101
|
Sato K, Siomi MC. Functional and structural insights into the piRNA factor Maelstrom. FEBS Lett 2015; 589:1688-93. [DOI: 10.1016/j.febslet.2015.03.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 03/19/2015] [Indexed: 10/23/2022]
|
102
|
Abstract
PIWI-interacting RNAs (piRNAs) are a class of small RNAs that are 24-31 nucleotides in length. They associate with PIWI proteins, which constitute a germline-specific subclade of the Argonaute family, to form effector complexes known as piRNA-induced silencing complexes, which repress transposons via transcriptional or posttranscriptional mechanisms and maintain germline genome integrity. In addition to having a role in transposon silencing, piRNAs in diverse organisms function in the regulation of cellular genes. In some cases, piRNAs have shown transgenerational inheritance to pass on the memory of "self" and "nonself," suggesting a contribution to various cellular processes over generations. Many piRNA factors have been identified; however, both the molecular mechanisms leading to the production of mature piRNAs and the effector phases of gene silencing are still enigmatic. Here, we summarize the current state of our knowledge on the biogenesis of piRNA, its biological functions, and the underlying mechanisms.
Collapse
Affiliation(s)
- Yuka W Iwasaki
- Department of Molecular Biology, Keio University School of Medicine, Tokyo 160-8582, Japan;
| | | | | |
Collapse
|
103
|
Changes of Osvaldo expression patterns in germline of male hybrids between the species Drosophila buzzatii and Drosophila koepferae. Mol Genet Genomics 2015; 290:1471-83. [PMID: 25711309 DOI: 10.1007/s00438-015-1012-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 02/15/2015] [Indexed: 01/08/2023]
Abstract
Hybridization between different genomes is a source of genomic instability, sometimes associated with transposable element (TE) mobilization. Previous work showed that hybridization between the species Drosophila buzzatii and Drosophila koepferae induced mobilization of different (TEs), the Osvaldo retrotransposon being the most unstable. However, we ignore the mechanisms involved in this transposition release in interspecific hybrids. In order to disentangle the mechanisms involved in this process, we performed Osvaldo expression studies in somatic and germinal tissues from hybrids and parental species. There was a trend towards increased Osvaldo expression in the somatic tissues of hybrid females and males, which was always significant in males compared to the parental species D. buzzatii but, not in females compared to maternal species D. koepferae. There were massive changes of Osvaldo expression in the testes, which varied depending on the hybrid generation and family. Moreover, Osvaldo hybridization signals, restricted to the apical and primary spermatocyte regions in parents, occupied broader region in the hybrids. In ovaries, there were no significant differences in Osvaldo expression rates between hybrids and the maternal species D. koepferae. The transcript location was restricted to ovarian nurse cells in both parents and hybrids, undetectable in some hybrids. This research highlights first, the existence of putative complex deregulation mechanisms different between sexes and cell types and second, disruption of Osvaldo activity particularly evident in testes from sterile hybrid males. Deeper studies of the total transcriptome in hybrids and parental species are necessary to gain a better knowledge of the TE deregulation pathways in hybrids.
Collapse
|
104
|
Zhang P, Kang JY, Gou LT, Wang J, Xue Y, Skogerboe G, Dai P, Huang DW, Chen R, Fu XD, Liu MF, He S. MIWI and piRNA-mediated cleavage of messenger RNAs in mouse testes. Cell Res 2015; 25:193-207. [PMID: 25582079 PMCID: PMC4650574 DOI: 10.1038/cr.2015.4] [Citation(s) in RCA: 225] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Revised: 10/11/2014] [Accepted: 11/03/2014] [Indexed: 12/11/2022] Open
Abstract
The piRNA machinery is known for its role in mediating epigenetic silencing of transposons. Recent studies suggest that this function also involves piRNA-guided cleavage of transposon-derived transcripts. As many piRNAs also appear to have the capacity to target diverse mRNAs, this raises the intriguing possibility that piRNAs may act extensively as siRNAs to degrade specific mRNAs. To directly test this hypothesis, we compared mouse PIWI (MIWI)-associated piRNAs with experimentally identified cleaved mRNA fragments from mouse testes, and observed cleavage sites that predominantly occur at position 10 from the 5' end of putative targeting piRNAs. We also noted strong biases for U and A residues at nucleotide positions 1 and 10, respectively, in both piRNAs and mRNA fragments, features that resemble the pattern of piRNA amplification by the 'ping-pong' cycle. Through mapping of MIWI-RNA interactions by CLIP-seq and gene expression profiling, we found that many potential piRNA-targeted mRNAs directly interact with MIWI and show elevated expression levels in the testes of Miwi catalytic mutant mice. Reporter-based assays further revealed the importance of base pairing between piRNAs and mRNA targets and the requirement for both the slicer activity and piRNA-loading ability of MIWI in piRNA-mediated target repression. Importantly, we demonstrated that proper turnover of certain key piRNA targets is essential for sperm formation. Together, these findings reveal the siRNA-like function of the piRNA machinery in mouse testes and its central requirement for male germ cell development and maturation.
Collapse
Affiliation(s)
- Peng Zhang
- Key Laboratory of the Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jun-Yan Kang
- 1] Center for RNA Research, State Key Laboratory of Molecular Biology, University of Chinese Academy of Sciences, Shanghai 200031, China [2] Shanghai Key Laboratory of Molecular Andrology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Lan-Tao Gou
- 1] Center for RNA Research, State Key Laboratory of Molecular Biology, University of Chinese Academy of Sciences, Shanghai 200031, China [2] Shanghai Key Laboratory of Molecular Andrology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jiajia Wang
- Key Laboratory of the Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yuanchao Xue
- 1] State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China [2] Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093-0651, USA
| | - Geir Skogerboe
- Laboratory of Bioinformatics and Noncoding RNA, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Peng Dai
- 1] Center for RNA Research, State Key Laboratory of Molecular Biology, University of Chinese Academy of Sciences, Shanghai 200031, China [2] Shanghai Key Laboratory of Molecular Andrology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Da-Wei Huang
- Key Laboratory of the Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Runsheng Chen
- Laboratory of Bioinformatics and Noncoding RNA, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiang-Dong Fu
- 1] State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China [2] Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093-0651, USA
| | - Mo-Fang Liu
- 1] Center for RNA Research, State Key Laboratory of Molecular Biology, University of Chinese Academy of Sciences, Shanghai 200031, China [2] Shanghai Key Laboratory of Molecular Andrology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Shunmin He
- Key Laboratory of the Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
105
|
Nishida K, Iwasaki Y, Murota Y, Nagao A, Mannen T, Kato Y, Siomi H, Siomi M. Respective Functions of Two Distinct Siwi Complexes Assembled during PIWI-Interacting RNA Biogenesis in Bombyx Germ Cells. Cell Rep 2015; 10:193-203. [DOI: 10.1016/j.celrep.2014.12.013] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 11/24/2014] [Accepted: 12/05/2014] [Indexed: 10/24/2022] Open
|
106
|
Wang K, Liang C, Liu J, Xiao H, Huang S, Xu J, Li F. Prediction of piRNAs using transposon interaction and a support vector machine. BMC Bioinformatics 2014; 15:419. [PMID: 25547961 PMCID: PMC4308892 DOI: 10.1186/s12859-014-0419-6] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 12/11/2014] [Indexed: 01/25/2023] Open
Abstract
Background Piwi-interacting RNAs (piRNAs) are a class of small non-coding RNA primarily expressed in germ cells that can silence transposons at the post-transcriptional level. Accurate prediction of piRNAs remains a significant challenge. Results We developed a program for piRNA annotation (Piano) using piRNA-transposon interaction information. We downloaded 13,848 Drosophila piRNAs and 261,500 Drosophila transposons. The piRNAs were aligned to transposons with a maximum of three mismatches. Then, piRNA-transposon interactions were predicted by RNAplex. Triplet elements combining structure and sequence information were extracted from piRNA-transposon matching/pairing duplexes. A support vector machine (SVM) was used on these triplet elements to classify real and pseudo piRNAs, achieving 95.3 ± 0.33% accuracy and 96.0 ± 0.5% sensitivity. The SVM classifier can be used to correctly predict human, mouse and rat piRNAs, with overall accuracy of 90.6%. We used Piano to predict piRNAs for the rice stem borer, Chilo suppressalis, an important rice insect pest that causes huge yield loss. As a result, 82,639 piRNAs were predicted in C. suppressalis. Conclusions Piano demonstrates excellent piRNA prediction performance by using both structure and sequence features of transposon-piRNAs interactions. Piano is freely available to the academic community at http://ento.njau.edu.cn/Piano.html. Electronic supplementary material The online version of this article (doi:10.1186/s12859-014-0419-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kai Wang
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China. .,Currently affiliation: Department of Biology, Miami University, Oxford, OH, 45056, USA.
| | - Chun Liang
- Department of Biology, Miami University, Oxford, OH, 45056, USA. .,Department of Computer Science and software Engineering, Miami University, Oxford, OH, 45056, USA.
| | - Jinding Liu
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China. .,College of Information and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Huamei Xiao
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Shuiqing Huang
- College of Information and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Jianhua Xu
- College of computer science and Technology, Nanjing Normal University, Nanjing, 210023, China.
| | - Fei Li
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
107
|
Co-option of the piRNA pathway for germline-specific alternative splicing of C. elegans TOR. Cell Rep 2014; 8:1609-1616. [PMID: 25220461 DOI: 10.1016/j.celrep.2014.08.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 07/02/2014] [Accepted: 08/07/2014] [Indexed: 12/12/2022] Open
Abstract
Many eukaryotic genes contain embedded antisense transcripts and repetitive sequences of unknown function. We report that male germline-specific expression of an antisense transcript contained in an intron of C. elegans Target of Rapamycin (TOR, let-363) is associated with (1) accumulation of endo-small interfering RNAs (siRNAs) against an embedded Helitron transposon and (2) activation of an alternative 3' splice site of TOR. The germline-specific Argonaute proteins PRG-1 and CSR-1, which participate in self/nonself RNA recognition, antagonistically regulate the generation of these endo-siRNAs, TOR mRNA levels, and 3' splice-site selection. Supply of exogenous double-stranded RNA against the region of sense/antisense overlap reverses changes in TOR expression and splicing and suppresses the progressive multigenerational sterility phenotype of prg-1 mutants. We propose that recognition of a "nonself" intronic transposon by endo-siRNAs/the piRNA system provides physiological regulation of expression and alternative splicing of a host gene that, in turn, contributes to the maintenance of germline function across generations.
Collapse
|
108
|
Rizzo F, Hashim A, Marchese G, Ravo M, Tarallo R, Nassa G, Giurato G, Rinaldi A, Cordella A, Persico M, Sulas P, Perra A, Ledda-Columbano GM, Columbano A, Weisz A. Timed regulation of P-element-induced wimpy testis-interacting RNA expression during rat liver regeneration. Hepatology 2014; 60:798-806. [PMID: 24930433 DOI: 10.1002/hep.27267] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 06/11/2014] [Accepted: 06/12/2014] [Indexed: 12/21/2022]
Abstract
UNLABELLED Small noncoding RNAs comprise a growing family of molecules that regulate key cellular processes, including messenger RNA (mRNA) degradation, translational repression, and transcriptional gene silencing. P-element-induced wimpy testis (PIWI)-interacting RNAs (piRNAs) represent a class of small RNAs initially identified in the germline of a variety of species, where they contribute to maintenance of genome stability, and recently found expressed also in stem and somatic cells, where their role and responsiveness to physiopathological signals remain elusive. Here, we investigated piRNA expression in rat liver and its response to the stimuli exerted by regenerative proliferation of this organ. Quantitative polymerase chain reaction analysis identify in the liver the RNAs encoding PIWIL2/HILI, PIWIL4/HIWI2, and other components of the piRNA biogenesis pathways, suggesting that this is indeed functional. RNA sequencing before, during, and after the wave of cell proliferation that follows partial hepatectomy (PH) identified ∼1,400 mammalian germline piRNAs expressed in rat liver, including 72 showing timed changes in expression 24-48 hours post-PH, a timing that corresponds to cell transition through the S phase, returning to basal levels by 168 hours, when organ regeneration is completed and hepatocytes reach quiescence. CONCLUSION The piRNA pathway is active in somatic cells of the liver and is subject to regulation during the pathophysiological process of organ regeneration, when these molecules are available to exert their regulatory functions on the cell genome and transcriptome, as demonstrated by the identification of several liver mRNAs representing candidate targets of these regulatory RNAs.
Collapse
Affiliation(s)
- Francesca Rizzo
- Laboratory of Molecular Medicine and Genomics, Department of Medicine and Surgery, University of Salerno, Baronissi, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
109
|
Guerreiro MPG. Interspecific hybridization as a genomic stressor inducing mobilization of transposable elements in Drosophila.. Mob Genet Elements 2014; 4:e34394. [PMID: 25136509 PMCID: PMC4132227 DOI: 10.4161/mge.34394] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 08/07/2014] [Accepted: 08/08/2014] [Indexed: 11/26/2022] Open
Abstract
Transposable elements (TEs) are DNA sequences able to be mobilized in host genomes. They are currently recognized as the major mutation inducers because of their insertion in the target, their effect on neighboring regions, or their ectopic recombination. A large number of factors including chemical and physical factors as well as intraspecific crosses have traditionally been identified as inducers of transposition. Besides environmental factors, interspecific crosses have also been proposed as promoters of transposition of particular TEs in plants and different animals. Our previous published work includes a genome-wide survey with the set of genomic TEs and shows that interspecific hybridization between the species Drosophila buzzatii and Drosophila koepferae induces genomic instability by transposition bursts. A high percentage of this instability corresponds to TEs belonging to classes I and II. The detailed study of three TEs (Osvaldo, Helena, and Galileo), representative of the different TE families, shows an increase of transposition in hybrids compared with parental species, that varies depending on the element. This study suggests ample variation in TE regulation mechanisms and the question is why this variation occurs. Interspecific hybridization is a genomic stressor that disrupts the stability of TEs probably contributing to a relaxation of the mechanisms controlling TEs in the Drosophila genome. In this commentary paper we will discuss these results and the molecular mechanisms that could explain these increases of transposition rates observed in interspecific Drosophila hybrids.
Collapse
Affiliation(s)
- Maria Pilar García Guerreiro
- Grup de Biologia Evolutiva; Departament de Genètica i Microbiologia; Facultat de Biociències; Universitat Autònoma de Barcelona; Barcelona, Spain
| |
Collapse
|
110
|
Malone CD, Mestdagh C, Akhtar J, Kreim N, Deinhard P, Sachidanandam R, Treisman J, Roignant JY. The exon junction complex controls transposable element activity by ensuring faithful splicing of the piwi transcript. Genes Dev 2014; 28:1786-99. [PMID: 25104425 PMCID: PMC4197963 DOI: 10.1101/gad.245829.114] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The exon junction complex (EJC) is a highly conserved ribonucleoprotein complex that binds RNAs during splicing and remains associated with them following export to the cytoplasm. Malone et al. describe a novel function for the EJC and its splicing subunit, RnpS1, in controlling piwi transcript splicing, where, in the absence of RnpS1, the fourth intron of piwi is retained. RnpS1-dependent removal of this intron requires splicing of the flanking introns. These data demonstrate a novel role for the EJC in regulating piwi intron excision and provide a mechanism for its function during splicing. The exon junction complex (EJC) is a highly conserved ribonucleoprotein complex that binds RNAs during splicing and remains associated with them following export to the cytoplasm. While the role of this complex in mRNA localization, translation, and degradation has been well characterized, its mechanism of action in splicing a subset of Drosophila and human transcripts remains to be elucidated. Here, we describe a novel function for the EJC and its splicing subunit, RnpS1, in preventing transposon accumulation in both Drosophila germline and surrounding somatic follicle cells. This function is mediated specifically through the control of piwi transcript splicing, where, in the absence of RnpS1, the fourth intron of piwi is retained. This intron contains a weak polypyrimidine tract that is sufficient to confer dependence on RnpS1. Finally, we demonstrate that RnpS1-dependent removal of this intron requires splicing of the flanking introns, suggesting a model in which the EJC facilitates the splicing of weak introns following its initial deposition at adjacent exon junctions. These data demonstrate a novel role for the EJC in regulating piwi intron excision and provide a mechanism for its function during splicing.
Collapse
Affiliation(s)
- Colin D Malone
- Kimmel Center for Biology and Medicine at the Skirball Institute of Biomolecular Medicine, Department of Cell Biology, New York University School of Medicine, New York, New York 10016, USA; Howard Hughes Medical Institute
| | | | - Junaid Akhtar
- Institute of Molecular Biology (IMB), 55128 Mainz, Germany
| | - Nastasja Kreim
- Institute of Molecular Biology (IMB), 55128 Mainz, Germany
| | - Pia Deinhard
- Institute of Molecular Biology (IMB), 55128 Mainz, Germany
| | - Ravi Sachidanandam
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Jessica Treisman
- Kimmel Center for Biology and Medicine at the Skirball Institute of Biomolecular Medicine, Department of Cell Biology, New York University School of Medicine, New York, New York 10016, USA
| | | |
Collapse
|
111
|
Hirano T, Iwasaki YW, Lin ZYC, Imamura M, Seki NM, Sasaki E, Saito K, Okano H, Siomi MC, Siomi H. Small RNA profiling and characterization of piRNA clusters in the adult testes of the common marmoset, a model primate. RNA (NEW YORK, N.Y.) 2014; 20:1223-1237. [PMID: 24914035 PMCID: PMC4105748 DOI: 10.1261/rna.045310.114] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 05/05/2014] [Indexed: 06/01/2023]
Abstract
Small RNAs mediate gene silencing by binding Argonaute/Piwi proteins to regulate target RNAs. Here, we describe small RNA profiling of the adult testes of Callithrix jacchus, the common marmoset. The most abundant class of small RNAs in the adult testis was piRNAs, although 353 novel miRNAs but few endo-siRNAs were also identified. MARWI, a marmoset homolog of mouse MIWI and a very abundant PIWI in adult testes, associates with piRNAs that show characteristics of mouse pachytene piRNAs. As in other mammals, most marmoset piRNAs are derived from conserved clustered regions in the genome, which are annotated as intergenic regions. However, unlike in mice, marmoset piRNA clusters are also found on the X chromosome, suggesting escape from meiotic sex chromosome inactivation by the X-linked clusters. Some of the piRNA clusters identified contain antisense-orientated pseudogenes, suggesting the possibility that pseudogene-derived piRNAs may regulate parental functional protein-coding genes. More piRNAs map to transposable element (TE) subfamilies when they have copies in piRNA clusters. In addition, the strand bias observed for piRNAs mapped to each TE subfamily correlates with the polarity of copies inserted in clusters. These findings suggest that pachytene piRNA clusters determine the abundance and strand-bias of TE-derived piRNAs, may regulate protein-coding genes via pseudogene-derived piRNAs, and may even play roles in meiosis in the adult marmoset testis.
Collapse
Affiliation(s)
- Takamasa Hirano
- Department of Molecular Biology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Yuka W Iwasaki
- Department of Molecular Biology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Zachary Yu-Ching Lin
- Department of Physiology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Masanori Imamura
- Department of Physiology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan Molecular Biology Section, Department of Cellular and Molecular Biology, Primate Research Institute, Kyoto University, Inuyama, Aichi 484-8506, Japan
| | - Naomi M Seki
- Department of Molecular Biology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Erika Sasaki
- Department of Physiology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan Central Institute for Experimental Animals, Kawasaki, Kanagawa 210-0821, Japan
| | - Kuniaki Saito
- Department of Molecular Biology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Mikiko C Siomi
- Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Haruhiko Siomi
- Department of Molecular Biology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| |
Collapse
|
112
|
Ku HY, Lin H. PIWI proteins and their interactors in piRNA biogenesis, germline development and gene expression. Natl Sci Rev 2014; 1:205-218. [PMID: 25512877 DOI: 10.1093/nsr/nwu014] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
PIWI-interacting RNAs (piRNAs) are a complex class of small non-coding RNAs that are mostly 24-32 nucleotides in length and composed of at least hundreds of thousands of species that specifically interact with the PIWI protein subfamily of the ARGONAUTE family. Recent studies revealed that PIWI proteins interact with a number of proteins, especially the TUDOR-domain-containing proteins, to regulate piRNA biogenesis and regulatory function. Current research also provides evidence that PIWI proteins and piRNAs are not only crucial for transposon silencing in the germline, but also mediate novel mechanisms of epigenetic programming, DNA rearrangements, mRNA turnover, and translational control both in the germline and in the soma. These new discoveries begin to reveal an exciting new dimension of gene regulation in the cell.
Collapse
Affiliation(s)
- Hsueh-Yen Ku
- Yale Stem Cell Center and Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Haifan Lin
- Yale Stem Cell Center and Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06511, USA
| |
Collapse
|
113
|
García-López J, Hourcade JDD, Alonso L, Cárdenas DB, del Mazo J. Global characterization and target identification of piRNAs and endo-siRNAs in mouse gametes and zygotes. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:463-75. [PMID: 24769224 DOI: 10.1016/j.bbagrm.2014.04.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 03/24/2014] [Accepted: 04/07/2014] [Indexed: 10/25/2022]
Abstract
A set of small RNAs known as rasRNAs (repeat-associated small RNAs) have been related to the down-regulation of Transposable Elements (TEs) to safeguard genome integrity. Two key members of the rasRNAs group are piRNAs and endo-siRNAs. We have performed a comparative analysis of piRNAs and endo-siRNAs present in mouse oocytes, spermatozoa and zygotes, identified by deep sequencing and bioinformatic analysis. The detection of piRNAs and endo-siRNAs in the spermatozoa and revealed also in zygotes, hints to their potential delivery to oocytes during fertilization. However, a comparative assessment of the three cell types indicates that both piRNAs and endo-siRNAs are mainly maternally inherited. Finally, we have assessed the role of the different rasRNA molecules in connection with amplification processes by way of the "ping-pong cycle". Our results suggest that the ping-pong cycle can act on other rasRNAs, such as tRNA- and rRNA-derived fragments, thus not only being restricted to TEs during gametogenesis.
Collapse
Affiliation(s)
- Jesús García-López
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Juan de Dios Hourcade
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Lola Alonso
- Bioinformatics Service, Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - David B Cárdenas
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Jesús del Mazo
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain.
| |
Collapse
|
114
|
Olovnikov IA, Kalmykova AI. piRNA clusters as a main source of small RNAs in the animal germline. BIOCHEMISTRY (MOSCOW) 2014; 78:572-84. [PMID: 23980884 DOI: 10.1134/s0006297913060035] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
PIWI subfamily Argonaute proteins and small RNAs bound to them (PIWI interacting RNA, piRNA) control mobilization of transposable elements (TE) in the animal germline. piRNAs are generated by distinct genomic regions termed piRNA clusters. piRNA clusters are often extensive loci enriched in damaged fragments of TEs. New TE integration into piRNA clusters causes production of TE-specific piRNAs and repression of cognate sequences. piRNAs are thought to be generated from long single-stranded precursors encoded by piRNA clusters. Special chromatin structures might be essential to distinguish these genomic loci as a source for piRNAs. In this review, we present recent findings on the structural organization of piRNA clusters and piRNA biogenesis in Drosophila and other organisms, which are important for understanding a key epigenetic mechanism that provides defense against TE expansion.
Collapse
Affiliation(s)
- I A Olovnikov
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow 123182, Russia.
| | | |
Collapse
|
115
|
Abstract
The integrity of the germline genome must be maintained to achieve successive generations of a species, because germline cells are the only source for transmitting genetic information to the next generation. Accordingly, the germline has acquired a system dedicated to protecting the genome from 'injuries' caused by harmful selfish nucleic acid elements, such as TEs (transposable elements). Accumulating evidence shows that a germline-specific subclass of small non-coding RNAs, piRNAs (piwi-interacting RNAs), are necessary for silencing TEs to protect the genome in germline cells. To silence TEs post-transcriptionally and/or transcriptionally, mature piRNAs are loaded on to germline-specific Argonaute proteins, or PIWI proteins, to form the piRISC (piRNA-induced silencing complex). The present chapter will highlight insights into the molecular mechanisms underlying piRISC-mediated silencing and piRNA biogenesis, and discuss a possible link with tumorigenesis, particularly in Drosophila.
Collapse
|
116
|
Saito K. The epigenetic regulation of transposable elements by PIWI-interacting RNAs in Drosophila. Genes Genet Syst 2014; 88:9-17. [PMID: 23676706 DOI: 10.1266/ggs.88.9] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
A mechanism is required to repress the expression and transposition of transposable elements (TEs) to ensure the stable inheritance of genomic information. Accumulating evidence indicates that small non-coding RNAs are important regulators of TEs. Among small non-coding RNAs, PIWI-interacting RNAs (piRNAs) serve as guide molecules for recognizing and silencing numerous TEs and work in collaboration with PIWI subfamily proteins in gonadal cells. Disruption of the piRNA pathway correlates with loss of proper genomic organization, gene expression control and fertility. Moreover, recent studies on the molecular mechanisms of piRNA biogenesis and on piRNA function have shown that piRNAs act as maternally inherited genic elements, transferring information about repressed TEs to progeny. These findings enable a molecular explanation of mysterious epigenetic phenomena, such as hybrid dysgenesis and TE adaptation with age. Here, I review our current knowledge of piRNAs derived from biochemical and genetic studies and discuss how small RNAs are utilized to maintain genome organization and to provide non-DNA genetic information. I mainly focus on Drosophila but also discuss comparisons with other species.
Collapse
Affiliation(s)
- Kuniaki Saito
- Department of Molecular Biology, Keio University School of Medicine, 35 Shinanomachi,Shinjuku-ku, Tokyo 160-8582, Japan.
| |
Collapse
|
117
|
The role of innate immunity in conditioning mosquito susceptibility to West Nile virus. Viruses 2013; 5:3142-70. [PMID: 24351797 PMCID: PMC3967165 DOI: 10.3390/v5123142] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 11/13/2013] [Accepted: 12/09/2013] [Indexed: 01/02/2023] Open
Abstract
Arthropod-borne viruses (arboviruses) represent an emerging threat to human and livestock health globally. In particular, those transmitted by mosquitoes present the greatest challenges to disease control efforts. An understanding of the molecular basis for mosquito innate immunity to arbovirus infection is therefore critical to investigations regarding arbovirus evolution, virus-vector ecology, and mosquito vector competence. In this review, we discuss the current state of understanding regarding mosquito innate immunity to West Nile virus. We draw from the literature with respect to other virus-vector pairings to attempt to draw inferences to gaps in our knowledge about West Nile virus and relevant vectors.
Collapse
|
118
|
Pek JW, Patil VS, Kai T. piRNA pathway and the potential processing site, the nuage, in the Drosophila germline. Dev Growth Differ 2013; 54:66-77. [PMID: 23741748 DOI: 10.1111/j.1440-169x.2011.01316.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The accurate transfer of genetic material in germline cells during the formation of gametes is important for the continuity of the species. However, animal germline cells face challenges from transposons, which seek to spread themselves in the genome. This review focuses on studies in Drosophila melanogaster on how the genome protects itself from such a mutational burden via a class of gonad-specific small interfering RNAs, known as piRNAs (Piwi-interacting RNAs). In addition to silencing transposons, piRNAs also regulate other processes, such as chromosome segregation, mRNA degradation and germline differentiation. Recent studies revealed two modes of piRNA processing – primary processing and secondary processing (also known as ping-pong amplification). The primary processing pathway functions in both germline and somatic cells in the Drosophila ovaries by processing precursor piRNAs into 23–29 nt piRNAs. In contrast, the secondary processing pathway functions only in the germline cells where piRNAs are amplified in a feed-forward loop and require the Piwi-family proteins Aubergine and Argonaute3. Aubergine and Argonaute3 localize to a unique structure found in animal germline cells, the nuage, which has been proposed to function as a compartmentalized site for the ping-pong cycle. The nuage and the localized proteins are well-conserved, implying the importance of the piRNA amplification loop in animal germline cells. Nuage components include various types of proteins that are known to interact both physically and genetically, and therefore appear to be assembled in a sequential order to exert their function, resulting in a macromolecular RNA-protein complex dedicated to the silencing of transposons.
Collapse
Affiliation(s)
- Jun Wei Pek
- Department of Biological Sciences and Temasek Life Sciences Laboratory, 1 Research Link, The National University of Singapore, Singapore 117604, Singapore
| | | | | |
Collapse
|
119
|
Akbari OS, Antoshechkin I, Hay BA, Ferree PM. Transcriptome profiling of Nasonia vitripennis testis reveals novel transcripts expressed from the selfish B chromosome, paternal sex ratio. G3 (BETHESDA, MD.) 2013; 3:1597-605. [PMID: 23893741 PMCID: PMC3755920 DOI: 10.1534/g3.113.007583] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 07/16/2013] [Indexed: 11/18/2022]
Abstract
A widespread phenomenon in nature is sex ratio distortion of arthropod populations caused by microbial and genetic parasites. Currently little is known about how these agents alter host developmental processes to favor one sex or the other. The paternal sex ratio (PSR) chromosome is a nonessential, paternally transmitted centric fragment that segregates in natural populations of the jewel wasp, Nasonia vitripennis. To persist, PSR is thought to modify the hereditary material of the developing sperm, with the result that all nuclear DNA other than the PSR chromosome is destroyed shortly after fertilization. This results in the conversion of a fertilized embryo--normally a female--into a male, thereby insuring transmission of the "selfish" PSR chromosome, and simultaneously leading to wasp populations that are male-biased. To begin to understand this system at the mechanistic level, we carried out transcriptional profiling of testis from WT and PSR-carrying males. We identified a number of transcripts that are differentially expressed between these conditions. We also discovered nine transcripts that are uniquely expressed from the PSR chromosome. Four of these PSR-specific transcripts encode putative proteins, whereas the others have very short open reading frames and no homology to known proteins, suggesting that they are long noncoding RNAs. We propose several different models for how these transcripts could facilitate PSR-dependent effects. Our analyses also revealed 15.71 MB of novel transcribed regions in the N. vitripennis genome, thus increasing the current annotation of total transcribed regions by 53.4%. Finally, we detected expression of multiple meiosis-related genes in the wasp testis, despite the lack of conventional meiosis in the male sex.
Collapse
Affiliation(s)
- Omar S. Akbari
- Division of Biology, MC156-29, California Institute of Technology, Pasadena, California 91125
| | - Igor Antoshechkin
- Division of Biology, MC156-29, California Institute of Technology, Pasadena, California 91125
| | - Bruce A. Hay
- Division of Biology, MC156-29, California Institute of Technology, Pasadena, California 91125
| | - Patrick M. Ferree
- W. M. Keck Science Department, Claremont McKenna, Pitzer, and Scripps Colleges, Claremont, California 91711
| |
Collapse
|
120
|
Mani SR, Juliano CE. Untangling the web: the diverse functions of the PIWI/piRNA pathway. Mol Reprod Dev 2013; 80:632-64. [PMID: 23712694 DOI: 10.1002/mrd.22195] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 05/13/2013] [Indexed: 12/26/2022]
Abstract
Small RNAs impact several cellular processes through gene regulation. Argonaute proteins bind small RNAs to form effector complexes that control transcriptional and post-transcriptional gene expression. PIWI proteins belong to the Argonaute protein family, and bind PIWI-interacting RNAs (piRNAs). They are highly abundant in the germline, but are also expressed in some somatic tissues. The PIWI/piRNA pathway has a role in transposon repression in Drosophila, which occurs both by epigenetic regulation and post-transcriptional degradation of transposon mRNAs. These functions are conserved, but clear differences in the extent and mechanism of transposon repression exist between species. Mutations in piwi genes lead to the upregulation of transposon mRNAs. It is hypothesized that this increased transposon mobilization leads to genomic instability and thus sterility, although no causal link has been established between transposon upregulation and genome instability. An alternative scenario could be that piwi mutations directly affect genomic instability, and thus lead to increased transposon expression. We propose that the PIWI/piRNA pathway controls genome stability in several ways: suppression of transposons, direct regulation of chromatin architecture and regulation of genes that control important biological processes related to genome stability. The PIWI/piRNA pathway also regulates at least some, if not many, protein-coding genes, which further lends support to the idea that piwi genes may have broader functions beyond transposon repression. An intriguing possibility is that the PIWI/piRNA pathway is using transposon sequences to coordinate the expression of large groups of genes to regulate cellular function.
Collapse
Affiliation(s)
- Sneha Ramesh Mani
- Yale Stem Cell Center, Yale University, New Haven, Connecticut 06520, USA
| | | |
Collapse
|
121
|
Lucas KJ, Myles KM, Raikhel AS. Small RNAs: a new frontier in mosquito biology. Trends Parasitol 2013; 29:295-303. [PMID: 23680188 DOI: 10.1016/j.pt.2013.04.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 04/06/2013] [Accepted: 04/08/2013] [Indexed: 12/23/2022]
Abstract
The discovery of small non-coding RNAs has revolutionized our understanding of regulatory networks governing multiple functions in animals and plants. However, our knowledge of mosquito small RNAs is limited. We discuss here the state of current knowledge regarding the roles of small RNAs and their targets in mosquitoes, and describe the ongoing efforts to understand the role of the RNA interference (RNAi) pathway in mosquito antiviral immunity and transposon silencing. Providing a clear picture into the role of small RNAs in mosquito vectors will pave the way to the utilization of these small molecules in developing novel control approaches that target mosquito immunity and/or reproductive events. Elucidation of the functions of small RNAs represents a new frontier in mosquito biology.
Collapse
Affiliation(s)
- Keira J Lucas
- Department of Entomology, University of California Riverside, Riverside, CA 92521, USA
| | | | | |
Collapse
|
122
|
Czech B, Preall JB, McGinn J, Hannon GJ. A transcriptome-wide RNAi screen in the Drosophila ovary reveals factors of the germline piRNA pathway. Mol Cell 2013; 50:749-61. [PMID: 23665227 DOI: 10.1016/j.molcel.2013.04.007] [Citation(s) in RCA: 190] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 04/04/2013] [Accepted: 04/05/2013] [Indexed: 02/02/2023]
Abstract
The Drosophila piRNA pathway provides an RNA-based immune system that defends the germline genome against selfish genetic elements. Two interrelated branches of the piRNA system exist: somatic cells that support oogenesis only employ Piwi, whereas germ cells utilize a more elaborate pathway centered on the three gonad-specific Argonaute proteins (Piwi, Aubergine, and Argonaute 3). While several key factors of each branch have been identified, our current knowledge is insufficient to explain the complex workings of the piRNA machinery. Here, we report a reverse genetic screen spanning the ovarian transcriptome in an attempt to uncover the full repertoire of genes required for piRNA-mediated transposon silencing in the female germline. Our screen reveals key factors of piRNA-mediated transposon silencing, including the piRNA biogenesis factors CG2183 (GASZ) and Deadlock. Our data uncover a previously unanticipated set of factors preferentially required for repression of different transposon types.
Collapse
Affiliation(s)
- Benjamin Czech
- Watson School of Biological Sciences, Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.
| | | | | | | |
Collapse
|
123
|
Abstract
Segregation Distorter (SD) is an autosomal meiotic drive gene complex found worldwide in natural populations of Drosophila melanogaster. During spermatogenesis, SD induces dysfunction of SD(+) spermatids so that SD/SD(+) males sire almost exclusively SD-bearing progeny rather than the expected 1:1 Mendelian ratio. SD is thus evolutionarily "selfish," enhancing its own transmission at the expense of its bearers. Here we review the molecular and evolutionary genetics of SD. Genetic analyses show that the SD is a multilocus gene complex involving two key loci--the driver, Segregation distorter (Sd), and the target of drive, Responder (Rsp)--and at least three upward modifiers of distortion. Molecular analyses show that Sd encodes a truncated duplication of the gene RanGAP, whereas Rsp is a large pericentromeric block of satellite DNA. The Sd-RanGAP protein is enzymatically wild type but mislocalized within cells and, for reasons that remain unclear, appears to disrupt the histone-to-protamine transition in drive-sensitive spermatids bearing many Rsp satellite repeats but not drive-insensitive spermatids bearing few or no Rsp satellite repeats. Evolutionary analyses show that the Sd-RanGAP duplication arose recently within the D. melanogaster lineage, exploiting the preexisting and considerably older Rsp satellite locus. Once established, the SD haplotype collected enhancers of distortion and suppressors of recombination. Further dissection of the molecular genetic and cellular basis of SD-mediated distortion seems likely to provide insights into several important areas currently understudied, including the genetic control of spermatogenesis, the maintenance and evolution of satellite DNAs, the possible roles of small interfering RNAs in the germline, and the molecular population genetics of the interaction of genetic linkage and natural selection.
Collapse
|
124
|
Ishizu H, Siomi H, Siomi MC. Biology of PIWI-interacting RNAs: new insights into biogenesis and function inside and outside of germlines. Genes Dev 2013; 26:2361-73. [PMID: 23124062 DOI: 10.1101/gad.203786.112] [Citation(s) in RCA: 253] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
PIWI-interacting RNAs (piRNAs) are endogenous small noncoding RNAs that act as guardians of the genome, protecting it from invasive transposable elements in the germline. Animals lacking piRNA functions show defects in gametogenesis and exhibit sterility. Their descendants are also predisposed to inheriting mutations. Thus, the piRNA pathway has evolved to repress transposons post-transcriptionally and/or transcriptionally. A growing number of studies on piRNAs have investigated piRNA-mediated gene silencing, including piRNA biogenesis. However, piRNAs remain the most enigmatic among all of the silencing-inducing small RNAs because of their complexity and uniqueness. Although piRNAs have been previously suggested to be germline-specific, recent studies have shown that piRNAs also play crucial roles in nongonadal cells. Furthermore, piRNAs have also recently been shown to have roles in multigenerational epigenetic phenomena in worms. The purpose of this review is to highlight new piRNA factors and novel insights in the piRNA world.
Collapse
Affiliation(s)
- Hirotsugu Ishizu
- Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | | | | |
Collapse
|
125
|
Kato K, Senoki T, Takaku H. Inhibition of HIV-1 replication by RNA with a microRNA-like function. Int J Mol Med 2013; 31:252-8. [PMID: 23128354 DOI: 10.3892/ijmm.2012.1170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Accepted: 10/11/2012] [Indexed: 11/06/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) replication is suppressed by a small guide RNA (sgRNA) that targets the packaging signal of HIV-1 RNA. We unintentionally produced a plasmid with the reverse sequence of the sgRNA and its terminator (pR-Ψ-sgRNA-ter). Both sgRNA and R-Ψ-sgRNA suppress HIV-1, but the mechanism by which R-Ψ-sgRNA suppresses HIV is not clear. To evaluate whether the suppressive effect is caused by an RNA interference or microRNA (miRNA)-like mechanism, R-Ψ-sgRNA was synthesized in vitro and treated with the Dicer enzyme, an important enzyme for RNA interference and miRNA. The RNA was cleaved into fragments of approximately 24 nucleotides (nt). We analyzed the sequence of the RNA fragments and predicted the RNA secondary structure of R-Ψ-sgRNA to determine the region recognized by the Dicer enzyme. The lengths of the R-Ψ-sgRNA fragments ranged from 48 to 140 nt, and were predicted to form double strands, including mismatches, in this region. An HIV-1 p24 assay indicated that the R-Ψ-sgRNA fragments suppressed HIV-1 replication. These findings suggest that R-Ψ-sgRNA acts as a miRNA to inhibit HIV-1.
Collapse
Affiliation(s)
- Keijiro Kato
- Department of Life and Environmental Science, Chiba Institute of Technology, Narashino, Chiba 275-0016, Japan
| | | | | |
Collapse
|
126
|
Abstract
One of the most important and evolutionarily conserved strategies to control gene expression in higher metazoa is posttranscriptional regulation via small regulatory RNAs such as microRNAs (miRNAs), endogenous small interfering RNAs (endo-siRNAs), and piwi-interacting RNAs (piRNAs). Primordial germ cells, which are defined by their totipotent potential and noted for their dependence on posttranscriptional regulation by RNA-binding proteins, rely on these small regulatory RNAs for virtually every aspect of their development, including specification, migration, and differentiation into competent gametes. Here, we review current knowledge of the roles miRNAs, endo-siRNAs, and piRNAs play at all stages of germline development in various organisms, focusing on studies in the mouse.
Collapse
Affiliation(s)
- Matthew S Cook
- Department of Urology, University of California, San Francisco, California, USA.
| | | |
Collapse
|
127
|
Lee S, Vasudevan S. Post-transcriptional stimulation of gene expression by microRNAs. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 768:97-126. [PMID: 23224967 DOI: 10.1007/978-1-4614-5107-5_7] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
MicroRNAs are small noncoding RNA regulatory molecules that control gene expression by guiding associated effector complexes to other RNAs via sequence-specific recognition of target sites. Misregulation of microRNAs leads to a wide range of diseases including cancers, inflammatory and developmental disorders. MicroRNAs were found to mediate deadenylation-dependent decay and translational repression of messages through partially complementary microRNA target sites in the 3'-UTR (untranslated region). A growing series of studies has demonstrated that microRNAs and their associated complexes (microRNPs) elicit alternate functions that enable stimulation of gene expression in addition to their assigned repressive roles. These reports, discussed in this chapter, indicate that microRNA-mediated effects via natural 3' and 5'-UTRs can be selective and controlled, dictated by the RNA sequence context, associated complex, and cellular conditions. Similar to the effects of repression, upregulated gene expression by microRNAs varies from small refinements to significant amplifications in expression. An emerging theme from this literature is that microRNAs have a versatile range of abilities to manipulate post-transcriptional control mechanisms leading to controlled gene expression. These studies reveal new potentials for microRNPs in gene expression control that develop as responses to specific cellular conditions.
Collapse
|
128
|
Mutations to the piRNA pathway component aubergine enhance meiotic drive of segregation distorter in Drosophila melanogaster. Genetics 2012; 193:771-84. [PMID: 23267055 DOI: 10.1534/genetics.112.147561] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Diploid sexual reproduction involves segregation of allelic pairs, ensuring equal representation of genotypes in the gamete pool. Some genes, however, are able to "cheat" the system by promoting their own transmission. The Segregation distorter (Sd) locus in Drosophila melanogaster males is one of the best-studied examples of this type of phenomenon. In this system the presence of Sd on one copy of chromosome 2 results in dysfunction of the non-Sd-bearing (Sd(+)) sperm and almost exclusive transmission of Sd to the next generation. The mechanism by which Sd wreaks such selective havoc has remained elusive. However, its effect requires a target locus on chromosome 2 known as Responder (Rsp). The Rsp locus comprises repeated copies of a satellite DNA sequence and Rsp copy number correlates with sensitivity to Sd. Under distorting conditions during spermatogenesis, nuclei with chromosomes containing greater than several hundred Rsp repeats fail to condense chromatin and are eliminated. Recently, Rsp sequences were found as small RNAs in association with Argonaute family proteins Aubergine (Aub) and Argonaute3 (AGO3). These proteins are involved in a germline-specific RNAi mechanism known as the Piwi-interacting RNA (piRNA) pathway, which specifically suppresses transposon activation in the germline. Here, we evaluate the role of piRNAs in segregation distortion by testing the effects of mutations to piRNA pathway components on distortion. Further, we specifically targeted mutations to the aub locus of a Segregation Distorter (SD) chromosome, using ends-out homologous recombination. The data herein demonstrate that mutations to piRNA pathway components act as enhancers of SD.
Collapse
|
129
|
Kawaoka S, Hara K, Shoji K, Kobayashi M, Shimada T, Sugano S, Tomari Y, Suzuki Y, Katsuma S. The comprehensive epigenome map of piRNA clusters. Nucleic Acids Res 2012; 41:1581-90. [PMID: 23258708 PMCID: PMC3561999 DOI: 10.1093/nar/gks1275] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
PIWI-interacting RNA (piRNA) clusters act as anti-transposon/retrovirus centers. Integration of selfish jumping elements into piRNA clusters generates de novo piRNAs, which in turn exert trans-silencing activity against these elements in animal gonads. To date, neither genome-wide chromatin modification states of piRNA clusters nor a mode for piRNA precursor transcription have been well understood. Here, to understand the chromatin landscape of piRNA clusters and how piRNA precursors are generated, we analyzed the transcriptome, transcription start sites (TSSs) and the chromatin landscape of the BmN4 cell line, which harbors the germ-line piRNA pathway. Notably, our epigenomic map demonstrated the highly euchromatic nature of unique piRNA clusters. RNA polymerase II was enriched for TSSs that transcribe piRNA precursors. piRNA precursors possessed 5'-cap structures as well as 3'-poly A-tails. Collectively, we envision that the euchromatic, opened nature of unique piRNA clusters or piRNA cluster-associated TSSs allows piRNA clusters to capture new insertions efficiently.
Collapse
Affiliation(s)
- Shinpei Kawaoka
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, University of Tokyo, Yayoi, Tokyo, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
130
|
Kibanov MV, Gvozdev VA, Olenina LV. Germ granules in spermatogenesis of Drosophila: Evidences of contribution to the piRNA silencing. Commun Integr Biol 2012; 5:130-3. [PMID: 22808315 PMCID: PMC3376046 DOI: 10.4161/cib.18741] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Ribonucleoprotein-containing granules in the cytoplasm of germinal cells are known to be a common attribute of eukaryotic organisms. Germ granules appear to ensure the posttranscriptional regulation of germline mRNAs. Recent studies specify the participation of the germ granules in genome integrity maintenance by mechanisms involving short piRNAs. PIWI clade proteins and associated piRNAs are considered as key participants of the germline-specific piRNA pathway. Proteins of the PIWI clade, Aub and AGO3, concentrated in the germline-specific perinuclear granules called nuage, are involved in silencing of retrotransposons and other selfish repetitive elements in the Drosophila genome. In Drosophila testes, two types of perinuclear nuage granules are found: a large amount of small particles around the nuclei and significantly larger structures, the piNG-bodies. In this mini-review, we analyze the recent published data about structure and functions of Drosophila male germ granules, and especially their involvement in the piRNA silencing pathway.
Collapse
Affiliation(s)
- Mikhail V Kibanov
- Laboratory of Biochemical Genetics of Animals; Institute of Molecular Genetics; Moscow, Russia
| | | | | |
Collapse
|
131
|
Preall JB, Czech B, Guzzardo PM, Muerdter F, Hannon GJ. shutdown is a component of the Drosophila piRNA biogenesis machinery. RNA (NEW YORK, N.Y.) 2012; 18:1446-57. [PMID: 22753781 PMCID: PMC3404366 DOI: 10.1261/rna.034405.112] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Accepted: 05/15/2012] [Indexed: 05/03/2023]
Abstract
In animals, the piRNA pathway preserves the integrity of gametic genomes, guarding them against the activity of mobile genetic elements. This innate immune mechanism relies on distinct genomic loci, termed piRNA clusters, to provide a molecular definition of transposons, enabling their discrimination from genes. piRNA clusters give rise to long, single-stranded precursors, which are processed into primary piRNAs through an unknown mechanism. These can engage in an adaptive amplification loop, the ping-pong cycle, to optimize the content of small RNA populations via the generation of secondary piRNAs. Many proteins have been ascribed functions in either primary biogenesis or the ping-pong cycle, though for the most part the molecular functions of proteins implicated in these pathways remain obscure. Here, we link shutdown (shu), a gene previously shown to be required for fertility in Drosophila, to the piRNA pathway. Analysis of knockdown phenotypes in both the germline and somatic compartments of the ovary demonstrate important roles for shutdown in both primary biogenesis and the ping-pong cycle. shutdown is a member of the FKBP family of immunophilins. Shu contains domains implicated in peptidyl-prolyl cis-trans isomerase activity and in the binding of HSP90-family chaperones, though the relevance of these domains to piRNA biogenesis is unknown.
Collapse
Affiliation(s)
- Jonathan B. Preall
- Howard Hughes Medical Institute, Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Benjamin Czech
- Howard Hughes Medical Institute, Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Paloma M. Guzzardo
- Howard Hughes Medical Institute, Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Felix Muerdter
- Howard Hughes Medical Institute, Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Gregory J. Hannon
- Howard Hughes Medical Institute, Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| |
Collapse
|
132
|
Petit N, Piñeyro D, López-Panadès E, Casacuberta E, Navarro A. HeT-A_pi1, a piRNA target sequence in the Drosophila telomeric retrotransposon HeT-A, is extremely conserved across copies and species. PLoS One 2012; 7:e37405. [PMID: 22629389 PMCID: PMC3357415 DOI: 10.1371/journal.pone.0037405] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Accepted: 04/19/2012] [Indexed: 11/21/2022] Open
Abstract
The maintenance of the telomeres in Drosophila species depends on the transposition of the non-LTR retrotransposons HeT-A, TAHRE and TART. HeT-A and TART elements have been found in all studied species of Drosophila suggesting that their function has been maintained for more than 60 million years. Of the three elements, HeT-A is by far the main component of D. melanogaster telomeres and, unexpectedly for an element with an essential role in telomere elongation, the conservation of the nucleotide sequence of HeT-A is very low. In order to better understand the function of this telomeric retrotransposon, we studied the degree of conservation along HeT-A copies. We identified a small sequence within the 3′ UTR of the element that is extremely conserved among copies of the element both, within D. melanogaster and related species from the melanogaster group. The sequence corresponds to a piRNA target in D. melanogaster that we named HeT-A_pi1. Comparison with piRNA target sequences from other Drosophila retrotransposons showed that HeT-A_pi1 is the piRNA target in the Drosophila genome with the highest degree of conservation among species from the melanogaster group. The high conservation of this piRNA target in contrast with the surrounding sequence, suggests an important function of the HeT-A_pi1 sequence in the co-evolution of the HeT-A retrotransposon and the Drosophila genome.
Collapse
Affiliation(s)
- Natalia Petit
- Departament de Ciències Experimentals i de la Salut (DCEXS), Universitat Pompeu Fabra, Barcelona, Spain
- Institut de Biologia Evolutiva (CSIC-UPF), Barcelona, Spain
| | - David Piñeyro
- Institut de Biologia Evolutiva (CSIC-UPF), Barcelona, Spain
| | | | - Elena Casacuberta
- Institut de Biologia Evolutiva (CSIC-UPF), Barcelona, Spain
- * E-mail: (EC); (AN)
| | - Arcadi Navarro
- Departament de Ciències Experimentals i de la Salut (DCEXS), Universitat Pompeu Fabra, Barcelona, Spain
- Institut de Biologia Evolutiva (CSIC-UPF), Barcelona, Spain
- National Institute for Bioinformatics (INB), Population Genomics Node, Universitat Pompeu Fabra, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Catalonia, Spain
- * E-mail: (EC); (AN)
| |
Collapse
|
133
|
Pan Y, Hu M, Liang H, Wang JJ, Tang LJ. The expression of the PIWI family members miwi and mili in mice testis is negatively affected by estrogen. Cell Tissue Res 2012; 350:177-81. [DOI: 10.1007/s00441-012-1447-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2012] [Accepted: 04/30/2012] [Indexed: 01/23/2023]
|
134
|
Cai Y, Zhou Q, Yu C, Wang X, Hu S, Yu J, Yu X. Transposable-element associated small RNAs in Bombyx mori genome. PLoS One 2012; 7:e36599. [PMID: 22662121 PMCID: PMC3359762 DOI: 10.1371/journal.pone.0036599] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Accepted: 04/06/2012] [Indexed: 11/18/2022] Open
Abstract
Small RNAs are a group of regulatory RNA molecules that control gene expression at transcriptional or post-transcriptional levels among eukaryotes. The silkworm, Bombyx mori L., genome harbors abundant repetitive sequences derived from families of retrotransposons and transposons, which together constitute almost half of the genome space and provide ample resource for biogenesis of the three major small RNA families. We systematically discovered transposable-element (TE)-associated small RNAs in B. mori genome based on a deep RNA-sequencing strategy and the effort yielded 182, 788 and 4,990 TE-associated small RNAs in the miRNA, siRNA and piRNA species, respectively. Our analysis suggested that the three small RNA species preferentially associate with different TEs to create sequence and functional diversity, and we also show evidence that a Bombyx non-LTR retrotransposon, bm1645, alone contributes to the generation of TE-associated small RNAs in a very significant way. The fact that bm1645-associated small RNAs partially overlap with each other implies a possibility that this element may be modulated by different mechanisms to generate different products with diverse functions. Taken together, these discoveries expand the small RNA pool in B. mori genome and lead to new knowledge on the diversity and functional significance of TE-associated small RNAs.
Collapse
Affiliation(s)
- Yimei Cai
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Qing Zhou
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Caixia Yu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Xumin Wang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Songnian Hu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Jun Yu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- * E-mail: (JY); (XY)
| | - Xiaomin Yu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail: (JY); (XY)
| |
Collapse
|
135
|
Khurana JS, Wang J, Xu J, Koppetsch BS, Thomson TC, Nowosielska A, Li C, Zamore PD, Weng Z, Theurkauf WE. Adaptation to P element transposon invasion in Drosophila melanogaster. Cell 2012; 147:1551-63. [PMID: 22196730 DOI: 10.1016/j.cell.2011.11.042] [Citation(s) in RCA: 176] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Revised: 08/29/2011] [Accepted: 11/17/2011] [Indexed: 01/03/2023]
Abstract
Transposons evolve rapidly and can mobilize and trigger genetic instability. Piwi-interacting RNAs (piRNAs) silence these genome pathogens, but it is unclear how the piRNA pathway adapts to invasion of new transposons. In Drosophila, piRNAs are encoded by heterochromatic clusters and maternally deposited in the embryo. Paternally inherited P element transposons thus escape silencing and trigger a hybrid sterility syndrome termed P-M hybrid dysgenesis. We show that P-M hybrid dysgenesis activates both P elements and resident transposons and disrupts the piRNA biogenesis machinery. As dysgenic hybrids age, however, fertility is restored, P elements are silenced, and P element piRNAs are produced de novo. In addition, the piRNA biogenesis machinery assembles, and resident elements are silenced. Significantly, resident transposons insert into piRNA clusters, and these new insertions are transmitted to progeny, produce novel piRNAs, and are associated with reduced transposition. P element invasion thus triggers heritable changes in genome structure that appear to enhance transposon silencing.
Collapse
Affiliation(s)
- Jaspreet S Khurana
- Program in Cell and Developmental Dynamics, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
136
|
Mann JR, Mattiske DM. RNA interference in mammalian DNA methylation1This review is part of Special Issue entitled Asilomar Chromatin and has undergone the Journal’s usual peer review process. Biochem Cell Biol 2012; 90:70-7. [DOI: 10.1139/o11-050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
RNAi and Dicer-dependent siRNAs are required for constitutive heterochromatin formation in fission yeast and for establishing DNA methylation at repetitive elements in plants. In the mammalian male germ line, DICER1-independent piRNAs are required for the full establishment of DNA methylation of dispersed repetitive transposable elements. However, in other mammalian cell types, no clear picture has yet emerged of the role of RNAi in establishing heterochromatin and DNA methylation. In mouse embryonic stem cells, which remain viable on loss of DICER1 and ablation of RNAi, while no firm evidence has been obtained for defective heterochromatin formation, there are indications of defective DNA methylation. The latter has been attributed to an indirect effect of reduced DNA methyltransferase (DNMT) activity due to a loss of miRNA-mediated gene regulation. However, it is unclear whether the reductions in DNMT activity were sufficient to affect DNA methylation. We consider it equally likely that the defects in DNA methylation that can be observed in DICER1-deficient embryonic stem cells are the result of nonspecific effects related to RNAi loss aside from reduced DNMT activity.
Collapse
Affiliation(s)
- Jeffrey R. Mann
- Theme of Genetic Disorders, Murdoch Childrens Research Institute, The Royal Children’s Hospital, Parkville 3052, Victoria, Australia
| | - Deidre M. Mattiske
- Theme of Genetic Disorders, Murdoch Childrens Research Institute, The Royal Children’s Hospital, Parkville 3052, Victoria, Australia
| |
Collapse
|
137
|
The Cutoff protein regulates piRNA cluster expression and piRNA production in the Drosophila germline. EMBO J 2012; 30:4601-15. [PMID: 21952049 PMCID: PMC3243597 DOI: 10.1038/emboj.2011.334] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Accepted: 08/08/2011] [Indexed: 12/14/2022] Open
Abstract
The identity and function of many factors involved in the piRNA pathway remain unknown. Here, in Drosophila, cutoff plays a role in regulating piRNA cluster transcript levels and biogenesis together with the heterochromatin protein Rhino. In a broad range of organisms, Piwi-interacting RNAs (piRNAs) have emerged as core components of a surveillance system that protects the genome by silencing transposable and repetitive elements. A vast proportion of piRNAs is produced from discrete genomic loci, termed piRNA clusters, which are generally embedded in heterochromatic regions. The molecular mechanisms and the factors that govern their expression are largely unknown. Here, we show that Cutoff (Cuff), a Drosophila protein related to the yeast transcription termination factor Rai1, is essential for piRNA production in germline tissues. Cuff accumulates at centromeric/pericentromeric positions in germ-cell nuclei and strongly colocalizes with the major heterochromatic domains. Remarkably, we show that Cuff is enriched at the dual-strand piRNA cluster 1/42AB and is likely to be involved in regulation of transcript levels of similar loci dispersed in the genome. Consistent with this observation, Cuff physically interacts with the Heterochromatin Protein 1 (HP1) variant Rhino (Rhi). Our results unveil a link between Cuff activity, heterochromatin assembly and piRNA cluster expression, which is critical for stem-cell and germ-cell development in Drosophila.
Collapse
|
138
|
Cash AC, Andrews J. Fine scale analysis of gene expression in Drosophila melanogaster gonads reveals Programmed cell death 4 promotes the differentiation of female germline stem cells. BMC DEVELOPMENTAL BIOLOGY 2012; 12:4. [PMID: 22252300 PMCID: PMC3322342 DOI: 10.1186/1471-213x-12-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Accepted: 01/17/2012] [Indexed: 11/10/2022]
Abstract
Background Germline stem cells (GSCs) are present in the gonads of Drosophila females and males, and their proper maintenance, as well as their correct differentiation, is essential for fertility and fecundity. The molecular characterization of factors involved in maintenance and differentiation is a major goal both in Drosophila and stem cell research. While genetic studies have identified many of these key factors, the use of genome-wide expression studies holds the potential to greatly increase our knowledge of these pathways. Results Here we report a genome-wide expression study that uses laser cutting microdissection to isolate germline stem cells, somatic niche cells, and early differentiating germ cells from female and male gonads. Analysis of this data, in association with two previously published genome-wide GSC data sets, revealed sets of candidate genes as putatively expressed in specific cell populations. Investigation of one of these genes, CG10990 the Drosophila ortholog of mammalian Programmed cell death 4 (Pdcd4), reveals expression in female and male germline stem cells and early differentiating daughter cells. Functional analysis demonstrates that while it is not essential for oogenesis or spermatogenesis, it does function to promote the differentiation of GSCs in females. Furthermore, in females, Pdcd4 genetically interacts with the key differentiation gene bag of marbles (bam) and the stem cell renewal factor eIF4A, suggesting a possible pathway for its function in differentiation. Conclusions We propose that Pdcd4 promotes the differentiation of GSC daughter cells by relieving the eIF4A-mediated inhibition of Bam.
Collapse
Affiliation(s)
- Amy C Cash
- Department of Biology, Indiana University, Myers Hall, 915 East Third St,, Bloomington, IN 47403, USA
| | | |
Collapse
|
139
|
Pillai RS, Chuma S. piRNAs and their involvement in male germline development in mice. Dev Growth Differ 2012; 54:78-92. [PMID: 22221002 DOI: 10.1111/j.1440-169x.2011.01320.x] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Piwi-interacting RNAs (piRNAs) are a class of small non-coding RNAs expressed in the animal gonads. They are implicated in silencing the genome instability threat posed by mobile genetic elements called transposons. Unlike other small RNAs, which use double-stranded precursors, piRNAs seem to arise from long single-stranded precursor transcripts expressed from discrete genomic regions. In mice, the Piwi pathway is essential for male fertility, and its loss-of-function mutations affect several distinct stages of spermatogenesis. While this small RNA pathway primarily operates post-transcriptionally, it also impacts DNA methylation of target retrotransposon loci, representing an intriguing model of RNA-directed epigenetic control in mammals. Remarkably the Piwi pathway components are specifically localized at germinal granule/nuage, an evolutionarily conserved but still enigmatic ribonucleoprotein compartment in the germline. The inaccessibility of the germline for easy experimental manipulation has meant that this class of RNAs has remained enigmatic. However, recent advances in the use of cell culture models and cell-free systems have greatly advanced our understanding. In this review, we briefly summarize our current understanding of the Piwi pathway, focusing on its developmental regulation, piRNA biogenesis and key function in male germline development from fetal spermatogonial stem cell stage to postnatal haploid spermiogenesis in mice.
Collapse
Affiliation(s)
- Ramesh S Pillai
- European Molecular Biology Laboratory, 6 Rue Jules Horowitz, BP 181 CNRS-UJF-EMBL International Unit (UMI 3265) for Virus Host Cell Interactions (UVHCI), 38042 Grenoble, France.
| | | |
Collapse
|
140
|
Morazzani EM, Wiley MR, Murreddu MG, Adelman ZN, Myles KM. Production of virus-derived ping-pong-dependent piRNA-like small RNAs in the mosquito soma. PLoS Pathog 2012; 8:e1002470. [PMID: 22241995 PMCID: PMC3252369 DOI: 10.1371/journal.ppat.1002470] [Citation(s) in RCA: 249] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Accepted: 11/18/2011] [Indexed: 11/19/2022] Open
Abstract
The natural maintenance cycles of many mosquito-borne pathogens require establishment of persistent non-lethal infections in the invertebrate host. The mechanism by which this occurs is not well understood, but we have previously shown that an antiviral response directed by small interfering RNAs (siRNAs) is important in modulating the pathogenesis of alphavirus infections in the mosquito. However, we report here that infection of mosquitoes with an alphavirus also triggers the production of another class of virus-derived small RNAs that exhibit many similarities to ping-pong-dependent piwi-interacting RNAs (piRNAs). However, unlike ping-pong-dependent piRNAs that have been described previously from repetitive elements or piRNA clusters, our work suggests production in the soma. We also present evidence that suggests virus-derived piRNA-like small RNAs are capable of modulating the pathogenesis of alphavirus infections in dicer-2 null mutant mosquito cell lines defective in viral siRNA production. Overall, our results suggest that a non-canonical piRNA pathway is present in the soma of vector mosquitoes and may be acting redundantly to the siRNA pathway to target alphavirus replication. Mosquitoes defend themselves against viral infection with an innate immune response. Thus, mosquito-borne viral diseases like West Nile fever, dengue fever, and chikungunya fever are transmitted to humans only when the pathogen overcomes these defenses. Despite this, relatively little is known about the immune pathways of the mosquito. We have previously shown that an antiviral response directed by small interfering RNAs (siRNAs) is present in culicine mosquito vectors. However, we show here that another class of virus-derived small RNAs, exhibiting many similarities with ping-pong-dependent piwi-interacting RNAs (piRNAs), is also produced in the soma of culicine mosquitoes. We also show that these piRNA-like small RNAs are capable of mounting an antiviral defense in mosquito cell lines with defective siRNA-based immunity, suggesting that mosquitoes possess redundant RNA-based antiviral responses. This study provides new insights into how a mosquito's immune defenses restrict virus replication and the transmission of mosquito-borne viruses.
Collapse
Affiliation(s)
- Elaine M. Morazzani
- Department of Entomology, Fralin Life Science Institute, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Michael R. Wiley
- Department of Entomology, Fralin Life Science Institute, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Marta G. Murreddu
- Department of Entomology, Fralin Life Science Institute, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Zach N. Adelman
- Department of Entomology, Fralin Life Science Institute, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Kevin M. Myles
- Department of Entomology, Fralin Life Science Institute, Virginia Tech, Blacksburg, Virginia, United States of America
- * E-mail:
| |
Collapse
|
141
|
|
142
|
Sato K, Nishida KM, Shibuya A, Siomi MC, Siomi H. Maelstrom coordinates microtubule organization during Drosophila oogenesis through interaction with components of the MTOC. Genes Dev 2011; 25:2361-73. [PMID: 22085963 DOI: 10.1101/gad.174110.111] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The establishment of body axes in multicellular organisms requires accurate control of microtubule polarization. Mutations in Drosophila PIWI-interacting RNA (piRNA) pathway genes often disrupt the axes of the oocyte. This results from the activation of the DNA damage checkpoint factor Checkpoint kinase 2 (Chk2) due to transposon derepression. A piRNA pathway gene, maelstrom (mael), is critical for the establishment of oocyte polarity in the developing egg chamber during Drosophila oogenesis. We show that Mael forms complexes with microtubule-organizing center (MTOC) components, including Centrosomin, Mini spindles, and γTubulin. We also show that Mael colocalizes with αTubulin and γTubulin to centrosomes in dividing cyst cells and follicle cells. MTOC components mislocalize in mael mutant germarium and egg chambers, leading to centrosome migration defects. During oogenesis, the loss of mael affects oocyte determination and induces egg chamber fusion. Finally, we show that the axis specification defects in mael mutants are not suppressed by a mutation in mnk, which encodes a Chk2 homolog. These findings suggest a model in which Mael serves as a platform that nucleates other MTOC components to form a functional MTOC in early oocyte development, which is independent of Chk2 activation and DNA damage signaling.
Collapse
Affiliation(s)
- Kaoru Sato
- Department of Molecular Biology, Keio University School of Medicine, Tokyo, Japan
| | | | | | | | | |
Collapse
|
143
|
Arensburger P, Hice RH, Wright JA, Craig NL, Atkinson PW. The mosquito Aedes aegypti has a large genome size and high transposable element load but contains a low proportion of transposon-specific piRNAs. BMC Genomics 2011; 12:606. [PMID: 22171608 PMCID: PMC3259105 DOI: 10.1186/1471-2164-12-606] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Accepted: 12/15/2011] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The piRNA pathway has been shown in model organisms to be involved in silencing of transposons thereby providing genome stability. In D. melanogaster the majority of piRNAs map to these sequences. The medically important mosquito species Aedes aegypti has a large genome size, a high transposon load which includes Miniature Inverted repeat Transposable Elements (MITES) and an expansion of the piRNA biogenesis genes. Studies of transgenic lines of Ae. aegypti have indicated that introduced transposons are poorly remobilized and we sought to explore the basis of this. We wished to analyze the piRNA profile of Ae. aegypti and thereby determine if it is responsible for transposon silencing in this mosquito. RESULTS Estimated piRNA sequence diversity was comparable between Ae. aegypti and D. melanogaster, but surprisingly only 19% of mosquito piRNAs mapped to transposons compared to 51% for D. melanogaster. Ae. aegypti piRNA clusters made up a larger percentage of the total genome than those of D. melanogaster but did not contain significantly higher percentages of transposon derived sequences than other regions of the genome. Ae. aegypti contains a number of protein coding genes that may be sources of piRNA biogenesis with two, traffic jam and maelstrom, implicated in this process in model organisms. Several genes of viral origin were also targeted by piRNAs. Examination of six mosquito libraries that had previously been transformed with transposon derived sequence revealed that new piRNA sequences had been generated to the transformed sequences, suggesting that they may have stimulated a transposon inactivation mechanism. CONCLUSIONS Ae. aegypti has a large piRNA complement that maps to transposons but primarily gene sequences, including many viral-derived sequences. This, together the more uniform distribution of piRNA clusters throughout its genome, suggest that some aspects of the piRNA system differ between Ae. aegypti and D. melanogaster.
Collapse
Affiliation(s)
- Peter Arensburger
- Center for Disease Vector Research, Institute for Integrative Genome Biology, and Department of Entomology, University of California, Riverside, CA 92521, USA
| | - Robert H Hice
- Center for Disease Vector Research, Institute for Integrative Genome Biology, and Department of Entomology, University of California, Riverside, CA 92521, USA
| | - Jennifer A Wright
- Center for Disease Vector Research, Institute for Integrative Genome Biology, and Department of Entomology, University of California, Riverside, CA 92521, USA
| | - Nancy L Craig
- Department of Molecular Biology & Genetics and Howard Hughes Medical Institute, Johns Hopkins School of Medicine, Baltimore, MD 20742,USA
| | - Peter W Atkinson
- Center for Disease Vector Research, Institute for Integrative Genome Biology, and Department of Entomology, University of California, Riverside, CA 92521, USA
| |
Collapse
|
144
|
The "Special" crystal-Stellate System in Drosophila melanogaster Reveals Mechanisms Underlying piRNA Pathway-Mediated Canalization. GENETICS RESEARCH INTERNATIONAL 2011; 2012:324293. [PMID: 22567384 PMCID: PMC3335654 DOI: 10.1155/2012/324293] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Revised: 08/18/2011] [Accepted: 09/21/2011] [Indexed: 11/18/2022]
Abstract
The Stellate-made crystals formation in spermatocytes is the phenotypic manifestation of a disrupted crystal-Stellate interaction in testes of Drosophila melanogaster. Stellate silencing is achieved by the piRNA pathway, but many features still remain unknown. Here we outline the important role of the crystal-Stellate modifiers. These have shed light on the piRNA pathways that defend genome integrity against transposons and other repetitive elements in the gonads. In particular, we illustrate the finding that HSP90 participates in the molecular pathways of piRNA production. This observation has relevance for the mechanisms underlying the evolutionary canalization process.
Collapse
|
145
|
Drosophila Piwi functions downstream of piRNA production mediating a chromatin-based transposon silencing mechanism in female germ line. Proc Natl Acad Sci U S A 2011; 108:21164-9. [PMID: 22160707 DOI: 10.1073/pnas.1107892109] [Citation(s) in RCA: 170] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Transposon control is a critical process during reproduction. The PIWI family proteins can play a key role, using a piRNA-mediated slicing mechanism to suppress transposon activity posttranscriptionally. In Drosophila melanogaster, Piwi is predominantly localized in the nucleus and has been implicated in heterochromatin formation. Here, we use female germ-line-specific depletion to study Piwi function. This depletion of Piwi leads to infertility and to axis specification defects in the developing egg chambers; correspondingly, widespread loss of transposon silencing is observed. Germ-line Piwi does not appear to be required for piRNA production. Instead, Piwi requires Aubergine (and presumably secondary piRNA) for proper localization. A subset of transposons that show significant overexpression in germ-line Piwi-depleted ovaries exhibit a corresponding loss of HP1a and H3K9me2. Germ-line HP1a depletion also leads to a loss of transposon silencing, demonstrating the functional requirement for HP1a enrichment at these loci. Considering our results and those of others, we infer that germ-line Piwi functions downstream of piRNA production to promote silencing of some transposons via recruitment of HP1a. Thus, in addition to its better-known function in posttranscriptional silencing, piRNA also appears to function in a targeting mechanism for heterochromatin formation mediated by Piwi.
Collapse
|
146
|
Abstract
"Germ granules" are cytoplasmic, nonmembrane-bound organelles unique to germline. Germ granules share components with the P bodies and stress granules of somatic cells, but also contain proteins and RNAs uniquely required for germ cell development. In this review, we focus on recent advances in our understanding of germ granule assembly, dynamics, and function. One hypothesis is that germ granules operate as hubs for the posttranscriptional control of gene expression, a function at the core of the germ cell differentiation program.
Collapse
Affiliation(s)
- Ekaterina Voronina
- Department of Molecular Biology and Genetics and Howard Hughes Medical Institute, Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
| | | | | | | |
Collapse
|
147
|
Yang H, Wang X, Liu X, Liu X, Li L, Hu X, Li N. Cloning and expression analysis of piRNA-like RNAs: adult testis-specific small RNAs in chicken. Mol Cell Biochem 2011; 360:347-52. [DOI: 10.1007/s11010-011-1074-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2011] [Accepted: 09/16/2011] [Indexed: 10/16/2022]
|
148
|
Nagao A, Sato K, Nishida KM, Siomi H, Siomi MC. Gender-Specific Hierarchy in Nuage Localization of PIWI-Interacting RNA Factors in Drosophila. Front Genet 2011; 2:55. [PMID: 22303351 PMCID: PMC3268608 DOI: 10.3389/fgene.2011.00055] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Accepted: 08/12/2011] [Indexed: 01/03/2023] Open
Abstract
PIWI-interacting RNAs (piRNAs) are germline-specific small non-coding RNAs that form piRNA-induced silencing complexes (piRISCs) by associating with PIWI proteins, a subclade of the Argonaute proteins predominantly expressed in the germline. piRISCs protect the integrity of the germline genome from invasive transposable DNA elements by silencing them. Multiple piRNA biogenesis factors have been identified in Drosophila. The majority of piRNA factors are localized in the nuage, electron-dense non-membranous cytoplasmic structures located in the perinuclear regions of germ cells. Thus, piRNA biogenesis is thought to occur in the nuage in germ cells. Immunofluorescence analyses of ovaries from piRNA factor mutants have revealed a localization hierarchy of piRNA factors in female nuage. However, whether this hierarchy is female-specific or can also be applied in male gonads remains undetermined. Here, we show by immunostaining of both ovaries and testes from piRNA factor mutants that the molecular hierarchy of piRNA factors shows gender-specificity, especially for Krimper (Krimp), a Tudor-domain-containing protein of unknown function(s): Krimp is dispensable for PIWI protein Aubergine (Aub) nuage localization in ovaries but Krimp and Aub require each other for their proper nuage localization in testes. This suggests that the functional requirement of Krimp in piRNA biogenesis may be different in male and female gonads.
Collapse
Affiliation(s)
- Akihiro Nagao
- Siomi Lab, Department of Molecular Biology, Keio University School of Medicine Tokyo, Japan
| | | | | | | | | |
Collapse
|
149
|
Sanders C, Smith DP. LUMP is a putative double-stranded RNA binding protein required for male fertility in Drosophila melanogaster. PLoS One 2011; 6:e24151. [PMID: 21912621 PMCID: PMC3166160 DOI: 10.1371/journal.pone.0024151] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Accepted: 07/31/2011] [Indexed: 01/10/2023] Open
Abstract
In animals, male fertility requires the successful development of motile sperm. During Drosophila melanogaster spermatogenesis, 64 interconnected spermatids descended from a single germline stem cell are resolved into motile sperm in a process termed individualization. Here we identify a putative double-stranded RNA binding protein LUMP that is required for male fertility. lump(1) mutants are male-sterile and lack motile sperm due to defects in sperm individualization. We show that one dsRNA binding domains (dsRBD) is essential for LUMP function in male fertility. These findings reveal LUMP is a novel factor required for late stages of male germline differentiation.
Collapse
Affiliation(s)
- Charcacia Sanders
- Departments of Pharmacology and Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Dean P. Smith
- Departments of Pharmacology and Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- * E-mail:
| |
Collapse
|
150
|
Kibanov MV, Egorova KS, Ryazansky SS, Sokolova OA, Kotov AA, Olenkina OM, Stolyarenko AD, Gvozdev VA, Olenina LV. A novel organelle, the piNG-body, in the nuage of Drosophila male germ cells is associated with piRNA-mediated gene silencing. Mol Biol Cell 2011; 22:3410-9. [PMID: 21775629 PMCID: PMC3172265 DOI: 10.1091/mbc.e11-02-0168] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
A novel perinuclear nuage organelle, the piNG-body, is associated with piRNA silencing in testes of Drosophila. This body contains the known ovarian nuage proteins Vasa, Aub, AGO3, Tud, Spn-E, Bel, Squ, and Cuff, as well as AGO1. Proteins of the PIWI subfamily Aub and AGO3 associated with the germline-specific perinuclear granules (nuage) are involved in the silencing of retrotransposons and other selfish repetitive elements in the Drosophila genome. PIWI proteins and their 25- to 30-nt PIWI-interacting RNA (piRNAs) are considered as key participants of the piRNA pathway. Using immunostaining, we found a large, nuage-associated organelle in the testes, the piNG-body (piRNA nuage giant body), which was significantly more massive than an ordinary nuage granule. This body contains known ovarian nuage proteins, including Vasa, Aub, AGO3, Tud, Spn-E, Bel, Squ, and Cuff, as well as AGO1, the key component of the microRNA pathway. piNG-bodies emerge at the primary spermatocyte stage of spermatogenesis during the period of active transcription. Aub, Vasa, and Tud are located at the periphery of the piNG-body, whereas AGO3 is found in its core. Mutational analysis revealed that Vasa, Aub, and AGO3 were crucial for both the maintenance of the piNG-body structure and the silencing of selfish Stellate repeats. The piNG-body destruction caused by csul mutations that abolish specific posttranslational symmetrical arginine methylation of PIWI proteins is accompanied by strong derepression of Stellate genes known to be silenced via the piRNA pathway.
Collapse
Affiliation(s)
- Mikhail V Kibanov
- Laboratory of Biochemical Genetics of Animals, Institute of Molecular Genetics, Moscow, 123182, Russia
| | | | | | | | | | | | | | | | | |
Collapse
|