101
|
A Transposon Screen Identifies Genetic Determinants of Vibrio cholerae Resistance to High-Molecular-Weight Antibiotics. Antimicrob Agents Chemother 2016; 60:4757-63. [PMID: 27216069 DOI: 10.1128/aac.00576-16] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Accepted: 05/19/2016] [Indexed: 12/22/2022] Open
Abstract
Gram-negative bacteria are notoriously resistant to a variety of high-molecular-weight antibiotics due to the limited permeability of their outer membrane (OM). The basis of OM barrier function and the genetic factors required for its maintenance remain incompletely understood. Here, we employed transposon insertion sequencing to identify genes required for Vibrio cholerae resistance to vancomycin and bacitracin, antibiotics that are thought to be too large to efficiently penetrate the OM. The screen yielded several genes whose protein products are predicted to participate in processes important for OM barrier functions and for biofilm formation. In addition, we identified a novel factor, designated vigA (for vancomycin inhibits growth), that has not previously been characterized or linked to outer membrane function. The vigA open reading frame (ORF) codes for an inner membrane protein, and in its absence, cells became highly sensitive to glycopeptide antibiotics (vancomycin and ramoplanin) and bacitracin but not to other large antibiotics or detergents. In contrast to wild-type (WT) cells, the vigA mutant was stained with fluorescent vancomycin. These observations suggest that VigA specifically prevents the periplasmic accumulation of certain large antibiotics without exerting a general role in the maintenance of OM integrity. We also observed marked interspecies variability in the susceptibilities of Gram-negative pathogens to glycopeptides and bacitracin. Collectively, our findings suggest that the OM barrier is not absolute but rather depends on specific OM-antibiotic interactions.
Collapse
|
102
|
Hooven TA, Catomeris AJ, Akabas LH, Randis TM, Maskell DJ, Peters SE, Ott S, Santana-Cruz I, Tallon LJ, Tettelin H, Ratner AJ. The essential genome of Streptococcus agalactiae. BMC Genomics 2016; 17:406. [PMID: 27229469 PMCID: PMC4881062 DOI: 10.1186/s12864-016-2741-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 05/14/2016] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Next-generation sequencing of transposon-genome junctions from a saturated bacterial mutant library (Tn-seq) is a powerful tool that permits genome-wide determination of the contribution of genes to fitness of the organism under a wide range of experimental conditions. We report development, testing, and results from a Tn-seq system for use in Streptococcus agalactiae (group B Streptococcus; GBS), an important cause of neonatal sepsis. METHODS Our method uses a Himar1 mini-transposon that inserts at genomic TA dinucleotide sites, delivered to GBS on a temperature-sensitive plasmid that is subsequently cured from the bacterial population. In order to establish the GBS essential genome, we performed Tn-seq on DNA collected from three independent mutant libraries-with at least 135,000 mutants per library-at serial 24 h time points after outgrowth in rich media. RESULTS After statistical analysis of transposon insertion density and distribution, we identified 13.5 % of genes as essential and 1.2 % as critical, with high levels of reproducibility. Essential and critical genes are enriched for fundamental cellular housekeeping functions, such as acyl-tRNA biosynthesis, nucleotide metabolism, and glycolysis. We further validated our system by comparing fitness assignments of homologous genes in GBS and a close bacterial relative, Streptococcus pyogenes, which demonstrated 93 % concordance. Finally, we used our fitness assignments to identify signal transduction pathway components predicted to be essential or critical in GBS. CONCLUSIONS We believe that our baseline fitness assignments will be a valuable tool for GBS researchers and that our system has the potential to reveal key pathogenesis gene networks and potential therapeutic/preventative targets.
Collapse
Affiliation(s)
- Thomas A Hooven
- Department of Pediatrics, Columbia University, New York, NY, USA
| | - Andrew J Catomeris
- Department of Pediatrics, Division of Pediatric Infectious Diseases, New York University School of Medicine, 550 First Avenue (MSB 223), New York, NY, 10016, USA
| | - Leor H Akabas
- Department of Pediatrics, Columbia University, New York, NY, USA
| | - Tara M Randis
- Department of Pediatrics, Division of Pediatric Infectious Diseases, New York University School of Medicine, 550 First Avenue (MSB 223), New York, NY, 10016, USA
| | - Duncan J Maskell
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Sarah E Peters
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Sandra Ott
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Ivette Santana-Cruz
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Luke J Tallon
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Hervé Tettelin
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Adam J Ratner
- Department of Pediatrics, Division of Pediatric Infectious Diseases, New York University School of Medicine, 550 First Avenue (MSB 223), New York, NY, 10016, USA. .,Department of Microbiology, New York University School of Medicine, New York, NY, USA.
| |
Collapse
|
103
|
Chao MC, Abel S, Davis BM, Waldor MK. The design and analysis of transposon insertion sequencing experiments. Nat Rev Microbiol 2016; 14:119-28. [PMID: 26775926 DOI: 10.1038/nrmicro.2015.7] [Citation(s) in RCA: 148] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Transposon insertion sequencing (TIS) is a powerful approach that can be extensively applied to the genome-wide definition of loci that are required for bacterial growth under diverse conditions. However, experimental design choices and stochastic biological processes can heavily influence the results of TIS experiments and affect downstream statistical analysis. In this Opinion article, we discuss TIS experimental parameters and how these factors relate to the benefits and limitations of the various statistical frameworks that can be applied to the computational analysis of TIS data.
Collapse
Affiliation(s)
- Michael C Chao
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts 02115, USA; the Division of Infectious Disease, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA; and the Howard Hughes Medical Institute, Boston, Massachusetts 02115, USA
| | - Sören Abel
- Department of Pharmacy, University of Tromsø, The Arctic University of Norway, 9019 Tromsø, Norway
| | - Brigid M Davis
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts 02115, USA; the Division of Infectious Disease, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA; and the Howard Hughes Medical Institute, Boston, Massachusetts 02115, USA
| | - Matthew K Waldor
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts 02115, USA; the Division of Infectious Disease, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA; and the Howard Hughes Medical Institute, Boston, Massachusetts 02115, USA
| |
Collapse
|
104
|
Abstract
Vibrio parahaemolyticus is the most common cause of seafood-borne gastroenteritis worldwide and a blight on global aquaculture. This organism requires a horizontally acquired type III secretion system (T3SS2) to infect the small intestine, but knowledge of additional factors that underlie V. parahaemolyticus pathogenicity is limited. We used transposon-insertion sequencing to screen for genes that contribute to viability of V. parahaemolyticus in vitro and in the mammalian intestine. Our analysis enumerated and controlled for the host infection bottleneck, enabling robust assessment of genetic contributions to in vivo fitness. We identified genes that contribute to V. parahaemolyticus colonization of the intestine independent of known virulence mechanisms in addition to uncharacterized components of T3SS2. Our study revealed that toxR, an ancestral locus in Vibrio species, is required for V. parahaemolyticus fitness in vivo and for induction of T3SS2 gene expression. The regulatory mechanism by which V. parahaemolyticus ToxR activates expression of T3SS2 resembles Vibrio cholerae ToxR regulation of distinct virulence elements acquired via lateral gene transfer. Thus, disparate horizontally acquired virulence systems have been placed under the control of this ancestral transcription factor across independently evolved human pathogens.
Collapse
|
105
|
Liu F, Wang C, Wu Z, Zhang Q, Liu P. A zero-inflated Poisson model for insertion tolerance analysis of genes based on Tn-seq data. Bioinformatics 2016; 32:1701-8. [PMID: 26833344 DOI: 10.1093/bioinformatics/btw061] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 01/25/2016] [Indexed: 11/13/2022] Open
Abstract
MOTIVATION Transposon insertion sequencing (Tn-seq) is an emerging technology that combines transposon mutagenesis with next-generation sequencing technologies for the identification of genes related to bacterial survival. The resulting data from Tn-seq experiments consist of sequence reads mapped to millions of potential transposon insertion sites and a large portion of insertion sites have zero mapped reads. Novel statistical method for Tn-seq data analysis is needed to infer functions of genes on bacterial growth. RESULTS In this article, we propose a zero-inflated Poisson model for analyzing the Tn-seq data that are high-dimensional and with an excess of zeros. Maximum likelihood estimates of model parameters are obtained using an expectation-maximization (EM) algorithm, and pseudogenes are utilized to construct appropriate statistical tests for the transposon insertion tolerance of normal genes of interest. We propose a multiple testing procedure that categorizes genes into each of the three states, hypo-tolerant, tolerant and hyper-tolerant, while controlling the false discovery rate. We evaluate the proposed method with simulation studies and apply the proposed method to a real Tn-seq data from an experiment that studied the bacterial pathogen, Campylobacter jejuniAvailability and implementation: We provide R code for implementing our proposed method at http://github.com/ffliu/TnSeq A user's guide with example data analysis is also available there. CONTACT pliu@iastate.edu SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
| | - Chong Wang
- Department of Statistics, Iowa State University, Department of Veterinary Diagnostic and Production Animal Medicine and
| | - Zuowei Wu
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA 50010, USA
| | - Qijing Zhang
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA 50010, USA
| | - Peng Liu
- Department of Statistics, Iowa State University
| |
Collapse
|
106
|
DeJesus MA, Ioerger TR. Normalization of transposon-mutant library sequencing datasets to improve identification of conditionally essential genes. J Bioinform Comput Biol 2016; 14:1642004. [PMID: 26932272 DOI: 10.1142/s021972001642004x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Sequencing of transposon-mutant libraries using next-generation sequencing (TnSeq) has become a popular method for determining which genes and non-coding regions are essential for growth under various conditions in bacteria. For methods that rely on quantitative comparison of counts of reads at transposon insertion sites, proper normalization of TnSeq datasets is vitally important. Real TnSeq datasets are often noisy and exhibit a significant skew that can be dominated by high counts at a small number of sites (often for non-biological reasons). If two datasets that are not appropriately normalized are compared, it might cause the artifactual appearance of Differentially Essential (DE) genes in a statistical test, constituting type I errors (false positives). In this paper, we propose a novel method for normalization of TnSeq datasets that corrects for the skew of read-count distributions by fitting them to a Beta-Geometric distribution. We show that this read-count correction procedure reduces the number of false positives when comparing replicate datasets grown under the same conditions (for which no genuine differences in essentiality are expected). We compare these results to results obtained with other normalization procedures, and show that it results in greater reduction in the number of false positives. In addition we investigate the effects of normalization on the detection of DE genes.
Collapse
Affiliation(s)
- Michael A DeJesus
- 1 Department of Computer Science, Texas A&M University, College Station, Texas 77843, USA
| | - Thomas R Ioerger
- 1 Department of Computer Science, Texas A&M University, College Station, Texas 77843, USA
| |
Collapse
|
107
|
Chao MC, Zhu S, Kimura S, Davis BM, Schadt EE, Fang G, Waldor MK. A Cytosine Methyltransferase Modulates the Cell Envelope Stress Response in the Cholera Pathogen [corrected]. PLoS Genet 2015; 11:e1005666. [PMID: 26588462 PMCID: PMC4654547 DOI: 10.1371/journal.pgen.1005666] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 10/23/2015] [Indexed: 11/18/2022] Open
Abstract
DNA methylation is a key epigenetic regulator in all domains of life, yet the effects of most bacterial DNA methyltransferases on cellular processes are largely undefined. Here, we used diverse techniques, including bisulfite sequencing, transcriptomics, and transposon insertion site sequencing to extensively characterize a 5-methylcytosine (5mC) methyltransferase, VchM, in the cholera pathogen, Vibrio cholerae. We have comprehensively defined VchM's DNA targets, its genetic interactions and the gene networks that it regulates. Although VchM is a relatively new component of the V. cholerae genome, it is required for optimal V. cholerae growth in vitro and during infection. Unexpectedly, the usually essential σE cell envelope stress pathway is dispensable in ∆vchM V. cholerae, likely due to its lower activation in this mutant and the capacity for VchM methylation to limit expression of some cell envelope modifying genes. Our work illuminates how an acquired DNA methyltransferase can become integrated within complex cell circuits to control critical housekeeping processes.
Collapse
Affiliation(s)
- Michael C. Chao
- Division of Infectious Disease, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
- Howard Hughes Medical Institute, Boston, Massachusetts, United States of America
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Shijia Zhu
- Department of Genetics and Genomic Sciences, Institute for Genomics and Multi-scale Biology, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Satoshi Kimura
- Division of Infectious Disease, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
- Howard Hughes Medical Institute, Boston, Massachusetts, United States of America
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Brigid M. Davis
- Division of Infectious Disease, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
- Howard Hughes Medical Institute, Boston, Massachusetts, United States of America
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Eric E. Schadt
- Howard Hughes Medical Institute, Boston, Massachusetts, United States of America
| | - Gang Fang
- Department of Genetics and Genomic Sciences, Institute for Genomics and Multi-scale Biology, Mount Sinai School of Medicine, New York, New York, United States of America
- * E-mail: (GF); (MKW)
| | - Matthew K. Waldor
- Division of Infectious Disease, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
- Howard Hughes Medical Institute, Boston, Massachusetts, United States of America
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail: (GF); (MKW)
| |
Collapse
|
108
|
Identification of Population Bottlenecks and Colonization Factors during Assembly of Bacterial Communities within the Zebrafish Intestine. mBio 2015; 6:e01163-15. [PMID: 26507229 PMCID: PMC4626852 DOI: 10.1128/mbio.01163-15] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The zebrafish, Danio rerio, is a powerful model for studying bacterial colonization of the vertebrate intestine, but the genes required by commensal bacteria to colonize the zebrafish gut have not yet been interrogated on a genome-wide level. Here we apply a high-throughput transposon mutagenesis screen to Aeromonas veronii Hm21 and Vibrio sp. strain ZWU0020 during their colonization of the zebrafish intestine alone and in competition with each other, as well as in different colonization orders. We use these transposon-tagged libraries to track bacterial population sizes in different colonization regimes and to identify gene functions required during these processes. We show that intraspecific, but not interspecific, competition with a previously established bacterial population greatly reduces the ability of these two bacterial species to colonize. Further, using a simple binomial sampling model, we show that under conditions of interspecific competition, genes required for colonization cannot be identified because of the population bottleneck experienced by the second colonizer. When bacteria colonize the intestine alone or at the same time as the other species, we find shared suites of functional requirements for colonization by the two species, including a prominent role for chemotaxis and motility, regardless of the presence of another species. Zebrafish larvae, which are amenable to large-scale gnotobiotic studies, comprehensive sampling of their intestinal microbiota, and live imaging, are an excellent model for investigations of vertebrate intestinal colonization dynamics. We sought to develop a mutagenesis and tagging system in order to understand bacterial population dynamics and functional requirements during colonization of the larval zebrafish intestine. We explored changes in bacterial colonization dynamics and functional requirements when bacteria colonize a bacterium-free intestine, one previously colonized by their own species, or one colonized previously or simultaneously with a different species. This work provides a framework for rapid identification of colonization factors important under different colonization conditions. Furthermore, we demonstrate that when colonizing bacterial populations are very small, this approach is not accurate because random sampling of the input pool is sufficient to explain the distribution of inserts recovered from bacteria that colonized the intestines.
Collapse
|
109
|
DeJesus MA, Ambadipudi C, Baker R, Sassetti C, Ioerger TR. TRANSIT--A Software Tool for Himar1 TnSeq Analysis. PLoS Comput Biol 2015; 11:e1004401. [PMID: 26447887 PMCID: PMC4598096 DOI: 10.1371/journal.pcbi.1004401] [Citation(s) in RCA: 141] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 06/10/2015] [Indexed: 02/07/2023] Open
Abstract
TnSeq has become a popular technique for determining the essentiality of genomic regions in bacterial organisms. Several methods have been developed to analyze the wealth of data that has been obtained through TnSeq experiments. We developed a tool for analyzing Himar1 TnSeq data called TRANSIT. TRANSIT provides a graphical interface to three different statistical methods for analyzing TnSeq data. These methods cover a variety of approaches capable of identifying essential genes in individual datasets as well as comparative analysis between conditions. We demonstrate the utility of this software by analyzing TnSeq datasets of M. tuberculosis grown on glycerol and cholesterol. We show that TRANSIT can be used to discover genes which have been previously implicated for growth on these carbon sources. TRANSIT is written in Python, and thus can be run on Windows, OSX and Linux platforms. The source code is distributed under the GNU GPL v3 license and can be obtained from the following GitHub repository: https://github.com/mad-lab/transit.
Collapse
Affiliation(s)
- Michael A. DeJesus
- Department of Computer Science, Texas A&M University, College Station, Texas, United States of America
- * E-mail:
| | - Chaitra Ambadipudi
- Department of Computer Science, Texas A&M University, College Station, Texas, United States of America
| | - Richard Baker
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Christopher Sassetti
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Thomas R. Ioerger
- Department of Computer Science, Texas A&M University, College Station, Texas, United States of America
| |
Collapse
|
110
|
Peptidoglycan synthesis in Mycobacterium tuberculosis is organized into networks with varying drug susceptibility. Proc Natl Acad Sci U S A 2015; 112:13087-92. [PMID: 26438867 DOI: 10.1073/pnas.1514135112] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Peptidoglycan (PG), a complex polymer composed of saccharide chains cross-linked by short peptides, is a critical component of the bacterial cell wall. PG synthesis has been extensively studied in model organisms but remains poorly understood in mycobacteria, a genus that includes the important human pathogen Mycobacterium tuberculosis (Mtb). The principle PG synthetic enzymes have similar and, at times, overlapping functions. To determine how these are functionally organized, we carried out whole-genome transposon mutagenesis screens in Mtb strains deleted for ponA1, ponA2, and ldtB, major PG synthetic enzymes. We identified distinct factors required to sustain bacterial growth in the absence of each of these enzymes. We find that even the homologs PonA1 and PonA2 have unique sets of genetic interactions, suggesting there are distinct PG synthesis pathways in Mtb. Either PonA1 or PonA2 is required for growth of Mtb, but both genetically interact with LdtB, which has its own distinct genetic network. We further provide evidence that each interaction network is differentially susceptible to antibiotics. Thus, Mtb uses alternative pathways to produce PG, each with its own biochemical characteristics and vulnerabilities.
Collapse
|
111
|
Möll A, Dörr T, Alvarez L, Davis BM, Cava F, Waldor MK. A D, D-carboxypeptidase is required for Vibrio cholerae halotolerance. Environ Microbiol 2015; 17:527-40. [PMID: 25631756 DOI: 10.1111/1462-2920.12779] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 01/06/2015] [Accepted: 01/08/2015] [Indexed: 11/28/2022]
Abstract
The biological roles of low molecular weight penicillin-binding proteins (LMW PBP) have been difficult to discern in Gram-negative organisms. In Escherichia coli, mutants lacking these proteins often have no phenotype, and cells lacking all seven LMW PBPs remain viable. In contrast, we report here that Vibrio cholerae lacking DacA-1, a PBP5 homologue, displays slow growth, aberrant morphology and altered peptidoglycan (PG) homeostasis in Luria-Bertani (LB) medium, as well as a profound plating defect. DacA-1 alone among V. cholerae's LMW PBPs is critical for bacterial growth; mutants lacking the related protein DacA-2 and/or homologues of PBP4 or PBP7 displayed normal growth and morphology. Remarkably, the growth and morphology of the dacA-1 mutant were unimpaired in LB media containing reduced concentrations of NaCl (100 mM or less), and also within suckling mice, a model host for the study of cholera pathogenesis. Peptidoglycan from the dacA-1 mutant contained elevated pentapeptide levels in standard and low salt media, and comparative analyses suggest that DacA-1 is V. cholerae's principal DD-carboxypeptidase. The basis for the dacA-1 mutant's halosensitivity is unknown; nonetheless, the mutant's survival in biochemically uncharacterized environments (such as the suckling mouse intestine) can be used as a reporter of low Na(+) content.
Collapse
Affiliation(s)
- Andrea Möll
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, 02155, USA; Department of Microbiology and Immunobiology, Harvard Medical School, HHMI, Boston, MA, 02155, USA
| | | | | | | | | | | |
Collapse
|
112
|
Abstract
Vibrio cholerae is the agent of cholera, a potentially lethal diarrheal disease that remains a significant threat to populations in developing nations. The infant rabbit model of cholera is the only non-surgical small animal model system that closely mimics human cholera. Following orogastric inoculation, V. cholerae colonizes the intestines of infant rabbits, and the animals develop severe cholera-like diarrhea. In this unit, we provide a detailed description of the preparation of the V. cholerae inoculum, the inoculation process and the collection and processing of tissue samples. This infection model is useful for studies of V. cholerae factors and mechanisms that promote its intestinal colonization and enterotoxicity, as well as the host response to infection. The infant rabbit model of cholera enables investigations that will further our understanding of the pathophysiology of cholera and provides a platform for testing new therapeutics.
Collapse
Affiliation(s)
- Sören Abel
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts.,Division of Infectious Diseases, Brigham and Women's Hospital, Boston, Massachusetts.,Department of Pharmacy, Faculty of Health Sciences, UiT, The Arctic University of Norway, Tromsø, Norway
| | - Matthew K Waldor
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts.,Division of Infectious Diseases, Brigham and Women's Hospital, Boston, Massachusetts.,Howard Hughes Medical Institute, Boston, Massachusetts
| |
Collapse
|
113
|
Abel S, Abel zur Wiesch P, Davis BM, Waldor MK. Analysis of Bottlenecks in Experimental Models of Infection. PLoS Pathog 2015; 11:e1004823. [PMID: 26066486 PMCID: PMC4465827 DOI: 10.1371/journal.ppat.1004823] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Affiliation(s)
- Sören Abel
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
- Division of Infectious Diseases, Brigham & Women’s Hospital, Boston, Massachusetts, United States of America
- Department of Pharmacy, University of Tromsø (UiT), The Arctic University of Norway, Tromsø, Norway
- * E-mail: (SA); (MKW)
| | - Pia Abel zur Wiesch
- Department of Pharmacy, University of Tromsø (UiT), The Arctic University of Norway, Tromsø, Norway
- Division of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
| | - Brigid M. Davis
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
- Division of Infectious Diseases, Brigham & Women’s Hospital, Boston, Massachusetts, United States of America
| | - Matthew K. Waldor
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
- Division of Infectious Diseases, Brigham & Women’s Hospital, Boston, Massachusetts, United States of America
- Howard Hughes Medical Institute, Boston, Massachusetts, United States of America
- * E-mail: (SA); (MKW)
| |
Collapse
|
114
|
A Genome-Wide Screen Reveals that the Vibrio cholerae Phosphoenolpyruvate Phosphotransferase System Modulates Virulence Gene Expression. Infect Immun 2015; 83:3381-95. [PMID: 26056384 DOI: 10.1128/iai.00411-15] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 06/05/2015] [Indexed: 12/21/2022] Open
Abstract
Diverse environmental stimuli and a complex network of regulatory factors are known to modulate expression of Vibrio cholerae's principal virulence factors. However, there is relatively little known about how metabolic factors impinge upon the pathogen's well-characterized cascade of transcription factors that induce expression of cholera toxin and the toxin-coregulated pilus (TCP). Here, we used a transposon insertion site (TIS) sequencing-based strategy to identify new factors required for expression of tcpA, which encodes the major subunit of TCP, the organism's chief intestinal colonization factor. Besides identifying most of the genes known to modulate tcpA expression, the screen yielded ptsI and ptsH, which encode the enzyme I (EI) and Hpr components of the V. cholerae phosphoenolpyruvate phosphotransferase system (PTS). In addition to reduced expression of TcpA, strains lacking EI, Hpr, or the associated EIIA(Glc) protein produced less cholera toxin (CT) and had a diminished capacity to colonize the infant mouse intestine. The PTS modulates virulence gene expression by regulating expression of tcpPH and aphAB, which themselves control expression of toxT, the central activator of virulence gene expression. One mechanism by which PTS promotes virulence gene expression appears to be by modulating the amounts of intracellular cyclic AMP (cAMP). Our findings reveal that the V. cholerae PTS is an additional modulator of the ToxT regulon and demonstrate the potency of loss-of-function TIS sequencing screens for defining regulatory networks.
Collapse
|
115
|
Characterization of DNA substrate specificities of apurinic/apyrimidinic endonucleases from Mycobacterium tuberculosis. DNA Repair (Amst) 2015; 33:1-16. [PMID: 26043425 DOI: 10.1016/j.dnarep.2015.05.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 04/19/2015] [Accepted: 05/18/2015] [Indexed: 11/24/2022]
Abstract
Apurinic/apyrimidinic (AP) endonucleases are key enzymes involved in the repair of abasic sites and DNA strand breaks. Pathogenic bacteria Mycobacterium tuberculosis contains two AP endonucleases: MtbXthA and MtbNfo members of the exonuclease III and endonuclease IV families, which are exemplified by Escherichia coli Xth and Nfo, respectively. It has been shown that both MtbXthA and MtbNfo contain AP endonuclease and 3'→5' exonuclease activities. However, it remains unclear whether these enzymes hold 3'-repair phosphodiesterase and nucleotide incision repair (NIR) activities. Here, we report that both mycobacterial enzymes have 3'-repair phosphodiesterase and 3'-phosphatase, and MtbNfo contains in addition a very weak NIR activity. Interestingly, depending on pH, both enzymes require different concentrations of divalent cations: 0.5mM MnCl2 at pH 7.6 and 10 mM at pH 6.5. MtbXthA requires a low ionic strength and 37 °C, while MtbNfo requires high ionic strength (200 mM KCl) and has a temperature optimum at 60 °C. Point mutation analysis showed that D180 and N182 in MtbXthA and H206 and E129 in MtbNfo are critical for enzymes activities. The steady-state kinetic parameters indicate that MtbXthA removes 3'-blocking sugar-phosphate and 3'-phosphate moieties at DNA strand breaks with an extremely high efficiency (kcat/KM=440 and 1280 μM(-1)∙min(-1), respectively), while MtbNfo exhibits much lower 3'-repair activities (kcat/KM=0.26 and 0.65 μM(-1)∙min(-1), respectively). Surprisingly, both MtbXthA and MtbNfo exhibited very weak AP site cleavage activities, with kinetic parameters 100- and 300-fold lower, respectively, as compared with the results reported previously. Expression of MtbXthA and MtbNfo reduced the sensitivity of AP endonuclease-deficient E. coli xth nfo strain to methylmethanesulfonate and H2O2 to various degrees. Taken together, these data establish the DNA substrate specificity of M. tuberculosis AP endonucleases and suggest their possible role in the repair of oxidative DNA damage generated by endogenous and host- imposed factors.
Collapse
|
116
|
Ates LS, Ummels R, Commandeur S, van der Weerd R, Sparrius M, Weerdenburg E, Alber M, Kalscheuer R, Piersma SR, Abdallah AM, Abd El Ghany M, Abdel-Haleem AM, Pain A, Jiménez CR, Bitter W, Houben EN. Essential Role of the ESX-5 Secretion System in Outer Membrane Permeability of Pathogenic Mycobacteria. PLoS Genet 2015; 11:e1005190. [PMID: 25938982 PMCID: PMC4418733 DOI: 10.1371/journal.pgen.1005190] [Citation(s) in RCA: 132] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 04/02/2015] [Indexed: 12/03/2022] Open
Abstract
Mycobacteria possess different type VII secretion (T7S) systems to secrete proteins across their unusual cell envelope. One of these systems, ESX-5, is only present in slow-growing mycobacteria and responsible for the secretion of multiple substrates. However, the role of ESX-5 substrates in growth and/or virulence is largely unknown. In this study, we show that esx-5 is essential for growth of both Mycobacterium marinum and Mycobacterium bovis. Remarkably, this essentiality can be rescued by increasing the permeability of the outer membrane, either by altering its lipid composition or by the introduction of the heterologous porin MspA. Mutagenesis of the first nucleotide-binding domain of the membrane ATPase EccC5 prevented both ESX-5-dependent secretion and bacterial growth, but did not affect ESX-5 complex assembly. This suggests that the rescuing effect is not due to pores formed by the ESX-5 membrane complex, but caused by ESX-5 activity. Subsequent proteomic analysis to identify crucial ESX-5 substrates confirmed that all detectable PE and PPE proteins in the cell surface and cell envelope fractions were routed through ESX-5. Additionally, saturated transposon-directed insertion-site sequencing (TraDIS) was applied to both wild-type M. marinum cells and cells expressing mspA to identify genes that are not essential anymore in the presence of MspA. This analysis confirmed the importance of esx-5, but we could not identify essential ESX-5 substrates, indicating that multiple of these substrates are together responsible for the essentiality. Finally, examination of phenotypes on defined carbon sources revealed that an esx-5 mutant is strongly impaired in the uptake and utilization of hydrophobic carbon sources. Based on these data, we propose a model in which the ESX-5 system is responsible for the transport of cell envelope proteins that are required for nutrient uptake. These proteins might in this way compensate for the lack of MspA-like porins in slow-growing mycobacteria.
Collapse
Affiliation(s)
- Louis S. Ates
- Department of Medical Microbiology and Infection Control, VU University Medical Center, Amsterdam, the Netherlands
| | - Roy Ummels
- Department of Medical Microbiology and Infection Control, VU University Medical Center, Amsterdam, the Netherlands
| | - Susanna Commandeur
- Department of Medical Microbiology and Infection Control, VU University Medical Center, Amsterdam, the Netherlands
| | - Robert van der Weerd
- Department of Medical Microbiology and Infection Control, VU University Medical Center, Amsterdam, the Netherlands
| | - Marion Sparrius
- Department of Medical Microbiology and Infection Control, VU University Medical Center, Amsterdam, the Netherlands
| | - Eveline Weerdenburg
- Department of Medical Microbiology and Infection Control, VU University Medical Center, Amsterdam, the Netherlands
| | - Marina Alber
- Institute for Medical Microbiology and Hospital Hygiene, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Rainer Kalscheuer
- Institute for Medical Microbiology and Hospital Hygiene, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Sander R. Piersma
- Department of Medical Oncology, OncoProteomics Laboratory, VU University Medical Center, Amsterdam, the Netherlands
| | - Abdallah M. Abdallah
- Biological and Environmental Sciences and Engineering (BESE) division, King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Moataz Abd El Ghany
- Biological and Environmental Sciences and Engineering (BESE) division, King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Alyaa M. Abdel-Haleem
- Biological and Environmental Sciences and Engineering (BESE) division, King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Arnab Pain
- Biological and Environmental Sciences and Engineering (BESE) division, King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Connie R. Jiménez
- Department of Medical Oncology, OncoProteomics Laboratory, VU University Medical Center, Amsterdam, the Netherlands
| | - Wilbert Bitter
- Department of Medical Microbiology and Infection Control, VU University Medical Center, Amsterdam, the Netherlands
- Section Molecular Microbiology, Amsterdam Institute of Molecules, Medicine & Systems, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Edith N.G. Houben
- Section Molecular Microbiology, Amsterdam Institute of Molecules, Medicine & Systems, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
117
|
Santiago M, Matano LM, Moussa SH, Gilmore MS, Walker S, Meredith TC. A new platform for ultra-high density Staphylococcus aureus transposon libraries. BMC Genomics 2015; 16:252. [PMID: 25888466 PMCID: PMC4389836 DOI: 10.1186/s12864-015-1361-3] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 02/19/2015] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Staphylococcus aureus readily develops resistance to antibiotics and achieving effective therapies to overcome resistance requires in-depth understanding of S. aureus biology. High throughput, parallel-sequencing methods for analyzing transposon mutant libraries have the potential to revolutionize studies of S. aureus, but the genetic tools to take advantage of the power of next generation sequencing have not been fully developed. RESULTS Here we report a phage-based transposition system to make ultra-high density transposon libraries for genome-wide analysis of mutant fitness in any Φ11-transducible S. aureus strain. The high efficiency of the delivery system has made it possible to multiplex transposon cassettes containing different regulatory elements in order to make libraries in which genes are over- or under-expressed as well as deleted. By incorporating transposon-specific barcodes into the cassettes, we can evaluate how null mutations and changes in gene expression levels affect fitness in a single sequencing data set. Demonstrating the power of the system, we have prepared a library containing more than 690,000 unique insertions. Because one unique feature of the phage-based approach is that temperature-sensitive mutants are retained, we have carried out a genome-wide study of S. aureus genes involved in withstanding temperature stress. We find that many genes previously identified as essential are temperature sensitive and also identify a number of genes that, when disrupted, confer a growth advantage at elevated temperatures. CONCLUSIONS The platform described here reliably provides mutant collections of unparalleled genotypic diversity and will enable a wide range of functional genomic studies in S. aureus.
Collapse
Affiliation(s)
- Marina Santiago
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, 02115, USA.
| | - Leigh M Matano
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, 02115, USA.
| | - Samir H Moussa
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, 02115, USA.
| | - Michael S Gilmore
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, 02115, USA.
- Department of Ophthalmology, Harvard Medical School, Massachusetts Eye and Ear Infirmary, Boston, MA, 02114, USA.
| | - Suzanne Walker
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, 02115, USA.
| | - Timothy C Meredith
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, 02115, USA.
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
118
|
Sequence tag-based analysis of microbial population dynamics. Nat Methods 2015; 12:223-6, 3 p following 226. [PMID: 25599549 PMCID: PMC4344388 DOI: 10.1038/nmeth.3253] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 12/10/2014] [Indexed: 01/20/2023]
Abstract
We describe sequence tag-based analysis of microbial populations (STAMP) for characterization of pathogen population dynamics during infection. STAMP analyzes the frequency changes of genetically 'barcoded' organisms to quantify population bottlenecks and infer the founding population size. Analyses of intraintestinal Vibrio cholerae revealed infection-stage and region-specific host barriers to infection and showed unexpected V. cholerae migration counter to intestinal flow. STAMP provides a robust, widely applicable analytical framework for high-confidence characterization of in vivo microbial dissemination.
Collapse
|
119
|
Yamaichi Y, Chao MC, Sasabe J, Clark L, Davis BM, Yamamoto N, Mori H, Kurokawa K, Waldor MK. High-resolution genetic analysis of the requirements for horizontal transmission of the ESBL plasmid from Escherichia coli O104:H4. Nucleic Acids Res 2015; 43:348-60. [PMID: 25477379 PMCID: PMC4288162 DOI: 10.1093/nar/gku1262] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 11/12/2014] [Accepted: 11/17/2014] [Indexed: 12/20/2022] Open
Abstract
Horizontal dissemination of the genes encoding extended spectrum beta-lactamases (ESBLs) via conjugative plasmids is facilitating the increasingly widespread resistance of pathogens to beta-lactam antibiotics. However, there is relatively little known about the regulatory factors and mechanisms that govern the spread of these plasmids. Here, we carried out a high-throughput, transposon insertion site sequencing analysis (TnSeq) to identify genes that enable the maintenance and transmission of pESBL, an R64 (IncI1)-related resistance plasmid that was isolated from Escherichia coli O104:H4 linked to a recent large outbreak of gastroenteritis. With a few exceptions, the majority of the genes identified as required for maintenance and transmission of pESBL matched those of their previously defined R64 counterparts. However, our analyses of the high-density transposon insertion library in pESBL also revealed two very short and linked regions that constitute a previously unrecognized regulatory system controlling spread of IncI1 plasmids. In addition, we investigated the function of the pESBL-encoded M.EcoGIX methyltransferase, which is also encoded by many other IncI1 and IncF plasmids. This enzyme proved to protect pESBL from restriction in new hosts, suggesting it aids in expanding the plasmid's host range. Collectively, our work illustrates the power of the TnSeq approach to enable rapid and comprehensive analyses of plasmid genes and sequences that facilitate the dissemination of determinants of antibiotic resistance.
Collapse
Affiliation(s)
- Yoshiharu Yamaichi
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA 02115, USA
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
- Institute for Integrative Biology of the Cell (I2BC), CNRS, CEA, Université Paris-Sud, Gif-sur-Yvette 91198, France
| | - Michael C. Chao
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA 02115, USA
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Jumpei Sasabe
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA 02115, USA
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
- Department of Anatomy, Keio University School of Medicine, Shinjuku-ku, Tokyo160-8582, Japan
| | - Lars Clark
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA 02115, USA
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Brigid M. Davis
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA 02115, USA
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Nozomi Yamamoto
- Earth-Life Science Institute, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8551, Japan
| | - Hiroshi Mori
- Department of Biological Information, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8501, Japan
| | - Ken Kurokawa
- Earth-Life Science Institute, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8551, Japan
- Department of Biological Information, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8501, Japan
| | - Matthew K. Waldor
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA 02115, USA
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
- Howard Hughes Medical Institute, Boston, MA 02115, USA
| |
Collapse
|