101
|
Tanhaeian A, Habibi Najafi MB, Rahnama P, Azghandi M. Production of a Recombinant Peptide (Lasioglossin LL ΙΙΙ) and Assessment of Antibacterial and Antioxidant Activity. Int J Pept Res Ther 2019. [DOI: 10.1007/s10989-019-09904-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
102
|
Juretić D, Simunić J. Design of α-helical antimicrobial peptides with a high selectivity index. Expert Opin Drug Discov 2019; 14:1053-1063. [DOI: 10.1080/17460441.2019.1642322] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Davor Juretić
- Mediterranean Institute for Life Sciences, Split, Croatia
- Department of Physics, Faculty of Science, University of Split, Split, Croatia
| | - Juraj Simunić
- Division of molecular biology, Ruđer Bošković Institute, Zagreb, Croatia
| |
Collapse
|
103
|
Biofilms: Novel Strategies Based on Antimicrobial Peptides. Pharmaceutics 2019; 11:pharmaceutics11070322. [PMID: 31295834 PMCID: PMC6680976 DOI: 10.3390/pharmaceutics11070322] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 06/24/2019] [Accepted: 07/06/2019] [Indexed: 01/11/2023] Open
Abstract
The problem of drug resistance is very worrying and ever increasing. Resistance is due not only to the reckless use of antibiotics but also to the fact that pathogens are able to adapt to different conditions and develop self-defense mechanisms such as living in biofilms; altogether these issues make the search for alternative drugs a real challenge. Antimicrobial peptides appear as promising alternatives but they have disadvantages that do not make them easily applicable in the medical field; thus many researches look for solutions to overcome the disadvantages and ensure that the advantages can be exploited. This review describes the biofilm characteristics and identifies the key features that antimicrobial peptides should have. Recalcitrant bacterial infections caused by the most obstinate bacterial species should be treated with a strategy to combine conventional peptides functionalized with nano-tools. This approach could effectively disrupt high density infections caused by biofilms. Moreover, the importance of using in vivo non mammalian models for biofilm studies is described. In particular, here we analyze the use of amphibians as a model to substitute the rodent model.
Collapse
|
104
|
Maurice NM, Bedi B, Sadikot RT. Pseudomonas aeruginosa Biofilms: Host Response and Clinical Implications in Lung Infections. Am J Respir Cell Mol Biol 2019; 58:428-439. [PMID: 29372812 DOI: 10.1165/rcmb.2017-0321tr] [Citation(s) in RCA: 235] [Impact Index Per Article: 39.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Pseudomonas aeruginosa is a major health challenge that causes recalcitrant multidrug-resistant infections, especially in immunocompromised and hospitalized patients. P. aeruginosa is an important cause of nosocomial and ventilator-associated pneumonia characterized by high prevalence and fatality rates. P. aeruginosa also causes chronic lung infections in individuals with cystic fibrosis. Multidrug- and totally drug-resistant strains of P. aeruginosa are increasing threats that contribute to high mortality in these patients. The pathogenesis of many P. aeruginosa infections depends on its ability to form biofilms, structured bacterial communities that can coat mucosal surfaces or invasive devices. These biofilms make conditions more favorable for bacterial persistence, as embedded bacteria are inherently more difficult to eradicate than planktonic bacteria. The molecular mechanisms that underlie P. aeruginosa biofilm pathogenesis and the host response to P. aeruginosa biofilms remain to be fully defined. However, it is known that biofilms offer protection from the host immune response and are also extremely recalcitrant to antimicrobial therapy. Therefore, development of novel therapeutic strategies specifically aimed at biofilms is urgently needed. Here, we review the host response, key clinical implications of P. aeruginosa biofilms, and novel therapeutic approaches to treat biofilms relevant to lung infections. Greater understanding of P. aeruginosa biofilms will elucidate novel avenues to improve outcomes for P. aeruginosa pulmonary infections.
Collapse
Affiliation(s)
- Nicholas M Maurice
- 1 Atlanta Veterans Affairs Medical Center, Decatur, Georgia; and.,2 Department of Medicine Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Emory University, Atlanta, Georgia
| | - Brahmchetna Bedi
- 1 Atlanta Veterans Affairs Medical Center, Decatur, Georgia; and
| | - Ruxana T Sadikot
- 1 Atlanta Veterans Affairs Medical Center, Decatur, Georgia; and.,2 Department of Medicine Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Emory University, Atlanta, Georgia
| |
Collapse
|
105
|
Pagnout C, Sohm B, Razafitianamaharavo A, Caillet C, Offroy M, Leduc M, Gendre H, Jomini S, Beaussart A, Bauda P, Duval JFL. Pleiotropic effects of rfa-gene mutations on Escherichia coli envelope properties. Sci Rep 2019; 9:9696. [PMID: 31273247 PMCID: PMC6609704 DOI: 10.1038/s41598-019-46100-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 06/17/2019] [Indexed: 01/18/2023] Open
Abstract
Mutations in the rfa operon leading to severely truncated lipopolysaccharide (LPS) structures are associated with pleiotropic effects on bacterial cells, which in turn generates a complex phenotype termed deep-rough. Literature reports distinct behavior of these mutants in terms of susceptibility to bacteriophages and to several antibacterial substances. There is so far a critical lack of understanding of such peculiar structure-reactivity relationships mainly due to a paucity of thorough biophysical and biochemical characterizations of the surfaces of these mutants. In the current study, the biophysicochemical features of the envelopes of Escherichia coli deep-rough mutants are identified from the molecular to the single cell and population levels using a suite of complementary techniques, namely microelectrophoresis, Atomic Force Microscopy (AFM) and Isobaric Tag for Relative and Absolute Quantitation (iTRAQ) for quantitative proteomics. Electrokinetic, nanomechanical and proteomic analyses evidence enhanced mutant membrane destabilization/permeability, and differentiated abundances of outer membrane proteins involved in the susceptibility phenotypes of LPS-truncated mutants towards bacteriophages, antimicrobial peptides and hydrophobic antibiotics. In particular, inner-core LPS altered mutants exhibit the most pronounced heterogeneity in the spatial distribution of their Young modulus and stiffness, which is symptomatic of deep damages on cell envelope likely to mediate phage infection process and antibiotic action.
Collapse
Affiliation(s)
- Christophe Pagnout
- Université de Lorraine, LIEC, UMR7360, Campus Bridoux, Metz, F-57070, France.
| | - Bénédicte Sohm
- Université de Lorraine, LIEC, UMR7360, Campus Bridoux, Metz, F-57070, France
| | | | - Céline Caillet
- Université de Lorraine, LIEC, UMR7360, Vandoeuvre-lès-Nancy, F-54000, France
| | - Marc Offroy
- Université de Lorraine, LIEC, UMR7360, Vandoeuvre-lès-Nancy, F-54000, France
| | - Marjorie Leduc
- Plateforme protéomique 3P5, Inserm U1016-Institut Cochin, Université Paris Descartes, MICUSPC, Paris, France
| | - Héloïse Gendre
- Université de Lorraine, LIEC, UMR7360, Vandoeuvre-lès-Nancy, F-54000, France
| | | | - Audrey Beaussart
- Université de Lorraine, LIEC, UMR7360, Vandoeuvre-lès-Nancy, F-54000, France
| | - Pascale Bauda
- Université de Lorraine, LIEC, UMR7360, Campus Bridoux, Metz, F-57070, France
| | - Jérôme F L Duval
- Université de Lorraine, LIEC, UMR7360, Vandoeuvre-lès-Nancy, F-54000, France
| |
Collapse
|
106
|
Xiong Y, Yang Z, Zhang J, Li J, Chen P, Xiang Y. Panning using a phage-displayed random peptide library to identify peptides that antagonize the Helicobacter pylori ArsS acid-sensing domain. Microb Pathog 2019; 135:103614. [PMID: 31255726 DOI: 10.1016/j.micpath.2019.103614] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 05/27/2019] [Accepted: 06/26/2019] [Indexed: 01/01/2023]
Abstract
Helicobacter pylori is an important etiological factor involved in chronic gastritis, peptic ulcer, and gastric cancer. There are currently no optimal preventive or therapeutic interventions for H. pylori infection. H. pylori survives in the stomach by sensing and adapting to the highly acidic environment by using the two-component signal transduction system that contains the most widely known gastric acid receptor, ArsRS (which is composed of ArsS and ArsR). This study aimed to identify peptides that antagonize the acid-sensing domain of H. pylori ArsS. These peptides could be used to block the acid-sensing signal and thereby hinder H. pylori adaption to acidic environments to prevent its survival. Using proSite, the functional domains (including the N-terminal acid-sensing domain) of H. pylori J99 ArsS were predicted. The purified recombinant ArsS N-terminal acid-sensing protein (P-ArsS-A) was used as the target in a panning protocol in which peptides from the Ph.D.-7 Phage Display Peptide Library that could bind to P-ArsS-A were identified. As a result, eight phage clones that could specifically bind to P-ArsS-A were obtained and five amino acid sequences were identified, including P03 (MMSYPKH) and P06 (LTPMPNW). An in vitro minimum inhibitory concentration (MIC) evaluation showed that P03 and P06 significantly inhibited the growth of H. pylori J99. The MIC of P03 was 8 μM, and the MIC of P06 was >16 μM, indicating that P03 is a stronger inhibitor compared to P06. This was confirmed by colony counting on blood agar plates after P03 and P06 administration. Using homology modeling and molecular docking analysis, it was shown that P03 and P06 could bind to the ArsS N-terminal domain, and there were four shared binding sites: TYR25, ASN39, ARG73, and GLU74. Additionally, one hydrogen bond was found between P03 and ArsS, which is more cohesive than other forms of bonding (van der Waals force, other non-covalent bonds).
Collapse
Affiliation(s)
- Yuxia Xiong
- Department of Pathogenic Biology, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China.
| | - Zhibang Yang
- Department of Pathogenic Biology, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China.
| | - Jin Zhang
- Department of Pathogenic Biology, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China.
| | - Jinyang Li
- College of Clinical Medicine, Chongqing Medical University, Chongqing, 400016, China.
| | - Pu Chen
- Department of Clinical Laboratory, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| | - Yu Xiang
- Department of Clinical Laboratory, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
107
|
Alexander JL, Thompson Z, Yu Z, Cowan JA. Cu-ATCUN Derivatives of Sub5 Exhibit Enhanced Antimicrobial Activity via Multiple Modes of Action. ACS Chem Biol 2019; 14:449-458. [PMID: 30742402 DOI: 10.1021/acschembio.8b01087] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Antimicrobial peptides (AMPs) are short, amphipathic peptides that are typically cationic in sequence and display broad-spectrum activity against bacteria, fungi, and protists. Herein, we report the effect of appending the amino terminal copper and nickel binding motif (ATCUN) to Sub5. The Cu-ATCUN derivatives show a two- to three-fold increase in antimicrobial activity for a variety of microbes, relative to Sub5, with MICs as low as 0.3 ± 0.1 μM toward Enterococcus faecium. Sub5 and the ATCUN derivatives bind both plasmid DNA and 16s A-site rRNA with low micromolar affinity. Native Sub5 and the metallopeptide derivatives were shown to promote damage against DNA to similar extents in cellular studies against both Escherichia coli and Staphylococcus epidermidis, with an almost threefold higher activity against the latter organism. Liposome experiments show that the metallopeptides have a greater affinity for model membranes of E. coli and S. aureus relative to Sub5, which correlates with their enhanced antimicrobial activity. Sub5 and the metalloderivatives also display no cytotoxicity toward adult human dermal fibroblasts. Addition of the ATCUN motif conferred the ability to promote lipid oxidation toward E. coli and S. epidermidis and enhanced membrane permeability, as evidenced by the extent of ATP leaked from cellular membranes relative to Sub5 alone. These data suggest that Cu-ATCUN derivatives inhibit microbes through multiple modes of action, resulting in an enhancement in their overall potency.
Collapse
Affiliation(s)
- Jessica L. Alexander
- Evans Laboratory of Chemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Zechariah Thompson
- Evans Laboratory of Chemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Zhen Yu
- Evans Laboratory of Chemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - J. A. Cowan
- Evans Laboratory of Chemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| |
Collapse
|
108
|
Memariani H, Memariani M, Shahidi-Dadras M, Nasiri S, Akhavan MM, Moravvej H. Melittin: from honeybees to superbugs. Appl Microbiol Biotechnol 2019; 103:3265-3276. [DOI: 10.1007/s00253-019-09698-y] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 01/11/2019] [Accepted: 02/11/2019] [Indexed: 02/08/2023]
|
109
|
Liu Y, Du Q, Ma C, Xi X, Wang L, Zhou M, Burrows JF, Chen T, Wang H. Structure-activity relationship of an antimicrobial peptide, Phylloseptin-PHa: balance of hydrophobicity and charge determines the selectivity of bioactivities. DRUG DESIGN DEVELOPMENT AND THERAPY 2019; 13:447-458. [PMID: 30774309 PMCID: PMC6350648 DOI: 10.2147/dddt.s191072] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Background Antimicrobial peptides (AMPs) from the skin secretions of amphibians are now considered as a potential alternative to conventional antibiotics. Phylloseptins are a family of AMPs identified in the skin secretions of Phyllomedusinae tree frogs which exhibit highly conserved structural characteristics. This study examines the structure–activity relationship of the newly discovered phylloseptin, Phylloseptin-PHa (PSPHa) from Pithecopus hypochondrialis. Materials and methods PSPHa and modified analogs were produced by solid phase synthesis and purified by reverse-phase HPLC. Rationally designed modified analogs incorporating changes in significant physicochemical parameters such as hydrophobicity, hydrophobic moment and net charge were investigated to determine their influence on secondary structure, antimicrobial activity, membrane permeabilization and cytotoxicity. Results Overall, we found that when rationally designing AMPs by altering their primary structure it is important to keep a balance between hydrophobicity and charge. Conclusion This study provides new insights which will help in the future development of AMPs as alternatives to conventional antibiotics for the treatment of Staphylococcus aureus and methicillin-resistant S. aureus infections.
Collapse
Affiliation(s)
- Yuzhang Liu
- School of Pharmacy, China Medical University, Shenyang 110001, Liaoning, China, .,Faculty of Medicine, Health and Life Sciences, School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, Northern Ireland, UK,
| | - Qiang Du
- School of Pharmacy, China Medical University, Shenyang 110001, Liaoning, China,
| | - Chengbang Ma
- Faculty of Medicine, Health and Life Sciences, School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, Northern Ireland, UK,
| | - Xinping Xi
- Faculty of Medicine, Health and Life Sciences, School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, Northern Ireland, UK,
| | - Lei Wang
- Faculty of Medicine, Health and Life Sciences, School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, Northern Ireland, UK,
| | - Mei Zhou
- Faculty of Medicine, Health and Life Sciences, School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, Northern Ireland, UK,
| | - James F Burrows
- Faculty of Medicine, Health and Life Sciences, School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, Northern Ireland, UK,
| | - Tianbao Chen
- Faculty of Medicine, Health and Life Sciences, School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, Northern Ireland, UK,
| | - Hui Wang
- School of Pharmacy, China Medical University, Shenyang 110001, Liaoning, China,
| |
Collapse
|
110
|
Tanhaieian A, Sekhavati MH, Ahmadi FS, Mamarabadi M. Heterologous expression of a broad-spectrum chimeric antimicrobial peptide in Lactococcus lactis: Its safety and molecular modeling evaluation. Microb Pathog 2018; 125:51-59. [PMID: 30208331 DOI: 10.1016/j.micpath.2018.09.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 09/05/2018] [Accepted: 09/07/2018] [Indexed: 01/10/2023]
Abstract
Over the last decade, global increase in antibiotic consumption is a major concern in the word. Antimicrobial peptides (AMPs) known as potential alternative and were considered as a safe antimicrobial agent. However, current approaches for production and purification of AMPs are costly and time-consuming. Here we show that heterologous expression of a chimeric peptide was successfully developed in Lactococcus lactis as a safe and cost-effective recombinant protein expression platform. Minimum inhibitory concentrations (MICs) of His-tag purified peptide was determined against a broad spectrum of human pathogenic bacteria consistence of Gram-positive, Gram-negative and resistance strains in deferent range from 7.24 ± 0.4 to 156.24 ± 3.0 μg/mL. Furthermore, our results showed that the peptide was not toxic to HEK and HeLa cells and even at concentrations as high as 250 μg/mL exhibited minimal hemolysis against RBCs. Additional characteristics such as thermal, protease and 50% human plasma stability were determined for cLFchimera. Molecular modeling analysis demonstrated that fusion of His-tag to the C-terminal of chimeric peptide increased peptide stability during 10 ns simulation in water. Overall, the chimeric peptide has a considerable antibacterial activity with low hemolysis, low or none in toxicity and good temperature resistance and also high stability in serum. We anticipate the established expression system could be developed and used more effectively in probiotic strains in future studies.
Collapse
Affiliation(s)
- Abass Tanhaieian
- Plant Biotechnology and Plant Breeding, Ferdowsi University of Mashhad, Iran.
| | | | | | - Mojtaba Mamarabadi
- Plant Biotechnology and Plant Breeding, Ferdowsi University of Mashhad, Iran.
| |
Collapse
|
111
|
Ebbensgaard A, Mordhorst H, Aarestrup FM, Hansen EB. The Role of Outer Membrane Proteins and Lipopolysaccharides for the Sensitivity of Escherichia coli to Antimicrobial Peptides. Front Microbiol 2018; 9:2153. [PMID: 30245684 PMCID: PMC6137088 DOI: 10.3389/fmicb.2018.02153] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Accepted: 08/22/2018] [Indexed: 01/20/2023] Open
Abstract
Bacterial resistance to classical antibiotics is emerging worldwide. The number of infections caused by multidrug resistant bacteria is increasing and becoming a serious threat for human health globally. In particular, Gram-negative pathogens including multidrug resistant Escherichia coli are of serious concern being resistant to the currently available antibiotics. All Gram-negative bacteria are enclosed by an outer membrane which acts as an additional protection barrier preventing the entry of toxic compounds including antibiotics and antimicrobial peptides (AMPs). In this study we report that the outer membrane component lipopolysaccharide (LPS) plays a crucial role for the antimicrobial susceptibility of E. coli BW25113 against the cationic AMPs Cap18, Cap11, Cap11-1-18m2, melittin, indolicidin, cecropin P1, cecropin B, and the polypeptide antibiotic colistin, whereas the outer membrane protease OmpT and the lipoprotein Lpp only play a minor role for the susceptibility against cationic AMPs. Increased susceptibility toward cationic AMPs was found for LPS deficient mutants of E. coli BW25113 harboring deletions in any of the genes required for the inner part of core-oligosaccharide of the LPS, waaC, waaE, waaF, waaG, and gmhA. In addition, our study demonstrates that the antimicrobial activity of Cap18, Cap11, Cap11-1-18m2, cecropin B, and cecropin P1 is not only dependent on the inner part of the core oligosaccharide, but also on the outer part and its sugar composition. Finally, we demonstrated that the antimicrobial activity of selected Cap18 derivatives harboring amino acid substitutions in the hydrophobic interface, are non-active against wild-type E. coli ATCC29522. By deleting waaC, waaE, waaF, or waaG the antimicrobial activity of the non-active derivatives can be partially or fully restored, suggesting a very close interplay between the LPS core oligosaccharide and the specific Cap18 derivative. Summarizing, this study implicates that the nature of the outer membrane component LPS has a big impact on the antimicrobial activity of cationic AMPs against E. coli. In particular, the inner as well as the outer part of the core oligosaccharide are important elements determining the antimicrobial susceptibility of E. coli against cationic AMPs.
Collapse
Affiliation(s)
- Anna Ebbensgaard
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark.,Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Hanne Mordhorst
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Frank M Aarestrup
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Egon B Hansen
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
112
|
Studies on the interactions of neutral Galleria mellonella cecropin D with living bacterial cells. Amino Acids 2018; 51:175-191. [DOI: 10.1007/s00726-018-2641-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 08/25/2018] [Indexed: 01/28/2023]
|
113
|
Wang J, Ma K, Ruan M, Wang Y, Li Y, Fu YV, Song Y, Sun H, Wang J. A novel cecropin B-derived peptide with antibacterial and potential anti-inflammatory properties. PeerJ 2018; 6:e5369. [PMID: 30065898 PMCID: PMC6064198 DOI: 10.7717/peerj.5369] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 07/13/2018] [Indexed: 01/04/2023] Open
Abstract
Cecropins, originally found in insects, are a group of cationic antimicrobial peptides. Most cecropins have an amphipathic N-terminal segment and a largely hydrophobic C-terminal segment, and normally form a helix-hinge-helix structure. In this study, we developed the novel 32-residue cecropin-like peptide cecropin DH by deleting the hinge region (Alanine-Glycine-Proline) of cecropin B isolated from Chinese oak silk moth, Antheraea pernyi. Cecropin DH possesses effective antibacterial activity, particularly against Gram-negative bacteria, with very low cytotoxicity against mammalian cells. Interactions between cecropin DH and the highly anionic lipopolysaccharide (LPS) component of the Gram-negative bacterial outer membrane indicate that it is capable of dissociating LPS micelles and disrupting LPS aggregates into smaller assemblies, which may play a vital role in its antimicrobial activity. Using LPS-stimulated mouse macrophage RAW264.7 cells, we found that cecropin DH exerted higher potential anti-inflammatory activity than cecropin B, as demonstrated by the inhibition of pro-inflammatory cytokines nitric oxide production and secretion of tumor necrosis factor-α. In conclusion, cecropin DH has potential as a therapeutic agent for both antibacterial and anti-inflammatory applications.
Collapse
Affiliation(s)
- Jiarong Wang
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China.,Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Chinese Academy of Sciences, Hefei, China
| | - Kun Ma
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China.,Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Chinese Academy of Sciences, Hefei, China
| | - Maosen Ruan
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China.,Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Chinese Academy of Sciences, Hefei, China
| | - Yujuan Wang
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China.,Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Chinese Academy of Sciences, Hefei, China
| | - Yan Li
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China.,Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Chinese Academy of Sciences, Hefei, China.,The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Yu V Fu
- State Key Laboratory of Microbial Resources, Institution of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yonghong Song
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, China
| | - Hongbin Sun
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China.,Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Chinese Academy of Sciences, Hefei, China.,School of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Junfeng Wang
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China.,Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Chinese Academy of Sciences, Hefei, China.,Institute of Physical Science and information Technology, Anhui University, Hefei, China
| |
Collapse
|
114
|
Bioinspired Designs, Molecular Premise and Tools for Evaluating the Ecological Importance of Antimicrobial Peptides. Pharmaceuticals (Basel) 2018; 11:ph11030068. [PMID: 29996512 PMCID: PMC6161137 DOI: 10.3390/ph11030068] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 07/06/2018] [Accepted: 07/07/2018] [Indexed: 02/07/2023] Open
Abstract
This review article provides an overview of recent developments in antimicrobial peptides (AMPs), summarizing structural diversity, potential new applications, activity targets and microbial killing responses in general. The use of artificial and natural AMPs as templates for rational design of peptidomimetics are also discussed and some strategies are put forward to curtail cytotoxic effects against eukaryotic cells. Considering the heat-resistant nature, chemical and proteolytic stability of AMPs, we attempt to summarize their molecular targets, examine how these macromolecules may contribute to potential environmental risks vis-à-vis the activities of the peptides. We further point out the evolutional characteristics of the macromolecules and indicate how they can be useful in designing target-specific peptides. Methods are suggested that may help to assess toxic mechanisms of AMPs and possible solutions are discussed to promote the development and application of AMPs in medicine. Even if there is wide exposure to the environment like in the hospital settings, AMPs may instead contribute to prevent healthcare-associated infections so long as ecotoxicological aspects are considered.
Collapse
|
115
|
Lei Z, Liu Q, Zhu Q, Yang B, Khaliq H, Sun A, Qi Y, Moku GK, Su Y, Wang J, Cao J, He Q. Comparative Pharmacokinetics and Preliminary Pharmacodynamics Evaluation of Piscidin 1 Against PRV and PEDV in Rats. Front Chem 2018; 6:244. [PMID: 29988520 PMCID: PMC6026642 DOI: 10.3389/fchem.2018.00244] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 06/06/2018] [Indexed: 01/14/2023] Open
Abstract
Antimicrobial peptide (Piscidin-1) is an effective natural polypeptide, which has great influence and potential on porcine epidemic diarrhea virus (PEDV) and pseudorabies virus (PRV). As an alternative antibiotic substitute, Piscidin-1 was subjected for pharmacokinetics study with three administration routes (i.v, i.m, and p.o) after a single dose of 2 mg/kg in rats and preliminary pharmacodynamics including antiviral activity in cell against PEDV and PRV. Based on 50 percent tissue culture infective dose (TCID50), there were about 2 and 10% virus survived ratios for Piscidin-1 against PRV and PEDV, respectively. The plaque test showed 1 and 2 μg/ml Piscidin-1 could eliminate 95% PRV and 85% PEDV, respectively. The main pharmacokinetics parameters of Cmax, AUC0−∞, Ke, t1/2, Tmax, MRT, and Clb in plasma were not applicable value, 25.9 μg*h/ml, 0.041 h−1, 16.97 h, not available value, 22.77 h, 0.067 L/h*kg after i.v administration, 2.37 μg/ml, 18.95 μg*h/ml, 0.029 h−1, 23.50 h, 0.33 h, 30.12 h, 0.095 L/h*kg after i.m administration and 0.73 μg/ml, 9.63 μg*h/ml, 0.036 h−1, 19.46 h, 0.50 h, 26.76 h, 0.171 L/h*kg after p.o administration. The bioavailability values after i.m and p.o administrations were calculated as 73.17 and 37.18%, respectively. The i.m administration was selected for pharmacokinetics study in ileum content against PEDV. The main pharmacokinetic parameters of Cmax, AUC0−∞, Ke, t1/2, Tmax, MRT, and Clb in ileum content were 1.67 μg/ml, 78.40 μg*h/ml, 0.034 h−1, 20.16 h, 8.12 h, 36.45 h, 0.026 L/h*kg. The Cmax values in plasma (2.37 μg/ml) and ileum content (1.67 μg/ml) were higher than the effective inhibitory concentration determined in the plaque test, and this indicates that Piscidin-1 might have effective inhibition effect against PRV and PEDV after administration of 2 mg/kg i.m. The results of this study represent the first investigations toward the pharmacokinetic characteristics of piscidin-1 in plasma upon three different administration routes, among which i.m. resulted in the highest bioavailability (73.17%). Furthermore, the pharmacokinetics study of ileum content indicated Piscidin-1 might have good effect against PEDV and could be regarded as an alternative antibiotic in clinical veterinary in the future study.
Collapse
Affiliation(s)
- Zhixin Lei
- State Key Laboratory of Agriculture Microbiology, College of Veterinary Medicine, Huazhong Agriculture University, Wuhan, China.,Department of Veterinary Pharmacology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,National Reference Laboratory of Veterinary Drug Residues and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agriculture University, Wuhan, China.,Department of Pharmaceutics, University of Minnesota, Minneapolis, MN, United States
| | - Qianying Liu
- State Key Laboratory of Agriculture Microbiology, College of Veterinary Medicine, Huazhong Agriculture University, Wuhan, China.,Department of Veterinary Pharmacology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,National Reference Laboratory of Veterinary Drug Residues and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agriculture University, Wuhan, China
| | - Qianqian Zhu
- State Key Laboratory of Agriculture Microbiology, College of Veterinary Medicine, Huazhong Agriculture University, Wuhan, China.,Department of Veterinary Pharmacology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Bing Yang
- State Key Laboratory of Agriculture Microbiology, College of Veterinary Medicine, Huazhong Agriculture University, Wuhan, China.,Department of Veterinary Pharmacology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Haseeb Khaliq
- State Key Laboratory of Agriculture Microbiology, College of Veterinary Medicine, Huazhong Agriculture University, Wuhan, China
| | - Ao Sun
- State Key Laboratory of Agriculture Microbiology, College of Veterinary Medicine, Huazhong Agriculture University, Wuhan, China.,Department of Veterinary Pharmacology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yi Qi
- State Key Laboratory of Agriculture Microbiology, College of Veterinary Medicine, Huazhong Agriculture University, Wuhan, China
| | - Gopi Krishna Moku
- Department of Pharmaceutics, University of Minnesota, Minneapolis, MN, United States
| | - Yafan Su
- Department of Pharmaceutics, University of Minnesota, Minneapolis, MN, United States
| | - Jiawei Wang
- Department of Pharmaceutics, University of Minnesota, Minneapolis, MN, United States
| | - Jiyue Cao
- Department of Veterinary Pharmacology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,National Reference Laboratory of Veterinary Drug Residues and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agriculture University, Wuhan, China
| | - Qigai He
- State Key Laboratory of Agriculture Microbiology, College of Veterinary Medicine, Huazhong Agriculture University, Wuhan, China
| |
Collapse
|
116
|
Tanhaiean A, Azghandi M, Razmyar J, Mohammadi E, Sekhavati MH. Recombinant production of a chimeric antimicrobial peptide in E. coli and assessment of its activity against some avian clinically isolated pathogens. Microb Pathog 2018; 122:73-78. [PMID: 29890331 DOI: 10.1016/j.micpath.2018.06.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 06/05/2018] [Accepted: 06/08/2018] [Indexed: 10/14/2022]
Abstract
Over the last decades, poultry industry faced to the rapid emergence of multidrug-resistant bacteria as a global concern. Antimicrobial peptide (AMPs) known as potential antibiotic alternative and were considered as a new antimicrobial agent. Current methods of production and purification of AMPs have several limitations such as: costly, time-consuming and killing the producing host cells in recombinant form. In the present study, a chimeric peptide derived from camel lactoferrin was produced in Escherichia coli periplasmic space using a pET-based expression system and its antibacterial activity was determined on some avian pathogens in vitro. A carboxy-terminal polyhistidine tag was used for purification by Ni2+ affinity chromatography with an average yield of 0.42 g/L. The His-tagged chimeric peptide showed different range of antimicrobial activity against clinically isolated avian pathogens with low chicken blood hemolysis activity and high serum stability. Overall, the results of this investigation showed the recombinant chimeric peptide was successfully expressed in pET-based expression system and could be considered as a proper alternative for some currently used antibiotics in poultry industry and drugs veterinary medicine.
Collapse
Affiliation(s)
- Abass Tanhaiean
- Plant Biotechnology and Plant Breeding, Ferdowsi University of Mashhad, Iran
| | - Marjan Azghandi
- Department of Animal Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Jamshid Razmyar
- Department of Avian Diseases, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Elyas Mohammadi
- Department of Animal Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | | |
Collapse
|
117
|
Dissection of the antimicrobial and hemolytic activity of Cap18: Generation of Cap18 derivatives with enhanced specificity. PLoS One 2018; 13:e0197742. [PMID: 29852015 PMCID: PMC5978884 DOI: 10.1371/journal.pone.0197742] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 05/08/2018] [Indexed: 01/08/2023] Open
Abstract
Due to the rapid emergence of resistance to classical antibiotics, novel antimicrobial compounds are needed. It is desirable to selectively kill pathogenic bacteria without targeting other beneficial bacteria in order to prevent the negative clinical consequences caused by many broad-spectrum antibiotics as well as reducing the development of antibiotic resistance. Antimicrobial peptides (AMPs) represent an alternative to classical antibiotics and it has been previously demonstrated that Cap18 has high antimicrobial activity against a broad range of bacterial species. In this study we report the design of a positional scanning library consisting of 696 Cap18 derivatives and the subsequent screening for antimicrobial activity against Y. ruckeri, A. salmonicida, S. Typhimurium and L. lactis as well as for hemolytic activity measuring the hemoglobin release of horse erythrocytes. We show that the hydrophobic face of Cap18, in particular I13, L17 and I24, is essential for its antimicrobial activity against S. Typhimurium, Y. ruckeri, A. salmonicida, E. coli, P. aeruginosa, L. lactis, L. monocytogenes and E. faecalis. In particular, Cap18 derivatives harboring a I13D, L17D, L17P, I24D or I24N substitution lost their antimicrobial activity against any of the tested bacterial strains. In addition, we were able to generate species-specific Cap18 derivatives by particular amino acid substitutions either in the hydrophobic face at positions L6, L17, I20, and I27, or in the hydrophilic face at positions K16 and K18. Finally, our data showed the proline residue at position 29 to be essential for the inherent low hemolytic activity of Cap18 and that substitution of the residues K16, K23, or G21 by any hydrophobic residues enhances the hemolytic activity. This study demonstrates the potential of generating species-specific AMPs for the selective elimination of bacterial pathogens.
Collapse
|
118
|
Agrawal A, Weisshaar JC. Effects of alterations of the E. coli lipopolysaccharide layer on membrane permeabilization events induced by Cecropin A. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:1470-1479. [PMID: 29684333 DOI: 10.1016/j.bbamem.2018.04.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 04/12/2018] [Accepted: 04/18/2018] [Indexed: 11/24/2022]
Abstract
The outermost layer of Gram negative bacteria is composed of a lipopolysaccharide (LPS) network that forms a dense protective hydrophilic barrier against entry of hydrophobic drugs. At low μM concentrations, a large family of cationic polypeptides known as antimicrobial peptides (AMPs) are able to penetrate the LPS layer and permeabilize the outer membrane (OM) and the cytoplasmic membrane (CM), causing cell death. Cecropin A is a well-studied cationic AMP from moth. Here a battery of time-resolved, single-cell microscopy experiments explores how deletion of sugar layers and/or phosphoryl negative charges from the core oligosaccharide layer (core OS) of K12 E. coli alters the timing of OM and CM permeabilization induced by Cecropin A. Deletion of sugar layers, or phosphoryl charges, or both from the core OS shortens the time to the onset of OM permeabilization to periplasmic GFP and also the lag time between OM permeabilization and CM permeabilization. Meanwhile, the 12-h minimum inhibitory concentration (MIC) changes only twofold with core OS alterations. The results suggest a two-step model in which the core oligosaccharide layers act as a kinetic barrier to penetration of Cecropin A to the lipid A outer leaflet of the OM. Once a threshold concentration has built up at the lipid A leaflet, nucleation occurs and the OM is locally permeabilized to GFP and, by inference, to Cecropin A. Whenever Cecropin A permeabilizes the OM, CM permeabilization always follows, and cell growth subsequently halts and never recovers on the 45 min observation timescale.
Collapse
Affiliation(s)
- Anurag Agrawal
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA
| | - James C Weisshaar
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA.
| |
Collapse
|
119
|
Pfalzgraff A, Brandenburg K, Weindl G. Antimicrobial Peptides and Their Therapeutic Potential for Bacterial Skin Infections and Wounds. Front Pharmacol 2018; 9:281. [PMID: 29643807 PMCID: PMC5882822 DOI: 10.3389/fphar.2018.00281] [Citation(s) in RCA: 289] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 03/13/2018] [Indexed: 01/10/2023] Open
Abstract
Alarming data about increasing resistance to conventional antibiotics are reported, while at the same time the development of new antibiotics is stagnating. Skin and soft tissue infections (SSTIs) are mainly caused by the so called ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) which belong to the most recalcitrant bacteria and are resistant to almost all common antibiotics. S. aureus and P. aeruginosa are the most frequent pathogens isolated from chronic wounds and increasing resistance to topical antibiotics has become a major issue. Therefore, new treatment options are urgently needed. In recent years, research focused on the development of synthetic antimicrobial peptides (AMPs) with lower toxicity and improved activity compared to their endogenous counterparts. AMPs appear to be promising therapeutic options for the treatment of SSTIs and wounds as they show a broad spectrum of antimicrobial activity, low resistance rates and display pivotal immunomodulatory as well as wound healing promoting activities such as induction of cell migration and proliferation and angiogenesis. In this review, we evaluate the potential of AMPs for the treatment of bacterial SSTIs and wounds and provide an overview of the mechanisms of actions of AMPs that contribute to combat skin infections and to improve wound healing. Bacteria growing in biofilms are more resistant to conventional antibiotics than their planktonic counterparts due to limited biofilm penetration and distinct metabolic and physiological functions, and often result in chronification of infections and wounds. Thus, we further discuss the feasibility of AMPs as anti-biofilm agents. Finally, we highlight perspectives for future therapies and which issues remain to bring AMPs successfully to the market.
Collapse
Affiliation(s)
- Anja Pfalzgraff
- Pharmacology and Toxicology, Department of Biology, Chemistry, Pharmacy, Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany
| | | | - Günther Weindl
- Pharmacology and Toxicology, Department of Biology, Chemistry, Pharmacy, Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
120
|
Pinheiro AM, Carreira A, Ferreira RB, Monteiro S. Fusion proteins towards fungi and bacteria in plant protection. MICROBIOLOGY (READING, ENGLAND) 2018; 164:11-19. [PMID: 29239714 PMCID: PMC5892777 DOI: 10.1099/mic.0.000592] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 12/04/2017] [Indexed: 02/06/2023]
Abstract
In agriculture, although fungi are considered the foremost problem, infections by bacteria also cause significant economical losses. The presence of different diseases in crops often leads to a misuse of the proper therapeutic, or the combination of different diseases forces the use of more than one pesticide. This work concerns the development of a 'super-Blad': a chimeric protein consisting of Blad polypeptide, the active ingredient of a biological fungicide already on the market, and two selected peptides, SP10-5 and Sub5, proven to possess biological potential as antibacterial agents. The resulting chimeric protein obtained from the fusion of Blad with SP10-5 not only maintained strong antibacterial activity, especially against Xanthomonas spp. and Pseudomonas syringae, but was also able to retain the ability to inhibit the growth of both yeast and filamentous fungi. However, the antibacterial activity of Sub5 was considerably diminished when fused with Blad, which seems to indicate that not all fusion proteins behave equally. These newly designed drugs can be considered promising compounds for use in plant protection. A deeper and focused development of an appropriate formulation may result in a potent biopesticide that can replace, per se, two conventional chemistries with less impact on the environment.
Collapse
Affiliation(s)
- Ana Margarida Pinheiro
- LEAF – Linking Landscape, Environment, Agriculture and Food Instituto Superior de Agronomia, Universidade de Lisboa, 1349-017 Lisboa, Portugal
| | - Alexandra Carreira
- CEV, SA, Parque Industrial de Cantanhede/Biocant-Park, lote 120, 3060-197 Cantanhede, Portugal
| | - Ricardo B. Ferreira
- LEAF – Linking Landscape, Environment, Agriculture and Food Instituto Superior de Agronomia, Universidade de Lisboa, 1349-017 Lisboa, Portugal
| | - Sara Monteiro
- LEAF – Linking Landscape, Environment, Agriculture and Food Instituto Superior de Agronomia, Universidade de Lisboa, 1349-017 Lisboa, Portugal
- CEV, SA, Parque Industrial de Cantanhede/Biocant-Park, lote 120, 3060-197 Cantanhede, Portugal
| |
Collapse
|
121
|
Tanzadehpanah H, Asoodeh A, Saidijam M, Chamani J, Mahaki H. Improving efficiency of an angiotensin converting enzyme inhibitory peptide as multifunctional peptides. J Biomol Struct Dyn 2017; 36:3803-3818. [DOI: 10.1080/07391102.2017.1401001] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Hamid Tanzadehpanah
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ahmad Asoodeh
- Faculty of Science, Department of Chemistry, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Massoud Saidijam
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Jamshidkhan Chamani
- Faculty of Sciences, Department of Biochemistry and Biophysics, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Hanie Mahaki
- Department of Immunology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
122
|
Peptide Therapeutics Versus Superbugs: Highlight on Current Research and Advancements. Int J Pept Res Ther 2017. [DOI: 10.1007/s10989-017-9650-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
123
|
Rather MA, Lone AM, Teli B, Bhat ZS, Singh P, Maqbool M, Shairgojray BA, Dar MJ, Amin S, Yousuf SK, Bhat BA, Ahmad Z. The synthesis, biological evaluation and structure-activity relationship of 2-phenylaminomethylene-cyclohexane-1,3-diones as specific anti-tuberculosis agents. MEDCHEMCOMM 2017; 8:2133-2141. [PMID: 30108731 DOI: 10.1039/c7md00350a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 10/10/2017] [Indexed: 11/21/2022]
Abstract
The present study utilised whole cell based phenotypic screening of thousands of diverse small molecules against Mycobacterium tuberculosis H37Rv (M. tuberculosis) and identified the cyclohexane-1,3-dione-based structures 5 and 6 as hits. The selected hit molecules were used for further synthesis and a library of 37 compounds under four families was synthesized for lead generation. Evaluation of the library against M. tuberculosis lead to the identification of three lead antituberculosis agents (37, 39 and 41). The most potential compound, 2-(((2-hydroxyphenyl)amino)methylene)-5,5-dimethylcyclohexane-1,3-dione (39) showed an MIC of 2.5 μg mL-1, which falls in the range of MICs values found for the known antituberculosis drugs ethambutol, streptomycin and levofloxacin. Additionally, this compound proved to be non-toxic (<20% inhibition at 50 μM concentration) against four human cell lines. Like first line antituberculosis drugs (isoniazid, rifampicin and pyrazinamide) this compound lacks activity against general Gram positive and Gram negative bacteria and even against M. smegmatis; thereby reflecting its highly specific antituberculosis activity.
Collapse
Affiliation(s)
- Muzafar Ahmad Rather
- Clinical Microbiology and PK/PD Division, Clinical Microbiology PK/PD/Laboratory, CSIR-Indian Institute of Integrative Medicine, Sanatnagar, Srinagar, India-190005. ; ; Tel: +91 194 2431253/55; Tel: +91 9906593222.,Department of Biochemistry, University of Kashmir, Hazratbal Srinagar, India-190006
| | - Ali Mohd Lone
- Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Sanatnagar, Srinagar, India-190005. ; ; ; Tel: +91 1942431253/55
| | - Bisma Teli
- Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Sanatnagar, Srinagar, India-190005. ; ; ; Tel: +91 1942431253/55.,Academy of Scientific & Innovative Research (AcSIR), India
| | - Zubair Shanib Bhat
- Clinical Microbiology and PK/PD Division, Clinical Microbiology PK/PD/Laboratory, CSIR-Indian Institute of Integrative Medicine, Sanatnagar, Srinagar, India-190005. ; ; Tel: +91 194 2431253/55; Tel: +91 9906593222.,Academy of Scientific & Innovative Research (AcSIR), India
| | - Paramjeet Singh
- Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, Jammu & Kashmir, India-180001
| | - Mubashir Maqbool
- Clinical Microbiology and PK/PD Division, Clinical Microbiology PK/PD/Laboratory, CSIR-Indian Institute of Integrative Medicine, Sanatnagar, Srinagar, India-190005. ; ; Tel: +91 194 2431253/55; Tel: +91 9906593222
| | - Bashir Ahmad Shairgojray
- Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Sanatnagar, Srinagar, India-190005. ; ; ; Tel: +91 1942431253/55
| | - Mohd Jamal Dar
- Academy of Scientific & Innovative Research (AcSIR), India.,Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, Jammu & Kashmir, India-180001
| | - Shajrul Amin
- Department of Biochemistry, University of Kashmir, Hazratbal Srinagar, India-190006
| | - Syed Khalid Yousuf
- Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Sanatnagar, Srinagar, India-190005. ; ; ; Tel: +91 1942431253/55.,Academy of Scientific & Innovative Research (AcSIR), India
| | - Bilal A Bhat
- Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Sanatnagar, Srinagar, India-190005. ; ; ; Tel: +91 1942431253/55.,Academy of Scientific & Innovative Research (AcSIR), India
| | - Zahoor Ahmad
- Clinical Microbiology and PK/PD Division, Clinical Microbiology PK/PD/Laboratory, CSIR-Indian Institute of Integrative Medicine, Sanatnagar, Srinagar, India-190005. ; ; Tel: +91 194 2431253/55; Tel: +91 9906593222.,Academy of Scientific & Innovative Research (AcSIR), India
| |
Collapse
|
124
|
Suresh G, Das RK, Kaur Brar S, Rouissi T, Avalos Ramirez A, Chorfi Y, Godbout S. Alternatives to antibiotics in poultry feed: molecular perspectives. Crit Rev Microbiol 2017; 44:318-335. [DOI: 10.1080/1040841x.2017.1373062] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
| | - Ratul Kumar Das
- INRS-ETE, Université du Québec, Québec, QC, Canada
- TERI Deakin Nanobiotechnology Centre, TERI Gram, The Energy and Resources Institute, Gurgaon, India
| | | | | | - Antonio Avalos Ramirez
- Centre National en Électrochimie et en Technologie Environnementales Inc, Shawinigan, Canada
| | - Younes Chorfi
- Département de biomédecine vétérinaire, Université de Montréal, St-Hyacinthe, Canada
| | - Stephane Godbout
- Institut de recherche et de développement en agroenvironnement, Québec, Canada
| |
Collapse
|
125
|
Synthetic Cyclic Peptomers as Type III Secretion System Inhibitors. Antimicrob Agents Chemother 2017; 61:AAC.00060-17. [PMID: 28652236 DOI: 10.1128/aac.00060-17] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 06/10/2017] [Indexed: 12/12/2022] Open
Abstract
Antibiotic-resistant bacteria are an emerging threat to global public health. New classes of antibiotics and tools for antimicrobial discovery are urgently needed. Type III secretion systems (T3SS), which are required by dozens of Gram-negative bacteria for virulence but largely absent from nonpathogenic bacteria, are promising virulence blocker targets. The ability of mammalian cells to recognize the presence of a functional T3SS and trigger NF-κB activation provides a rapid and sensitive method for identifying chemical inhibitors of T3SS activity. In this study, we generated a HEK293 stable cell line expressing green fluorescent protein (GFP) driven by a promoter containing NF-κB enhancer elements to serve as a readout of T3SS function. We identified a family of synthetic cyclic peptide-peptoid hybrid molecules (peptomers) that exhibited dose-dependent inhibition of T3SS effector secretion in Yersinia pseudotuberculosis and Pseudomonas aeruginosa without affecting bacterial growth or motility. Among these inhibitors, EpD-3'N, EpD-1,2N, EpD-1,3'N, EpD-1,2,3'N, and EpD-1,2,4'N exhibited strong inhibitory effects on translocation of the Yersinia YopM effector protein into mammalian cells (>40% translocation inhibition at 7.5 μM) and showed no toxicity to mammalian cells at 240 μM. In addition, EpD-3'N and EpD-1,2,4'N reduced the rounding of HeLa cells caused by the activity of Yersinia effector proteins that target the actin cytoskeleton. In summary, we have discovered a family of novel cyclic peptomers that inhibit the injectisome T3SS but not the flagellar T3SS.
Collapse
|
126
|
Immunomodulating and Revascularizing Activity of Kalanchoe pinnata Synergize with Fungicide Activity of Biogenic Peptide Cecropin P1. J Immunol Res 2017; 2017:3940743. [PMID: 28695135 PMCID: PMC5485323 DOI: 10.1155/2017/3940743] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 04/10/2017] [Indexed: 11/18/2022] Open
Abstract
Previously transgenic Kalanchoe pinnata plants producing an antimicrobial peptide cecropin P1 (CecP1) have been reported. Now we report biological testing K. pinnata extracts containing CecP1 as a candidate drug for treatment of wounds infected with Candida albicans. The drug constitutes the whole juice from K. pinnata leaves (not ethanol extract) sterilized with nanofiltration. A microbicide activity of CecP1 against an animal fungal pathogen in vivo was demonstrated for the first time. However, a favorable therapeutic effect of the transgenic K. pinnata extract was attributed to a synergism between the fungicide activity of CecP1 and wound healing (antiscar), revascularizing, and immunomodulating effect of natural biologically active components of K. pinnata. A commercial fungicide preparation clotrimazole eliminated C. albicans cells within infected wounds in rats with efficiency comparable to CecP1-enriched K. pinnata extract. But in contrast to K. pinnata extract, clotrimazole did not exhibit neither wound healing activity nor remodeling of the scar matrix. Taken together, our results allow assumption that CecP1-enriched K. pinnata extracts should be considered as a candidate drug for treatment of dermatomycoses, wounds infected with fungi, and bedsores.
Collapse
|
127
|
Lebedeva AA, Zakharchenko NS, Trubnikova EV, Medvedeva OA, Kuznetsova TV, Masgutova GA, Zylkova MV, Buryanov YI, Belous AS. Bactericide, Immunomodulating, and Wound Healing Properties of Transgenic Kalanchoe pinnata Synergize with Antimicrobial Peptide Cecropin P1 In Vivo. J Immunol Res 2017; 2017:4645701. [PMID: 28326334 PMCID: PMC5343256 DOI: 10.1155/2017/4645701] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Accepted: 01/23/2017] [Indexed: 11/22/2022] Open
Abstract
Procedure of manufacturing K. pinnata water extracts containing cecropin P1 (CecP1) from the formerly described transgenic plants is established. It included incubation of leaves at +4°C for 7 days, mechanical homogenization of leaves using water as extraction solvent, and heating at +70°C for inactivating plant enzymes. Yield of CecP1 (after heating and sterilizing filtration) was 0.3% of total protein in the extract. The water extract of K. pinnata + CecP1 exhibits favorable effect on healing of wounds infected with S. aureus (equal to Cefazolin) and with a combination of S. aureus with P. aeruginosa (better than Cefazolin). Wild-type K. pinnata extract exhibited evident microbicide activity against S. aureus with P. aeruginosa but it was substantially strengthened in K. pinnata + CecP1 extract. K. pinnata extracts (both wild-type and transgenic) did not exhibit general toxicity and accelerated wound recovery. Due to immunomodulating activity, wild-type K. pinnata extract accelerated granulation of the wound bed and marginal epithelialization even better than K. pinnata + CecP1 extract. Immunomodulating and microbicide activity of K. pinnata synergizes with microbicide activity of CecP1 accelerating elimination of bacteria.
Collapse
Affiliation(s)
- A. A. Lebedeva
- Russian Academy of Sciences, Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Pushchino, Moscow Region, Russia
| | - N. S. Zakharchenko
- Russian Academy of Sciences, Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Pushchino, Moscow Region, Russia
| | - E. V. Trubnikova
- Kursk State University, Kursk, Russia
- Kursk State Medical University, Kursk, Russia
| | | | | | | | - M. V. Zylkova
- Russian Academy of Sciences, Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Pushchino, Moscow Region, Russia
- Emanuel Institute of Biochemical Physics, Moscow, Russia
| | - Y. I. Buryanov
- Russian Academy of Sciences, Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Pushchino, Moscow Region, Russia
| | | |
Collapse
|
128
|
Chettri JK, Mehrdana F, Hansen EB, Ebbensgaard A, Overgaard MT, Lauritsen AH, Dalsgaard I, Buchmann K. Antimicrobial peptide CAP18 and its effect on Yersinia ruckeri infections in rainbow trout Oncorhynchus mykiss (Walbaum): comparing administration by injection and oral routes. JOURNAL OF FISH DISEASES 2017; 40:97-104. [PMID: 27334068 DOI: 10.1111/jfd.12497] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 03/30/2016] [Accepted: 03/30/2016] [Indexed: 06/06/2023]
Abstract
The antimicrobial peptide CAP18 has been demonstrated to have a strong in vitro bactericidal effect on Yersinia ruckeri, but its activity in vivo has not been described. In this work, we investigated whether CAP18 protects rainbow trout Oncorhynchus mykiss (Walbaum) against enteric red mouth disease caused by this pathogen either following i.p. injection or by oral administration (in feed). It was found that injection of CAP18 into juvenile rainbow trout before exposure to Y. ruckeri was associated with lowered mortality compared to non-medicated fish although it was less effective than the conventional antibiotic oxolinic acid. Oral administration of CAP18 to trout did not prevent infection. The proteolytic effect of secretions on the peptide CAP18 in the fish gastrointestinal tract is suggested to account for the inferior effect of oral administration.
Collapse
Affiliation(s)
- J K Chettri
- Faculty of Health and Medical Sciences, Department of Veterinary Disease Biology, University of Copenhagen, Frederiksberg C, Denmark
| | - F Mehrdana
- Faculty of Health and Medical Sciences, Department of Veterinary Disease Biology, University of Copenhagen, Frederiksberg C, Denmark
| | - E B Hansen
- National Food Institute, Technical University of Denmark, Søborg, Denmark
| | - A Ebbensgaard
- National Food Institute, Technical University of Denmark, Lyngby, Denmark
| | - M T Overgaard
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | | | - I Dalsgaard
- National Veterinary Institute, Technical University of Denmark, Copenhagen, Denmark
| | - K Buchmann
- Faculty of Health and Medical Sciences, Department of Veterinary Disease Biology, University of Copenhagen, Frederiksberg C, Denmark
| |
Collapse
|
129
|
Bondue P, Crèvecoeur S, Brose F, Daube G, Seghaye MC, Griffiths MW, LaPointe G, Delcenserie V. Cell-Free Spent Media Obtained from Bifidobacterium bifidum and Bifidobacterium crudilactis Grown in Media Supplemented with 3'-Sialyllactose Modulate Virulence Gene Expression in Escherichia coli O157:H7 and Salmonella Typhimurium. Front Microbiol 2016; 7:1460. [PMID: 27713728 PMCID: PMC5031695 DOI: 10.3389/fmicb.2016.01460] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 09/01/2016] [Indexed: 11/19/2022] Open
Abstract
Complex oligosaccharides from human milk (HMO) possess an antimicrobial activity and can promote the growth of bifidobacteria such as Bifidobacterium bifidum and Bifidobacterium longum subsp. infantis. In addition, fermentation of carbohydrates by bifidobacteria can result in the production of metabolites presenting an antivirulence effect on several pathogenic bacteria. Whey is rich in complex bovine milk oligosaccharides (BMO) structurally similar to HMO and B. crudilactis, a species of bovine origin, is able to metabolize some of those complex carbohydrates. This study focused on the ability of B. bifidum and B. crudilactis to grow in a culture medium supplemented in 3′-sialyllactose (3′SL) as the main source of carbon, a major BMO encountered in cow milk. Next, the effects of cell-free spent media (CFSM) were tested against virulence expression of Escherichia coli O157:H7 and Salmonella enterica serovar Typhimurium. Both strains were able to grow in presence of 3′SL, but B. crudilactis showed the best growth (7.92 ± 0.3 log cfu/ml) compared to B. bifidum (6.84 ± 0.9 log cfu/ml). Then, CFSM were tested for their effects on virulence gene expression by ler and hilA promoter activity of luminescent mutants of E. coli and S. Typhimurium, respectively, and on wild type strains of E. coli O157:H7 and S. Typhimurium using RT-qPCR. All CFSM resulted in significant under expression of the ler and hilA genes for the luminescent mutants and ler (ratios of −15.4 and −8.1 respectively) and qseA (ratios of −2.1 and −3.1) for the wild type strain of E. coli O157:H7. The 3′SL, a major BMO, combined with some bifidobacteria strains of bovine or human origin could therefore be an interesting synbiotic to maintain or restore the intestinal health of young children. These effects observed in vitro will be further investigated regarding the overall phenotype of pathogenic agents and the exact nature of the active molecules.
Collapse
Affiliation(s)
- Pauline Bondue
- Department of Food Science, Fundamental and Applied Research for Animal and Health, Faculty of Veterinary Medicine, University of Liège Liège, Belgium
| | - Sébastien Crèvecoeur
- Department of Food Science, Fundamental and Applied Research for Animal and Health, Faculty of Veterinary Medicine, University of Liège Liège, Belgium
| | - François Brose
- Department of Food Science, Fundamental and Applied Research for Animal and Health, Faculty of Veterinary Medicine, University of Liège Liège, Belgium
| | - Georges Daube
- Department of Food Science, Fundamental and Applied Research for Animal and Health, Faculty of Veterinary Medicine, University of Liège Liège, Belgium
| | | | - Mansel W Griffiths
- Canadian Research Institute for Food Safety, University of Guelph Guelph, Canada
| | - Gisèle LaPointe
- Canadian Research Institute for Food Safety, University of Guelph Guelph, Canada
| | - Véronique Delcenserie
- Department of Food Science, Fundamental and Applied Research for Animal and Health, Faculty of Veterinary Medicine, University of Liège Liège, Belgium
| |
Collapse
|
130
|
Seefeldt AC, Graf M, Pérébaskine N, Nguyen F, Arenz S, Mardirossian M, Scocchi M, Wilson DN, Innis CA. Structure of the mammalian antimicrobial peptide Bac7(1-16) bound within the exit tunnel of a bacterial ribosome. Nucleic Acids Res 2016; 44:2429-38. [PMID: 26792896 PMCID: PMC4797285 DOI: 10.1093/nar/gkv1545] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 12/28/2015] [Indexed: 11/25/2022] Open
Abstract
Proline-rich antimicrobial peptides (PrAMPs) produced as part of the innate immune response of animals, insects and plants represent a vast, untapped resource for the treatment of multidrug-resistant bacterial infections. PrAMPs such as oncocin or bactenecin-7 (Bac7) interact with the bacterial ribosome to inhibit translation, but their supposed specificity as inhibitors of bacterial rather than mammalian protein synthesis remains unclear, despite being key to developing drugs with low toxicity. Here, we present crystal structures of the Thermus thermophilus 70S ribosome in complex with the first 16 residues of mammalian Bac7, as well as the insect-derived PrAMPs metalnikowin I and pyrrhocoricin. The structures reveal that the mammalian Bac7 interacts with a similar region of the ribosome as insect-derived PrAMPs. Consistently, Bac7 and the oncocin derivative Onc112 compete effectively with antibiotics, such as erythromycin, which target the ribosomal exit tunnel. Moreover, we demonstrate that Bac7 allows initiation complex formation but prevents entry into the elongation phase of translation, and show that it inhibits translation on both mammalian and bacterial ribosomes, explaining why this peptide needs to be stored as an inactive pro-peptide. These findings highlight the need to consider the specificity of PrAMP derivatives for the bacterial ribosome in future drug development efforts.
Collapse
Affiliation(s)
- A Carolin Seefeldt
- Institut Européen de Chimie et Biologie, University of Bordeaux, Pessac 33607, France U1212, Inserm, Bordeaux 33076, France UMR 5320, CNRS, Bordeaux 33076, France
| | - Michael Graf
- Gene Center and Department for Biochemistry, University of Munich, Munich 81377, Germany
| | - Natacha Pérébaskine
- Institut Européen de Chimie et Biologie, University of Bordeaux, Pessac 33607, France U1212, Inserm, Bordeaux 33076, France UMR 5320, CNRS, Bordeaux 33076, France
| | - Fabian Nguyen
- Gene Center and Department for Biochemistry, University of Munich, Munich 81377, Germany
| | - Stefan Arenz
- Gene Center and Department for Biochemistry, University of Munich, Munich 81377, Germany
| | - Mario Mardirossian
- Department of Life Sciences, University of Trieste, Trieste 34127, Italy
| | - Marco Scocchi
- Department of Life Sciences, University of Trieste, Trieste 34127, Italy
| | - Daniel N Wilson
- Gene Center and Department for Biochemistry, University of Munich, Munich 81377, Germany Center for integrated Protein Science Munich (CiPSM), University of Munich, Munich 81377, Germany
| | - C Axel Innis
- Institut Européen de Chimie et Biologie, University of Bordeaux, Pessac 33607, France U1212, Inserm, Bordeaux 33076, France UMR 5320, CNRS, Bordeaux 33076, France
| |
Collapse
|
131
|
Shi X, Gao H, Dai F, Feng X, Liu W. A thermoresponsive supramolecular copolymer hydrogel for the embolization of kidney arteries. Biomater Sci 2016; 4:1673-1681. [PMID: 27709136 DOI: 10.1039/c6bm00597g] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A thermoresponsive supramolecular p(N-acryloyl glycinamide-co-acrylamide) (PNAGA-PAAm) copolymer hydrogel was developed for the embolization of renal arteries in rabbits.
Collapse
Affiliation(s)
- Xiaohuan Shi
- School of Materials Science and Engineering
- Tianjin Key Laboratory of Composite and Functional Materials
- Tianjin University
- Tianjin
- China
| | - Haijun Gao
- Tianjin First Center Hospital
- Tianjin
- China
| | - Fengying Dai
- School of Materials Science and Engineering
- Key Laboratory of Advanced Textile Composites
- Ministry of Education
- Institute of Textile Composites
- Tianjin Polytechnic University
| | | | - Wenguang Liu
- School of Materials Science and Engineering
- Tianjin Key Laboratory of Composite and Functional Materials
- Tianjin University
- Tianjin
- China
| |
Collapse
|