatocellular carcinoma growth through interaction with Dep domain-containing mechanistic target of rapamycin (mTor)-interacting protein, a binding protein overexpressed in hepatocellular carcinoma. The interaction of the phosphatase and tensin homolog inhibitor, phosphatidylinositol 3,4,5-trisphosphate-dependent rac exchanger, with glycine N-methyltransferase enhances proteasomal degradation of this exchanger by the E3 ubiquitin ligase HectH. Glycine N-methyltransferase also regulates genes related to detoxification and antioxidation pathways. It supports pyrimidine and purine syntheses and minimizes uracil incorporation into DNA as consequence of folate depletion. However, recent evidence indicates that glycine N-methyltransferase targeted into nucleus still exerts strong anti-proliferative effects independent of its catalytic activity, while its restriction to cytoplasm prevents these effects. Our current knowledge suggest that glycine N-methyltransferase plays a fundamental, even if not yet completely known, role in cellular physiology and highlights the need to further investigate this role in normal and cancer cells.
Collapse
Affiliation(s)
- Maria M. Simile
- Department of Clinical, Surgical and Experimental Medicine, Division of Experimental Pathology and Oncology (Maria M. Simile, Gavinella Latte, Francesco Feo, Diego F. Calvisi, Rosa M. Pascale), University of Sassari, Sassari, Italy
| | - Gavinella Latte
- Department of Clinical, Surgical and Experimental Medicine, Division of Experimental Pathology and Oncology (Maria M. Simile, Gavinella Latte, Francesco Feo, Diego F. Calvisi, Rosa M. Pascale), University of Sassari, Sassari, Italy
| | - Claudio F. Feo
- Department of Clinical, Surgical and Experimental Medicine, Division of Surgery (Claudio F. Feo), University of Sassari, Sassari, Italy
| | - Francesco Feo
- Department of Clinical, Surgical and Experimental Medicine, Division of Experimental Pathology and Oncology (Maria M. Simile, Gavinella Latte, Francesco Feo, Diego F. Calvisi, Rosa M. Pascale), University of Sassari, Sassari, Italy
| | - Diego F. Calvisi
- Department of Clinical, Surgical and Experimental Medicine, Division of Experimental Pathology and Oncology (Maria M. Simile, Gavinella Latte, Francesco Feo, Diego F. Calvisi, Rosa M. Pascale), University of Sassari, Sassari, Italy
| | - Rosa M. Pascale
- Department of Clinical, Surgical and Experimental Medicine, Division of Experimental Pathology and Oncology (Maria M. Simile, Gavinella Latte, Francesco Feo, Diego F. Calvisi, Rosa M. Pascale), University of Sassari, Sassari, Italy
| |
Collapse
|
104
|
Cotton Late Embryogenesis Abundant ( LEA2) Genes Promote Root Growth and Confer Drought Stress Tolerance in Transgenic Arabidopsis thaliana. G3-GENES GENOMES GENETICS 2018; 8:2781-2803. [PMID: 29934376 PMCID: PMC6071604 DOI: 10.1534/g3.118.200423] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Late embryogenesis abundant (LEA) proteins play key roles in plant drought tolerance. In this study, 157, 85 and 89 candidate LEA2 proteins were identified in G. hirsutum, G. arboreum and G. raimondii respectively. LEA2 genes were classified into 6 groups, designated as group 1 to 6. Phylogenetic tree analysis revealed orthologous gene pairs within the cotton genome. The cotton specific LEA2 motifs identified were E, R and D in addition to Y, K and S motifs. The genes were distributed on all chromosomes. LEA2s were found to be highly enriched in non-polar, aliphatic amino acid residues, with leucine being the highest, 9.1% in proportion. The miRNA, ghr-miR827a/b/c/d and ghr-miR164 targeted many genes are known to be drought stress responsive. Various stress-responsive regulatory elements, ABA-responsive element (ABRE), Drought-responsive Element (DRE/CRT), MYBS and low-temperature-responsive element (LTRE) were detected. Most genes were highly expressed in leaves and roots, being the primary organs greatly affected by water deficit. The expression levels were much higher in G. tomentosum as opposed to G. hirsutum. The tolerant genotype had higher capacity to induce more of LEA2 genes. Over expression of the transformed gene Cot_AD24498 showed that the LEA2 genes are involved in promoting root growth and in turn confers drought stress tolerance. We therefore infer that Cot_AD24498, CotAD_20020, CotAD_21924 and CotAD_59405 could be the candidate genes with profound functions under drought stress in upland cotton among the LEA2 genes. The transformed Arabidopsis plants showed higher tolerance levels to drought stress compared to the wild types. There was significant increase in antioxidants, catalase (CAT), peroxidase (POD) and superoxide dismutase (SOD) accumulation, increased root length and significant reduction in oxidants, Hydrogen peroxide (H2O2) and malondialdehyde (MDA) concentrations in the leaves of transformed lines under drought stress condition. This study provides comprehensive analysis of LEA2 proteins in cotton thus forms primary foundation for breeders to utilize these genes in developing drought tolerant genotypes.
Collapse
|
105
|
COMP-prohibitin 2 interaction maintains mitochondrial homeostasis and controls smooth muscle cell identity. Cell Death Dis 2018; 9:676. [PMID: 29867124 PMCID: PMC5986769 DOI: 10.1038/s41419-018-0703-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 05/06/2018] [Accepted: 05/14/2018] [Indexed: 12/22/2022]
Abstract
Vascular smooth muscle cells (VSMCs) are highly phenotypically plastic, and loss of the contractile phenotype in VSMCs has been recognized at the early onset of the pathology of a variety of vascular diseases. However, the endogenous regulatory mechanism to maintain contractile phenotype in VSMCs remains elusive. Moreover, little has been known about the role of the mitochondrial bioenergetics in terms of VSMC homeostasis. Herein, we asked if glycoprotein COMP (Cartilage oligomeric matrix protein) is involved in mitochondrial bioenergetics and therefore regulates VSMCs homeostasis. By using fluorescence assay, subcellular western blot and liquid chromatography tandem mass spectrometry analysis, we found that extracellular matrix protein COMP unexpectedly localized within mitochondria. Further mitochondrial transplantation revealed that both mitochondrial and non-mitochondrial COMP maintained VSMC identity. Moreover, microarray analysis revealed that COMP deficiency impaired mitochondrial oxidative phosphorylation in VSMCs. Further study confirmed that COMP deficiency caused mitochondrial oxidative phosphorylation dysfunction accompanied by morphological abnormality. Moreover, the interactome of mitochondrial COMP revealed that COMP interacted with prohibitin 2, and COMP-prohibitin 2 interaction maintained mitochondrial homeostasis. Additionally, disruption of COMP-prohibitin 2 interaction caused VSMC dedifferentiation in vitro and enhanced the neointima formation post rat carotid artery injury in vivo. In conclusion, COMP-prohibitin 2 interaction in mitochondria plays an important role in maintaining the contractile phenotype of VSMCs by regulating mitochondrial oxidative phosphorylation. Maintaining the homeostasis of mitochondrial respiration through COMP-prohibitin 2 interaction may shed light on prevention of vascular disease.
Collapse
|
106
|
Perić I, Costina V, Stanisavljević A, Findeisen P, Filipović D. Proteomic characterization of hippocampus of chronically socially isolated rats treated with fluoxetine: Depression-like behaviour and fluoxetine mechanism of action. Neuropharmacology 2018; 135:268-283. [DOI: 10.1016/j.neuropharm.2018.03.034] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 03/22/2018] [Accepted: 03/24/2018] [Indexed: 12/20/2022]
|
107
|
Kahl A, Anderson CJ, Qian L, Voss H, Manfredi G, Iadecola C, Zhou P. Neuronal expression of the mitochondrial protein prohibitin confers profound neuroprotection in a mouse model of focal cerebral ischemia. J Cereb Blood Flow Metab 2018; 38:1010-1020. [PMID: 28714328 PMCID: PMC5999007 DOI: 10.1177/0271678x17720371] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The mitochondrial protein prohibitin (PHB) has emerged as an important modulator of neuronal survival in different injury modalities . We previously showed that viral gene transfer of PHB protects CA1 neurons from delayed neurodegeneration following transient forebrain ischemia through mitochondrial mechanisms. However, since PHB is present in all cell types, it is not known if its selective expression in neurons is protective, and if the protection occurs also in acute focal ischemic brain injury, the most common stroke type in humans. Therefore, we generated transgenic mice overexpressing human PHB1 specifically in neurons (PHB1 Tg). PHB1 Tg mice and littermate controls were subjected to transient middle cerebral artery occlusion (MCAo). Infarct volume and sensory-motor impairment were assessed three days later. Under the control of a neuronal promoter (CaMKIIα), PHB1 expression was increased by 50% in the forebrain and hippocampus in PHB1 Tg mice. The brain injury produced by MCAo was reduced by 63 ± 11% in PHB1 Tg mice compared to littermate controls. This reduction was associated with improved sensory-motor performance, suggesting that the salvaged brain remains functional. Approaches to enhance PHB expression may be useful to ameliorate the devastating impact of cerebral ischemia on the brain.
Collapse
Affiliation(s)
- Anja Kahl
- 1 Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, NY, USA
| | - Corey J Anderson
- 1 Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, NY, USA
| | - Liping Qian
- 1 Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, NY, USA
| | - Henning Voss
- 2 Department of Radiology, Weill Cornell Medicine, NY, USA
| | - Giovanni Manfredi
- 1 Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, NY, USA
| | - Costantino Iadecola
- 1 Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, NY, USA
| | - Ping Zhou
- 1 Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, NY, USA
| |
Collapse
|
108
|
The expression pattern and potential functions of PHB in the spermiogenesis of Phascolosoma esculenta. Gene 2018; 652:25-38. [DOI: 10.1016/j.gene.2018.01.056] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Revised: 01/11/2018] [Accepted: 01/16/2018] [Indexed: 11/20/2022]
|
109
|
Pomares H, Palmeri CM, Iglesias-Serret D, Moncunill-Massaguer C, Saura-Esteller J, Núñez-Vázquez S, Gamundi E, Arnan M, Preciado S, Albericio F, Lavilla R, Pons G, González-Barca EM, Cosialls AM, Gil J. Targeting prohibitins induces apoptosis in acute myeloid leukemia cells. Oncotarget 2018; 7:64987-65000. [PMID: 27542247 PMCID: PMC5323132 DOI: 10.18632/oncotarget.11333] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 08/09/2016] [Indexed: 12/18/2022] Open
Abstract
Fluorizoline is a new synthetic molecule that induces apoptosis by selectively targeting prohibitins (PHBs). In this study, the pro-apoptotic effect of fluorizoline was assessed in two cell lines and 21 primary samples from patients with debut of acute myeloid leukemia (AML). Fluorizoline induced apoptosis in AML cells at concentrations in the low micromolar range. All primary samples were sensitive to fluorizoline irrespectively of patients' clinical or genetic features. In addition, fluorizoline inhibited the clonogenic capacity and induced differentiation of AML cells. Fluorizoline increased the mRNA and protein levels of the pro-apoptotic BCL-2 family member NOXA both in cell lines and primary samples analyzed. These results suggest that targeting PHBs could be a new therapeutic strategy for AML.
Collapse
Affiliation(s)
- Helena Pomares
- Departament de Ciències Fisiològiques, Universitat de Barcelona-Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Barcelona, Spain.,Servei d'Hematologia, Institut Català d'Oncologia-IDIBELL, Barcelona, Spain
| | - Claudia M Palmeri
- Departament de Ciències Fisiològiques, Universitat de Barcelona-Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Barcelona, Spain
| | - Daniel Iglesias-Serret
- Departament de Ciències Fisiològiques, Universitat de Barcelona-Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Barcelona, Spain
| | - Cristina Moncunill-Massaguer
- Departament de Ciències Fisiològiques, Universitat de Barcelona-Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Barcelona, Spain
| | - José Saura-Esteller
- Departament de Ciències Fisiològiques, Universitat de Barcelona-Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Barcelona, Spain
| | - Sonia Núñez-Vázquez
- Departament de Ciències Fisiològiques, Universitat de Barcelona-Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Barcelona, Spain
| | - Enric Gamundi
- Servei d'Hematologia, Institut Català d'Oncologia-IDIBELL, Barcelona, Spain
| | - Montserrat Arnan
- Servei d'Hematologia, Institut Català d'Oncologia-IDIBELL, Barcelona, Spain
| | - Sara Preciado
- CIBER-BBN, Networking Centre on Bioengineering, Biomaterials and Nanomedicine, Barcelona Science Park, Barcelona, Spain
| | - Fernando Albericio
- CIBER-BBN, Networking Centre on Bioengineering, Biomaterials and Nanomedicine, Barcelona Science Park, Barcelona, Spain.,Department of Organic Chemistry, University of Barcelona, Barcelona, Spain.,School of Chemistry and Physics, University of KwaZulu-Natal, Durban, South Africa
| | - Rodolfo Lavilla
- CIBER-BBN, Networking Centre on Bioengineering, Biomaterials and Nanomedicine, Barcelona Science Park, Barcelona, Spain.,Laboratory of Organic Chemistry, Faculty of Pharmacy, University of Barcelona, Barcelona, Spain
| | - Gabriel Pons
- Departament de Ciències Fisiològiques, Universitat de Barcelona-Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Barcelona, Spain
| | | | - Ana M Cosialls
- Departament de Ciències Fisiològiques, Universitat de Barcelona-Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Barcelona, Spain
| | - Joan Gil
- Departament de Ciències Fisiològiques, Universitat de Barcelona-Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Barcelona, Spain
| |
Collapse
|
110
|
Xiao Y, Zhou Y, Lu Y, Zhou K, Cai W. PHB2 interacts with LC3 and SQSTM1 is required for bile acids-induced mitophagy in cholestatic liver. Cell Death Dis 2018; 9:160. [PMID: 29416008 PMCID: PMC5833850 DOI: 10.1038/s41419-017-0228-8] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/11/2017] [Accepted: 12/12/2017] [Indexed: 12/19/2022]
Abstract
Mitophagy is a major pathway for clearance of injured mitochondria. However, whether mitophagy is involved in the cholestasis-induced damages of hepatic mitochondria remains unknown. We here aimed to investigate the molecular links between cholestasis and hepatic mitophagy. We show that mitophagy is increased significantly in livers of biliary atresia (BA) that is cholestatic disease in infants. The mitochondrial-toxicity bile acids treatment increases the activities of mitophagy in hepatocytes. Mechanistically, we find that the prohibitin 2 (PHB2) is crucial for cholestasis-mediated mitophagy in vitro. On the one hand, PHB2 binds the autophagosomal membrane-associated protein LC3 upon injured mitochondria via an LC3-interaction region domain. On the other hand, PHB2 forms a ternary protein complex with sequestosome 1 (SQSTM1) and LC3, leading to loading of LC3 onto the damaged mitochondria. Altogether, our study suggests that PHB2 is required for cholestasis-induced mitophagy via LC3 onto the injured mitochondria.
Collapse
Affiliation(s)
- Yongtao Xiao
- Department of Pediatric Surgery, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Institute of Pediatric Research, Shanghai, China.,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Ying Zhou
- Department of Pediatric Surgery, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Ying Lu
- Shanghai Institute of Pediatric Research, Shanghai, China.,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Kejun Zhou
- Shanghai Institute of Pediatric Research, Shanghai, China.,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Wei Cai
- Department of Pediatric Surgery, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China. .,Shanghai Institute of Pediatric Research, Shanghai, China. .,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China.
| |
Collapse
|
111
|
Prohibitin 2 localizes in nucleolus to regulate ribosomal RNA transcription and facilitate cell proliferation in RD cells. Sci Rep 2018; 8:1479. [PMID: 29367618 PMCID: PMC5784149 DOI: 10.1038/s41598-018-19917-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 01/09/2018] [Indexed: 01/03/2023] Open
Abstract
Prohibitin 2 (PHB2), as a conserved multifunctional protein, is traditionally localized in the mitochondrial inner membrane and essential for maintenance of mitochondrial function. Here, we investigated the role of PHB2 in human rhabdomyosarcoma (RMS) RD cells and found substantial localization of PHB2 in the nucleolus. We demonstrated that PHB2 knockdown inhibited RD cell proliferation through inducing cell cycle arrest and suppressing DNA synthesis. Meanwhile, down-regulation of PHB2 also induced apoptosis and promoted differentiation in fractions of RD cells. In addition, PHB2 silencing led to altered nucleolar morphology, as observed by transmission electron microscopy, and impaired nucleolar function, as evidenced by down-regulation of 45S and 18S ribosomal RNA synthesis. Consistently, upon PHB2 knockdown, occupancy of c-Myc at the ribosomal DNA (rDNA) promoter was attenuated, while more myoblast determination protein 1 (MyoD) molecules bound to the rDNA promoter. In conclusion, our findings suggest that nucleolar PHB2 is involved in maintaining nucleolar morphology and function in RD cells by regulating a variety of transcription factors, which is likely to be one of the underlying mechanisms by which PHB2 promotes tumor proliferation and represses differentiation. Our study provides new insight into the pathogenesis of RMS and novel characterizations of the highly conserved PHB2 protein.
Collapse
|
112
|
Abstract
Insights from inherited forms of parkinsonism suggest that insufficient mitophagy may be one etiology of the disease. PINK1/Parkin-dependent mitophagy, which helps maintain a healthy mitochondrial network, is initiated by activation of the PINK1 kinase specifically on damaged mitochondria. Recent investigation of this process reveals that import of PINK1 into mitochondria is regulated and yields a stress-sensing mechanism. In this review, we focus on the mechanisms of mitochondrial stress-dependent PINK1 activation that is exerted by regulated import of PINK1 into different mitochondrial compartments and how this offers strategies to pharmacologically activate the PINK1/Parkin pathway.
Collapse
|
113
|
Kawano S, Tamura Y, Kojima R, Bala S, Asai E, Michel AH, Kornmann B, Riezman I, Riezman H, Sakae Y, Okamoto Y, Endo T. Structure-function insights into direct lipid transfer between membranes by Mmm1-Mdm12 of ERMES. J Cell Biol 2017; 217:959-974. [PMID: 29279306 PMCID: PMC5839780 DOI: 10.1083/jcb.201704119] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 11/06/2017] [Accepted: 12/01/2017] [Indexed: 12/26/2022] Open
Abstract
The ER–mitochondrial encounter structure (ERMES) physically links ER and mitochondrial membranes in yeast, but it is unclear whether ERMES directly facilitates lipid exchange between these organelles. Kawano et al. reveal by reconstitution experiments that a complex of Mmm1–Mdm12, two core subunits of ERMES, functions as a minimal unit for lipid transfer between membranes. The endoplasmic reticulum (ER)–mitochondrial encounter structure (ERMES) physically links the membranes of the ER and mitochondria in yeast. Although the ER and mitochondria cooperate to synthesize glycerophospholipids, whether ERMES directly facilitates the lipid exchange between the two organelles remains controversial. Here, we compared the x-ray structures of an ERMES subunit Mdm12 from Kluyveromyces lactis with that of Mdm12 from Saccharomyces cerevisiae and found that both Mdm12 proteins possess a hydrophobic pocket for phospholipid binding. However in vitro lipid transfer assays showed that Mdm12 alone or an Mmm1 (another ERMES subunit) fusion protein exhibited only a weak lipid transfer activity between liposomes. In contrast, Mdm12 in a complex with Mmm1 mediated efficient lipid transfer between liposomes. Mutations in Mmm1 or Mdm12 impaired the lipid transfer activities of the Mdm12–Mmm1 complex and furthermore caused defective phosphatidylserine transport from the ER to mitochondrial membranes via ERMES in vitro. Therefore, the Mmm1–Mdm12 complex functions as a minimal unit that mediates lipid transfer between membranes.
Collapse
Affiliation(s)
- Shin Kawano
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, Japan.,Japan Science and Technology Agency/Core Research for Evolutional Science and Technology, Kyoto Sangyo University, Kyoto, Japan.,Department of Chemistry, Graduate School of Science, Nagoya University, Nagoya, Japan.,Japan Science and Technology Agency/Core Research for Evolutional Science and Technology, Nagoya University, Nagoya, Japan
| | - Yasushi Tamura
- Japan Science and Technology Agency/Core Research for Evolutional Science and Technology, Nagoya University, Nagoya, Japan.,Research Center for Materials Science, Nagoya University, Nagoya, Japan.,Department of Material and Biological Chemistry, Faculty of Science, Yamagata University, Yamagata, Japan
| | - Rieko Kojima
- Department of Material and Biological Chemistry, Faculty of Science, Yamagata University, Yamagata, Japan
| | - Siqin Bala
- Department of Chemistry, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Eri Asai
- Department of Chemistry, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Agnès H Michel
- Institute of Biochemistry, ETH Zürich, Zürich, Switzerland
| | | | - Isabelle Riezman
- Department of Biochemistry, National Centre of Competence in Research Chemical Biology, University of Geneva, Geneva, Switzerland
| | - Howard Riezman
- Department of Biochemistry, National Centre of Competence in Research Chemical Biology, University of Geneva, Geneva, Switzerland
| | - Yoshitake Sakae
- Department of Physics, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Yuko Okamoto
- Department of Physics, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Toshiya Endo
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, Japan .,Japan Science and Technology Agency/Core Research for Evolutional Science and Technology, Kyoto Sangyo University, Kyoto, Japan.,Institute for Protein Dynamics, Kyoto Sangyo University, Kyoto, Japan.,Department of Chemistry, Graduate School of Science, Nagoya University, Nagoya, Japan.,Japan Science and Technology Agency/Core Research for Evolutional Science and Technology, Nagoya University, Nagoya, Japan
| |
Collapse
|
114
|
Abstract
PURPOSE OF REVIEW Long noncoding RNAs (lncRNAs) have emerged as powerful regulators of nearly all biological processes. Their cell-type and tissue-specific expression in health and disease provides new avenues for diagnosis and therapy. This review highlights the role of lncRNAs that are involved in cardiovascular disease (CVD) with a special focus on cell types involved in cardiac injury and remodeling, vascular injury, angiogenesis, inflammation, and lipid metabolism. RECENT FINDINGS Almost 98% of the genome does not encode for proteins. LncRNAs are among the most abundant type of RNA in the noncoding genome. Accumulating studies have uncovered novel lncRNA-mediated regulation of CVD-associated genes, signaling pathways, and pathophysiological responses. Targeting lncRNAs in vivo using short antisense oligonucleotides or by gene editing has provided important insights into disease pathogenesis through epigenetic, transcriptional, or translational mechanisms. Although cross-species conservation still remains a major obstacle, there is increasing appreciation that altered expression of lncRNAs associates with stage-specific CVD and in human patient cohorts, providing new opportunities for diagnosis and therapy. SUMMARY A better understanding of lncRNAs will not only fundamentally improve our understanding of key signaling pathways in CVD, but also aid in the development of effective new therapies and RNA-based biomarkers.
Collapse
Affiliation(s)
- Stefan Haemmig
- Department of Medicine, Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Viorel Simion
- Department of Medicine, Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Dafeng Yang
- Department of Medicine, Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Cardiology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yihuan Deng
- Department of Medicine, Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mark W. Feinberg
- Department of Medicine, Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
115
|
Hou CC, Wei CG, Lu CP, Gao XM, Yang WX, Zhu JQ. Prohibitin-mediated mitochondrial ubiquitination during spermiogenesis in Chinese mitten crab Eriocheir sinensis. Oncotarget 2017; 8:98782-98797. [PMID: 29228727 PMCID: PMC5716767 DOI: 10.18632/oncotarget.21961] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 09/23/2017] [Indexed: 12/21/2022] Open
Abstract
The sperm of Eriocheir sinensis has a cup-shaped nucleus that contains several mitochondria embedded at the opening of the cup. The acrosome vesicle also contains derivants of mitochondria. The mitochondria distribution pattern involves a decrease in the number and changes in the structure and transportation of these organelles. The decreased number of sperm mitochondria is achieved through autophagy or the ubiquitination pathway. Prohibitin (PHB), the mitochondria inner membrane protein, is an evolutionarily highly conserved protein, is closely associated with spermatogenesis and sperm quality control and is also a potential substrate of ubiquitination. However, whether PHB protein mediates the ubiquitination pathway of sperm mitochondria in crustacean animals remains poorly understood. In the present study, we revealed that PHB, a substrate of ubiquitin, participates in the ubiquitination and degradation of mitochondria during spermiogenesis in E. sinensis. To confirm this finding, we used shRNA interference to reduce PHB expression and an overexpression technique to increase PHB expression in vitro. The interference experiment showed that the reduced PHB expression directly affected the polyubiquitination level and mitochondria status, whereas PHB overexpression markedly increased the polyubiquitination level. In vitro experiments also showed that PHB and its ubiquitination decide the fate of mitochondria.
Collapse
Affiliation(s)
- Cong-Cong Hou
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Chao-Guang Wei
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Cheng-Peng Lu
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Xin-Ming Gao
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Wan-Xi Yang
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jun-Quan Zhu
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| |
Collapse
|
116
|
Wang D, Zhao YQ, Han YL, Hou CC, Zhu JQ. Characterization of mitochondrial prohibitin from Boleophthalmus pectinirostris and evaluation of its possible role in spermatogenesis. FISH PHYSIOLOGY AND BIOCHEMISTRY 2017; 43:1299-1313. [PMID: 28501977 DOI: 10.1007/s10695-017-0373-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 04/19/2017] [Indexed: 06/07/2023]
Abstract
Prohibitin (PHB) is an evolutionarily conserved mitochondrial membrane protein. It plays a vital role in cell proteolysis, senescence, and apoptosis and is associated with spermatogenesis and sperm quality control in mammals. To study the characteristics of the PHB gene and its potential roles during spermatogenesis in Boleophthalmus pectinirostris, we cloned a 1153-bp full-length cDNA from the testis of B. pectinirostris with an open reading frame of 816 bp, which encodes 272 amino acid residues. Real-time quantitative PCR (qPCR) analysis revealed the presence of phb mRNA in all the tissues examined, with higher expression levels found in the testis, kidney, intestine, and muscle tissues. We examined the localization of phb mRNA during spermatogenesis by in situ hybridization (ISH), showing that phb mRNA was distributed in the periphery of the nucleus in primary and secondary spermatocytes. In spermatid and mature sperm, the phb mRNA gradually moved toward one side, where the flagellum is formed. Immunofluorescence (IF) results showed co-localization of the PHB and mitochondria at different stages during spermatogenesis of B. pectinirostris. The signals obtained for PHB decreased as spermatogenesis proceeded; the strongest detection signal was found in secondary spermatocytes, with lower levels of staining in other stages. Additionally, in the mature germ cells, the PHB signals were weak and aggregate in the midpiece of the flagellum.
Collapse
Affiliation(s)
- Di Wang
- Key Laboratory of Applied Marine Biotechnology by the Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, 315211, Zhejiang, People's Republic of China
| | - Yong-Qiang Zhao
- Key Laboratory of Applied Marine Biotechnology by the Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, 315211, Zhejiang, People's Republic of China
| | - Ying-Li Han
- Key Laboratory of Applied Marine Biotechnology by the Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, 315211, Zhejiang, People's Republic of China
| | - Cong-Cong Hou
- Key Laboratory of Applied Marine Biotechnology by the Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, 315211, Zhejiang, People's Republic of China.
| | - Jun-Quan Zhu
- Key Laboratory of Applied Marine Biotechnology by the Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, 315211, Zhejiang, People's Republic of China.
| |
Collapse
|
117
|
Xu YR, Fan YS, Yang WX. Mitochondrial prohibitin and its ubiquitination during spermatogenesis of the swimming crab Charybdis japonica. Gene 2017. [DOI: 10.1016/j.gene.2017.06.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
118
|
Levytskyy RM, Bohovych I, Khalimonchuk O. Metalloproteases of the Inner Mitochondrial Membrane. Biochemistry 2017; 56:4737-4746. [PMID: 28806058 DOI: 10.1021/acs.biochem.7b00663] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The inner mitochondrial membrane (IM) is among the most protein-rich cellular compartments. The metastable IM subproteome where the concentration of proteins is approaching oversaturation creates a challenging protein folding environment with a high probability of protein malfunction or aggregation. Failure to maintain protein homeostasis in such a setting can impair the functional integrity of the mitochondria and drive clinical manifestations. The IM is equipped with a series of highly conserved, proteolytic complexes dedicated to the maintenance of normal protein homeostasis within this mitochondrial subcompartment. Particularly important is a group of membrane-anchored metallopeptidases commonly known as m-AAA and i-AAA proteases, and the ATP-independent Oma1 protease. Herein, we will summarize the current biochemical knowledge of these proteolytic machines and discuss recent advances in our understanding of mechanistic aspects of their functioning.
Collapse
Affiliation(s)
- Roman M Levytskyy
- Department of Biochemistry, University of Nebraska-Lincoln , Lincoln, Nebraska 68588-0664, United States
| | - Iryna Bohovych
- Department of Biochemistry, University of Nebraska-Lincoln , Lincoln, Nebraska 68588-0664, United States
| | - Oleh Khalimonchuk
- Department of Biochemistry, University of Nebraska-Lincoln , Lincoln, Nebraska 68588-0664, United States.,Nebraska Redox Biology Center, University of Nebraska-Lincoln , Lincoln, Nebraska 68588-0662, United States.,Fred & Pamela Buffett Cancer Center , Omaha, Nebraska 68106, United States
| |
Collapse
|
119
|
Yin Q, Zhang Y, Dong D, Lei M, Zhang S, Liao CC, Pan YH. Maintenance of neural activities in torpid Rhinolophus ferrumequinum bats revealed by 2D gel-based proteome analysis. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1865:1004-1019. [DOI: 10.1016/j.bbapap.2017.04.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 03/27/2017] [Accepted: 04/29/2017] [Indexed: 12/21/2022]
|
120
|
Gao Z, Luo G, Ni B. Progress in mass spectrometry-based proteomic research of tumor hypoxia (Review). Oncol Rep 2017; 38:676-684. [PMID: 28656308 DOI: 10.3892/or.2017.5748] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Accepted: 05/31/2017] [Indexed: 11/06/2022] Open
Abstract
A hypoxic microenvironment effects various signaling pathways in the human body, including those that are critical for normal physiology and those that support tumorigenesis or cancer progression. A hypoxic tumor microenvironment, in particular, modulates cell migration, invasion and resistance to radiotherapy and chemotherapy. Development of the mass spectrometry (MS) technique has allowed for expansion of proteomic study to a wide variety of fields, with the study of tumor hypoxia being among the latest to enjoy its benefits. In such studies, changes in the proteome of tumor tissue or cells induced by the hypoxic conditions are analyzed. A multitude of hypoxic regulatory proteins have already been identified, increasing our understanding of the mechanisms underlying tumor occurrence and development and representing candidate reference markers for tumor diagnosis and therapy. The present review provides the first summary of the collective studies on tumor microenvironment hypoxia that have been completed using MS-based proteomic techniques, providing a systematic discussion of the benefits and current challenges of the various applications.
Collapse
Affiliation(s)
- Zhiqi Gao
- Department of Pathophysiology and High Altitude Pathology/Key Laboratory of High Altitude Environment Medicine (Third Military Medical University), Ministry of Education/Key Laboratory of High Altitude Medicine, College of High Altitude Military Medicine, Third Military Medical University, Chongqing 400038, P.R. China
| | - Gang Luo
- Department of Pathophysiology and High Altitude Pathology/Key Laboratory of High Altitude Environment Medicine (Third Military Medical University), Ministry of Education/Key Laboratory of High Altitude Medicine, College of High Altitude Military Medicine, Third Military Medical University, Chongqing 400038, P.R. China
| | - Bing Ni
- Department of Pathophysiology and High Altitude Pathology/Key Laboratory of High Altitude Environment Medicine (Third Military Medical University), Ministry of Education/Key Laboratory of High Altitude Medicine, College of High Altitude Military Medicine, Third Military Medical University, Chongqing 400038, P.R. China
| |
Collapse
|
121
|
Sekine S. Mitochondrial proteolysis and its roles in stress responses. Nihon Yakurigaku Zasshi 2017. [PMID: 28626118 DOI: 10.1254/fpj.149.264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
122
|
Jian C, Xu F, Hou T, Sun T, Li J, Cheng H, Wang X. Deficiency of PHB complex impairs respiratory supercomplex formation and activates mitochondrial flashes. J Cell Sci 2017. [PMID: 28630166 DOI: 10.1242/jcs.198523] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Prohibitins (PHBs; prohibitin 1, PHB1 or PHB, and prohibitin 2, PHB2) are evolutionarily conserved and ubiquitously expressed mitochondrial proteins. PHBs form multimeric ring complexes acting as scaffolds in the inner mitochondrial membrane. Mitochondrial flashes (mitoflashes) are newly discovered mitochondrial signaling events that reflect electrical and chemical excitations of the organelle. Here, we investigate the possible roles of PHBs in the regulation of mitoflash signaling. Downregulation of PHBs increases mitoflash frequency by up to 5.4-fold due to elevated basal reactive oxygen species (ROS) production in the mitochondria. Mechanistically, PHB deficiency impairs the formation of mitochondrial respiratory supercomplexes (RSCs) without altering the abundance of individual respiratory complex subunits. These impairments induced by PHB deficiency are effectively rescued by co-expression of PHB1 and PHB2, indicating that the multimeric PHB complex acts as the functional unit. Furthermore, downregulating other RSC assembly factors, including SCAFI (also known as COX7A2L), RCF1a (HIGD1A), RCF1b (HIGD2A), UQCC3 and SLP2 (STOML2), all activate mitoflashes through elevating mitochondrial ROS production. Our findings identify the PHB complex as a new regulator of RSC formation and mitoflash signaling, and delineate a general relationship among RSC formation, basal ROS production and mitoflash biogenesis.
Collapse
Affiliation(s)
- Chongshu Jian
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Fengli Xu
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Tingting Hou
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Tao Sun
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Jinghang Li
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Heping Cheng
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Xianhua Wang
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
123
|
Cosialls AM, Pomares H, Iglesias-Serret D, Saura-Esteller J, Núñez-Vázquez S, González-Gironès DM, de la Banda E, Preciado S, Albericio F, Lavilla R, Pons G, González-Barca EM, Gil J. The prohibitin-binding compound fluorizoline induces apoptosis in chronic lymphocytic leukemia cells through the upregulation of NOXA and synergizes with ibrutinib, 5-aminoimidazole-4-carboxamide riboside or venetoclax. Haematologica 2017; 102:1587-1593. [PMID: 28619845 PMCID: PMC5685241 DOI: 10.3324/haematol.2016.162958] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 06/08/2017] [Indexed: 12/27/2022] Open
Abstract
Fluorizoline is a new synthetic molecule that induces apoptosis by selectively targeting prohibitins. In the study herein, the pro-apoptotic effect of fluorizoline was assessed in 34 primary samples from patients with chronic lymphocytic leukemia. Fluorizoline induced apoptosis in chronic lymphocytic leukemia cells at concentrations in the low micromolar range. All primary samples were sensitive to fluorizoline irrespective of patients’ clinical or genetic features, whereas normal T lymphocytes were less sensitive. Fluorizoline increased the protein levels of the pro-apoptotic B-cell lymphoma 2 family member NOXA in chronic lymphocytic leukemia cells. Furthermore, fluorizoline synergized with ibrutinib, 5-aminoimidazole-4-carboxamide riboside or venetoclax to induce apoptosis. These results suggest that targeting prohibitins could be a new therapeutic strategy for chronic lymphocytic leukemia.
Collapse
Affiliation(s)
- Ana M Cosialls
- Departament de Ciències Fisiològiques, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona-IDIBELL (Institut d'Investigació Biomèdica de Bellvitge), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Helena Pomares
- Departament de Ciències Fisiològiques, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona-IDIBELL (Institut d'Investigació Biomèdica de Bellvitge), L'Hospitalet de Llobregat, Barcelona, Spain.,Servei d'Hematologia Clínica, Institut Català d'Oncologia (ICO)-IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Daniel Iglesias-Serret
- Departament de Ciències Fisiològiques, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona-IDIBELL (Institut d'Investigació Biomèdica de Bellvitge), L'Hospitalet de Llobregat, Barcelona, Spain
| | - José Saura-Esteller
- Departament de Ciències Fisiològiques, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona-IDIBELL (Institut d'Investigació Biomèdica de Bellvitge), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Sonia Núñez-Vázquez
- Departament de Ciències Fisiològiques, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona-IDIBELL (Institut d'Investigació Biomèdica de Bellvitge), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Diana M González-Gironès
- Departament de Ciències Fisiològiques, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona-IDIBELL (Institut d'Investigació Biomèdica de Bellvitge), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Esmeralda de la Banda
- Unitat de Citohematologia, Servei d'Anatomia Patològica, Hospital Universitari de Bellvitge (HUB)-IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Sara Preciado
- Department of Organic Chemistry, University of Barcelona, Spain
| | - Fernando Albericio
- Department of Organic Chemistry, University of Barcelona, Spain.,CIBER-BBN, Networking Centre on Bioengineering, Biomaterials and Nanomedicine, Barcelona Science Park, Spain.,School of Chemistry & Physics, University of KwaZulu-Natal, Durban, South Africa
| | - Rodolfo Lavilla
- CIBER-BBN, Networking Centre on Bioengineering, Biomaterials and Nanomedicine, Barcelona Science Park, Spain.,Laboratory of Organic Chemistry, Faculty of Pharmacy, University of Barcelona, Spain
| | - Gabriel Pons
- Departament de Ciències Fisiològiques, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona-IDIBELL (Institut d'Investigació Biomèdica de Bellvitge), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Eva M González-Barca
- Servei d'Hematologia Clínica, Institut Català d'Oncologia (ICO)-IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Joan Gil
- Departament de Ciències Fisiològiques, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona-IDIBELL (Institut d'Investigació Biomèdica de Bellvitge), L'Hospitalet de Llobregat, Barcelona, Spain
| |
Collapse
|
124
|
Staines K, Poulet B, Wentworth D, Pitsillides A. The STR/ort mouse model of spontaneous osteoarthritis - an update. Osteoarthritis Cartilage 2017; 25:802-808. [PMID: 27965138 PMCID: PMC5446355 DOI: 10.1016/j.joca.2016.12.014] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 11/30/2016] [Accepted: 12/07/2016] [Indexed: 02/02/2023]
Abstract
Osteoarthritis is a degenerative joint disease and a world-wide healthcare burden. Characterized by cartilage degradation, subchondral bone thickening and osteophyte formation, osteoarthritis inflicts much pain and suffering, for which there are currently no disease-modifying treatments available. Mouse models of osteoarthritis are proving critical in advancing our understanding of the underpinning molecular mechanisms. The STR/ort mouse is a well-recognized model which develops a natural form of osteoarthritis very similar to the human disease. In this Review we discuss the use of the STR/ort mouse in understanding this multifactorial disease with an emphasis on recent advances in its genetics and its bone, endochondral and immune phenotypes.
Collapse
Affiliation(s)
- K.A. Staines
- Roslin Institute and R(D)SVS, The University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK,School of Applied Sciences, Edinburgh Napier University, Sighthill Campus, Edinburgh, EH11 4BN, UK,Address correspondence and reprint requests to: K.A. Staines, School of Applied Sciences, Edinburgh Napier University, Sighthill Campus, Edinburgh EH11 4BN, UK.Edinburgh Napier UniversitySchool of Applied SciencesSighthill CampusEdinburghEH11 4BNUK
| | - B. Poulet
- Institute of Ageing and Chronic Diseases, Musculoskeletal Biology 1, University of Liverpool, Room 286, Second Floor, William Henry Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, UK
| | - D.N. Wentworth
- The Royal Veterinary College, Royal College Street, London, NW1 0TU, UK
| | - A.A. Pitsillides
- The Royal Veterinary College, Royal College Street, London, NW1 0TU, UK
| |
Collapse
|
125
|
Ising C, Bharill P, Brinkkoetter S, Brähler S, Schroeter C, Koehler S, Hagmann H, Merkwirth C, Höhne M, Müller RU, Fabretti F, Schermer B, Bloch W, Kerjaschki D, Kurschat CE, Benzing T, Brinkkoetter PT. Prohibitin-2 Depletion Unravels Extra-Mitochondrial Functions at the Kidney Filtration Barrier. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 186:1128-39. [PMID: 27105734 DOI: 10.1016/j.ajpath.2015.12.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 12/16/2015] [Accepted: 12/22/2015] [Indexed: 10/21/2022]
Abstract
Mitochondrial fusion is essential for maintenance of mitochondrial function and requires the prohibitin ring complex subunit prohibitin-2 (PHB2) at the mitochondrial inner membrane. Loss of the stomatin/PHB/flotillin/HflK/C (SPFH) domain containing protein PHB2 causes mitochondrial dysfunction and defective mitochondria-mediated signaling, which is implicated in a variety of human diseases, including progressive renal disease. Here, we provide evidence of additional, extra-mitochondrial functions of this membrane-anchored protein. Immunofluorescence and immunogold labeling detected PHB2 at mitochondrial membranes and at the slit diaphragm, a specialized cell junction at the filtration slit of glomerular podocytes. PHB2 coprecipitated with podocin, another SPFH domain-containing protein, essential for the assembly of the slit diaphragm protein-lipid supercomplex. Consistent with an evolutionarily conserved extra-mitochondrial function, the ortholog of PHB2 in Caenorhabditis elegans was also not restricted to mitochondria but colocalized with the mechanosensory complex that requires the podocin ortholog MEC2 for assembly. Knockdown of phb-2 partially phenocopied loss of mec-2 in touch neurons of the nematode, resulting in impaired gentle touch sensitivity. Collectively, these data indicate that, besides its established role in mitochondria, PHB2 may have an additional function in conserved protein-lipid complexes at the plasma membrane.
Collapse
Affiliation(s)
- Christina Ising
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany; Department of Neurology, Hope Center for Neurological Disorders, Charles F. and Joanne Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, Missouri
| | - Puneet Bharill
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Sibylle Brinkkoetter
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Sebastian Brähler
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany; Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri
| | - Christina Schroeter
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Sybille Koehler
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Henning Hagmann
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Carsten Merkwirth
- Institute for Genetics, University of Cologne, Cologne, Germany; Howard Hughes Medical Institute, University of California Berkeley, Berkeley, California
| | - Martin Höhne
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany; Cologne Cluster of Excellence on Cellular Stress Responses in Ageing-Associated Diseases (CECAD) and Systems Biology of Ageing Cologne (Sybacol), Cologne, Germany
| | - Roman U Müller
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany; Cologne Cluster of Excellence on Cellular Stress Responses in Ageing-Associated Diseases (CECAD) and Systems Biology of Ageing Cologne (Sybacol), Cologne, Germany
| | - Francesca Fabretti
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Bernhard Schermer
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany; Cologne Cluster of Excellence on Cellular Stress Responses in Ageing-Associated Diseases (CECAD) and Systems Biology of Ageing Cologne (Sybacol), Cologne, Germany
| | - Wilhelm Bloch
- Institute of Cardiovascular Research and Sport Medicine, Department of Molecular and Cellular Sport Medicine, German Sport University Cologne, Cologne, Germany
| | - Dontscho Kerjaschki
- Clinical Institute of Pathology, Medical University of Vienna, Vienna, Austria
| | - Christine E Kurschat
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany; Cologne Cluster of Excellence on Cellular Stress Responses in Ageing-Associated Diseases (CECAD) and Systems Biology of Ageing Cologne (Sybacol), Cologne, Germany
| | - Thomas Benzing
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany; Cologne Cluster of Excellence on Cellular Stress Responses in Ageing-Associated Diseases (CECAD) and Systems Biology of Ageing Cologne (Sybacol), Cologne, Germany
| | - Paul T Brinkkoetter
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany.
| |
Collapse
|
126
|
Rampelt H, Zerbes RM, van der Laan M, Pfanner N. Role of the mitochondrial contact site and cristae organizing system in membrane architecture and dynamics. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:737-746. [DOI: 10.1016/j.bbamcr.2016.05.020] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 05/12/2016] [Accepted: 05/17/2016] [Indexed: 12/22/2022]
|
127
|
Cardiolipin and mitochondrial cristae organization. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:1156-1163. [PMID: 28336315 DOI: 10.1016/j.bbamem.2017.03.013] [Citation(s) in RCA: 226] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 03/03/2017] [Accepted: 03/18/2017] [Indexed: 11/23/2022]
Abstract
A fundamental question in cell biology, under investigation for over six decades, is the structural organization of mitochondrial cristae. Long known to harbor electron transport chain proteins, crista membrane integrity is key to establishment of the proton gradient that drives oxidative phosphorylation. Visualization of cristae morphology by electron microscopy/tomography has provided evidence that cristae are tube-like extensions of the mitochondrial inner membrane (IM) that project into the matrix space. Reconciling ultrastructural data with the lipid composition of the IM provides support for a continuously curved cylindrical bilayer capped by a dome-shaped tip. Strain imposed by the degree of curvature is relieved by an asymmetric distribution of phospholipids in monolayer leaflets that comprise cristae membranes. The signature mitochondrial lipid, cardiolipin (~18% of IM phospholipid mass), and phosphatidylethanolamine (34%) segregate to the negatively curved monolayer leaflet facing the crista lumen while the opposing, positively curved, matrix-facing monolayer leaflet contains predominantly phosphatidylcholine. Associated with cristae are numerous proteins that function in distinctive ways to establish and/or maintain their lipid repertoire and structural integrity. By combining unique lipid components with a set of protein modulators, crista membranes adopt and maintain their characteristic morphological and functional properties. Once established, cristae ultrastructure has a direct impact on oxidative phosphorylation, apoptosis, fusion/fission as well as diseases of compromised energy metabolism.
Collapse
|
128
|
Lee H, Smith SB, Yoon Y. The short variant of the mitochondrial dynamin OPA1 maintains mitochondrial energetics and cristae structure. J Biol Chem 2017; 292:7115-7130. [PMID: 28298442 DOI: 10.1074/jbc.m116.762567] [Citation(s) in RCA: 144] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 03/15/2017] [Indexed: 01/06/2023] Open
Abstract
The protein optic atrophy 1 (OPA1) is a dynamin-related protein associated with the inner mitochondrial membrane and functions in mitochondrial inner membrane fusion and cristae maintenance. Inner membrane-anchored long OPA1 (L-OPA1) undergoes proteolytic cleavage resulting in short OPA1 (S-OPA1). It is often thought that S-OPA1 is a functionally insignificant proteolytic product of L-OPA1 because the accumulation of S-OPA1 due to L-OPA1 cleavage is observed in mitochondrial fragmentation and dysfunction. However, cells contain a mixture of both L- and S-OPA1 in normal conditions, suggesting the functional significance of maintaining both OPA1 forms, but the differential roles of L- and S-OPA1 in mitochondrial fusion and energetics are ill-defined. Here, we examined mitochondrial fusion and energetic activities in cells possessing L-OPA1 alone, S-OPA1 alone, or both L- and S-OPA1. Using a mitochondrial fusion assay, we established that L-OPA1 confers fusion competence, whereas S-OPA1 does not. Remarkably, we found that S-OPA1 alone without L-OPA1 can maintain oxidative phosphorylation function as judged by growth in oxidative phosphorylation-requiring media, respiration measurements, and levels of the respiratory complexes. Most strikingly, S-OPA1 alone maintained normal mitochondrial cristae structure, which has been commonly assumed to be the function of OPA1 oligomers containing both L- and S-OPA1. Furthermore, we found that the GTPase activity of OPA1 is critical for maintaining cristae tightness and thus energetic competency. Our results demonstrate that, contrary to conventional notion, S-OPA1 is fully competent for maintaining mitochondrial energetics and cristae structure.
Collapse
Affiliation(s)
| | - Sylvia B Smith
- Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, Georgia 30912
| | | |
Collapse
|
129
|
Gu MM, Kong JR, Peng T, Xie CY, Yang KY, Liu Y, Wang WN. Molecular characterization and function of the Prohibitin2 gene in Litopenaeus vannamei responses to Vibrio alginolyticus. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 67:177-188. [PMID: 27756688 DOI: 10.1016/j.dci.2016.10.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 10/13/2016] [Accepted: 10/14/2016] [Indexed: 06/06/2023]
Abstract
Prohibitin2 (PHB2), a potential tumor suppressor protein, plays important roles in inhibition of cell cycle progression, transcriptional regulation, apoptosis and the mitochondrial respiratory chain. To explore its potential roles in crustaceans' immune responses we have identified and characterized LvPHB2, a 891 bp gene encoding a 297 amino acids protein in the shrimp Litopenaeus vannamei. Expression analyses showed that LvPHB2 is expressed in all examined tissues, and largely present in cytoplasm, correlating with its known anti-oxidation function in mitochondria. Luciferase reporter assays showed that over-expression of LvPHB2 could activate the p53 pathway, indicating that it might participate in apoptosis regulation. Quantitative real-time PCR revealed that infection with Vibrio alginolyticus induces its up-regulation in hepatopancreas. Moreover, RNAi knock-down of LvPHB2 in vivo raises mortality rates of L. vannamei infected by V. alginolyticus, and affects expression of STAT3, Caspase3 and p53 genes. We found significantly higher reactive oxygen species production, DNA damage and apoptosis rates in LvPHB2-silenced shrimp challenged with V. alginolyticus than in controls injected with a Green Fluorescent Protein-silencing construct. Our results suggest that LvPHB2 plays a vital role in shrimp responses to V. alginolyticus infection through its participation in regulation of oxidants and apoptosis.
Collapse
Affiliation(s)
- Mei-Mei Gu
- Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou 510631, PR China
| | - Jing-Rong Kong
- Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou 510631, PR China
| | - Ting Peng
- Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou 510631, PR China
| | - Chen-Ying Xie
- Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou 510631, PR China
| | - Kai-Yuan Yang
- Guangdong Experimental School, Guangzhou 510375, PR China
| | - Yuan Liu
- Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou 510631, PR China
| | - Wei-Na Wang
- Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou 510631, PR China.
| |
Collapse
|
130
|
Minimal change nephrotic syndrome and prohibitin-2 gene polymorphism. Clin Exp Nephrol 2016; 21:665-670. [PMID: 27812762 DOI: 10.1007/s10157-016-1325-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 08/14/2016] [Indexed: 01/01/2023]
Abstract
BACKGROUND Patients with minimal change nephrotic syndrome (MCNS) often also have allergic diseases. Abnormalities of Th2-derived cytokines and T-cell functions contribute to development of these diseases. On the other hand, imbalances between reactive oxygen species (ROS) and antioxidants have been implicated in MCNS and progression of atopic dermatitis. ROS, produced mainly within mitochondria, subject cells to oxidative stress, while prohibitin 2 protects mitochondria by increasing tolerance to ROS. Additionally, podocin, a member of the slit diaphragm protein complex, contains PHB-like domain that serves as a signaling platform regulating podocyte function through associated transmembrane proteins. PATIENTS AND METHOD Then, we performed exome sequencing analysis in five patients with frequently relapsing their MCNS associated with allergic disease and serum IgE concentrations of 2000 IU/L or higher. RESULTS We detected a heterozygous prohibitin 2 polymorphism, c.873-3_873-2 delCA (rs111523336), in 1 patient. This mutation in exon 9 caused frameshifts in regions connected to splicing sites, where they could disrupt transcription of prohibitin 2. Frequency of this polymorphism in exon 9 is 7.3% among Japanese. Increase in peripheral blood ROS even MCNS remission state suggests the heterozygous prohibitin 2 variant may contribute to give more susceptibility towards the recurrence of MCNS as well as atopic skin disease. This increase may have progression of atopic dermatitis, which sometimes heralded. CONCLUSION The prohibitin-2 polymorphism may reduce ROS tolerance in glomerular epithelium and led to high local exposure to ROS, increasing permeability of the glomerular basement membrane to result in proteinuria. Imbalance between ROS and antioxidants together with failure of signal transduction in the glomerular slit membrane caused by prohibitin 2 abnormality could have contributed to nephrotic syndrome in our patients. Prohibitin 2 analysis is needed in additional MCNS patients with concomitant allergic disease.
Collapse
|
131
|
Wai T, Saita S, Nolte H, Müller S, König T, Richter-Dennerlein R, Sprenger HG, Madrenas J, Mühlmeister M, Brandt U, Krüger M, Langer T. The membrane scaffold SLP2 anchors a proteolytic hub in mitochondria containing PARL and the i-AAA protease YME1L. EMBO Rep 2016; 17:1844-1856. [PMID: 27737933 DOI: 10.15252/embr.201642698] [Citation(s) in RCA: 137] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 09/13/2016] [Accepted: 09/15/2016] [Indexed: 02/05/2023] Open
Abstract
The SPFH (stomatin, prohibitin, flotillin, HflC/K) superfamily is composed of scaffold proteins that form ring-like structures and locally specify the protein-lipid composition in a variety of cellular membranes. Stomatin-like protein 2 (SLP2) is a member of this superfamily that localizes to the mitochondrial inner membrane (IM) where it acts as a membrane organizer. Here, we report that SLP2 anchors a large protease complex composed of the rhomboid protease PARL and the i-AAA protease YME1L, which we term the SPY complex (for SLP2-PARL-YME1L). Association with SLP2 in the SPY complex regulates PARL-mediated processing of PTEN-induced kinase PINK1 and the phosphatase PGAM5 in mitochondria. Moreover, SLP2 inhibits the stress-activated peptidase OMA1, which can bind to SLP2 and cleaves PGAM5 in depolarized mitochondria. SLP2 restricts OMA1-mediated processing of the dynamin-like GTPase OPA1 allowing stress-induced mitochondrial hyperfusion under starvation conditions. Together, our results reveal an important role of SLP2 membrane scaffolds for the spatial organization of IM proteases regulating mitochondrial dynamics, quality control, and cell survival.
Collapse
Affiliation(s)
- Timothy Wai
- Institute for Genetics Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), and University of Cologne, Cologne, Germany
| | - Shotaro Saita
- Institute for Genetics Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), and University of Cologne, Cologne, Germany
| | - Hendrik Nolte
- Institute for Genetics Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), and University of Cologne, Cologne, Germany
| | - Sebastian Müller
- Institute for Genetics Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), and University of Cologne, Cologne, Germany
| | - Tim König
- Institute for Genetics Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), and University of Cologne, Cologne, Germany
| | - Ricarda Richter-Dennerlein
- Institute for Genetics Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), and University of Cologne, Cologne, Germany
| | - Hans-Georg Sprenger
- Institute for Genetics Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), and University of Cologne, Cologne, Germany
| | - Joaquin Madrenas
- Microbiome and Disease Tolerance Centre, Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
| | - Mareike Mühlmeister
- Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Ulrich Brandt
- Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Marcus Krüger
- Institute for Genetics Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), and University of Cologne, Cologne, Germany
| | - Thomas Langer
- Institute for Genetics Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), and University of Cologne, Cologne, Germany .,Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| |
Collapse
|
132
|
Bach LA. Current ideas on the biology of IGFBP-6: More than an IGF-II inhibitor? Growth Horm IGF Res 2016; 30-31:81-86. [PMID: 27681092 DOI: 10.1016/j.ghir.2016.09.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 09/15/2016] [Accepted: 09/22/2016] [Indexed: 12/22/2022]
Abstract
IGFBP-6 binds IGF-II with higher affinity than IGF-I and it is a relatively specific inhibitor of IGF-II actions. More recently, IGFBP-6 has also been reported to have IGF-independent effects on cell proliferation, survival, differentiation and migration. IGFBP-6 binds to several ligands in the extracellular space, cytoplasm and nucleus. These interactions, together with activation of distinct intracellular signaling pathways, may contribute to its IGF-independent actions; for example, IGF-independent migration induced by IGFBP-6 involves interaction with prohibitin-2 and activation of MAP kinase pathways. A major challenge for the future is delineating the relative roles of the IGF-dependent and -independent actions of IGFBP-6, which may lead to the development of therapeutic approaches for diseases including cancer.
Collapse
Affiliation(s)
- Leon A Bach
- Department of Medicine (Alfred), Monash University, Prahran 3181, Australia; Department of Endocrinology and Diabetes, Alfred Hospital, Melbourne 3004, Australia.
| |
Collapse
|
133
|
Barbot M, Meinecke M. Reconstitutions of mitochondrial inner membrane remodeling. J Struct Biol 2016; 196:20-28. [DOI: 10.1016/j.jsb.2016.07.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 07/20/2016] [Accepted: 07/21/2016] [Indexed: 02/03/2023]
|
134
|
Moncunill-Massaguer C, Saura-Esteller J, Pérez-Perarnau A, Palmeri CM, Núñez-Vázquez S, Cosialls AM, González-Gironès DM, Pomares H, Korwitz A, Preciado S, Albericio F, Lavilla R, Pons G, Langer T, Iglesias-Serret D, Gil J. A novel prohibitin-binding compound induces the mitochondrial apoptotic pathway through NOXA and BIM upregulation. Oncotarget 2016; 6:41750-65. [PMID: 26497683 PMCID: PMC4747186 DOI: 10.18632/oncotarget.6154] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 09/30/2015] [Indexed: 01/08/2023] Open
Abstract
We previously described diaryl trifluorothiazoline compound 1a (hereafter referred to as fluorizoline) as a first-in-class small molecule that induces p53-independent apoptosis in a wide range of tumor cell lines. Fluorizoline directly binds to prohibitin 1 and 2 (PHBs), two proteins involved in the regulation of several cellular processes, including apoptosis. Here we demonstrate that fluorizoline-induced apoptosis is mediated by PHBs, as cells depleted of these proteins are highly resistant to fluorizoline treatment. In addition, BAX and BAK are necessary for fluorizoline-induced cytotoxic effects, thereby proving that apoptosis occurs through the intrinsic pathway. Expression analysis revealed that fluorizoline induced the upregulation of Noxa and Bim mRNA levels, which was not observed in PHB-depleted MEFs. Finally, Noxa−/−/Bim−/− MEFs and NOXA-downregulated HeLa cells were resistant to fluorizoline-induced apoptosis. All together, these findings show that fluorizoline requires PHBs to execute the mitochondrial apoptotic pathway.
Collapse
Affiliation(s)
- Cristina Moncunill-Massaguer
- Departament de Ciències Fisiològiques II, Universitat de Barcelona-Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Catalunya, Spain
| | - José Saura-Esteller
- Departament de Ciències Fisiològiques II, Universitat de Barcelona-Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Catalunya, Spain
| | - Alba Pérez-Perarnau
- Departament de Ciències Fisiològiques II, Universitat de Barcelona-Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Catalunya, Spain
| | - Claudia Mariela Palmeri
- Departament de Ciències Fisiològiques II, Universitat de Barcelona-Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Catalunya, Spain
| | - Sonia Núñez-Vázquez
- Departament de Ciències Fisiològiques II, Universitat de Barcelona-Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Catalunya, Spain
| | - Ana M Cosialls
- Departament de Ciències Fisiològiques II, Universitat de Barcelona-Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Catalunya, Spain
| | - Diana M González-Gironès
- Departament de Ciències Fisiològiques II, Universitat de Barcelona-Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Catalunya, Spain
| | - Helena Pomares
- Departament de Ciències Fisiològiques II, Universitat de Barcelona-Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Catalunya, Spain
| | - Anne Korwitz
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Sara Preciado
- Barcelona Science Park and CIBER-BBN, Networking Centre on Bioengineering, Biomaterials and Nanomedicine, Barcelona, Spain
| | - Fernando Albericio
- Barcelona Science Park and CIBER-BBN, Networking Centre on Bioengineering, Biomaterials and Nanomedicine, Barcelona, Spain.,Institute for Research in Biomedicine Barcelona, Barcelona, Spain.,Department of Organic Chemistry, University of Barcelona, Barcelona, Spain
| | - Rodolfo Lavilla
- Barcelona Science Park and CIBER-BBN, Networking Centre on Bioengineering, Biomaterials and Nanomedicine, Barcelona, Spain.,Laboratory of Organic Chemistry, Faculty of Pharmacy, University of Barcelona, Barcelona, Spain
| | - Gabriel Pons
- Departament de Ciències Fisiològiques II, Universitat de Barcelona-Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Catalunya, Spain
| | - Thomas Langer
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Daniel Iglesias-Serret
- Departament de Ciències Fisiològiques II, Universitat de Barcelona-Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Catalunya, Spain
| | - Joan Gil
- Departament de Ciències Fisiològiques II, Universitat de Barcelona-Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Catalunya, Spain
| |
Collapse
|
135
|
Biosynthesis, remodeling and turnover of mitochondrial cardiolipin. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1862:3-7. [PMID: 27556952 DOI: 10.1016/j.bbalip.2016.08.010] [Citation(s) in RCA: 149] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 08/03/2016] [Accepted: 08/17/2016] [Indexed: 12/15/2022]
Abstract
Among mitochondrial lipids, cardiolipin occupies a unique place. It is the only phospholipid that is specific to mitochondria and although it is merely a minor component, accounting for 10-20% of the total phospholipid content, cardiolipin plays an important role in the molecular organization, and thus the function of the cristae. This review covers the formation of cardiolipin, a phospholipid dimer containing two phosphatidyl residues, and its assembly into mitochondrial membranes. While a large body of literature exists on this topic, the review focuses on papers that appeared in the past three years. This article is part of a Special Issue entitled: Lipids of Mitochondria edited by Guenther Daum.
Collapse
|
136
|
Intramitochondrial phospholipid trafficking. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1862:81-89. [PMID: 27542541 DOI: 10.1016/j.bbalip.2016.08.006] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 08/03/2016] [Accepted: 08/11/2016] [Indexed: 12/29/2022]
Abstract
Mitochondrial functions and architecture rely on a defined lipid composition of their outer and inner membranes, which are characterized by a high content of non-bilayer phospholipids such as cardiolipin (CL) and phosphatidylethanolamine (PE). Mitochondrial membrane lipids are synthesized in the endoplasmic reticulum (ER) or within mitochondria from ER-derived precursor lipids, are asymmetrically distributed within mitochondria and can relocate in response to cellular stress. Maintenance of lipid homeostasis thus requires multiple lipid transport processes to be orchestrated within mitochondria. Recent findings identified members of the Ups/PRELI family as specific lipid transfer proteins in mitochondria that shuttle phospholipids between mitochondrial membranes. They cooperate with membrane organizing proteins that preserve the spatial organization of mitochondrial membranes and the formation of membrane contact sites, unravelling an intimate crosstalk of membrane lipid transport and homeostasis with the structural organization of mitochondria. This article is part of a Special Issue entitled: Lipids of Mitochondria edited by Guenther Daum.
Collapse
|
137
|
Korwitz A, Merkwirth C, Richter-Dennerlein R, Tröder SE, Sprenger HG, Quirós PM, López-Otín C, Rugarli EI, Langer T. Loss of OMA1 delays neurodegeneration by preventing stress-induced OPA1 processing in mitochondria. J Cell Biol 2016; 212:157-66. [PMID: 26783299 PMCID: PMC4738383 DOI: 10.1083/jcb.201507022] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Loss of OMA1 in a mouse model of neurodegeneration stabilizes fusion-active L-OPA1, which supports neuronal survival by preventing apoptosis, independent of its effects on cristae morphogenesis. Proteolytic cleavage of the dynamin-like guanosine triphosphatase OPA1 in mitochondria is emerging as a central regulatory hub that determines mitochondrial morphology under stress and in disease. Stress-induced OPA1 processing by OMA1 triggersmitochondrial fragmentation, which is associated with mitophagy and apoptosis in vitro. Here, we identify OMA1 as a critical regulator of neuronal survival in vivo and demonstrate that stress-induced OPA1 processing by OMA1 promotes neuronal death and neuroinflammatory responses. Using mice lacking prohibitin membrane scaffolds as a model of neurodegeneration, we demonstrate that additional ablation of Oma1 delays neuronal loss and prolongs lifespan. This is accompanied by the accumulation of fusion-active, long OPA1 forms, which stabilize the mitochondrial genome but do not preserve mitochondrial cristae or respiratory chain supercomplex assembly in prohibitin-depleted neurons. Thus, long OPA1 forms can promote neuronal survival independently of cristae shape, whereas stress-induced OMA1 activation and OPA1 cleavage limit mitochondrial fusion and promote neuronal death.
Collapse
Affiliation(s)
- Anne Korwitz
- Institute of Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, 50931 Cologne, Germany
| | - Carsten Merkwirth
- Institute of Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, 50931 Cologne, Germany
| | - Ricarda Richter-Dennerlein
- Institute of Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, 50931 Cologne, Germany
| | - Simon E Tröder
- Institute of Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, 50931 Cologne, Germany
| | - Hans-Georg Sprenger
- Institute of Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, 50931 Cologne, Germany
| | - Pedro M Quirós
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Oncología, Universidad de Oviedo, Oviedo 33006, Spain
| | - Carlos López-Otín
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Oncología, Universidad de Oviedo, Oviedo 33006, Spain
| | - Elena I Rugarli
- Institute of Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, 50931 Cologne, Germany Center for Molecular Medicine, University of Cologne, 50931 Cologne, Germany
| | - Thomas Langer
- Institute of Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, 50931 Cologne, Germany Center for Molecular Medicine, University of Cologne, 50931 Cologne, Germany Max Planck Institute for Biology of Aging, 50931 Cologne, Germany
| |
Collapse
|
138
|
Ande SR, Nguyen KH, Nyomba BLG, Mishra S. Prohibitin in Adipose and Immune Functions. Trends Endocrinol Metab 2016; 27:531-541. [PMID: 27312736 DOI: 10.1016/j.tem.2016.05.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 05/11/2016] [Accepted: 05/17/2016] [Indexed: 12/17/2022]
Abstract
Prohibitin (PHB) was discovered in a quest to find genes with antiproliferative functions. However, the attribute of PHB that is responsible for its antiproliferative function remains elusive. Meanwhile, recent studies have established PHB as a pleiotropic protein with roles in metabolism, immunity, and senescence. PHB has cell compartment-specific functions, acting as a scaffolding protein in mitochondria, an adaptor molecule in membrane signaling, and a transcriptional coregulator in the nucleus. However, it remains unclear whether different functions and locations of PHB are interrelated or independent from each other, or if PHB works in a tissue-specific manner. Here, we discuss new findings on the role of PHB in adipose-immune interaction and an unexpected role in sex differences in adipose and immune functions.
Collapse
Affiliation(s)
- Sudharsana R Ande
- Department of Internal Medicine, University of Manitoba, Winnipeg, Canada
| | - K Hoa Nguyen
- Department of Internal Medicine, University of Manitoba, Winnipeg, Canada
| | | | - Suresh Mishra
- Department of Internal Medicine, University of Manitoba, Winnipeg, Canada; Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Canada.
| |
Collapse
|
139
|
van der Laan M, Horvath SE, Pfanner N. Mitochondrial contact site and cristae organizing system. Curr Opin Cell Biol 2016; 41:33-42. [DOI: 10.1016/j.ceb.2016.03.013] [Citation(s) in RCA: 133] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Revised: 03/19/2016] [Accepted: 03/23/2016] [Indexed: 10/22/2022]
|
140
|
Zhang H, Ryu D, Wu Y, Gariani K, Wang X, Luan P, D'Amico D, Ropelle ER, Lutolf MP, Aebersold R, Schoonjans K, Menzies KJ, Auwerx J. NAD⁺ repletion improves mitochondrial and stem cell function and enhances life span in mice. Science 2016; 352:1436-43. [PMID: 27127236 DOI: 10.1126/science.aaf2693] [Citation(s) in RCA: 890] [Impact Index Per Article: 98.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 04/13/2016] [Indexed: 12/12/2022]
Abstract
Adult stem cells (SCs) are essential for tissue maintenance and regeneration yet are susceptible to senescence during aging. We demonstrate the importance of the amount of the oxidized form of cellular nicotinamide adenine dinucleotide (NAD(+)) and its effect on mitochondrial activity as a pivotal switch to modulate muscle SC (MuSC) senescence. Treatment with the NAD(+) precursor nicotinamide riboside (NR) induced the mitochondrial unfolded protein response and synthesis of prohibitin proteins, and this rejuvenated MuSCs in aged mice. NR also prevented MuSC senescence in the mdx (C57BL/10ScSn-Dmd(mdx)/J) mouse model of muscular dystrophy. We furthermore demonstrate that NR delays senescence of neural SCs and melanocyte SCs and increases mouse life span. Strategies that conserve cellular NAD(+) may reprogram dysfunctional SCs and improve life span in mammals.
Collapse
Affiliation(s)
- Hongbo Zhang
- Laboratory of Integrative and Systems Physiology, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Dongryeol Ryu
- Laboratory of Integrative and Systems Physiology, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Yibo Wu
- Department of Biology, Institute of Molecular Systems Biology, Eidgenössische Technische Hochschule Zürich (ETHZ), 8093 Zurich, Switzerland
| | - Karim Gariani
- Laboratory of Integrative and Systems Physiology, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Xu Wang
- Laboratory of Integrative and Systems Physiology, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Peiling Luan
- Laboratory of Integrative and Systems Physiology, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Davide D'Amico
- Laboratory of Integrative and Systems Physiology, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Eduardo R Ropelle
- Laboratory of Integrative and Systems Physiology, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland. Laboratory of Molecular Biology of Exercise, School of Applied Science, University of Campinas, CEP 13484-350 Limeira, São Paulo, Brazil
| | - Matthias P Lutolf
- Laboratory of Stem Cell Bioengineering, EPFL, 1015 Lausanne, Switzerland
| | - Ruedi Aebersold
- Department of Biology, Institute of Molecular Systems Biology, Eidgenössische Technische Hochschule Zürich (ETHZ), 8093 Zurich, Switzerland. Faculty of Science, University of Zurich, 8057 Zurich, Switzerland
| | | | - Keir J Menzies
- Laboratory of Integrative and Systems Physiology, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland. Interdisciplinary School of Health Sciences, University of Ottawa Brain and Mind Research Institute, 451 Smyth Road, K1H 8M5 Ottawa, Ontario, Canada.
| | - Johan Auwerx
- Laboratory of Integrative and Systems Physiology, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| |
Collapse
|
141
|
Navein AE, Cooke EJ, Davies JR, Smith TG, Wells LHM, Ohazama A, Healy C, Sharpe PT, Evans SL, Evans BAJ, Votruba M, Wells T. Disrupted mitochondrial function in the Opa3L122P mouse model for Costeff Syndrome impairs skeletal integrity. Hum Mol Genet 2016; 25:2404-2416. [PMID: 27106103 PMCID: PMC5181626 DOI: 10.1093/hmg/ddw107] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 03/29/2016] [Accepted: 03/30/2016] [Indexed: 12/12/2022] Open
Abstract
Mitochondrial dysfunction connects metabolic disturbance with numerous pathologies, but the significance of mitochondrial activity in bone remains unclear. We have, therefore, characterized the skeletal phenotype in the Opa3L122P mouse model for Costeff syndrome, in which a missense mutation of the mitochondrial membrane protein, Opa3, impairs mitochondrial activity resulting in visual and metabolic dysfunction. Although widely expressed in the developing normal mouse head, Opa3 expression was restricted after E14.5 to the retina, brain, teeth and mandibular bone. Opa3 was also expressed in adult tibiae, including at the trabecular surfaces and in cortical osteocytes, epiphyseal chondrocytes, marrow adipocytes and mesenchymal stem cell rosettes. Opa3L122P mice displayed craniofacial abnormalities, including undergrowth of the lower mandible, accompanied in some individuals by cranial asymmetry and incisor malocclusion. Opa3L122P mice showed an 8-fold elevation in tibial marrow adiposity, due largely to increased adipogenesis. In addition, femoral length and cortical diameter and wall thickness were reduced, the weakening of the calcified tissue and the geometric component of strength reducing overall cortical strength in Opa3L122P mice by 65%. In lumbar vertebrae reduced vertebral body area and wall thickness were accompanied by a proportionate reduction in marrow adiposity. Although the total biomechanical strength of lumbar vertebrae was reduced by 35%, the strength of the calcified tissue (σmax) was proportionate to a 38% increase in trabecular number. Thus, mitochondrial function is important for the development and maintenance of skeletal integrity, impaired bone growth and strength, particularly in limb bones, representing a significant new feature of the Costeff syndrome phenotype.
Collapse
Affiliation(s)
- Alice E Navein
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK
| | - Esther J Cooke
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK
| | - Jennifer R Davies
- School of Optometry and Vision Sciences, Cardiff University, Cardiff CF24 4LU, UK
| | - Terence G Smith
- School of Optometry and Vision Sciences, Cardiff University, Cardiff CF24 4LU, UK
| | - Lois H M Wells
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK.,Caerleon Comprehensive School, Caerleon, Newport NP18 1NF, UK
| | - Atsushi Ohazama
- Department of Craniofacial Development and Stem Cell Biology, King's College London, Guy's Hospital, London SE1 9RT, UK
| | - Christopher Healy
- Department of Craniofacial Development and Stem Cell Biology, King's College London, Guy's Hospital, London SE1 9RT, UK
| | - Paul T Sharpe
- Department of Craniofacial Development and Stem Cell Biology, King's College London, Guy's Hospital, London SE1 9RT, UK
| | - Sam L Evans
- School of Engineering, Cardiff University, The Parade, Cardiff CF24 3AA, UK
| | - Bronwen A J Evans
- Institute of Molecular and Experimental Medicine, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK
| | - Marcela Votruba
- School of Optometry and Vision Sciences, Cardiff University, Cardiff CF24 4LU, UK.,Cardiff Eye Unit, University Hospital of Wales, Heath Park, Cardiff CF14 4XW, UK
| | - Timothy Wells
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK
| |
Collapse
|
142
|
Abstract
Human eukaryotic prohibitin (prohibitin-1 and prohibitin-2) is a membrane protein with different cellular localizations. It is involved in multiple cellular functions, including energy metabolism, proliferation, apoptosis, and senescence. The subcellular localization of prohibitin may determine its functions. Membrane prohibitin regulate the cellular signaling of membrane transport, nuclear prohibitin control transcription activation and the cell cycle, and mitochondrial prohibitin complex stabilize the mitochondrial genome and modulate mitochondrial dynamics, mitochondrial morphology, mitochondrial biogenesis, and the mitochondrial intrinsic apoptotic pathway. Moreover, prohibitin can translocates into the nucleus or the mitochondria under apoptotic signals and the subcellular shuttling of prohibitin is necessary for apoptosis process. Apoptosis is the process of programmed cell death that is important for the maintenance of normal physiological functions. Consequently, any alteration in the content, post-transcriptional modification (i.e. phosphorylation) or the nuclear or mitochondrial translocation of prohibitin may influence cell fate. Understanding the mechanisms of the expression and regulation of prohibitin may be useful for future research. This review provides an overview of the multifaceted and essential roles played by prohibitin in the regulation of cell survival and apoptosis.
Collapse
Affiliation(s)
- Ya-Ting Peng
- Department of Respiratory Medicine, Respiratory Disease Research Institute, Second XiangYa Hospital of Central South University, Changsha, 410011, People's Republic of China
| | | | | | | |
Collapse
|
143
|
Wideman JG, Muñoz-Gómez SA. The evolution of ERMIONE in mitochondrial biogenesis and lipid homeostasis: An evolutionary view from comparative cell biology. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:900-912. [PMID: 26825688 DOI: 10.1016/j.bbalip.2016.01.015] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Revised: 01/19/2016] [Accepted: 01/25/2016] [Indexed: 12/17/2022]
Abstract
The ER-mitochondria organizing network (ERMIONE) in Saccharomyces cerevisiae is involved in maintaining mitochondrial morphology and lipid homeostasis. ERMES and MICOS are two scaffolding complexes of ERMIONE that contribute to these processes. ERMES is ancient but has been lost in several lineages including animals, plants, and SAR (stramenopiles, alveolates and rhizaria). On the other hand, MICOS is ancient and has remained present in all organisms bearing mitochondrial cristae. The ERMIONE precursor evolved in the α-proteobacterial ancestor of mitochondria which had the central subunit of MICOS, Mic60. The subsequent evolution of ERMIONE and its interactors in eukaryotes reflects the integrative co-evolution of mitochondria and their hosts and the adaptive paths that some lineages have followed in their specialization to certain environments. By approaching the ERMIONE from a perspective of comparative evolutionary cell biology, we hope to shed light on not only its evolutionary history, but also how ERMIONE components may function in organisms other than S. cerevisiae. This article is part of a Special Issue entitled: The cellular lipid landscape edited by Tim P. Levine and Anant K. Menon.
Collapse
Affiliation(s)
| | - Sergio A Muñoz-Gómez
- Centre for Comparative Genomics and Evolutionary Bioinformatics, Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| |
Collapse
|
144
|
Chowdhury I, Thomas K, Thompson WE. Prohibitin( PHB) roles in granulosa cell physiology. Cell Tissue Res 2016; 363:19-29. [PMID: 26496733 PMCID: PMC4842340 DOI: 10.1007/s00441-015-2302-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 09/14/2015] [Indexed: 11/29/2022]
Abstract
Ovarian granulosa cells (GC) play an important role in the growth and development of the follicle in the process known as folliculogenesis. In the present review, we focus on recent developments in prohibitin (PHB) research in relation to GC physiological functions. PHB is a member of a highly conserved eukaryotic protein family containing the repressor of estrogen activity (REA)/stomatin/PHB/flotillin/HflK/C (SPFH) domain (also known as the PHB domain) found in diverse species from prokaryotes to eukaryotes. PHB is ubiquitously expressed in a circulating free form or is present in multiple cellular compartments including mitochondria, nucleus and plasma membrane. In mitochondria, PHB is anchored to the mitochondrial inner membrane and forms complexes with the ATPases associated with proteases having diverse cellular activities. PHB continuously shuttles between the mitochondria, cytosol and nucleus. In the nucleus, PHB interacts with various transcription factors and modulates transcriptional activity directly or through interactions with chromatin remodeling proteins. Many functions have been attributed to the mitochondrial and nuclear PHB complexes such as cellular differentiation, anti-proliferation, morphogenesis and maintenance of the functional integrity of the mitochondria. However, to date, the regulation of PHB expression patterns and GC physiological functions are not completely understood.
Collapse
Affiliation(s)
- Indrajit Chowdhury
- Department of Obstetrics and Gynecology, Reproductive Science Research Program, Morehouse School of Medicine, 720 Westview Drive Southwest, Atlanta, GA 30310, USA.
| | - Kelwyn Thomas
- Department of Neurobiology, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Winston E Thompson
- Department of Obstetrics and Gynecology, Reproductive Science Research Program, Morehouse School of Medicine, 720 Westview Drive Southwest, Atlanta, GA 30310, USA.
- Department of Physiology, Reproductive Science Research Program, Morehouse School of Medicine, 720 Westview Drive Southwest, Atlanta, GA 30310, USA.
| |
Collapse
|
145
|
Klecker T, Wemmer M, Haag M, Weig A, Böckler S, Langer T, Nunnari J, Westermann B. Interaction of MDM33 with mitochondrial inner membrane homeostasis pathways in yeast. Sci Rep 2015; 5:18344. [PMID: 26669658 PMCID: PMC4680886 DOI: 10.1038/srep18344] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 11/16/2015] [Indexed: 12/31/2022] Open
Abstract
Membrane homeostasis affects mitochondrial dynamics, morphology, and function. Here we report genetic and proteomic data that reveal multiple interactions of Mdm33, a protein essential for normal mitochondrial structure, with components of phospholipid metabolism and mitochondrial inner membrane homeostasis. We screened for suppressors of MDM33 overexpression-induced growth arrest and isolated binding partners by immunoprecipitation of cross-linked cell extracts. These approaches revealed genetic and proteomic interactions of Mdm33 with prohibitins, Phb1 and Phb2, which are key components of mitochondrial inner membrane homeostasis. Lipid profiling by mass spectrometry of mitochondria isolated from Mdm33-overexpressing cells revealed that high levels of Mdm33 affect the levels of phosphatidylethanolamine and cardiolipin, the two key inner membrane phospholipids. Furthermore, we show that cells lacking Mdm33 show strongly decreased mitochondrial fission activity indicating that Mdm33 is critical for mitochondrial membrane dynamics. Our data suggest that MDM33 functionally interacts with components important for inner membrane homeostasis and thereby supports mitochondrial division.
Collapse
Affiliation(s)
- Till Klecker
- Universität Bayreuth, Zellbiologie, 95440 Bayreuth, Germany
| | - Megan Wemmer
- University of California Davis, Department of Molecular and Cellular Biology, Davis, CA 95616, USA
| | - Mathias Haag
- Universität zu Köln, Institut für Genetik, 50931 Köln, Germany
| | - Alfons Weig
- Universität Bayreuth, DNA Analytik, 95440 Bayreuth, Germany
| | - Stefan Böckler
- Universität Bayreuth, Zellbiologie, 95440 Bayreuth, Germany
| | - Thomas Langer
- Universität zu Köln, Institut für Genetik, 50931 Köln, Germany
| | - Jodi Nunnari
- University of California Davis, Department of Molecular and Cellular Biology, Davis, CA 95616, USA
| | | |
Collapse
|
146
|
Abstract
Mitochondrial dynamics, fission and fusion, were first identified in yeast with investigation in heart cells beginning only in the last 5 to 7 years. In the ensuing time, it has become evident that these processes are not only required for healthy mitochondria, but also, that derangement of these processes contributes to disease. The fission and fusion proteins have a number of functions beyond the mitochondrial dynamics. Many of these functions are related to their membrane activities, such as apoptosis. However, other functions involve other areas of the mitochondria, such as OPA1's role in maintaining cristae structure and preventing cytochrome c leak, and its essential (at least a 10 kDa fragment of OPA1) role in mtDNA replication. In heart disease, changes in expression of these important proteins can have detrimental effects on mitochondrial and cellular function.
Collapse
Affiliation(s)
- A A Knowlton
- Molecular & Cellular Cardiology, Division of Cardiovascular Medicine and Pharmacology Department, University of California, Davis, and The Department of Veteran's Affairs, Northern California VA, Sacramento, California, USA
| | - T T Liu
- Molecular & Cellular Cardiology, Division of Cardiovascular Medicine and Pharmacology Department, University of California, Davis, and The Department of Veteran's Affairs, Northern California VA, Sacramento, California, USA
| |
Collapse
|
147
|
Ising C, Koehler S, Brähler S, Merkwirth C, Höhne M, Baris OR, Hagmann H, Kann M, Fabretti F, Dafinger C, Bloch W, Schermer B, Linkermann A, Brüning JC, Kurschat CE, Müller RU, Wiesner RJ, Langer T, Benzing T, Brinkkoetter PT. Inhibition of insulin/IGF-1 receptor signaling protects from mitochondria-mediated kidney failure. EMBO Mol Med 2015; 7:275-87. [PMID: 25643582 PMCID: PMC4364945 DOI: 10.15252/emmm.201404916] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Mitochondrial dysfunction and alterations in energy metabolism have been implicated in a variety of human diseases. Mitochondrial fusion is essential for maintenance of mitochondrial function and requires the prohibitin ring complex subunit prohibitin-2 (PHB2) at the mitochondrial inner membrane. Here, we provide a link between PHB2 deficiency and hyperactive insulin/IGF-1 signaling. Deletion of PHB2 in podocytes of mice, terminally differentiated cells at the kidney filtration barrier, caused progressive proteinuria, kidney failure, and death of the animals and resulted in hyperphosphorylation of S6 ribosomal protein (S6RP), a known mediator of the mTOR signaling pathway. Inhibition of the insulin/IGF-1 signaling system through genetic deletion of the insulin receptor alone or in combination with the IGF-1 receptor or treatment with rapamycin prevented hyperphosphorylation of S6RP without affecting the mitochondrial structural defect, alleviated renal disease, and delayed the onset of kidney failure in PHB2-deficient animals. Evidently, perturbation of insulin/IGF-1 receptor signaling contributes to tissue damage in mitochondrial disease, which may allow therapeutic intervention against a wide spectrum of diseases.
Collapse
Affiliation(s)
- Christina Ising
- Department II of Internal Medicine and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Sybille Koehler
- Department II of Internal Medicine and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Sebastian Brähler
- Department II of Internal Medicine and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Carsten Merkwirth
- Institute for Genetics, University of Cologne, Cologne, Germany Howard Hughes Medical Institute, University of California Berkeley, Berkeley, CA, USA
| | - Martin Höhne
- Department II of Internal Medicine and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany Cologne Cluster of Excellence on Cellular Stress Responses in Ageing-Associated Diseases (CECAD) and Systems Biology of Ageing Cologne (Sybacol) University of Cologne, Cologne, Germany
| | - Olivier R Baris
- Center for Physiology and Pathophysiology, Institute for Vegetative Physiology, University of Cologne, Cologne, Germany
| | - Henning Hagmann
- Department II of Internal Medicine and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Martin Kann
- Department II of Internal Medicine and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Francesca Fabretti
- Department II of Internal Medicine and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Claudia Dafinger
- Department II of Internal Medicine and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Wilhelm Bloch
- Department of Molecular and Cellular Sport Medicine, Institute of Cardiovascular Research and Sport Medicine, German Sport University Cologne, Cologne, Germany
| | - Bernhard Schermer
- Department II of Internal Medicine and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany Cologne Cluster of Excellence on Cellular Stress Responses in Ageing-Associated Diseases (CECAD) and Systems Biology of Ageing Cologne (Sybacol) University of Cologne, Cologne, Germany
| | - Andreas Linkermann
- Division of Nephrology and Hypertension, Christian-Albrechts-University, Kiel, Germany
| | - Jens C Brüning
- Cologne Cluster of Excellence on Cellular Stress Responses in Ageing-Associated Diseases (CECAD) and Systems Biology of Ageing Cologne (Sybacol) University of Cologne, Cologne, Germany Max Planck Institute for Metabolism Research, Cologne, Germany Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, Cologne, Germany
| | - Christine E Kurschat
- Department II of Internal Medicine and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany Cologne Cluster of Excellence on Cellular Stress Responses in Ageing-Associated Diseases (CECAD) and Systems Biology of Ageing Cologne (Sybacol) University of Cologne, Cologne, Germany
| | - Roman-Ulrich Müller
- Department II of Internal Medicine and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany Cologne Cluster of Excellence on Cellular Stress Responses in Ageing-Associated Diseases (CECAD) and Systems Biology of Ageing Cologne (Sybacol) University of Cologne, Cologne, Germany
| | - Rudolf J Wiesner
- Center for Physiology and Pathophysiology, Institute for Vegetative Physiology, University of Cologne, Cologne, Germany
| | - Thomas Langer
- Institute for Genetics, University of Cologne, Cologne, Germany Cologne Cluster of Excellence on Cellular Stress Responses in Ageing-Associated Diseases (CECAD) and Systems Biology of Ageing Cologne (Sybacol) University of Cologne, Cologne, Germany
| | - Thomas Benzing
- Department II of Internal Medicine and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany Cologne Cluster of Excellence on Cellular Stress Responses in Ageing-Associated Diseases (CECAD) and Systems Biology of Ageing Cologne (Sybacol) University of Cologne, Cologne, Germany
| | - Paul Thomas Brinkkoetter
- Department II of Internal Medicine and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| |
Collapse
|
148
|
Jin JM, Hou CC, Tan FQ, Yang WX. The potential function of prohibitin during spermatogenesis in Chinese fire-bellied newt Cynops orientalis. Cell Tissue Res 2015; 363:805-22. [PMID: 26384251 DOI: 10.1007/s00441-015-2280-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 08/24/2015] [Indexed: 11/27/2022]
Abstract
Prohibitin proteins are multifunctional proteins located mainly at the inner membrane of mitochondria expressed in universal species. They play a vital role in mitochondria's function, cell proteolysis, senescence, apoptosis and as a substrate for ubiquitination. In this study, we used PCR cloning, protein and nucleotide acids alignment, protein structure prediction, western blot, in situ hybridization and immunofluorescence to study the characteristics of the prohibitin gene and the potential role of prohibitin in spermatogenesis and spermiogenesis processes in the Chinese fire-bellied newt Cynops orientalis. First, we cloned a 1452-bp full-length cDNA from the testis of Cynops orientalis. Second, we found that the 272 amino acids of prohibitin have a SPFH family domain. Thirdly, the western blots showed high expression of prohibitin in testis while the protein size was approximately 32 kDa. Fourthly, the results of in situ hybridization and immunofluorescence experiments showed that most of the prohibitins travelled with the mitochondria's migration in Cynops orientalis. The quantities of mRNA decreased as spermiogenesis proceeded, although the signals of prohibitins existed during the whole period of spermatogenesis and spermiogenesis. In the mature germ cells, the signals of prohibitins were weak and aggregated at the end of the cell. Finally, we discovered that the Sertoli cells had a large quantity of prohibitins and we made several assumptions of prohibitins' potential roles in those cells. This is the first time that the relationship between mitochondria and prohibitin in different stages of the sperm cells in Cynops orientalis has been examined, which also revealed that Sertoli cells have abundant prohibitins.
Collapse
Affiliation(s)
- Jia-Min Jin
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, 866 Yu Hang Tang Road, Hangzhou, 310058, China
| | - Cong-Cong Hou
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, 866 Yu Hang Tang Road, Hangzhou, 310058, China
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Fu-Qing Tan
- The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Wan-Xi Yang
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, 866 Yu Hang Tang Road, Hangzhou, 310058, China.
| |
Collapse
|
149
|
Kim BA, Lim JY, Rhee JH, Kim YR. Characterization of Prohibitin 1 as a Host Partner of Vibrio vulnificus RtxA1 Toxin. J Infect Dis 2015; 213:131-8. [PMID: 26136468 DOI: 10.1093/infdis/jiv362] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 06/22/2015] [Indexed: 11/14/2022] Open
Abstract
RtxA1 toxin, which results in cytoskeletal rearrangement, contact cytotoxicity, hemolysis, tissue invasion, and lethality in mice, is the most potent cytotoxic virulence factor of Vibrio vulnificus. Bioinformatics analysis of rtxA1 predicted 4 functional domains that presumably performed discrete functions during host cell killing. V. vulnificus RtxA1 has a unique domain designated as RtxA1-D2, corresponding to amino acids 1951-2574, which is absent in Vibrio cholerae multifunctional-autoprocessing repeats-in-toxin, suggesting that this domain confers specific biological functions to V. vulnificus RtxA1. HeLa cells expressing green fluorescent protein-RtxA1-D2 became round and lost their viability. A yeast 2-hybrid system identified prohibitin (PHB) 1 as the host partner of RtxA1-D2. The specific interaction of RtxA1-D2 with PHB1 was confirmed by performing immunoprecipitation. Interestingly, V. vulnificus RtxA1 up-regulated PHB1 expression on the cytoplasmic membrane of host cells. Extracellular signal-regulated kinase and p38 mitogen-activated protein kinase pathways were confirmed as being important in the up-regulation of PHB1 by using inhibitors. Down-regulation of PHB1 by small interfering RNAs decreased the cytotoxicity of RtxA1-D2 against HeLa cells. The pretreatment of an anti-PHB1 antibody impaired the cytotoxicity of V. vulnificus RtxA1. These results suggest that the involvement PHB1 in the RtxA1 cytotoxicity has significant implications for the pathogenesis of V. vulnificus infections.
Collapse
Affiliation(s)
- Bo A Kim
- Clinical Vaccine R&D Center, Chonnam National University Hwasun Hospital, Chonnam National University Medical School
| | - Ju Young Lim
- College of Pharmacy, Chonnam National University, Gwangju, Korea
| | - Joon Haeng Rhee
- Clinical Vaccine R&D Center, Chonnam National University Hwasun Hospital, Chonnam National University Medical School
| | - Young Ran Kim
- College of Pharmacy, Chonnam National University, Gwangju, Korea
| |
Collapse
|
150
|
Piechota J, Bereza M, Sokołowska A, Suszyński K, Lech K, Jańska H. Unraveling the functions of type II-prohibitins in Arabidopsis mitochondria. PLANT MOLECULAR BIOLOGY 2015; 88:249-267. [PMID: 25896400 DOI: 10.1007/s11103-015-0320-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 04/07/2015] [Indexed: 06/04/2023]
Abstract
In yeast and mammals, prohibitins (PHBs) are considered as structural proteins that form a scaffold-like structure for interacting with a set of proteins involved in various processes occurring in the mitochondria. The role of PHB in plant mitochondria is poorly understood. In the study, the model organism Arabidopsis thaliana was used to identify the possible roles of type-II PHBs (homologs of yeast Phb2p) in plant mitochondria. The obtained results suggest that the plant PHB complex participates in the assembly of multisubunit complexes; namely, respiratory complex I and enzymatic complexes carrying lipoic acid as a cofactor (pyruvate dehydrogenase, 2-oxoglutarate dehydrogenase and glycine decarboxylase). PHBs physically interact with subunits of these complexes. Knockout of two Arabidopsis type-II prohibitins (AtPHB2 and AtPHB6) results in a decreased abundance of these complexes along with a reduction in mitochondrial acyl carrier proteins. Also, the absence of AtPHB2 and AtPHB6 influences the expression of the mitochondrial genome and leads to the activation of alternative respiratory pathways, namely alternative oxidase and external NADH-dependent alternative dehydrogenases.
Collapse
Affiliation(s)
- Janusz Piechota
- Department of Biotechnology, University of Wroclaw, F. Juliot-Curie 14a, 50-383, Wroclaw, Poland,
| | | | | | | | | | | |
Collapse
|