101
|
Morand GB, da Silva SD, Hier MP, Alaoui-Jamali MA. Insights into genetic and epigenetic determinants with impact on vitamin d signaling and cancer association studies: the case of thyroid cancer. Front Oncol 2014; 4:309. [PMID: 25414832 PMCID: PMC4220101 DOI: 10.3389/fonc.2014.00309] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 10/17/2014] [Indexed: 12/12/2022] Open
Abstract
Vitamin D is a key regulator of calcium metabolism and has been implicated as a cancer preventive agent. However, clinical studies have revealed conflicting results on its cancer preventive properties, attributed in part to multiple metabolic and regulatory factors susceptible to affect individual responses to exogenous vitamin D. Vitamin D is obtained from dietary sources and sun exposure, which depends on numerous parameters such as skin type, latitude, and lifestyle factors. Focusing on thyroid cancer (TC), we document that genetic and epigenetic determinants can greatly impact individual response to vitamin D and may outweigh the classical clinical correlative studies that focus on sun exposure/dietary intake factors. In particular, genetic determinants innate to host intrinsic metabolic pathways such as highly polymorphic cytochromes P450s responsible for the metabolic activation of vitamin D are expressed in many organs, including the thyroid gland and can impact vitamin D interaction with its nuclear receptor (VDR) in thyroid tissue. Moreover, downstream regulatory pathways in vitamin D signaling as well as VDR are also subject to wide genetic variability among human populations as shown by genome-wide studies. These genetic variations in multiple components of vitamin D pathways are critical determinants for the revaluation of the potential preventive and anticancer properties of vitamin D in TC.
Collapse
Affiliation(s)
- Grégoire B Morand
- Department of Otolaryngology-Head and Neck Surgery, Sir Mortimer B. Davis-Jewish General Hospital, McGill University , Montreal, QC , Canada ; Departments of Medicine and Oncology, Segal Cancer Centre and Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, McGill University , Montreal, QC , Canada
| | - Sabrina Daniela da Silva
- Department of Otolaryngology-Head and Neck Surgery, Sir Mortimer B. Davis-Jewish General Hospital, McGill University , Montreal, QC , Canada ; Departments of Medicine and Oncology, Segal Cancer Centre and Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, McGill University , Montreal, QC , Canada
| | - Michael P Hier
- Department of Otolaryngology-Head and Neck Surgery, Sir Mortimer B. Davis-Jewish General Hospital, McGill University , Montreal, QC , Canada
| | - Moulay A Alaoui-Jamali
- Departments of Medicine and Oncology, Segal Cancer Centre and Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, McGill University , Montreal, QC , Canada
| |
Collapse
|
102
|
Carlberg C. The physiology of vitamin D-far more than calcium and bone. Front Physiol 2014; 5:335. [PMID: 25228886 PMCID: PMC4151027 DOI: 10.3389/fphys.2014.00335] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 08/15/2014] [Indexed: 01/22/2023] Open
Affiliation(s)
- Carsten Carlberg
- School of Medicine, Institute of Biomedicine, University of Eastern Finland Kuopio, Finland
| |
Collapse
|
103
|
Ryynänen J, Neme A, Tuomainen TP, Virtanen JK, Voutilainen S, Nurmi T, de Mello VDF, Uusitupa M, Carlberg C. Changes in vitamin D target gene expression in adipose tissue monitor the vitamin D response of human individuals. Mol Nutr Food Res 2014; 58:2036-45. [DOI: 10.1002/mnfr.201400291] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 04/30/2014] [Accepted: 06/04/2014] [Indexed: 12/16/2022]
Affiliation(s)
- Jussi Ryynänen
- School of Medicine, Institute of Biomedicine; University of Eastern Finland; Kuopio Finland
| | - Antonio Neme
- School of Medicine, Institute of Biomedicine; University of Eastern Finland; Kuopio Finland
| | - Tomi-Pekka Tuomainen
- Institute of Public Health and Clinical Nutrition; University of Eastern Finland; Kuopio Finland
| | - Jyrki K. Virtanen
- Institute of Public Health and Clinical Nutrition; University of Eastern Finland; Kuopio Finland
| | - Sari Voutilainen
- Institute of Public Health and Clinical Nutrition; University of Eastern Finland; Kuopio Finland
| | - Tarja Nurmi
- Institute of Public Health and Clinical Nutrition; University of Eastern Finland; Kuopio Finland
| | - Vanessa D. F. de Mello
- Institute of Public Health and Clinical Nutrition; University of Eastern Finland; Kuopio Finland
| | - Matti Uusitupa
- Institute of Public Health and Clinical Nutrition; University of Eastern Finland; Kuopio Finland
| | - Carsten Carlberg
- School of Medicine, Institute of Biomedicine; University of Eastern Finland; Kuopio Finland
| |
Collapse
|
104
|
Wöbke TK, Sorg BL, Steinhilber D. Vitamin D in inflammatory diseases. Front Physiol 2014; 5:244. [PMID: 25071589 PMCID: PMC4078458 DOI: 10.3389/fphys.2014.00244] [Citation(s) in RCA: 133] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 06/12/2014] [Indexed: 02/06/2023] Open
Abstract
Changes in vitamin D serum levels have been associated with inflammatory diseases, such as inflammatory bowel disease (IBD), rheumatoid arthritis, systemic lupus erythematosus, multiple sclerosis (MS), atherosclerosis, or asthma. Genome- and transcriptome-wide studies indicate that vitamin D signaling modulates many inflammatory responses on several levels. This includes (i) the regulation of the expression of genes which generate pro-inflammatory mediators, such as cyclooxygenases or 5-lipoxygenase, (ii) the interference with transcription factors, such as NF-κB, which regulate the expression of inflammatory genes and (iii) the activation of signaling cascades, such as MAP kinases which mediate inflammatory responses. Vitamin D targets various tissues and cell types, a number of which belong to the immune system, such as monocytes/macrophages, dendritic cells (DCs) as well as B- and T cells, leading to individual responses of each cell type. One hallmark of these specific vitamin D effects is the cell-type specific regulation of genes involved in the regulation of inflammatory processes and the interplay between vitamin D signaling and other signaling cascades involved in inflammation. An important task in the near future will be the elucidation of the regulatory mechanisms that are involved in the regulation of inflammatory responses by vitamin D on the molecular level by the use of techniques such as chromatin immunoprecipitation (ChIP), ChIP-seq, and FAIRE-seq.
Collapse
Affiliation(s)
- Thea K Wöbke
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt Frankfurt, Germany
| | - Bernd L Sorg
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt Frankfurt, Germany
| | - Dieter Steinhilber
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt Frankfurt, Germany
| |
Collapse
|
105
|
Mutt SJ, Hyppönen E, Saarnio J, Järvelin MR, Herzig KH. Vitamin D and adipose tissue-more than storage. Front Physiol 2014; 5:228. [PMID: 25009502 PMCID: PMC4067728 DOI: 10.3389/fphys.2014.00228] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2014] [Accepted: 06/02/2014] [Indexed: 02/06/2023] Open
Abstract
The pandemic increase in obesity is inversely associated with vitamin D levels. While a higher BMI was causally related to lower 25-hydroxyvitamin D (25(OH)D), no evidence was obtained for a BMI lowering effect by higher 25(OH)D. Some of the physiological functions of 1,25(OH)2D3 (1,25-dihydroxycholecalciferol or calcitriol) via its receptor within the adipose tissue have been investigated such as its effect on energy balance, adipogenesis, adipokine, and cytokine secretion. Adipose tissue inflammation has been recognized as the key component of metabolic disorders, e.g., in the metabolic syndrome. The adipose organ secretes more than 260 different proteins/peptides. However, the molecular basis of the interactions of 1,25(OH)2D3, vitamin D binding proteins (VDBPs) and nuclear vitamin D receptor (VDR) after sequestration in adipose tissue and their regulations are still unclear. 1,25(OH)2D3 and its inactive metabolites are known to inhibit the formation of adipocytes in mouse 3T3-L1 cell line. In humans, 1,25(OH)2D3 promotes preadipocyte differentiation under cell culture conditions. Further evidence of its important functions is given by VDR knock out (VDR−/−) and CYP27B1 knock out (CYP27B1 −/−) mouse models: Both VDR−/− and CYP27B1−/− models are highly resistant to the diet induced weight gain, while the specific overexpression of human VDR in adipose tissue leads to increased adipose tissue mass. The analysis of microarray datasets from human adipocytes treated with macrophage-secreted products up-regulated VDR and CYP27B1 genes indicating the capacity of adipocytes to even produce active 1,25(OH)2D3. Experimental studies demonstrate that 1,25(OH)2D3 has an active role in adipose tissue by modulating inflammation, adipogenesis and adipocyte secretion. Yet, further in vivo studies are needed to address the effects and the effective dosages of vitamin D in human adipose tissue and its relevance in the associated diseases.
Collapse
Affiliation(s)
- Shivaprakash J Mutt
- Department of Physiology, Institute of Biomedicine, University of Oulu Oulu, Finland ; Biocenter of Oulu, University of Oulu Oulu, Finland
| | - Elina Hyppönen
- School of Population Health and Sansom Institute, University of South Australia Adelaide, SA, Australia ; South Australian Health and Medical Research Institute Adelaide, SA, Australia ; Population, Policy and Practice, Institute of Child Health, University College London London, UK
| | - Juha Saarnio
- Department of Surgery, Oulu University Hospital, University of Oulu Oulu, Finland
| | - Marjo-Riitta Järvelin
- Biocenter of Oulu, University of Oulu Oulu, Finland ; Unit of Primary Care, Institute of Health Sciences, University of Oulu, Oulu University Hospital Oulu, Finland ; Department of Children, Young People and Families, National Institute for Health and Welfare Oulu, Finland ; Department of Epidemiology and Biostatistics, and MRC-PHE Center for Environment and Health, School of Public Health, Imperial College London London, UK
| | - Karl-Heinz Herzig
- Department of Physiology, Institute of Biomedicine, University of Oulu Oulu, Finland ; Biocenter of Oulu, University of Oulu Oulu, Finland ; Medical Research Center Oulu and Oulu University Hospital Oulu, Finland
| |
Collapse
|
106
|
Carlberg C. Genome-wide (over)view on the actions of vitamin D. Front Physiol 2014; 5:167. [PMID: 24808867 PMCID: PMC4010781 DOI: 10.3389/fphys.2014.00167] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 04/10/2014] [Indexed: 12/15/2022] Open
Abstract
For a global understanding of the physiological impact of the nuclear hormone 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3) the analysis of the genome-wide locations of its high affinity receptor, the transcription factor vitamin D receptor (VDR), is essential. Chromatin immunoprecipitation sequencing (ChIP-seq) in GM10855 and GM10861 lymphoblastoid cells, undifferentiated and lipopolysaccharide-differentiated THP-1 monocytes, LS180 colorectal cancer cells and LX2 hepatic stellate cells revealed between 1000 and 13,000 VDR-specific genomic binding sites. The harmonized analysis of these ChIP-seq datasets indicates that the mechanistic basis for the action of the VDR is independent of the cell type. Formaldehyde-assisted isolation of regulatory elements sequencing (FAIRE-seq) data highlight accessible chromatin regions, which are under control of 1,25(OH)2D3. In addition, public data, such as from the ENCODE project, allow to relate the genome-wide actions of VDR and 1,25(OH)2D3 to those of other proteins within the nucleus. For example, locations of the insulator protein CTCF suggest a segregation of the human genome into chromatin domains, of which more than 1000 contain at least one VDR binding site. The integration of all these genome-wide data facilitates the identification of the most important VDR binding sites and associated primary 1,25(OH)2D3 target genes. Expression changes of these key genes can serve as biomarkers for the actions of vitamin D3 and its metabolites in different tissues and cell types of human individuals. Analysis of primary tissues obtained from vitamin D3 intervention studies using such markers indicated a large inter-individual variation for the efficiency of vitamin D3 supplementation. In conclusion, a genome-wide (over)view on the genomic locations of VDR provides a broader basis for addressing vitamin D's role in health and disease.
Collapse
Affiliation(s)
- Carsten Carlberg
- School of Medicine, Institute of Biomedicine, University of Eastern Finland Kuopio, Finland
| |
Collapse
|