101
|
Le Guédard-Méreuze S, Vaché C, Baux D, Faugère V, Larrieu L, Abadie C, Janecke A, Claustres M, Roux AF, Tuffery-Giraud S. Ex vivo splicing assays of mutations at noncanonical positions of splice sites in USHER genes. Hum Mutat 2010; 31:347-55. [PMID: 20052763 DOI: 10.1002/humu.21193] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Molecular diagnosis in Usher syndrome type 1 and 2 patients led to the identification of 21 sequence variations located in noncanonical positions of splice sites in MYO7A, CDH23, USH1C, and USH2A genes. To establish experimentally the splicing pattern of these substitutions, whose impact on splicing is not always predictable by available softwares, ex vivo splicing assays were performed. The branch-point mapping strategy was also used to investigate further a putative branch-point mutation in USH2A intron 43. Aberrant splicing was demonstrated for 16 of the 21 (76.2%) tested sequence variations. The mutations resulted more frequently in activation of a nearby cryptic splice site or use of a de novo splice site than exon skipping (37.5%). This study allowed the reclassification as splicing mutations of one silent (c.7872G>A (p.Glu2624Glu) in CDH23) and four missense mutations (c.2993G>A (p.Arg998Lys) in USH2A, c.592G>A (p.Ala198Thr), c.3503G>C [p.Arg1168Pro], c.5944G>A (p.Gly1982Arg) in MYO7A), whereas it provided clues about a role in structure/function in four other cases: c.802G>A (p.Gly268Arg), c.653T>A (p.Val218Glu) (USH2A), and c.397C>T (p.His133Tyr), c.3502C>T (p.Arg1168Trp) (MYO7A). Our data provide insights into the contribution of splicing mutations in Usher genes and illustrate the need to define accurately their splicing outcome for diagnostic purposes.
Collapse
|
102
|
Llorian M, Schwartz S, Clark TA, Hollander D, Tan LY, Spellman R, Gordon A, Schweitzer AC, de la Grange P, Ast G, Smith CWJ. Position-dependent alternative splicing activity revealed by global profiling of alternative splicing events regulated by PTB. Nat Struct Mol Biol 2010; 17:1114-23. [PMID: 20711188 PMCID: PMC2933513 DOI: 10.1038/nsmb.1881] [Citation(s) in RCA: 210] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2010] [Accepted: 06/25/2010] [Indexed: 12/22/2022]
Abstract
To gain global insights into the role of the well-known repressive splicing regulator PTB, we analyzed the consequences of PTB knockdown in HeLa cells using high-density oligonucleotide splice-sensitive microarrays. The major class of identified PTB-regulated splicing event was PTB-repressed cassette exons, but there was also a substantial number of PTB-activated splicing events. PTB-repressed and PTB-activated exons showed a distinct arrangement of motifs with pyrimidine-rich motif enrichment within and upstream of repressed exons but downstream of activated exons. The N-terminal half of PTB was sufficient to activate splicing when recruited downstream of a PTB-activated exon. Moreover, insertion of an upstream pyrimidine tract was sufficient to convert a PTB-activated exon to a PTB-repressed exon. Our results show that PTB, an archetypal splicing repressor, has variable splicing activity that predictably depends upon its binding location with respect to target exons.
Collapse
Affiliation(s)
- Miriam Llorian
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
103
|
Allele-specific recognition of the 3' splice site of INS intron 1. Hum Genet 2010; 128:383-400. [PMID: 20628762 PMCID: PMC2939332 DOI: 10.1007/s00439-010-0860-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2010] [Accepted: 06/30/2010] [Indexed: 10/27/2022]
Abstract
Genetic predisposition to type 1 diabetes (T1D) has been associated with a chromosome 11 locus centered on the proinsulin gene (INS) and with differential steady-state levels of INS RNA from T1D-predisposing and -protective haplotypes. Here, we show that the haplotype-specific expression is determined by INS variants that control the splicing efficiency of intron 1. The adenine allele at IVS1-6 (rs689), which rapidly expanded in modern humans, renders the 3' splice site of this intron more dependent on the auxiliary factor of U2 small nuclear ribonucleoprotein (U2AF). This interaction required both zinc fingers of the 35-kD U2AF subunit (U2AF35) and was associated with repression of a competing 3' splice site in INS exon 2. Systematic mutagenesis of reporter constructs showed that intron 1 removal was facilitated by conserved guanosine-rich enhancers and identified additional splicing regulatory motifs in exon 2. Sequencing of intron 1 in primates revealed that relaxation of its 3' splice site in Hominidae coevolved with the introduction of a short upstream open reading frame, providing a more efficient coupled splicing and translation control. Depletion of SR proteins 9G8 and transformer-2 by RNA interference was associated with exon 2 skipping whereas depletion of SRp20 with increased representation of transcripts containing a cryptic 3' splice site in the last exon. Together, these findings reveal critical interactions underlying the allele-dependent INS expression and INS-mediated risk of T1D and suggest that the increased requirement for U2AF35 in higher primates may hinder thymic presentation of autoantigens encoded by transcripts with weak 3' splice sites.
Collapse
|
104
|
Khanna A, Stamm S. Regulation of alternative splicing by short non-coding nuclear RNAs. RNA Biol 2010; 7:480-5. [PMID: 20657181 PMCID: PMC3062236 DOI: 10.4161/rna.7.4.12746] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Revised: 06/17/2010] [Accepted: 06/17/2010] [Indexed: 12/25/2022] Open
Abstract
Recent results from deep-sequencing and tiling array studies indicated the existence of a large number of short, metabolically stable, non-coding RNAs. Some of these short RNAs derive from known RNA classes like snoRNA or tRNAs. There are intriguing similarities between short non-coding nuclear RNAs and oligonucleotides used to change alternative splicing events, which usually target a disease-relevant RNA. We review the current knowledge of this emerging class of RNAs and discuss evidence that some of these short RNAs could function in alternative splice site selection.
Collapse
Affiliation(s)
- Amit Khanna
- University of Kentucky, Molecular and Cellular Biochemistry, South Limestone, Lexington, KY, USA
| | | |
Collapse
|
105
|
Abstract
Ninety-four percent of human genes are discontinuous, such that segments expressed as mRNA are contained within exons and separated by intervening segments, called introns. Following transcription, genes are expressed as precursor mRNAs (pre-mRNAs), which are spliced co-transcriptionally, and the flanking exons are joined together to form a continuous mRNA. One advantage of this architecture is that it allows alternative splicing by differential use of exons to generate multiple mRNAs from individual genes. Regulatory elements located within introns and exons guide the splicing complex, the spliceosome, and auxiliary RNA binding proteins to the correct sites for intron removal and exon joining. Misregulation of splicing and alternative splicing can result from mutations in cis-regulatory elements within the affected gene or from mutations that affect the activities of trans-acting factors that are components of the splicing machinery. Mutations that affect splicing can cause disease directly or contribute to the susceptibility or severity of disease. An understanding of the role of splicing in disease expands potential opportunities for therapeutic intervention by either directly addressing the cause or by providing novel approaches to circumvent disease processes.
Collapse
Affiliation(s)
- Amanda J Ward
- Departments of Molecular and Cellular Biology and Pathology, Baylor College of Medicine, Houston, TX 77030, USA
| | | |
Collapse
|
106
|
Chao SC, Chen JS, Tsai CH, Lin JM, Lin YJ, Sun HS. Novel exon nucleotide substitution at the splice junction causes a neonatal Marfan syndrome. Clin Genet 2010; 77:453-63. [PMID: 20132243 DOI: 10.1111/j.1399-0004.2009.01337.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The fibrillin-1 gene (FBN1) mutations are associated with a broad spectrum of disorders including Marfan syndrome (MFS) and show great clinical heterogeneity. An underrepresentation for mutations leading to premature termination codon (PTC) in FBN1 exons 24-32 was found in neonatal or severe MFS but the underlying cause was unclear. This study thoroughly examined two FBN1 mutations on exons 24-32 region to illustrate the molecular mechanisms underlying these FBN1 mutations on MFS etiology. Two nucleotide substitutions, c.3208G> C, the last nucleotide of exon 26, and c.3209A>G, the first nucleotide of exon 27, affecting the same amino acid, p.D1070H and p.D1070G, respectively, gave very different phenotypes. We demonstrate that c.3208G>C generates two alternatively spliced transcripts, while c.3209A>G does not affect the splicing. We further demonstrate that the aberrantly spliced transcripts do not go through nonsense-mediated decay, but rather produce unstable, premature protein peptides that are degraded by endoplasmic reticulum associated degradation. The molecular mechanism outlined here defines a model for the pathogenesis of PTC-containing mutation within the exons 24-32 of FBN1 in MFS. Furthermore, our data suggest that PTC mutation within this region may lead to early lethality in neonatal MFS.
Collapse
Affiliation(s)
- S-C Chao
- Department of Obstetrics and Gynecology, National Cheng Kung University Hospital, Douliou Branch, Yunlin, Taiwan
| | | | | | | | | | | |
Collapse
|
107
|
Vorechovsky I. Transposable elements in disease-associated cryptic exons. Hum Genet 2009; 127:135-54. [PMID: 19823873 DOI: 10.1007/s00439-009-0752-4] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2009] [Accepted: 09/27/2009] [Indexed: 11/28/2022]
Abstract
Transposable elements (TEs) make up a half of the human genome, but the extent of their contribution to cryptic exon activation that results in genetic disease is unknown. Here, a comprehensive survey of 78 mutation-induced cryptic exons previously identified in 51 disease genes revealed the presence of TEs in 40 cases (51%). Most TE-containing exons were derived from short interspersed nuclear elements (SINEs), with Alus and mammalian interspersed repeats (MIRs) covering >18 and >16% of the exonized sequences, respectively. The majority of SINE-derived cryptic exons had splice sites at the same positions of the Alu/MIR consensus as existing SINE exons and their inclusion in the mRNA was facilitated by phylogenetically conserved changes that improved both traditional and auxiliary splicing signals, thus marking intronic TEs amenable for pathogenic exonization. The overrepresentation of MIRs among TE exons is likely to result from their high average exon inclusion levels, which reflect their strong splice sites, a lack of splicing silencers and a high density of enhancers, particularly (G)AA(G) motifs. These elements were markedly depleted in antisense Alu exons, had the most prominent position on the exon-intron gradient scale and are proposed to promote exon definition through enhanced tertiary RNA interactions involving unpaired (di)adenosines. The identification of common mechanisms by which the most dynamic parts of the genome contribute both to new exon creation and genetic disease will facilitate detection of intronic mutations and the development of computational tools that predict TE hot-spots of cryptic exon activation.
Collapse
Affiliation(s)
- Igor Vorechovsky
- Division of Human Genetics, University of Southampton School of Medicine, MP808, Tremona Road, Southampton SO16 6YD, UK.
| |
Collapse
|
108
|
Irimia M, Roy SW, Neafsey DE, Abril JF, Garcia-Fernandez J, Koonin EV. Complex selection on 5' splice sites in intron-rich organisms. Genome Res 2009; 19:2021-7. [PMID: 19745111 DOI: 10.1101/gr.089276.108] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
In contrast to the typically streamlined genomes of prokaryotes, many eukaryotic genomes are riddled with long intergenic regions, spliceosomal introns, and repetitive elements. What explains the persistence of these and other seemingly suboptimal structures? There are three general hypotheses: (1) the structures in question are not actually suboptimal but optimal, being favored by selection, for unknown reasons; (2) the structures are not suboptimal, but of (essentially) equal fitness to "optimal" ones; or (3) the structures are truly suboptimal, but selection is too weak to systematically eliminate them. The 5' splice sites of introns offer a rare opportunity to directly test these hypotheses. Intron-poor species show a clear consensus splice site; most introns begin with the same six nucleotide sequence (typically GTAAGT or GTATGT), indicating efficient selection for this consensus sequence. In contrast, intron-rich species have much less pronounced boundary consensus sequences, and only small minorities of introns in intron-rich species share the same boundary sequence. We studied rates of evolutionary change of 5' splice sites in three groups of closely related intron-rich species--three primates, five Drosophila species, and four Cryptococcus fungi. Surprisingly, the results indicate that changes from consensus-to-variant nucleotides are generally disfavored by selection, but that changes from variant to consensus are neither favored nor disfavored. This evolutionary pattern is consistent with selective differences across introns, for instance, due to compensatory changes at other sites within the gene, which compensate for the otherwise suboptimal consensus-to-variant changes in splice boundaries.
Collapse
Affiliation(s)
- Manuel Irimia
- Departament de Genètica, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
109
|
Guédard-Méreuze SL, Vaché C, Molinari N, Vaudaine J, Claustres M, Roux AF, Tuffery-Giraud S. Sequence contexts that determine the pathogenicity of base substitutions at position +3 of donor splice-sites. Hum Mutat 2009; 30:1329-39. [DOI: 10.1002/humu.21070] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
110
|
Naruse H, Ikawa N, Yamaguchi K, Nakamura Y, Arai M, Ishioka C, Sugano K, Tamura K, Tomita N, Matsubara N, Yoshida T, Moriya Y, Furukawa Y. Determination of splice-site mutations in Lynch syndrome (hereditary non-polyposis colorectal cancer) patients using functional splicing assay. Fam Cancer 2009; 8:509-17. [PMID: 19685281 DOI: 10.1007/s10689-009-9280-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2009] [Accepted: 08/03/2009] [Indexed: 12/13/2022]
Abstract
Lynch syndrome (hereditary non-polyposis colorectal cancer) is an inherited disease caused by germ-line mutation in mismatch repair genes such as MLH1, MSH2, and MSH6. The mutations include missense and nonsense mutations, small insertions and deletions, and gross genetic alterations including large deletions and duplications. In addition to these genetic changes, mutations in introns are also involved in the pathogenesis. However, it is sometimes difficult to interpret correctly the pathogenicity of variants in exons as well as introns. To evaluate the effect of splice-site mutations in two Lynch syndrome patients, we carried out a functional splicing assay using minigenes. Consequently, this assay showed that the mutation of c.1731+5G>A in MLH1 led to exon15 skipping, and that the mutation of c.211+1G>C in MSH2 created an activated cryptic splice-site 17-nucleotides upstream in exon1. These aberrant splicing patterns were not observed when wild type sequence was used for the assay. We also obtained concordant results by RT-PCR experiments with transcripts from the patients. Furthermore, additional functional splicing assays using two different intronic mutations described in earlier studies revealed splicing alterations that were in complete agreement with the reports. Therefore, functional splicing assay is helpful for evaluating the effects of genetic variants on splicing.
Collapse
Affiliation(s)
- Hiromu Naruse
- Division of Clinical Genome Research, Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
111
|
Gonçalves V, Matos P, Jordan P. Antagonistic SR proteins regulate alternative splicing of tumor-related Rac1b downstream of the PI3-kinase and Wnt pathways. Hum Mol Genet 2009; 18:3696-707. [DOI: 10.1093/hmg/ddp317] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
112
|
Moriwaki K, Noda K, Furukawa Y, Ohshima K, Uchiyama A, Nakagawa T, Taniguchi N, Daigo Y, Nakamura Y, Hayashi N, Miyoshi E. Deficiency of GMDS leads to escape from NK cell-mediated tumor surveillance through modulation of TRAIL signaling. Gastroenterology 2009; 137:188-198.e1982. [PMID: 19361506 DOI: 10.1053/j.gastro.2009.04.002] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2008] [Revised: 03/17/2009] [Accepted: 04/02/2009] [Indexed: 12/21/2022]
Abstract
BACKGROUND & AIMS Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) promotes apoptosis in cancer cells, but not normal cells, and is critically involved in tumor rejection through natural killer (NK) cell-mediated immune surveillance. Oligosaccharides are involved in various aspects in carcinogenesis, and fucosylation is one of the most important oligosaccharide modifications in cancer. Here, we report for the first time mutations of the GDP-mannose-4,6-dehydratase (GMDS) gene, which plays a pivotal role in fucosylation, in human colon cancer. The mutations resulted in resistance to TRAIL-induced apoptosis followed by escape from immune surveillance. METHODS The mock and GMDS-rescued HCT116 cells were investigated in terms of NK cell-mediated tumor surveillance by TRAIL signaling both in vitro and in vivo. The mutational analysis for GMDS was performed with kinds of cancer cell lines and tissues. RESULTS The mutation found here led to a virtually complete deficiency of cellular fucosylation, and transfection of the wild-type GMDS into HCT116 cells restored the cellular fucosylation. When mock and GMDS-rescued cells were transplanted into athymic mice, tumor growth and metastasis of the GMDS-rescued cells were dramatically suppressed through NK cell-mediated tumor surveillance. Furthermore, the GMDS-rescued cells showed high susceptibility to TRAIL-induced apoptosis, and anti-TRAIL blocking antibody suppressed the accelerated direct cell lysis of the GMDS-rescued cells by splenocytes. Similar mutations of the GMDS were found in certain human cancer tissues and other cell lines. CONCLUSIONS This pathway by GMDS mutation could be a novel type of cancer progression through cellular fucosylation and NK cell-mediated tumor surveillance.
Collapse
Affiliation(s)
- Kenta Moriwaki
- Department of Molecular Biochemistry and Clinical Investigation, Osaka University Graduate School of Medicine, Osaka, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
113
|
Evolution of alternative splicing regulation: changes in predicted exonic splicing regulators are not associated with changes in alternative splicing levels in primates. PLoS One 2009; 4:e5800. [PMID: 19495418 PMCID: PMC2686173 DOI: 10.1371/journal.pone.0005800] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2009] [Accepted: 05/12/2009] [Indexed: 12/12/2022] Open
Abstract
Alternative splicing is tightly regulated in a spatio-temporal and quantitative manner. This regulation is achieved by a complex interplay between spliceosomal (trans) factors that bind to different sequence (cis) elements. cis-elements reside in both introns and exons and may either enhance or silence splicing. Differential combinations of cis-elements allows for a huge diversity of overall splicing signals, together comprising a complex ‘splicing code’. Many cis-elements have been identified, and their effects on exon inclusion levels demonstrated in reporter systems. However, the impact of interspecific differences in these elements on the evolution of alternative splicing levels has not yet been investigated at genomic level. Here we study the effect of interspecific differences in predicted exonic splicing regulators (ESRs) on exon inclusion levels in human and chimpanzee. For this purpose, we compiled and studied comprehensive datasets of predicted ESRs, identified by several computational and experimental approaches, as well as microarray data for changes in alternative splicing levels between human and chimpanzee. Surprisingly, we found no association between changes in predicted ESRs and changes in alternative splicing levels. This observation holds across different ESR exon positions, exon lengths, and 5′ splice site strengths. We suggest that this lack of association is mainly due to the great importance of context for ESR functionality: many ESR-like motifs in primates may have little or no effect on splicing, and thus interspecific changes at short-time scales may primarily occur in these effectively neutral ESRs. These results underscore the difficulties of using current computational ESR prediction algorithms to identify truly functionally important motifs, and provide a cautionary tale for studies of the effect of SNPs on splicing in human disease.
Collapse
|
114
|
Schwartz S, Hall E, Ast G. SROOGLE: webserver for integrative, user-friendly visualization of splicing signals. Nucleic Acids Res 2009; 37:W189-92. [PMID: 19429896 PMCID: PMC2703896 DOI: 10.1093/nar/gkp320] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Exons are typically only 140 nt in length and are surrounded by intronic oceans that are thousands of nucleotides long. Four core splicing signals, aided by splicing-regulatory sequences (SRSs), direct the splicing machinery to the exon/intron junctions. Many different algorithms have been developed to identify and score the four splicing signals and thousands of putative SRSs have been identified, both computationally and experimentally. Here we describe SROOGLE, a webserver that makes splicing signal sequence and scoring data available to the biologist in an integrated, visual, easily interpretable, and user-friendly format. SROOGLE's input consists of the sequence of an exon and flanking introns. The graphic browser output displays the four core splicing signals with scores based on nine different algorithms and highlights sequences belonging to 13 different groups of SRSs. The interface also offers the ability to examine the effect of point mutations at any given position, as well a range of additional metrics and statistical measures regarding each potential signal. SROOGLE is available at http://sroogle.tau.ac.il, and may also be downloaded as a desktop version.
Collapse
Affiliation(s)
- Schraga Schwartz
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel-Aviv University, Ramat Aviv 69978, Israel
| | | | | |
Collapse
|
115
|
Peng T, Li Y. Tandem exon duplication tends to propagate rather than to create de novo alternative splicing. Biochem Biophys Res Commun 2009; 383:163-6. [PMID: 19351527 DOI: 10.1016/j.bbrc.2009.03.162] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2009] [Accepted: 03/22/2009] [Indexed: 11/15/2022]
Abstract
Tandem gene duplication is one of the most prevalent ways of generating genes with new function. Similarly, tandem exon duplication is an important source of new exons. Tandem exon duplication is often associated with alternative splicing to reduce the possible deleterious impacts on transcript/protein structure. However, how alternative splicing is established on two new exons from duplication remains controversial. By analyzing the duplication of human-mouse conserved exons, we illustrated that newly duplicated exons tend to preserve the splicing status of their parent exon. That is, the exons duplicated from an alternative exon are usually alternatively spliced, while those from constitutive parents are more likely to be constitutively spliced. Newly generated, constitutively spliced exons showed a higher percentage of frame preservation and protein domain preference, indicating some evolutionary scenarios other than alternative splicing operates for the relief of negative selection pressure. These results suggest that alternative splicing is usually established before the tandem duplication. The duplication therefore propagates, rather than creates de novo, alternative splicing.
Collapse
Affiliation(s)
- Tao Peng
- TNLIST/Department of Automation, Bioinformatics Division, MOE Key Laboratory of Bioinformatics, Tsinghua University, Beijing, China
| | | |
Collapse
|
116
|
Raponi M, Buratti E, Dassie E, Upadhyaya M, Baralle D. Low U1 snRNP dependence at the NF1 exon 29 donor splice site. FEBS J 2009; 276:2060-73. [PMID: 19292874 DOI: 10.1111/j.1742-4658.2009.06941.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Many disease-causing splicing mutations described in the literature produce changes in splice sites (SS) or in exon-regulatory sequences. The delineation of these splice aberrations can provide important insights into novel regulation mechanisms. In this study, we evaluated the effect of patient variations in neurofibromatosis type 1 (NF1) exon 29 and its 5'SS surrounding area on its splicing process. Only two of all nonsense, missense, synonymous and intronic variations analyzed in this study clearly altered exon 29 inclusion/exclusion levels. In particular, the intronic mutation +5g>a had the strongest effect, resulting in total exon exclusion. This finding prompted us to evaluate the exon 29 5'SS in relation to its ability to bind U1 snRNP. This was performed by direct analysis of the ability of U1 to bind to wild-type and mutant donor sites, by engineering an in vitro splicing system to directly evaluate the functional importance of U1 snRNA base pairing with the exon 29 donor site, and by coexpression of mutant U1 snRNP molecules to try to rescue exon 29 inclusion in vivo. The results revealed a low dependency on the presence of U1 snRNP, and suggest that exon 29 donor site definition may depend on alternative mechanisms of 5'SS recognition.
Collapse
|
117
|
Belguith H, Aifa-Hmani M, Dhouib H, Said MB, Mosrati MA, Lahmar I, Moalla J, Charfeddine I, Driss N, Arab SB, Ghorbel A, Ayadi H, Masmoudi S. Screening of the DFNB3 Locus: Identification of Three Novel Mutations of MYO15A Associated with Hearing Loss and Further Suggestion for Two Distinctive Genes on This Locus. Genet Test Mol Biomarkers 2009; 13:147-51. [DOI: 10.1089/gtmb.2008.0077] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Hanen Belguith
- Unité Cibles pour le Diagnostic et la Thérapie, Centre de Biotechnologie de Sfax, Sfax, Tunisia
| | - Mounira Aifa-Hmani
- Unité Cibles pour le Diagnostic et la Thérapie, Centre de Biotechnologie de Sfax, Sfax, Tunisia
| | - Houria Dhouib
- Service d'O.R.L., C.H.U.H. Bourguiba de Sfax, Sfax, Tunisia
| | - Mariem Ben Said
- Unité Cibles pour le Diagnostic et la Thérapie, Centre de Biotechnologie de Sfax, Sfax, Tunisia
| | - Mohamed Ali Mosrati
- Unité Cibles pour le Diagnostic et la Thérapie, Centre de Biotechnologie de Sfax, Sfax, Tunisia
| | - Imed Lahmar
- Service d'O.R.L., C.H.U. de Mahdia, Sfax, Tunisia
| | - Jihen Moalla
- Service d'O.R.L., C.H.U.H. Bourguiba de Sfax, Sfax, Tunisia
| | | | - Nabil Driss
- Service d'O.R.L., C.H.U. de Mahdia, Sfax, Tunisia
| | - Saida Ben Arab
- Unité d'Epidémiologie Génétique et Moléculaire, Faculté de Médecine, Tunis, Tunisia
| | | | - Hammadi Ayadi
- Unité Cibles pour le Diagnostic et la Thérapie, Centre de Biotechnologie de Sfax, Sfax, Tunisia
| | - Saber Masmoudi
- Unité Cibles pour le Diagnostic et la Thérapie, Centre de Biotechnologie de Sfax, Sfax, Tunisia
| |
Collapse
|
118
|
Roca X, Krainer AR. Recognition of atypical 5' splice sites by shifted base-pairing to U1 snRNA. Nat Struct Mol Biol 2009; 16:176-82. [PMID: 19169258 PMCID: PMC2719486 DOI: 10.1038/nsmb.1546] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2008] [Accepted: 12/19/2008] [Indexed: 11/11/2022]
Abstract
Accurate pre-mRNA splicing is crucial for gene expression. The 5' splice site (5' ss)--the highly diverse element at the 5' end of introns--is initially recognized via base-pairing to the 5' end of the U1 small nuclear RNA (snRNA). However, many natural 5' ss have a poor match to the consensus sequence, and are predicted to be weak. Using genetic suppression experiments in human cells, we demonstrate that some atypical 5' ss are actually efficiently recognized by U1, in an alternative base-pairing register that is shifted by one nucleotide. These atypical 5' ss are phylogenetically widespread, and many of them are conserved. Moreover, shifted base-pairing provides an explanation for the effect of a 5' ss mutation associated with pontocerebellar hypoplasia. The unexpected flexibility in 5' ss-U1 base-pairing challenges an established paradigm and has broad implications for splice-site prediction algorithms and gene-annotation efforts in genome projects.
Collapse
Affiliation(s)
- Xavier Roca
- Cold Spring Harbor Laboratory, PO Box 100, 1 Bungtown Road, Cold Spring Harbor, New York 11724, USA
| | | |
Collapse
|
119
|
Wang K, Zhao X, Chan S, Cil O, He N, Song X, Paterson AD, Pei Y. Evidence for pathogenicity of atypical splice mutations in autosomal dominant polycystic kidney disease. Clin J Am Soc Nephrol 2009; 4:442-9. [PMID: 19158373 DOI: 10.2215/cjn.00980208] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
BACKGROUND AND OBJECTIVES Mutation-based molecular diagnostics of autosomal dominant polycystic kidney disease (ADPKD) is complicated by locus and allelic heterogeneity, large multi-exon gene structure and duplication in PKD1, and a high level of unclassified variants. Comprehensive screening of PKD1 and PKD2 by two recent studies have shown that atypical splice mutations account for 3.5% to 5% of ADPKD. We evaluated the role of bioinformatic prediction of atypical splice mutations and determined the pathogenicity of an atypical PKD2 splice variant from a multiplex ADPKD (TOR101) family. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS Using PubMed, we identified 17 atypical PKD1 and PKD2 splice mutations. We found that bioinformatics analysis was often useful for evaluating the pathogenicity of these mutations, although RT-PCR is needed to provide the definitive proof. RESULTS Sequencing of both PKD1 and PKD2 in an affected subject of TOR101 failed to identify a definite mutation, but revealed several UCVs, including an atypical PKD2 splice variant. Linkage analysis with microsatellite markers indicated that TOR101 was PKD2-linked and IVS8 + 5G-->A was shown to cosegregate only with affected subjects. RT-PCR of leukocyte mRNA from an affected subject using primers from exons 7 and 9 revealed six splice variants that resulted from activation of different combinations of donor and acceptor cryptic splice sites, all terminating with premature stop codons. CONCLUSIONS The data provide strong evidence that IVS8 + 5G-->A is a pathogenic mutation for PKD2. This case highlights the importance of functional analysis of UCVs.
Collapse
Affiliation(s)
- Kiarong Wang
- Divisions of Nephrology and Genomic Medicine, University Health Network and University of Toronto, Toronto, Ontario Canada
| | | | | | | | | | | | | | | |
Collapse
|
120
|
Divina P, Kvitkovicova A, Buratti E, Vorechovsky I. Ab initio prediction of mutation-induced cryptic splice-site activation and exon skipping. Eur J Hum Genet 2009; 17:759-65. [PMID: 19142208 DOI: 10.1038/ejhg.2008.257] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Mutations that affect splicing of precursor messenger RNAs play a major role in the development of hereditary diseases. Most splicing mutations have been found to eliminate GT or AG dinucleotides that define the 5' and 3' ends of introns, leading to exon skipping or cryptic splice-site activation. Although accurate description of the mis-spliced transcripts is critical for predicting phenotypic consequences of these alterations, their exact nature in affected individuals cannot often be determined experimentally. Using a comprehensive collection of exons that sustained cryptic splice-site activation or were skipped as a result of splice-site mutations, we have developed a multivariate logistic discrimination procedure that distinguishes the two aberrant splicing outcomes from DNA sequences. The new algorithm was validated using an independent sample of exons and implemented as a free online utility termed CRYP-SKIP (http://www.dbass.org.uk/cryp-skip/). The web application takes up one or more mutated alleles, each consisting of one exon and flanking intronic sequences, and provides a list of important predictor variables and their values, the overall probability of activating cryptic splice vs exon skipping, and the location and intrinsic strength of predicted cryptic splice sites in the input sequence. These results will facilitate phenotypic prediction of splicing mutations and provide further insights into splicing enhancer and silencer elements and their relative importance for splice-site selection in vivo.
Collapse
Affiliation(s)
- Petr Divina
- Division of Human Genetics, University of Southampton School of Medicine, Southampton, UK
| | | | | | | |
Collapse
|
121
|
Tazi J, Bakkour N, Stamm S. Alternative splicing and disease. BIOCHIMICA ET BIOPHYSICA ACTA 2009; 1792:14-26. [PMID: 18992329 PMCID: PMC5632948 DOI: 10.1016/j.bbadis.2008.09.017] [Citation(s) in RCA: 397] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/11/2008] [Revised: 09/19/2008] [Accepted: 09/30/2008] [Indexed: 12/11/2022]
Abstract
Almost all protein-coding genes are spliced and their majority is alternatively spliced. Alternative splicing is a key element in eukaryotic gene expression that increases the coding capacity of the human genome and an increasing number of examples illustrates that the selection of wrong splice sites causes human disease. A fine-tuned balance of factors regulates splice site selection. Here, we discuss well-studied examples that show how a disturbance of this balance can cause human disease. The rapidly emerging knowledge of splicing regulation now allows the development of treatment options.
Collapse
Affiliation(s)
- Jamal Tazi
- University of Montpellier II, Institute of Molecular Genetics, Centre Nationale de Recherche Scientifique, 1919 Route de Mende, France
| | | | | |
Collapse
|
122
|
Low KH, Lim C, Ko HW, Edery I. Natural variation in the splice site strength of a clock gene and species-specific thermal adaptation. Neuron 2008; 60:1054-67. [PMID: 19109911 PMCID: PMC2631419 DOI: 10.1016/j.neuron.2008.10.048] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2008] [Revised: 09/16/2008] [Accepted: 10/28/2008] [Indexed: 11/17/2022]
Abstract
We show that multiple suboptimal splice sites underlie the thermal-sensitive splicing of the period (per) 3'-terminal intron (dmpi8) from D. melanogaster, enabling this species to prolong its midday "siesta," a mechanism that likely diminishes the deleterious effects of heat during the longer summer days in temperate climates. In D. yakuba and D. santomea, which have a more ancestral distribution indigenous to Afro-equatorial regions wherein day length and temperature exhibit little fluctuation throughout the year, the splicing efficiencies of their per 3'-terminal introns do not exhibit thermal calibration, consistent with the little effect of temperature on the daily distribution of activity in these species. We propose that the weak splice sites on dmpi8 underlie a mechanism that facilitated the acclimation of the widely colonized D. melanogaster (and possibly D. simulans) to temperate climates and that natural selection operating at the level of splicing signals plays an important role in the thermal adaptation of life forms.
Collapse
Affiliation(s)
- Kwang Huei Low
- Department of Molecular Biology and Biochemistry, Rutgers University, Center for Advanced Biotechnology and Medicine, 679 Hoes lane, Piscataway, New Jersey, USA 08854
| | - Cecilia Lim
- Department of Molecular Biology and Biochemistry, Rutgers University, Center for Advanced Biotechnology and Medicine, 679 Hoes lane, Piscataway, New Jersey, USA 08854
| | | | - Isaac Edery
- Department of Molecular Biology and Biochemistry, Rutgers University, Center for Advanced Biotechnology and Medicine, 679 Hoes lane, Piscataway, New Jersey, USA 08854
| |
Collapse
|
123
|
Sinha R, Hiller M, Pudimat R, Gausmann U, Platzer M, Backofen R. Improved identification of conserved cassette exons using Bayesian networks. BMC Bioinformatics 2008; 9:477. [PMID: 19014490 PMCID: PMC2621368 DOI: 10.1186/1471-2105-9-477] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2008] [Accepted: 11/12/2008] [Indexed: 12/14/2022] Open
Abstract
Background Alternative splicing is a major contributor to the diversity of eukaryotic transcriptomes and proteomes. Currently, large scale detection of alternative splicing using expressed sequence tags (ESTs) or microarrays does not capture all alternative splicing events. Moreover, for many species genomic data is being produced at a far greater rate than corresponding transcript data, hence in silico methods of predicting alternative splicing have to be improved. Results Here, we show that the use of Bayesian networks (BNs) allows accurate prediction of evolutionary conserved exon skipping events. At a stringent false positive rate of 0.5%, our BN achieves an improved true positive rate of 61%, compared to a previously reported 50% on the same dataset using support vector machines (SVMs). Incorporating several novel discriminative features such as intronic splicing regulatory elements leads to the improvement. Features related to mRNA secondary structure increase the prediction performance, corroborating previous findings that secondary structures are important for exon recognition. Random labelling tests rule out overfitting. Cross-validation on another dataset confirms the increased performance. When using the same dataset and the same set of features, the BN matches the performance of an SVM in earlier literature. Remarkably, we could show that about half of the exons which are labelled constitutive but receive a high probability of being alternative by the BN, are in fact alternative exons according to the latest EST data. Finally, we predict exon skipping without using conservation-based features, and achieve a true positive rate of 29% at a false positive rate of 0.5%. Conclusion BNs can be used to achieve accurate identification of alternative exons and provide clues about possible dependencies between relevant features. The near-identical performance of the BN and SVM when using the same features shows that good classification depends more on features than on the choice of classifier. Conservation based features continue to be the most informative, and hence distinguishing alternative exons from constitutive ones without using conservation based features remains a challenging problem.
Collapse
Affiliation(s)
- Rileen Sinha
- Genome Analysis, Leibniz Institute for Age Research, Fritz Lipmann Institute, Jena, Germany.
| | | | | | | | | | | |
Collapse
|
124
|
Lev-Maor G, Ram O, Kim E, Sela N, Goren A, Levanon EY, Ast G. Intronic Alus influence alternative splicing. PLoS Genet 2008; 4:e1000204. [PMID: 18818740 PMCID: PMC2533698 DOI: 10.1371/journal.pgen.1000204] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2008] [Accepted: 08/20/2008] [Indexed: 01/25/2023] Open
Abstract
Examination of the human transcriptome reveals higher levels of RNA editing than in any other organism tested to date. This is indicative of extensive double-stranded RNA (dsRNA) formation within the human transcriptome. Most of the editing sites are located in the primate-specific retrotransposed element called Alu. A large fraction of Alus are found in intronic sequences, implying extensive Alu-Alu dsRNA formation in mRNA precursors. Yet, the effect of these intronic Alus on splicing of the flanking exons is largely unknown. Here, we show that more Alus flank alternatively spliced exons than constitutively spliced ones; this is especially notable for those exons that have changed their mode of splicing from constitutive to alternative during human evolution. This implies that Alu insertions may change the mode of splicing of the flanking exons. Indeed, we demonstrate experimentally that two Alu elements that were inserted into an intron in opposite orientation undergo base-pairing, as evident by RNA editing, and affect the splicing patterns of a downstream exon, shifting it from constitutive to alternative. Our results indicate the importance of intronic Alus in influencing the splicing of flanking exons, further emphasizing the role of Alus in shaping of the human transcriptome.
Collapse
Affiliation(s)
- Galit Lev-Maor
- Department of Human Molecular Genetics, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Oren Ram
- Department of Human Molecular Genetics, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Eddo Kim
- Department of Human Molecular Genetics, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Noa Sela
- Department of Human Molecular Genetics, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Amir Goren
- Department of Human Molecular Genetics, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Erez Y. Levanon
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Gil Ast
- Department of Human Molecular Genetics, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- * E-mail:
| |
Collapse
|
125
|
Churbanov A, Winters-Hilt S, Koonin EV, Rogozin IB. Accumulation of GC donor splice signals in mammals. Biol Direct 2008; 3:30. [PMID: 18613975 PMCID: PMC2490688 DOI: 10.1186/1745-6150-3-30] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2008] [Accepted: 07/09/2008] [Indexed: 11/10/2022] Open
Abstract
UNLABELLED The GT dinucleotide in the first two intron positions is the most conserved element of the U2 donor splice signals. However, in a small fraction of donor sites, GT is replaced by GC. A substantial enrichment of GC in donor sites of alternatively spliced genes has been observed previously in human, nematode and Arabidopsis, suggesting that GC signals are important for regulation of alternative splicing. We used parsimony analysis to reconstruct evolution of donor splice sites and inferred 298 GT > GC conversion events compared to 40 GC > GT conversion events in primate and rodent genomes. Thus, there was substantive accumulation of GC donor splice sites during the evolution of mammals. Accumulation of GC sites might have been driven by selection for alternative splicing. REVIEWERS This article was reviewed by Jerzy Jurka and Anton Nekrutenko. For the full reviews, please go to the Reviewers' Reports section.
Collapse
Affiliation(s)
- Alexander Churbanov
- Loyola University Medical Center, 2160 S. First Ave., Maywood, IL, 60153, USA.
| | | | | | | |
Collapse
|
126
|
Baek JM, Han P, Iandolino A, Cook DR. Characterization and comparison of intron structure and alternative splicing between Medicago truncatula, Populus trichocarpa, Arabidopsis and rice. PLANT MOLECULAR BIOLOGY 2008; 67:499-510. [PMID: 18438730 DOI: 10.1007/s11103-008-9334-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2007] [Accepted: 04/01/2008] [Indexed: 05/26/2023]
Abstract
Alignment of transcripts and genome sequences yielded a set of alternatively spliced transcripts in four angiosperm genomes: three dicotyledon species Medicago truncatula (Medicago), Populus trichocarpa (poplar) and Arabidopsis thaliana (Arabidopsis), and the monocotyledon Oryzae sativa (rice). Intron retention was the predominant mode of alternative splicing (AS) in each species, consistent with previous reports for Arabidopsis and rice. We analyzed the structure of 5'-splice junctions and observed commonalities between species. There was dependency of base composition between sites flanking the 5'-splice junction, with the potential to create a subset of splice sites that interact more weakly or strongly than average with U1 snRNA. Such altered nucleotide composition was correlated with splicing fidelity in all four species. For Medicago, poplar and Arabidopsis, but not in rice, alternative splicing was most prevalent for introns with decreased UA content, consistent with lower UA content for monocot introns and potentially reflecting evolved differences in splicing mechanisms. Similarly, the occurrence of AS between transcript Gene Ontology categories was positively correlated between Arabidopsis and Medicago, with no correlation between dicots and rice. Analysis of within-species paralogs and between-species reciprocal best-hit homologs yielded rare cases of potentially conserved AS events. Reverse transcriptase PCR and amplicon sequencing were used to confirm a subset of the in silico-predicted AS events within Medicago, as well as to characterize conserved AS events between Medicago and Arabidopsis.
Collapse
Affiliation(s)
- Jong-Min Baek
- College of Agricultural and Environmental Sciences Genomics Facility, University of California, 117 Robbins hall, Davis, CA 95616, USA.
| | | | | | | |
Collapse
|
127
|
Lev-Maor G, Goren A, Sela N, Kim E, Keren H, Doron-Faigenboim A, Leibman-Barak S, Pupko T, Ast G. The "alternative" choice of constitutive exons throughout evolution. PLoS Genet 2008; 3:e203. [PMID: 18020709 PMCID: PMC2077895 DOI: 10.1371/journal.pgen.0030203] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2007] [Accepted: 10/01/2007] [Indexed: 12/23/2022] Open
Abstract
Alternative cassette exons are known to originate from two processes—exonization of intronic sequences and exon shuffling. Herein, we suggest an additional mechanism by which constitutively spliced exons become alternative cassette exons during evolution. We compiled a dataset of orthologous exons from human and mouse that are constitutively spliced in one species but alternatively spliced in the other. Examination of these exons suggests that the common ancestors were constitutively spliced. We show that relaxation of the 5′ splice site during evolution is one of the molecular mechanisms by which exons shift from constitutive to alternative splicing. This shift is associated with the fixation of exonic splicing regulatory sequences (ESRs) that are essential for exon definition and control the inclusion level only after the transition to alternative splicing. The effect of each ESR on splicing and the combinatorial effects between two ESRs are conserved from fish to human. Our results uncover an evolutionary pathway that increases transcriptome diversity by shifting exons from constitutive to alternative splicing. Alternative splicing is believed to play a major role in the creation of transcriptomic diversification leading to higher order of organismal complexity, especially in mammals. As much as 80% of human genes generate more than one type of mRNA by alternative splicing. Thus, alternative splicing can bridge the low number of protein coding genes (∼24,500) and the total number of proteins generated in the human proteome (∼90,000). The correlation between the higher order of phenotypic diversity and alternative splicing was recently demonstrated and thus the origin of alternative splicing is of great interest. There are currently two models regarding the origin of alternatively spliced exons—exonization of intronic sequences and exon shuffling. According to these two mechanisms, a protein-coding gene was first established and only then a new alternative exon appeared within it or was added to the gene. Our current study provides evidences for a new mechanism indicating that during evolution constitutively spliced exons became alternatively spliced. Large-scale bioinformatic analyses reveal the magnitude of this process and experimental validation systems provide insights into its mechanisms.
Collapse
Affiliation(s)
- Galit Lev-Maor
- Department of Human Molecular Genetics, Tel Aviv University, Tel Aviv, Israel
| | - Amir Goren
- Department of Human Molecular Genetics, Tel Aviv University, Tel Aviv, Israel
| | - Noa Sela
- Department of Human Molecular Genetics, Tel Aviv University, Tel Aviv, Israel
| | - Eddo Kim
- Department of Human Molecular Genetics, Tel Aviv University, Tel Aviv, Israel
| | - Hadas Keren
- Department of Human Molecular Genetics, Tel Aviv University, Tel Aviv, Israel
| | - Adi Doron-Faigenboim
- Department of Cell Research and Immunology, Tel Aviv University, Tel Aviv, Israel
| | | | - Tal Pupko
- Department of Cell Research and Immunology, Tel Aviv University, Tel Aviv, Israel
| | - Gil Ast
- Department of Human Molecular Genetics, Tel Aviv University, Tel Aviv, Israel
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
128
|
Bortfeldt R, Schindler S, Szafranski K, Schuster S, Holste D. Comparative analysis of sequence features involved in the recognition of tandem splice sites. BMC Genomics 2008; 9:202. [PMID: 18447903 PMCID: PMC2423196 DOI: 10.1186/1471-2164-9-202] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2008] [Accepted: 04/30/2008] [Indexed: 01/05/2023] Open
Abstract
Background The splicing of pre-mRNAs is conspicuously often variable and produces multiple alternatively spliced (AS) isoforms that encode different messages from one gene locus. Computational studies uncovered a class of highly similar isoforms, which were related to tandem 5'-splice sites (5'ss) and 3'-splice sites (3'ss), yet with very sparse anecdotal evidence in experimental studies. To compare the types and levels of alternative tandem splice site exons occurring in different human organ systems and cell types, and to study known sequence features involved in the recognition and distinction of neighboring splice sites, we performed large-scale, stringent alignments of cDNA sequences and ESTs to the human and mouse genomes, followed by experimental validation. Results We analyzed alternative 5'ss exons (A5Es) and alternative 3'ss exons (A3Es), derived from transcript sequences that were aligned to assembled genome sequences to infer patterns of AS occurring in several thousands of genes. Comparing the levels of overlapping (tandem) and non-overlapping (competitive) A5Es and A3Es, a clear preference of isoforms was seen for tandem acceptors and donors, with four nucleotides and three to six nucleotides long exon extensions, respectively. A subset of inferred A5E tandem exons was selected and experimentally validated. With the focus on A5Es, we investigated their transcript coverage, sequence conservation and base-paring to U1 snRNA, proximal and distal splice site classification, candidate motifs for cis-regulatory activity, and compared A5Es with A3Es, constitutive and pseudo-exons, in H. sapiens and M. musculus. The results reveal a small but authentic enriched set of tandem splice site preference, with specific distances between proximal and distal 5'ss (3'ss), which showed a marked dichotomy between the levels of in- and out-of-frame splicing for A5Es and A3Es, respectively, identified a number of candidate NMD targets, and allowed a rough estimation of a number of undetected tandem donors based on splice site information. Conclusion This comparative study distinguishes tandem 5'ss and 3'ss, with three to six nucleotides long extensions, as having unusually high proportions of AS, experimentally validates tandem donors in a panel of different human tissues, highlights the dichotomy in the types of AS occurring at tandem splice sites, and elucidates that human alternative exons spliced at overlapping 5'ss posses features of typical splice variants that could well be beneficial for the cell.
Collapse
Affiliation(s)
- Ralf Bortfeldt
- Department of Bioinformatics, Friedrich-Schiller University, Ernst-Abbe-Platz 2, D-07743 Jena, Germany.
| | | | | | | | | |
Collapse
|
129
|
Peng T, Xue C, Bi J, Li T, Wang X, Zhang X, Li Y. Functional importance of different patterns of correlation between adjacent cassette exons in human and mouse. BMC Genomics 2008; 9:191. [PMID: 18439302 PMCID: PMC2432081 DOI: 10.1186/1471-2164-9-191] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2007] [Accepted: 04/26/2008] [Indexed: 12/19/2022] Open
Abstract
Background Alternative splicing expands transcriptome diversity and plays an important role in regulation of gene expression. Previous studies focus on the regulation of a single cassette exon, but recent experiments indicate that multiple cassette exons within a gene may interact with each other. This interaction can increase the potential to generate various transcripts and adds an extra layer of complexity to gene regulation. Several cases of exon interaction have been discovered. However, the extent to which the cassette exons coordinate with each other remains unknown. Results Based on EST data, we employed a metric of correlation coefficients to describe the interaction between two adjacent cassette exons and then categorized these exon pairs into three different groups by their interaction (correlation) patterns. Sequence analysis demonstrates that strongly-correlated groups are more conserved and contain a higher proportion of pairs with reading frame preservation in a combinatorial manner. Multiple genome comparison further indicates that different groups of correlated pairs have different evolutionary courses: (1) The vast majority of positively-correlated pairs are old, (2) most of the weakly-correlated pairs are relatively young, and (3) negatively-correlated pairs are a mixture of old and young events. Conclusion We performed a large-scale analysis of interactions between adjacent cassette exons. Compared with weakly-correlated pairs, the strongly-correlated pairs, including both the positively and negatively correlated ones, show more evidence that they are under delicate splicing control and tend to be functionally important. Additionally, the positively-correlated pairs bear strong resemblance to constitutive exons, which suggests that they may evolve from ancient constitutive exons, while negatively and weakly correlated pairs are more likely to contain newly emerging exons.
Collapse
Affiliation(s)
- Tao Peng
- MOE Key Laboratory of Bioinformatics and Bioinformatics Division, TNLIST/Department of Automation, Tsinghua University, Beijing 100084, PRoC.
| | | | | | | | | | | | | |
Collapse
|
130
|
A new missense mutation found in the FLNA gene in a family with bilateral periventricular nodular heterotopia (BPNH) alters the splicing process. J Mol Neurosci 2008; 35:195-200. [PMID: 18427995 DOI: 10.1007/s12031-008-9050-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2007] [Accepted: 02/05/2008] [Indexed: 10/22/2022]
Abstract
We describe the clinical and molecular evaluation of two patients, mother and daughter (proband), with bilateral periventricular nodular heterotopia (BPNH). The clinical evaluation revealed a more severe phenotype in the proband, with mental retardation and seizures. Imaging studies showed bilateral periventricular nodules in both patients. We identified a novel mutation, c.987G-->C mutation in exon 6 of the Filamin A (FLNA) gene in the genomic DNA of both patients. Complementary DNA (cDNA) sequencing revealed the maintenance of intron 6 in the mutated allele. Bioinformatics analysis indicates that the mutation identified in both patients probably destroyed the intron 6 donor-splicing site, which is likely to introduce a premature stop codon resulting in a truncated FLNA protein. In addition, X-chromosome inactivation studies in DNA of blood cells revealed a skewed pattern in the proband, and real time quantitative polymerase chain reaction (PCR) showed a higher expression of the mutated allele in the proband compared to that of the mother. This variation in expression of the mutated allele may be responsible for the differences in the clinical manifestations observed in both patients.
Collapse
|
131
|
Zhang K, Nowak I, Rushlow D, Gallie BL, Lohmann DR. Patterns of missplicing caused by RB1 gene mutations in patients with retinoblastoma and association with phenotypic expression. Hum Mutat 2008; 29:475-84. [PMID: 18181215 DOI: 10.1002/humu.20664] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We have analyzed RNA from retinoblastoma patients and unaffected carriers with various RB1 gene mutations to determine the patterns of missplicing and associations with phenotypic expression. Most sequence alterations in or in the neighborhood of conserved splice signals that we tested resulted in simple exon skipping (15 mutations) or intron inclusion (new acceptor AG-sites, four mutations) as expected. Two mutations resulted in skipping of a neighboring exon (exon 11), a complex pattern indicating competition for correct lariat formation. We observed no activation of a cryptic splice site but found that a recurrent missense mutation in exon 7 creates a new splice site (two families). RT-PCR analysis enabled us to confirm the presence and to characterize the transcriptional consequences of gross insertions and deletions in the RB1 gene in six patients, including two patients with mutational mosaicism. We also used RT-PCR analysis to search for unknown mutations in 15 patients and identified three oncogenic point mutations deep in introns. Two of these mutations are recurrent thus indicating that, despite the vast extent of the introns of the RB1 gene, few bases are effective targets for oncogenic mutations. When analyzing associations between phenotypic expression (16 families) and mutational consequences we observed no link to the presence or absence of a premature termination codon in the mutant transcript. However, the location of a mutation relative to the splice sequence has a strong and consistent influence on phenotypic expression.
Collapse
Affiliation(s)
- Katherine Zhang
- Retinoblastoma Solutions, University Health Network, Toronto, Ontario, Canada
| | | | | | | | | |
Collapse
|
132
|
Abstract
Alternative splicing is a well-characterized mechanism by which multiple transcripts are generated from a single mRNA precursor. By allowing production of several protein isoforms from one pre-mRNA, alternative splicing contributes to proteomic diversity. But what do we know about the origin of this mechanism? Do the same evolutionary forces apply to alternatively and constitutively splice exons? Do similar forces act on all types of alternative splicing? Are the products generated by alternative splicing functional? Why is "improper" recognition of exons and introns allowed by the splicing machinery? In this review, we summarize the current knowledge regarding these issues from an evolutionary perspective.
Collapse
Affiliation(s)
- Eddo Kim
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel-Aviv University, Ramat Aviv, Israel
| | | | | |
Collapse
|
133
|
Multifactorial interplay controls the splicing profile of Alu-derived exons. Mol Cell Biol 2008; 28:3513-25. [PMID: 18332115 DOI: 10.1128/mcb.02279-07] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Exonization of Alu elements creates primate-specific genomic diversity. Here we combine bioinformatic and experimental methodologies to reconstruct the molecular changes leading to exon selection. Our analyses revealed an intricate network involved in Alu exonization. A typical Alu element contains multiple sites with the potential to serve as 5' splice sites (5'ss). First, we demonstrated the role of 5'ss strength in controlling exonization events. Second, we found that a cryptic 5'ss enhances the selection of a more upstream site and demonstrate that this is mediated by binding of U1 snRNA to the cryptic splice site, challenging the traditional role attributed to U1 snRNA of binding the 5'ss only. Third, we used a simple algorithm to identify specific sequences that determine splice site selection within specific Alu exons. Finally, by inserting identical exons within different sequences, we demonstrated the importance of flanking genomic sequences in determining whether an Alu exon will undergo exonization. Overall, our results demonstrate the complex interplay between at least four interacting layers that affect Alu exonization. These results shed light on the mechanism through which Alu elements enrich the primate transcriptome and allow a better understanding of the exonization process in general.
Collapse
|
134
|
Gal-Mark N, Schwartz S, Ast G. Alternative splicing of Alu exons--two arms are better than one. Nucleic Acids Res 2008; 36:2012-23. [PMID: 18276646 PMCID: PMC2330237 DOI: 10.1093/nar/gkn024] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Alus, primate-specific retroelements, are the most abundant repetitive elements in the human genome. They are composed of two related but distinct monomers, left and right arms. Intronic Alu elements may acquire mutations that generate functional splice sites, a process called exonization. Most exonizations occur in right arms of antisense Alu elements, and are alternatively spliced. Here we show that without the left arm, exonization of the right arm shifts from alternative to constitutive splicing. This eliminates the evolutionary conserved isoform and may thus be selected against. We further show that insertion of the left arm downstream of a constitutively spliced non-Alu exon shifts splicing from constitutive to alternative. Although the two arms are highly similar, the left arm is characterized by weaker splicing signals and lower exonic splicing regulatory (ESR) densities. Mutations that improve these potential splice signals activate exonization and shift splicing from the right to the left arm. Collaboration between two or more putative splice signals renders the intronic left arm with a pseudo-exon function. Thus, the dimeric form of the Alu element fortuitously provides it with an evolutionary advantage, allowing enrichment of the primate transcriptome without compromising its original repertoire.
Collapse
Affiliation(s)
- Nurit Gal-Mark
- Department of Human Genetics and Molecular Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv 69978, Israel
| | | | | |
Collapse
|
135
|
Siala O, Louhichi N, Triki C, Morinière M, Fakhfakh F, Baklouti F. LAMA2 mRNA processing alterations generate a complete deficiency of laminin-alpha2 protein and a severe congenital muscular dystrophy. Neuromuscul Disord 2007; 18:137-45. [PMID: 18053718 DOI: 10.1016/j.nmd.2007.09.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2007] [Revised: 08/31/2007] [Accepted: 09/06/2007] [Indexed: 11/19/2022]
Abstract
An increasing number of genomic variations are no more regarded as harmless changes in protein coding sequences or as genetic polymorphisms. Studying the impact of these variations on mRNA metabolism became a central issue to better understand the biological significance of disease. We describe here a severe congenital muscular dystrophy (CMD) with lumbar scoliosis and respiratory complications in a patient, who died at the age of 10. Despite a poor linkage to any form of CMD, total deficiency of laminin-alpha2 rather suggested the occurrence of an MDC1A form. Extensive analysis of LAMA2 gene revealed two novel mutations: a (8007delT) frameshift deletion in exon 57, and a de novo 7nt deletion in intron 17. Using an ex vivo approach, we provided strong evidence that the intron mutation is responsible for complete exon 17 skipping. The mutations are in trans and they each generate a nonsense mRNA potentially elicited to degradation by NMD. We further discuss the impact of mRNA alterations on the subtle phenotypic discrepancies.
Collapse
Affiliation(s)
- Olfa Siala
- Laboratoire de Génétique Moléculaire Humaine, Faculté de Médecine de Sfax, Avenue Majida Baklouti-Boulila 3029 Sfax, Tunisia
| | | | | | | | | | | |
Collapse
|
136
|
Schwartz SH, Silva J, Burstein D, Pupko T, Eyras E, Ast G. Large-scale comparative analysis of splicing signals and their corresponding splicing factors in eukaryotes. Genome Res 2007; 18:88-103. [PMID: 18032728 DOI: 10.1101/gr.6818908] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Introns are among the hallmarks of eukaryotic genes. Splicing of introns is directed by three main splicing signals: the 5' splice site (5'ss), the branch site (BS), and the polypyrimdine tract/3'splice site (PPT-3'ss). To study the evolution of these splicing signals, we have conducted a systematic comparative analysis of these signals in over 1.2 million introns from 22 eukaryotes. Our analyses suggest that all these signals have dramatically evolved: The PPT is weak among most fungi, intermediate in plants and protozoans, and strongest in metazoans. Within metazoans it shows a gradual strengthening from Caenorhabditis elegans to human. The 5'ss and the BS were found to be degenerate among most organisms, but highly conserved among some fungi. A maximum parsimony-based algorithm for reconstructing ancestral position-specific scoring matrices suggested that the ancestral 5'ss and BS were degenerate, as in metazoans. To shed light on the evolutionary variation in splicing signals, we have analyzed the evolutionary changes in the factors that bind these signals. Our analysis reveals coevolution of splicing signals and their corresponding splicing factors: The strength of the PPT is correlated to changes in key residues in its corresponding splicing factor U2AF2; limited correlation was found between changes in the 5'ss and U1 snRNA that binds it; but not between the BS and U2 snRNA. Thus, although the basic ability of eukaryotes to splice introns has remained conserved throughout evolution, the splicing signals and their corresponding splicing factors have considerably evolved, uniquely shaping the splicing mechanisms of different organisms.
Collapse
Affiliation(s)
- Schraga H Schwartz
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel-Aviv University, Ramat Aviv 69978, Israel
| | | | | | | | | | | |
Collapse
|
137
|
Roca X, Olson AJ, Rao AR, Enerly E, Kristensen VN, Børresen-Dale AL, Andresen BS, Krainer AR, Sachidanandam R. Features of 5'-splice-site efficiency derived from disease-causing mutations and comparative genomics. Genome Res 2007; 18:77-87. [PMID: 18032726 DOI: 10.1101/gr.6859308] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Many human diseases, including Fanconi anemia, hemophilia B, neurofibromatosis, and phenylketonuria, can be caused by 5'-splice-site (5'ss) mutations that are not predicted to disrupt splicing, according to position weight matrices. By using comparative genomics, we identify pairwise dependencies between 5'ss nucleotides as a conserved feature of the entire set of 5'ss. These dependencies are also conserved in human-mouse pairs of orthologous 5'ss. Many disease-associated 5'ss mutations disrupt these dependencies, as can some human SNPs that appear to alter splicing. The consistency of the evidence signifies the relevance of this approach and suggests that 5'ss SNPs play a role in complex diseases.
Collapse
Affiliation(s)
- Xavier Roca
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
138
|
Kleino I, Ortiz RM, Huovila APJ. ADAM15 gene structure and differential alternative exon use in human tissues. BMC Mol Biol 2007; 8:90. [PMID: 17937806 PMCID: PMC2148059 DOI: 10.1186/1471-2199-8-90] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2007] [Accepted: 10/15/2007] [Indexed: 01/21/2023] Open
Abstract
Background ADAM15 is a metalloprotease-disintegrin implicated in ectodomain shedding and cell adhesion. Aberrant ADAM15 expression has been associated with human cancer and other disorders. We have previously shown that the alternative splicing of ADAM15 transcripts is mis-regulated in cancer cells. To gain a better understanding of ADAM15 regulation, its genomic organization and regulatory elements as well as the alternative exon use in human tissues were characterized. Results Human ADAM15, flanked by the FLJ32785/DCST1 and ephrin-A4 genes, spans 11.4 kb from the translation initiation codon to the polyadenylation signal, being the shortest multiple-exon ADAM gene. The gene contains 23 exons varying from 63 to 316 bp and 22 introns from 79 to 1283 bp. The gene appeared to have several transcription start sites and their location suggested the promoter location within a CpG island proximal to the translation start. Reporter expression experiments confirmed the location of functional GC-rich, TATAless and CAATless promoter, with the most critical transcription-supporting elements located -266 to -23 bp relative to the translation start. Normal human tissues showed different complex patterns of at least 13 different ADAM15 splice variants arising from the alternative use of the cytosolic-encoding exons 19, 20a/b, and 21a/b. The deduced ADAM15 protein isoforms have different combinations of cytosolic regulatory protein interaction motifs. Conclusion Characterization of human ADAM15 gene and identification of elements involved in the regulation of transcription and alternative splicing provide important clues for elucidation of physiological and pathological roles of ADAM15. The present results also show that the alternative exon use is a physiological post-transcriptional mechanism regulating ADAM15 expression in human tissues.
Collapse
Affiliation(s)
- Iivari Kleino
- Institute of Medical Technology, University of Tampere, Tampere, Finland.
| | | | | |
Collapse
|
139
|
Královičová J, Vořechovský I. Global control of aberrant splice-site activation by auxiliary splicing sequences: evidence for a gradient in exon and intron definition. Nucleic Acids Res 2007; 35:6399-413. [PMID: 17881373 PMCID: PMC2095810 DOI: 10.1093/nar/gkm680] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Auxiliary splicing signals play a major role in the regulation of constitutive and alternative pre-mRNA splicing, but their relative importance in selection of mutation-induced cryptic or de novo splice sites is poorly understood. Here, we show that exonic sequences between authentic and aberrant splice sites that were activated by splice-site mutations in human disease genes have lower frequencies of splicing enhancers and higher frequencies of splicing silencers than average exons. Conversely, sequences between authentic and intronic aberrant splice sites have more enhancers and less silencers than average introns. Exons that were skipped as a result of splice-site mutations were smaller, had lower SF2/ASF motif scores, a decreased availability of decoy splice sites and a higher density of silencers than exons in which splice-site mutation activated cryptic splice sites. These four variables were the strongest predictors of the two aberrant splicing events in a logistic regression model. Elimination or weakening of predicted silencers in two reporters consistently promoted use of intron-proximal splice sites if these elements were maintained at their original positions, with their modular combinations producing expected modification of splicing. Together, these results show the existence of a gradient in exon and intron definition at the level of pre-mRNA splicing and provide a basis for the development of computational tools that predict aberrant splicing outcomes.
Collapse
Affiliation(s)
| | - Igor Vořechovský
- *To whom correspondence should be addressed. +44 2380 796425+44 2380 794264
| |
Collapse
|
140
|
Olivieri C, Pagella F, Semino L, Lanzarini L, Valacca C, Pilotto A, Corno S, Scappaticci S, Manfredi G, Buscarini E, Danesino C. Analysis of ENG and ACVRL1 genes in 137 HHT Italian families identifies 76 different mutations (24 novel). Comparison with other European studies. J Hum Genet 2007; 52:820-829. [PMID: 17786384 DOI: 10.1007/s10038-007-0187-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2007] [Accepted: 07/26/2007] [Indexed: 11/24/2022]
Abstract
Hereditary hemorrhagic telangiectasia (HHT) is an autosomal dominant disorder causing vascular dysplasias. About 70-80% of HHT patients carries mutations in ENG or ACVRL1 genes, which code for a TGFbeta receptor type III and I respectively. Molecular data on a large cohort of Italian HHT patients are presented, discussing the significance of missense and splice site mutations. Mutation analysis in ENG and ACVRL1 genes was performed using single strand conformation polymorphisms (SSCP), denaturing high performance liquid chromatography (DHPLC) and subsequent direct sequencing. Overall, 101 mutations were found, with ACVRL1 involved in 71% of cases. The highest number of mutations (28/101 subjects, 14/76 different mutations referring to both genes) was in ACVRL1, exon 3. Mutation analysis was then extended to a total of 356 family members, and 162 proven to carry the mutation. New polymorphisms were identified in both genes, and evidence that ENG P131L change is not a disease-causing mutation was also provided. An in silico analysis was performed in order to characterize splice-site mutations. These results were compared to other European national studies and data from Italy, France and Spain were consistent for an higher incidence of ACVRL1 mutations.
Collapse
Affiliation(s)
- Carla Olivieri
- Biologia Generale e Genetica Medica, University of Pavia, Via Forlanini, 14, 27100, Pavia, Italy
| | - Fabio Pagella
- Clinica Otorinolaringoiatrica, Fondazione IRCCS Policlinico "S. Matteo", Pavia, Italy
| | - Lucia Semino
- Clinica Otorinolaringoiatrica, Fondazione IRCCS Policlinico "S. Matteo", Pavia, Italy
| | - Luca Lanzarini
- Divisione di Cardiologia, Fondazione IRCCS Policlinico "S. Matteo", Pavia, Italy
| | - Cristina Valacca
- Biologia Generale e Genetica Medica, University of Pavia, Via Forlanini, 14, 27100, Pavia, Italy
| | - Andrea Pilotto
- Centre for Inherited Cardiovascular Diseases, Fondazione IRCCS Policlinico "S. Matteo", Pavia, Italy
| | - Sabrina Corno
- Clinica Otorinolaringoiatrica, Fondazione IRCCS Policlinico "S. Matteo", Pavia, Italy
| | - Susi Scappaticci
- Biologia Generale e Genetica Medica, University of Pavia, Via Forlanini, 14, 27100, Pavia, Italy
| | - Guido Manfredi
- U. O. Gastroenterologia, Ospedale Maggiore di Crema, Crema, Italy
| | | | - Cesare Danesino
- Biologia Generale e Genetica Medica, University of Pavia, Via Forlanini, 14, 27100, Pavia, Italy.
- Servizio di Consulenza Genetica, Fondazione IRCCS Policlinico "S. Matteo", Pavia, Italy.
| |
Collapse
|
141
|
Siala O, Louhichi N, Triki C, Morinière M, Rebai A, Richard P, Guicheney P, Baklouti F, Fakhfakh F. Severe MDC1A Congenital Muscular Dystrophy Due to a Splicing Mutation in theLAMA2Gene Resulting in Exon Skipping and Significant Decrease of mRNA Level. ACTA ACUST UNITED AC 2007; 11:199-207. [DOI: 10.1089/gte.2006.0517] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Olfa Siala
- Laboratoire de Génétique Moléculaire Humaine, Faculté de Médecine de Sfax, 3029 Sfax, Tunisia
| | - Nacim Louhichi
- Laboratoire de Génétique Moléculaire Humaine, Faculté de Médecine de Sfax, 3029 Sfax, Tunisia
| | - Chahnez Triki
- Service de Neurologie, C H U Habib Bourguiba, 3029 Sfax, Tunisia
| | - Madeleine Morinière
- Equipe épissage alternatif et différenciation cellulaire, Centre de Génétique moléculaire et cellulaire, CNRS UMR 5534, Université Lyon 1, 69622 Villeurbanne Cedex, France
| | - Ahmed Rebai
- Centre de Biotechnologie de Sfax, Tunisia
- B P. “K” 3038 Sfax, Tunisia
| | - Pascale Richard
- INSERM U582, Institut de Myologie, groupe hôspitalier Salpêtrière, Paris 75651, France
- AP-HP, Groupe Hospitalier Pitié Salpêtrière, Service de Biochimie Métabolique, Paris, F-75013
| | - Pascale Guicheney
- INSERM U582, Institut de Myologie, groupe hôspitalier Salpêtrière, Paris 75651, France
- Université Pierre et Marie Curie, Paris, France
| | - Faouzi Baklouti
- Equipe épissage alternatif et différenciation cellulaire, Centre de Génétique moléculaire et cellulaire, CNRS UMR 5534, Université Lyon 1, 69622 Villeurbanne Cedex, France
| | - Faiza Fakhfakh
- Laboratoire de Génétique Moléculaire Humaine, Faculté de Médecine de Sfax, 3029 Sfax, Tunisia
| |
Collapse
|
142
|
Hims MM, Shetty RS, Pickel J, Mull J, Leyne M, Liu L, Gusella JF, Slaugenhaupt SA. A humanized IKBKAP transgenic mouse models a tissue-specific human splicing defect. Genomics 2007; 90:389-96. [PMID: 17644305 PMCID: PMC1976430 DOI: 10.1016/j.ygeno.2007.05.012] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2006] [Revised: 05/27/2007] [Accepted: 05/30/2007] [Indexed: 12/18/2022]
Abstract
Familial dysautonomia (FD) is a severe hereditary sensory and autonomic neuropathy, and all patients with FD have a splice mutation in the IKBKAP gene. The FD splice mutation results in variable, tissue-specific skipping of exon 20 in IKBKAP mRNA, which leads to reduced IKAP protein levels. The development of therapies for FD will require suitable mouse models for preclinical studies. In this study, we report the generation and characterization of a mouse model carrying the complete human IKBKAP locus with the FD IVS20+6T-->C splice mutation. We show that the mutant IKBKAP transgene is misspliced in this model in a tissue-specific manner that replicates the pattern seen in FD patient tissues. Creation of this humanized mouse is the first step toward development of a complex phenotypic model of FD. These transgenic mice are an ideal model system for testing the effectiveness of therapeutic agents that target the missplicing defect. Last, these mice will permit direct studies of tissue-specific splicing and the identification of regulatory factors that play a role in complex gene expression.
Collapse
Affiliation(s)
- Matthew M. Hims
- Center for Human Genetic Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Ranjit S. Shetty
- Center for Human Genetic Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - James Pickel
- National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - James Mull
- Center for Human Genetic Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Maire Leyne
- Center for Human Genetic Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Lijuan Liu
- Center for Human Genetic Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - James F. Gusella
- Center for Human Genetic Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Susan A. Slaugenhaupt
- Center for Human Genetic Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
143
|
Sahashi K, Masuda A, Matsuura T, Shinmi J, Zhang Z, Takeshima Y, Matsuo M, Sobue G, Ohno K. In vitro and in silico analysis reveals an efficient algorithm to predict the splicing consequences of mutations at the 5' splice sites. Nucleic Acids Res 2007; 35:5995-6003. [PMID: 17726045 PMCID: PMC2094079 DOI: 10.1093/nar/gkm647] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
We have found that two previously reported exonic mutations in the PINK1 and PARK7 genes affect pre-mRNA splicing. To develop an algorithm to predict underestimated splicing consequences of exonic mutations at the 5' splice site, we constructed and analyzed 31 minigenes carrying exonic splicing mutations and their derivatives. We also examined 189,249 U2-dependent 5' splice sites of the entire human genome and found that a new variable, the SD-Score, which represents a common logarithm of the frequency of a specific 5' splice site, efficiently predicts the splicing consequences of these minigenes. We also employed the information contents (R(i)) to improve the prediction accuracy. We validated our algorithm by analyzing 32 additional minigenes as well as 179 previously reported splicing mutations. The SD-Score algorithm predicted aberrant splicings in 198 of 204 sites (sensitivity = 97.1%) and normal splicings in 36 of 38 sites (specificity = 94.7%). Simulation of all possible exonic mutations at positions -3, -2 and -1 of the 189 249 sites predicts that 37.8, 88.8 and 96.8% of these mutations would affect pre-mRNA splicing, respectively. We propose that the SD-Score algorithm is a practical tool to predict splicing consequences of mutations affecting the 5' splice site.
Collapse
Affiliation(s)
- Kentaro Sahashi
- Division of Neurogenetics and Bioinformatics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya and Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Akio Masuda
- Division of Neurogenetics and Bioinformatics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya and Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Tohru Matsuura
- Division of Neurogenetics and Bioinformatics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya and Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Jun Shinmi
- Division of Neurogenetics and Bioinformatics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya and Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Zhujun Zhang
- Division of Neurogenetics and Bioinformatics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya and Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yasuhiro Takeshima
- Division of Neurogenetics and Bioinformatics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya and Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Masafumi Matsuo
- Division of Neurogenetics and Bioinformatics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya and Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Gen Sobue
- Division of Neurogenetics and Bioinformatics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya and Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Kinji Ohno
- Division of Neurogenetics and Bioinformatics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya and Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
- *To whom correspondence should be addressed. +81-52-744-2446+81-52-744-2449
| |
Collapse
|
144
|
Koren E, Lev-Maor G, Ast G. The emergence of alternative 3' and 5' splice site exons from constitutive exons. PLoS Comput Biol 2007; 3:e95. [PMID: 17530917 PMCID: PMC1876488 DOI: 10.1371/journal.pcbi.0030095] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2007] [Accepted: 04/10/2007] [Indexed: 11/19/2022] Open
Abstract
Alternative 3' and 5' splice site (ss) events constitute a significant part of all alternative splicing events. These events were also found to be related to several aberrant splicing diseases. However, only few of the characteristics that distinguish these events from alternative cassette exons are known currently. In this study, we compared the characteristics of constitutive exons, alternative cassette exons, and alternative 3'ss and 5'ss exons. The results revealed that alternative 3'ss and 5'ss exons are an intermediate state between constitutive and alternative cassette exons, where the constitutive side resembles constitutive exons, and the alternative side resembles alternative cassette exons. The results also show that alternative 3'ss and 5'ss exons exhibit low levels of symmetry (frame-preserving), similar to constitutive exons, whereas the sequence between the two alternative splice sites shows high symmetry levels, similar to alternative cassette exons. In addition, flanking intronic conservation analysis revealed that exons whose alternative splice sites are at least nine nucleotides apart show a high conservation level, indicating intronic participation in the regulation of their splicing, whereas exons whose alternative splice sites are fewer than nine nucleotides apart show a low conservation level. Further examination of these exons, spanning seven vertebrate species, suggests an evolutionary model in which the alternative state is a derivative of an ancestral constitutive exon, where a mutation inside the exon or along the flanking intron resulted in the creation of a new splice site that competes with the original one, leading to alternative splice site selection. This model was validated experimentally on four exons, showing that they indeed originated from constitutive exons that acquired a new competing splice site during evolution.
Collapse
Affiliation(s)
- Eli Koren
- Department of Human Molecular Genetics, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Galit Lev-Maor
- Department of Human Molecular Genetics, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Gil Ast
- Department of Human Molecular Genetics, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
145
|
Buratti E, Chivers M, Královičová J, Romano M, Baralle M, Krainer AR, Vořechovský I. Aberrant 5' splice sites in human disease genes: mutation pattern, nucleotide structure and comparison of computational tools that predict their utilization. Nucleic Acids Res 2007; 35:4250-63. [PMID: 17576681 PMCID: PMC1934990 DOI: 10.1093/nar/gkm402] [Citation(s) in RCA: 158] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2007] [Revised: 05/02/2007] [Accepted: 05/02/2007] [Indexed: 01/08/2023] Open
Abstract
Despite a growing number of splicing mutations found in hereditary diseases, utilization of aberrant splice sites and their effects on gene expression remain challenging to predict. We compiled sequences of 346 aberrant 5'splice sites (5'ss) that were activated by mutations in 166 human disease genes. Mutations within the 5'ss consensus accounted for 254 cryptic 5'ss and mutations elsewhere activated 92 de novo 5'ss. Point mutations leading to cryptic 5'ss activation were most common in the first intron nucleotide, followed by the fifth nucleotide. Substitutions at position +5 were exclusively G>A transitions, which was largely attributable to high mutability rates of C/G>T/A. However, the frequency of point mutations at position +5 was significantly higher than that observed in the Human Gene Mutation Database, suggesting that alterations of this position are particularly prone to aberrant splicing, possibly due to a requirement for sequential interactions with U1 and U6 snRNAs. Cryptic 5'ss were best predicted by computational algorithms that accommodate nucleotide dependencies and not by weight-matrix models. Discrimination of intronic 5'ss from their authentic counterparts was less effective than for exonic sites, as the former were intrinsically stronger than the latter. Computational prediction of exonic de novo 5'ss was poor, suggesting that their activation critically depends on exonic splicing enhancers or silencers. The authentic counterparts of aberrant 5'ss were significantly weaker than the average human 5'ss. The development of an online database of aberrant 5'ss will be useful for studying basic mechanisms of splice-site selection, identifying splicing mutations and optimizing splice-site prediction algorithms.
Collapse
Affiliation(s)
- Emanuele Buratti
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, 34012 Trieste, Italy, University of Southampton School of Medicine, Division of Human Genetics, Southampton SO16 6YD, UK and Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | - Martin Chivers
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, 34012 Trieste, Italy, University of Southampton School of Medicine, Division of Human Genetics, Southampton SO16 6YD, UK and Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | - Jana Královičová
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, 34012 Trieste, Italy, University of Southampton School of Medicine, Division of Human Genetics, Southampton SO16 6YD, UK and Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | - Maurizio Romano
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, 34012 Trieste, Italy, University of Southampton School of Medicine, Division of Human Genetics, Southampton SO16 6YD, UK and Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | - Marco Baralle
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, 34012 Trieste, Italy, University of Southampton School of Medicine, Division of Human Genetics, Southampton SO16 6YD, UK and Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | - Adrian R. Krainer
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, 34012 Trieste, Italy, University of Southampton School of Medicine, Division of Human Genetics, Southampton SO16 6YD, UK and Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | - Igor Vořechovský
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, 34012 Trieste, Italy, University of Southampton School of Medicine, Division of Human Genetics, Southampton SO16 6YD, UK and Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
| |
Collapse
|
146
|
Garg K, Green P. Differing patterns of selection in alternative and constitutive splice sites. Genome Res 2007; 17:1015-22. [PMID: 17556528 PMCID: PMC1899112 DOI: 10.1101/gr.6347907] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In addition to allowing identification of putative functional elements as regions having reduced substitution rates, comparison of genome sequences can also provide insights into these elements at the nucleotide level, by indicating the pattern of tolerated substitutions. We created data sets of orthologous alternative and constitutive splice sites in mouse, rat, and human and analyzed the substitutions occurring within them. Our results illuminate differences between alternative and constitutive sites and, in particular, strongly support the idea that alternative sites are under selection to be weak.
Collapse
Affiliation(s)
- Kavita Garg
- Howard Hughes Medical Institute and Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA
- Corresponding authors.E-mail ; fax (206) 685-9720.E-mail ; fax (206) 685-9720
| | - Phil Green
- Howard Hughes Medical Institute and Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA
- Corresponding authors.E-mail ; fax (206) 685-9720.E-mail ; fax (206) 685-9720
| |
Collapse
|
147
|
Hiller M, Huse K, Szafranski K, Rosenstiel P, Schreiber S, Backofen R, Platzer M. Phylogenetically widespread alternative splicing at unusual GYNGYN donors. Genome Biol 2007; 7:R65. [PMID: 16869967 PMCID: PMC1779574 DOI: 10.1186/gb-2006-7-7-r65] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2006] [Accepted: 07/25/2006] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Splice donor sites have a highly conserved GT or GC dinucleotide and an extended intronic consensus sequence GTRAGT that reflects the sequence complementarity to the U1 snRNA. Here, we focus on unusual donor sites with the motif GYNGYN (Y stands for C or T; N stands for A, C, G, or T). RESULTS While only one GY functions as a splice donor for the majority of these splice sites in human, we provide computational and experimental evidence that 110 (1.3%) allow alternative splicing at both GY donors. The resulting splice forms differ in only three nucleotides, which results mostly in the insertion/deletion of one amino acid. However, we also report the insertion of a stop codon in four cases. Investigating what distinguishes alternatively from not alternatively spliced GYNGYN donors, we found differences in the binding to U1 snRNA, a strong correlation between U1 snRNA binding strength and the preferred donor, over-represented sequence motifs in the adjacent introns, and a higher conservation of the exonic and intronic flanks between human and mouse. Extending our genome-wide analysis to seven other eukaryotic species, we found alternatively spliced GYNGYN donors in all species from mouse to Caenorhabditis elegans and even in Arabidopsis thaliana. Experimental verification of a conserved GTAGTT donor of the STAT3 gene in human and mouse reveals a remarkably similar ratio of alternatively spliced transcripts in both species. CONCLUSION In contrast to alternative splicing in general, GYNGYN donors in addition to NAGNAG acceptors enable subtle protein variations.
Collapse
Affiliation(s)
- Michael Hiller
- Institute of Computer Science, Chair for Bioinformatics, Albert-Ludwigs-University Freiburg, Georges-Koehler-Allee 106, 79110 Freiburg, Germany
| | - Klaus Huse
- Genome Analysis, Leibniz Institute for Age Research - Fritz Lipmann Institute, Beutenbergstr. 11, 07745 Jena, Germany
| | - Karol Szafranski
- Genome Analysis, Leibniz Institute for Age Research - Fritz Lipmann Institute, Beutenbergstr. 11, 07745 Jena, Germany
| | - Philip Rosenstiel
- Institute of Clinical Molecular Biology, Christian-Albrechts-University Kiel, Schittenhelmstr. 12, 24105 Kiel, Germany
- Max Planck Institute for Molecular Genetics, Ihnestr. 63, 14195 Berlin, Germany
| | - Stefan Schreiber
- Institute of Clinical Molecular Biology, Christian-Albrechts-University Kiel, Schittenhelmstr. 12, 24105 Kiel, Germany
| | - Rolf Backofen
- Institute of Computer Science, Chair for Bioinformatics, Albert-Ludwigs-University Freiburg, Georges-Koehler-Allee 106, 79110 Freiburg, Germany
| | - Matthias Platzer
- Genome Analysis, Leibniz Institute for Age Research - Fritz Lipmann Institute, Beutenbergstr. 11, 07745 Jena, Germany
| |
Collapse
|
148
|
Ibrahim EC, Hims MM, Shomron N, Burge CB, Slaugenhaupt SA, Reed R. Weak definition of IKBKAP exon 20 leads to aberrant splicing in familial dysautonomia. Hum Mutat 2007; 28:41-53. [PMID: 16964593 DOI: 10.1002/humu.20401] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Splicing mutations that lead to devastating genetic diseases are often located in nonconserved or weakly conserved sequences that normally do not affect splicing. Thus, the underlying reason for the splicing defect is not immediately obvious. An example of this phenomenon is observed in the neurodevelopmental disease familial dysautonomia (FD), which is caused by a single-base change in the 5' splice site (5'ss) of intron 20 in the IKBKAP gene (c.2204+6T>C). This mutation, which is in the sixth position of the intron and results in exon 20 skipping, has no phenotype in many other introns. To determine why the position 6 mutation causes aberrant splicing only in certain cases, we first used an in silico approach to identify potential sequences involved in exon 20 skipping. Computational analyses of the exon 20 5'ss itself predicted that this nine-nucleotide splicing signal, even when it contains the T>C mutation, is not sufficiently weak to explain the FD phenotype. However, the computational analysis predicted that both the upstream 3' splice site (3'ss) and exon 20 contain weak splicing signals, indicating that the FD 5'ss, together with the surrounding splicing signals, are not adequate for defining exon 20. These in silico predictions were corroborated using IKBKAP minigenes in a new rapid and simple in vitro coupled RNA polymerase (RNAP) II transcription/splicing assay. Finally, the weak splicing signals that flank the T>C mutation were validated as the underlying cause of familial dysautonomia in vivo using transient transfection assays. Together, our study demonstrates the general utility of combining in silico data with an in vitro RNAP II transcription/splicing system for rapidly identifying critical sequences that underlie the numerous splicing diseases caused by otherwise silent mutations.
Collapse
Affiliation(s)
- El Chérif Ibrahim
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | |
Collapse
|
149
|
Hims MM, Ibrahim EC, Leyne M, Mull J, Liu L, Lazaro C, Shetty RS, Gill S, Gusella JF, Reed R, Slaugenhaupt SA. Therapeutic potential and mechanism of kinetin as a treatment for the human splicing disease familial dysautonomia. J Mol Med (Berl) 2007; 85:149-61. [PMID: 17206408 DOI: 10.1007/s00109-006-0137-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2006] [Revised: 10/24/2006] [Accepted: 10/26/2006] [Indexed: 01/13/2023]
Abstract
Mutations that affect the splicing of pre-mRNA are a major cause of human disease. Familial dysautonomia (FD) is a recessive neurodegenerative disease caused by a T to C transition at base pair 6 of IKBKAP intron 20. This mutation results in variable tissue-specific skipping of exon 20. Previously, we reported that the plant cytokinin kinetin dramatically increases exon 20 inclusion in RNA isolated from cultured FD cells. The goal of the current study was to investigate the nature of the FD splicing defect and the mechanism by which kinetin improves exon inclusion, as such knowledge will facilitate the development of future therapeutics aimed at regulating mRNA splicing. In this study, we demonstrate that treatment of FD lymphoblast cell lines with kinetin increases IKBKAP mRNA and IKAP protein to normal levels. Using a series of minigene constructs, we show that deletion of a region at the end of IKBKAP exon 20 disrupts the ability of kinetin to improve exon inclusion, pinpointing a kinetin responsive sequence element. We next performed a screen of endogenously expressed genes with multiple isoforms resulting from exon skipping events and show that kinetin's ability to improve exon inclusion is not limited to IKBKAP. Lastly, we highlight the potential of kinetin for the treatment of other human splicing disorders by showing correction of a splicing defect in neurofibromatosis.
Collapse
Affiliation(s)
- Matthew M Hims
- Center for Human Genetic Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
150
|
Nasser NJ, Avivi A, Shushy M, Vlodavsky I, Nevo E. Cloning, expression, and characterization of an alternatively spliced variant of human heparanase. Biochem Biophys Res Commun 2007; 354:33-8. [PMID: 17208203 PMCID: PMC1852469 DOI: 10.1016/j.bbrc.2006.12.189] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2006] [Accepted: 12/12/2006] [Indexed: 11/16/2022]
Abstract
Heparanase is an endoglycosidase that cleaves heparan sulfate in the extracellular matrix (ECM) and hence participates in ECM degradation and remodeling. Heparanase is involved in fundamental biological processes such as cancer metastasis, angiogenesis, and inflammation. Alternative splicing in the coding region of human heparanase was not reported. Here, we report the cloning of a splice variant of human heparanase that lacks exon 5 and is missing 174 bp compared to the wild-type cDNA. Splice 5 is expressed as a 55 kDa protein compared to the 65 and 50 kDa latent and active wild-type enzyme. Splice 5 was not detected in the incubation medium of tumor cells as opposed to the wild-type latent heparanase. Splice 5 escaped proteolytic cleavage, was devoid of HS degradation activity and exhibited diffused rather than granular cellular localization.
Collapse
Affiliation(s)
- Nicola J. Nasser
- Institute of Evolution, International Graduate Center of Evolution, University of Haifa, Haifa 31905, Israel
- Cancer and Vascular Biology Research Center, the Bruce Rappaport Faculty of Medicine, Technion, Haifa 31096, Israel
| | - Aaron Avivi
- Institute of Evolution, International Graduate Center of Evolution, University of Haifa, Haifa 31905, Israel
- To whom correspondence should be addressed: Israel Vlodavsky, Ph.D., Tel. +972-4-8295410, Fax. +972-4-8523947,
| | - Moran Shushy
- Cancer and Vascular Biology Research Center, the Bruce Rappaport Faculty of Medicine, Technion, Haifa 31096, Israel
| | - Israel Vlodavsky
- Cancer and Vascular Biology Research Center, the Bruce Rappaport Faculty of Medicine, Technion, Haifa 31096, Israel
- To whom correspondence should be addressed: Israel Vlodavsky, Ph.D., Tel. +972-4-8295410, Fax. +972-4-8523947,
| | - Eviatar Nevo
- Institute of Evolution, International Graduate Center of Evolution, University of Haifa, Haifa 31905, Israel
| |
Collapse
|