101
|
Sueiro-Olivares M, Fernandez-Molina JV, Abad-Diaz-de-Cerio A, Gorospe E, Pascual E, Guruceaga X, Ramirez-Garcia A, Garaizar J, Hernando FL, Margareto J, Rementeria A. Aspergillus fumigatus transcriptome response to a higher temperature during the earliest steps of germination monitored using a new customized expression microarray. MICROBIOLOGY-SGM 2014; 161:490-502. [PMID: 25536999 DOI: 10.1099/mic.0.000021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Aspergillus fumigatus is considered to be the most prevalent airborne pathogenic fungus and can cause invasive diseases in immunocompromised patients. It is known that its virulence is multifactorial, although the mechanisms of pathogenicity remain unclear. With the aim of improving our understanding of these mechanisms, we designed a new expression microarray covering the entire genome of A. fumigatus. In this first study, we analysed the transcriptomes of this fungus at the first steps of germination after being grown at 24 and 37 °C. The microarray data revealed that 1249 genes were differentially expressed during growth at these two temperatures. According to our results, A. fumigatus modified significantly the expression of genes related to metabolism to adapt to new conditions. The high percentages of genes that encoded hypothetical or unclassified proteins differentially expressed implied that many as yet unknown genes were involved in the establishment of A. fumigatus infection. Furthermore, amongst the genes implicated in virulence upregulated at 37 °C on the microarray, we found those that encoded proteins mainly related to allergens (Asp F1, Asp F2 and MnSOD), gliotoxin biosynthesis (GliP and GliZ), nitrogen (NiiA and NiaD) or iron (HapX, SreA, SidD and SidC) metabolism. However, gene expression in iron and nitrogen metabolism might be influenced not only by heat shock, but also by the availability of nutrients in the medium, as shown by the addition of fresh medium.
Collapse
Affiliation(s)
- Mónica Sueiro-Olivares
- Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Spain
| | - Jimena V Fernandez-Molina
- Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Spain
| | - Ana Abad-Diaz-de-Cerio
- Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Spain
| | - Eva Gorospe
- Tecnalia Research & Innovation, 48160 Derio, Spain
| | | | - Xabier Guruceaga
- Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Spain
| | - Andoni Ramirez-Garcia
- Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Spain
| | - Javier Garaizar
- Department of Immunology, Microbiology and Parasitology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Spain
| | - Fernando L Hernando
- Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Spain
| | | | - Aitor Rementeria
- Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Spain
| |
Collapse
|
102
|
Divergent targets of Aspergillus fumigatus AcuK and AcuM transcription factors during growth in vitro versus invasive disease. Infect Immun 2014; 83:923-33. [PMID: 25534941 DOI: 10.1128/iai.02685-14] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
In Aspergillus nidulans, the AcuK and AcuM transcription factors form a complex that regulates gluconeogenesis. In Aspergillus fumigatus, AcuM governs gluconeogenesis and iron acquisition in vitro and virulence in immunosuppressed mice. However, the function of AcuK was previously unknown. Through in vitro studies, we found that A. fumigatus ΔacuK single and ΔacuK ΔacuM double mutants had impaired gluconeogenesis and iron acquisition, similar to the ΔacuM mutant. Also, the ΔacuK, ΔacuM, and ΔacuK ΔacuM mutants had similar virulence defects in mice. However, the ΔacuK mutant had a milder defect in extracellular siderophore activity and induction of epithelial cell damage in vitro than did the ΔacuM mutant. Moreover, overexpression of acuM in the ΔacuK mutant altered expression of 3 genes and partially restored growth under iron-limited conditions, suggesting that AcuM can govern some genes independently of AcuK. Although the ΔacuK and ΔacuM mutants had very similar transcriptional profiles in vitro, their transcriptional profiles during murine pulmonary infection differed both from their in vitro profiles and from each other. While AcuK and AcuM governed the expression of only a few iron-responsive genes in vivo, they influenced the expression of other virulence-related genes, such as hexA and dvrA. Therefore, in A. fumigatus, while AcuK and AcuM likely function as part of the same complex, they can also function independently of each other. Furthermore, AcuK and AcuM have different target genes in vivo than in vitro, suggesting that in vivo infection stimulates unique transcriptional regulatory pathways in A. fumigatus.
Collapse
|
103
|
Genetic engineering activates biosynthesis of aromatic fumaric acid amides in the human pathogen Aspergillus fumigatus. Appl Environ Microbiol 2014; 81:1594-600. [PMID: 25527545 DOI: 10.1128/aem.03268-14] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The Aspergillus fumigatus nonribosomal peptide synthetase FtpA is among the few of this species whose natural product has remained unknown. Both FtpA adenylation domains were characterized in vitro. Fumaric acid was identified as preferred substrate of the first and both l-tyrosine and l-phenylalanine as preferred substrates of the second adenylation domain. Genetically engineered A. fumigatus strains expressed either ftpA or the regulator gene ftpR, encoded in the same cluster of genes, under the control of the doxycycline-inducible tetracycline-induced transcriptional activation (tet-on) cassette. These strains produced fumaryl-l-tyrosine and fumaryl-l-phenylalanine which were identified by liquid chromatography and high-resolution mass spectrometry. Modeling of the first adenylation domain in silico provided insight into the structural requirements to bind fumaric acid as peptide synthetase substrate. This work adds aromatic fumaric acid amides to the secondary metabolome of the important human pathogen A. fumigatus which was previously not known as a producer of these compounds.
Collapse
|
104
|
Product binding enforces the genomic specificity of a yeast polycomb repressive complex. Cell 2014; 160:204-18. [PMID: 25533783 DOI: 10.1016/j.cell.2014.11.039] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 09/30/2014] [Accepted: 11/12/2014] [Indexed: 11/22/2022]
Abstract
We characterize the Polycomb system that assembles repressive subtelomeric domains of H3K27 methylation (H3K27me) in the yeast Cryptococcus neoformans. Purification of this PRC2-like protein complex reveals orthologs of animal PRC2 components as well as a chromodomain-containing subunit, Ccc1, which recognizes H3K27me. Whereas removal of either the EZH or EED ortholog eliminates H3K27me, disruption of mark recognition by Ccc1 causes H3K27me to redistribute. Strikingly, the resulting pattern of H3K27me coincides with domains of heterochromatin marked by H3K9me. Indeed, additional removal of the C. neoformans H3K9 methyltransferase Clr4 results in loss of both H3K9me and the redistributed H3K27me marks. These findings indicate that the anchoring of a chromatin-modifying complex to its product suppresses its attraction to a different chromatin type, explaining how enzymes that act on histones, which often harbor product recognition modules, may deposit distinct chromatin domains despite sharing a highly abundant and largely identical substrate-the nucleosome.
Collapse
|
105
|
Daguerre Y, Siegel K, Edel-Hermann V, Steinberg C. Fungal proteins and genes associated with biocontrol mechanisms of soil-borne pathogens: a review. FUNGAL BIOL REV 2014. [DOI: 10.1016/j.fbr.2014.11.001] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
106
|
Heinekamp T, Schmidt H, Lapp K, Pähtz V, Shopova I, Köster-Eiserfunke N, Krüger T, Kniemeyer O, Brakhage AA. Interference of Aspergillus fumigatus with the immune response. Semin Immunopathol 2014; 37:141-52. [PMID: 25404120 PMCID: PMC4326658 DOI: 10.1007/s00281-014-0465-1] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 11/04/2014] [Indexed: 01/13/2023]
Abstract
Aspergillus fumigatus is a saprotrophic filamentous fungus and also the most prevalent airborne fungal pathogen of humans. Depending on the host’s immune status, the variety of diseases caused by A. fumigatus ranges from allergies in immunocompetent hosts to life-threatening invasive infections in patients with impaired immunity. In contrast to the majority of other Aspergillus species, which are in most cases nonpathogenic, A. fumigatus features an armory of virulence determinants to establish an infection. For example, A. fumigatus is able to evade the human complement system by binding or degrading complement regulators. Furthermore, the fungus interferes with lung epithelial cells, alveolar macrophages, and neutrophil granulocytes to prevent killing by these immune cells. This chapter summarizes the different strategies of A. fumigatus to manipulate the immune response. We also discuss the potential impact of recent advances in immunoproteomics to improve diagnosis and therapy of an A. fumigatus infection.
Collapse
Affiliation(s)
- Thorsten Heinekamp
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Jena, Germany,
| | | | | | | | | | | | | | | | | |
Collapse
|
107
|
Sugui JA, Kwon-Chung KJ, Juvvadi PR, Latgé JP, Steinbach WJ. Aspergillus fumigatus and related species. Cold Spring Harb Perspect Med 2014; 5:a019786. [PMID: 25377144 DOI: 10.1101/cshperspect.a019786] [Citation(s) in RCA: 156] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The genus Aspergillus contains etiologic agents of aspergillosis. The clinical manifestations of the disease range from allergic reaction to invasive pulmonary infection. Among the pathogenic aspergilli, Aspergillus fumigatus is most ubiquitous in the environment and is the major cause of the disease, followed by Aspergillus flavus, Aspergillus niger, Aspergillus terreus, Aspergillus nidulans, and several species in the section Fumigati that morphologically resemble A. fumigatus. Patients that are at risk for acquiring aspergillosis are those with an altered immune system. Early diagnosis, species identification, and adequate antifungal therapy are key elements for treatment of the disease, especially in cases of pulmonary invasive aspergillosis that often advance very rapidly. Incorporating knowledge of the basic biology of Aspergillus species to that of the diseases that they cause is fundamental for further progress in the field.
Collapse
Affiliation(s)
- Janyce A Sugui
- Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | - Kyung J Kwon-Chung
- Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | - Praveen R Juvvadi
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Duke University, Durham, North Carolina 27715
| | - Jean-Paul Latgé
- Unité des Aspergillus, Institut Pasteur, Paris 75724, France
| | - William J Steinbach
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Duke University, Durham, North Carolina 27715 Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina 27710
| |
Collapse
|
108
|
A modified recombineering protocol for the genetic manipulation of gene clusters in Aspergillus fumigatus. PLoS One 2014; 9:e111875. [PMID: 25372385 PMCID: PMC4221250 DOI: 10.1371/journal.pone.0111875] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 10/02/2014] [Indexed: 01/07/2023] Open
Abstract
Genomic analyses of fungal genome structure have revealed the presence of physically-linked groups of genes, termed gene clusters, where collective functionality of encoded gene products serves a common biosynthetic purpose. In multiple fungal pathogens of humans and plants gene clusters have been shown to encode pathways for biosynthesis of secondary metabolites including metabolites required for pathogenicity. In the major mould pathogen of humans Aspergillus fumigatus, multiple clusters of co-ordinately upregulated genes were identified as having heightened transcript abundances, relative to laboratory cultured equivalents, during the early stages of murine infection. The aim of this study was to develop and optimise a methodology for manipulation of gene cluster architecture, thereby providing the means to assess their relevance to fungal pathogenicity. To this end we adapted a recombineering methodology which exploits lambda phage-mediated recombination of DNA in bacteria, for the generation of gene cluster deletion cassettes. By exploiting a pre-existing bacterial artificial chromosome (BAC) library of A. fumigatus genomic clones we were able to implement single or multiple intra-cluster gene replacement events at both subtelomeric and telomere distal chromosomal locations, in both wild type and highly recombinogenic A. fumigatus isolates. We then applied the methodology to address the boundaries of a gene cluster producing a nematocidal secondary metabolite, pseurotin A, and to address the role of this secondary metabolite in insect and mammalian responses to A. fumigatus challenge.
Collapse
|
109
|
Koo S, Thomas HR, Daniels SD, Lynch RC, Fortier SM, Shea MM, Rearden P, Comolli JC, Baden LR, Marty FM. A breath fungal secondary metabolite signature to diagnose invasive aspergillosis. Clin Infect Dis 2014; 59:1733-40. [PMID: 25342502 DOI: 10.1093/cid/ciu725] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Invasive aspergillosis (IA) remains a leading cause of mortality in immunocompromised patients, in part due to the difficulty of diagnosing this infection. METHODS Using thermal desorption-gas chromatography/mass spectrometry, we characterized the in vitro volatile metabolite profile of Aspergillus fumigatus, the most common cause of IA, and other pathogenic aspergilli. We prospectively collected breath samples from patients with suspected invasive fungal pneumonia from 2011 to 2013, and assessed whether we could discriminate patients with proven or probable IA from patients without aspergillosis, as determined by European Organization for Research and Treatment of Cancer/Mycoses Study Group consensus definitions, by direct detection of fungal volatile metabolites in these breath samples. RESULTS The monoterpenes camphene, α- and β-pinene, and limonene, and the sesquiterpene compounds α- and β-trans-bergamotene were distinctive volatile metabolites of A. fumigatus in vitro, distinguishing it from other pathogenic aspergilli. Of 64 patients with suspected invasive fungal pneumonia based on host risk factors, clinical symptoms, and radiologic findings, 34 were diagnosed with IA, whereas 30 were ultimately diagnosed with other causes of pneumonia, including other invasive mycoses. Detection of α-trans-bergamotene, β-trans-bergamotene, a β-vatirenene-like sesquiterpene, or trans-geranylacetone identified IA patients with 94% sensitivity (95% confidence interval [CI], 81%-98%) and 93% specificity (95% CI, 79%-98%). CONCLUSIONS In patients with suspected fungal pneumonia, an Aspergillus secondary metabolite signature in breath can identify individuals with IA. These results provide proof-of-concept that direct detection of exogenous fungal metabolites in breath can be used as a novel, noninvasive, pathogen-specific approach to identifying the precise microbial cause of pneumonia.
Collapse
Affiliation(s)
- Sophia Koo
- Division of Infectious Diseases, Brigham and Women's Hospital Dana-Farber Cancer Institute Harvard Medical School, Boston
| | - Horatio R Thomas
- Division of Infectious Diseases, Brigham and Women's Hospital Harvard Medical School, Boston
| | - S David Daniels
- Division of Infectious Diseases, Brigham and Women's Hospital
| | - Robert C Lynch
- Division of Infectious Diseases, Brigham and Women's Hospital
| | - Sean M Fortier
- Division of Infectious Diseases, Brigham and Women's Hospital
| | - Margaret M Shea
- Division of Infectious Diseases, Brigham and Women's Hospital
| | | | | | - Lindsey R Baden
- Division of Infectious Diseases, Brigham and Women's Hospital Dana-Farber Cancer Institute Harvard Medical School, Boston
| | - Francisco M Marty
- Division of Infectious Diseases, Brigham and Women's Hospital Dana-Farber Cancer Institute Harvard Medical School, Boston
| |
Collapse
|
110
|
The pH-responsive PacC transcription factor of Aspergillus fumigatus governs epithelial entry and tissue invasion during pulmonary aspergillosis. PLoS Pathog 2014; 10:e1004413. [PMID: 25329394 PMCID: PMC4199764 DOI: 10.1371/journal.ppat.1004413] [Citation(s) in RCA: 124] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 08/20/2014] [Indexed: 12/29/2022] Open
Abstract
Destruction of the pulmonary epithelium is a major feature of lung diseases caused by the mould pathogen Aspergillus fumigatus. Although it is widely postulated that tissue invasion is governed by fungal proteases, A. fumigatus mutants lacking individual or multiple enzymes remain fully invasive, suggesting a concomitant requirement for other pathogenic activities during host invasion. In this study we discovered, and exploited, a novel, tissue non-invasive, phenotype in A. fumigatus mutants lacking the pH-responsive transcription factor PacC. Our study revealed a novel mode of epithelial entry, occurring in a cell wall-dependent manner prior to protease production, and via the Dectin-1 β-glucan receptor. ΔpacC mutants are defective in both contact-mediated epithelial entry and protease expression, and significantly attenuated for pathogenicity in leukopenic mice. We combined murine infection modelling, in vivo transcriptomics, and in vitro infections of human alveolar epithelia, to delineate two major, and sequentially acting, PacC-dependent processes impacting epithelial integrity in vitro and tissue invasion in the whole animal. We demonstrate that A. fumigatus spores and germlings are internalised by epithelial cells in a contact-, actin-, cell wall- and Dectin-1 dependent manner and ΔpacC mutants, which aberrantly remodel the cell wall during germinative growth, are unable to gain entry into epithelial cells, both in vitro and in vivo. We further show that PacC acts as a global transcriptional regulator of secreted molecules during growth in the leukopenic mammalian lung, and profile the full cohort of secreted gene products expressed during invasive infection. Our study reveals a combinatorial mode of tissue entry dependent upon sequential, and mechanistically distinct, perturbations of the pulmonary epithelium and demonstrates, for the first time a protective role for Dectin-1 blockade in epithelial defences. Infecting ΔpacC mutants are hypersensitive to cell wall-active antifungal agents highlighting the value of PacC signalling as a target for antifungal therapy. Inhaled spores of the pathogenic mould Aspergillus fumigatus cause fungal lung infections in humans having immune defects. A. fumigatus spores germinate within the immunocompromised lung, producing invasively growing, elongated cells called hyphae. Hyphae degrade the surrounding pulmonary tissue, a process thought to be caused by secreted fungal enzymes; however, A. fumigatus mutants lacking one or more protease activities retain fully invasive phenotypes in mouse models of disease. Here we report the first discovery of a non-invasive A. fumigatus mutant, which lacks a pH-responsive transcription factor PacC. Using global transcriptional profiling of wild type and mutant isolates, and in vitro pulmonary invasion assays, we established that loss of PacC leads to a compound non-invasive phenotype characterised by deficits in both contact-mediated epithelial entry and protease expression. Consistent with an important role for epithelial entry in promoting invasive disease in mammalian tissues, PacC mutants remain surface-localised on mammalian epithelia, both in vitro and in vivo. Our study sets a new precedent for involvement of both host and pathogen activities in promoting epithelial invasion by A. fumigatus and supports a model wherein fungal protease activity acting subsequently to, or in parallel with, host-mediated epithelial entry provides the mechanistic basis for tissue invasion.
Collapse
|
111
|
Abstract
Siderophores are chelators synthesized by microbes to sequester iron. This article summarizes the knowledge on the fungal siderophore metabolism with a focus on Aspergillus fumigatus. In recent years, A. fumigatus became a role model for fungal biosynthesis, uptake and degradation of siderophores as well as regulation of siderophore-mediated iron handling and the elucidation of siderophore functions. Siderophore functions comprise uptake, intracellular transport and storage of iron. This proved to be crucial not only for adaptation to iron starvation conditions but also for germination, asexual and sexual propagation, antioxidative defense, mutual interaction, microbial competition as well as virulence in plant and animal hosts. Recent studies also indicate the high potential of siderophores and its biosynthetic pathway to improve diagnosis and therapy of fungal infections.
Collapse
Affiliation(s)
- Hubertus Haas
- Division of Molecular Biology/Biocenter, Innsbruck Medical University, Innrain 80-82, A-6020 Innsbruck, Austria.
| |
Collapse
|
112
|
Desai JV, Mitchell AP, Andes DR. Fungal biofilms, drug resistance, and recurrent infection. Cold Spring Harb Perspect Med 2014; 4:4/10/a019729. [PMID: 25274758 DOI: 10.1101/cshperspect.a019729] [Citation(s) in RCA: 172] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
A biofilm is a surface-associated microbial community. Diverse fungi are capable of biofilm growth. The significance of this growth form for infection biology is that biofilm formation on implanted devices is a major cause of recurrent infection. Biofilms also have limited drug susceptibility, making device-associated infection extremely difficult to treat. Biofilm-like growth can occur during many kinds of infection, even when an implanted device is not present. Here we summarize the current understanding of fungal biofilm formation, its genetic control, and the basis for biofilm drug resistance.
Collapse
Affiliation(s)
- Jigar V Desai
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
| | - Aaron P Mitchell
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
| | - David R Andes
- Department of Medicine, University of Wisconsin, Madison, Wisconsin 53705
| |
Collapse
|
113
|
Owens RA, Hammel S, Sheridan KJ, Jones GW, Doyle S. A proteomic approach to investigating gene cluster expression and secondary metabolite functionality in Aspergillus fumigatus. PLoS One 2014; 9:e106942. [PMID: 25198175 PMCID: PMC4157829 DOI: 10.1371/journal.pone.0106942] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 08/11/2014] [Indexed: 11/18/2022] Open
Abstract
A combined proteomics and metabolomics approach was utilised to advance the identification and characterisation of secondary metabolites in Aspergillus fumigatus. Here, implementation of a shotgun proteomic strategy led to the identification of non-redundant mycelial proteins (n = 414) from A. fumigatus including proteins typically under-represented in 2-D proteome maps: proteins with multiple transmembrane regions, hydrophobic proteins and proteins with extremes of molecular mass and pI. Indirect identification of secondary metabolite cluster expression was also achieved, with proteins (n = 18) from LaeA-regulated clusters detected, including GliT encoded within the gliotoxin biosynthetic cluster. Biochemical analysis then revealed that gliotoxin significantly attenuates H2O2-induced oxidative stress in A. fumigatus (p>0.0001), confirming observations from proteomics data. A complementary 2-D/LC-MS/MS approach further elucidated significantly increased abundance (p<0.05) of proliferating cell nuclear antigen (PCNA), NADH-quinone oxidoreductase and the gliotoxin oxidoreductase GliT, along with significantly attenuated abundance (p<0.05) of a heat shock protein, an oxidative stress protein and an autolysis-associated chitinase, when gliotoxin and H2O2 were present, compared to H2O2 alone. Moreover, gliotoxin exposure significantly reduced the abundance of selected proteins (p<0.05) involved in de novo purine biosynthesis. Significantly elevated abundance (p<0.05) of a key enzyme, xanthine-guanine phosphoribosyl transferase Xpt1, utilised in purine salvage, was observed in the presence of H2O2 and gliotoxin. This work provides new insights into the A. fumigatus proteome and experimental strategies, plus mechanistic data pertaining to gliotoxin functionality in the organism.
Collapse
Affiliation(s)
- Rebecca A. Owens
- Department of Biology, National University of Ireland Maynooth, Maynooth, Co. Kildare, Ireland
| | - Stephen Hammel
- Department of Biology, National University of Ireland Maynooth, Maynooth, Co. Kildare, Ireland
| | - Kevin J. Sheridan
- Department of Biology, National University of Ireland Maynooth, Maynooth, Co. Kildare, Ireland
| | - Gary W. Jones
- Department of Biology, National University of Ireland Maynooth, Maynooth, Co. Kildare, Ireland
| | - Sean Doyle
- Department of Biology, National University of Ireland Maynooth, Maynooth, Co. Kildare, Ireland
- * E-mail:
| |
Collapse
|
114
|
Abstract
Fungal pathogens must assimilate local nutrients to establish an infection in their mammalian host. We focus on carbon, nitrogen, and micronutrient assimilation mechanisms, discussing how these influence host-fungus interactions during infection. We highlight several emerging trends based on the available data. First, the perturbation of carbon, nitrogen, or micronutrient assimilation attenuates fungal pathogenicity. Second, the contrasting evolutionary pressures exerted on facultative versus obligatory pathogens have led to contemporary pathogenic fungal species that display differing degrees of metabolic flexibility. The evolutionarily ancient metabolic pathways are conserved in most fungal pathogen, but interesting gaps exist in some species (e.g., Candida glabrata). Third, metabolic flexibility is generally essential for fungal pathogenicity, and in particular, for the adaptation to contrasting host microenvironments such as the gastrointestinal tract, mucosal surfaces, bloodstream, and internal organs. Fourth, this metabolic flexibility relies on complex regulatory networks, some of which are conserved across lineages, whereas others have undergone significant evolutionary rewiring. Fifth, metabolic adaptation affects fungal susceptibility to antifungal drugs and also presents exciting opportunities for the development of novel therapies.
Collapse
Affiliation(s)
- Iuliana V Ene
- Aberdeen Fungal Group, School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, United Kingdom
| | - Sascha Brunke
- Department of Microbial Pathogenicity Mechanisms, Hans Knoell Institute, 07745 Jena, Germany
| | - Alistair J P Brown
- Aberdeen Fungal Group, School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, United Kingdom
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Hans Knoell Institute, 07745 Jena, Germany Friedrich Schiller University, 07743 Jena, Germany Center for Sepsis Control and Care, Universitätsklinikum Jena, 07747 Jena, Germany
| |
Collapse
|
115
|
Silva-Bailão MG, Bailão EFLC, Lechner BE, Gauthier GM, Lindner H, Bailão AM, Haas H, de Almeida Soares CM. Hydroxamate production as a high affinity iron acquisition mechanism in Paracoccidioides spp. PLoS One 2014; 9:e105805. [PMID: 25157575 PMCID: PMC4144954 DOI: 10.1371/journal.pone.0105805] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 07/25/2014] [Indexed: 12/21/2022] Open
Abstract
Iron is a micronutrient required by almost all living organisms, including fungi. Although this metal is abundant, its bioavailability is low either in aerobic environments or within mammalian hosts. As a consequence, pathogenic microorganisms evolved high affinity iron acquisition mechanisms which include the production and uptake of siderophores. Here we investigated the utilization of these molecules by species of the Paracoccidioides genus, the causative agents of a systemic mycosis. It was demonstrated that iron starvation induces the expression of Paracoccidioides ortholog genes for siderophore biosynthesis and transport. Reversed-phase HPLC analysis revealed that the fungus produces and secretes coprogen B, which generates dimerumic acid as a breakdown product. Ferricrocin and ferrichrome C were detected in Paracoccidioides as the intracellular produced siderophores. Moreover, the fungus is also able to grow in presence of siderophores as the only iron sources, demonstrating that beyond producing, Paracoccidioides is also able to utilize siderophores for growth, including the xenosiderophore ferrioxamine. Exposure to exogenous ferrioxamine and dimerumic acid increased fungus survival during co-cultivation with macrophages indicating that these molecules play a role during host-pathogen interaction. Furthermore, cross-feeding experiments revealed that Paracoccidioides siderophores promotes growth of Aspergillus nidulans strain unable to produce these iron chelators. Together, these data denote that synthesis and utilization of siderophores is a mechanism used by Paracoccidioides to surpass iron limitation. As iron paucity is found within the host, siderophore production may be related to fungus pathogenicity.
Collapse
Affiliation(s)
- Mirelle Garcia Silva-Bailão
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
- Programa de Pós-Graduação em Patologia Molecular, Universidade de Brasília, Brasília, Brazil
| | - Elisa Flávia Luiz Cardoso Bailão
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
- Unidade Universitária de Iporá, Universidade Estadual de Goiás, Iporá, Goiás, Brazil
| | | | - Gregory M. Gauthier
- Department of Medicine, Section of Infectious Diseases, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Herbert Lindner
- Division of Clinical Biochemistry/Biocenter, Innsbruck Medical University, Innsbruck, Austria
| | - Alexandre Melo Bailão
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Hubertus Haas
- Division of Molecular Biology/Biocenter, Innsbruck Medical University, Innsbruck, Austria
| | - Célia Maria de Almeida Soares
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| |
Collapse
|
116
|
Fekete E, Karaffa L, Karimi Aghcheh R, Németh Z, Fekete E, Orosz A, Paholcsek M, Stágel A, Kubicek CP. The transcriptome of lae1 mutants of Trichoderma reesei cultivated at constant growth rates reveals new targets of LAE1 function. BMC Genomics 2014; 15:447. [PMID: 24909838 PMCID: PMC4061448 DOI: 10.1186/1471-2164-15-447] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 06/04/2014] [Indexed: 01/02/2023] Open
Abstract
Background The putative methyltransferase LaeA is a global regulator that affects the expression of multiple secondary metabolite gene clusters in several fungi. In Trichoderma reesei, its ortholog LAE1 appears to predominantly regulate genes involved in increasing competitive fitness in its environment, including expression of cellulases and polysaccharide hydrolases. A drawback in all studies related to LaeA/LAE1 function so far, however, is that the respective loss-of-function and overexpressing mutants display different growth rates. Thus some of the properties attributed to LaeA/LAE1 could be simply due to changes of the growth rate. Results We cultivated T. reesei, a Δlae1 mutant and a lae1-overexpressing strain in chemostats on glucose at two different growth rates (0.075 and 0.020 h-1) which resemble growth rates at repressing and derepressing conditions, respectively. Under these conditions, the effect of modulating LAE1 expression was mainly visible in the Δlae1 mutant, whereas the overexpressing strain showed little differences to the parent strain. The effect on the expression of some gene categories identified earlier (polyketide synthases, heterokaryon incompatibility proteins, PTH11-receptors) was confirmed, but in addition GCN5-N-acetyltransferases, amino acid permeases and flavin monooxygenases were identified as so far unknown major targets of LAE1 action. LAE1 was also shown to interfere with the regulation of expression of several genes by the growth rate. About a tenth of the genes differentially expressed in the Δlae1 mutant under either growth condition were found to be clustered in the genome, but no specific gene group was associated with this phenomenon. Conclusions Our data show that – using T. reesei LAE1 as a model - the investigation of transcriptome in regulatory mutants at constant growth rates leads to new insights into the physiological roles of the respective regulator. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-447) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Levente Karaffa
- Department of Biochemical Engineering, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary.
| | | | | | | | | | | | | | | |
Collapse
|
117
|
Ben-Ami R. Angiogenesis at the mold-host interface: a potential key to understanding and treating invasive aspergillosis. Future Microbiol 2014; 8:1453-62. [PMID: 24199803 DOI: 10.2217/fmb.13.114] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Invasive aspergillosis (IA) in neutropenic patients is characterized by angioinvasion, intravascular thrombosis and tissue infarction, features that lead to sequestration of infected tissue and impaired fungal clearance. Recent research has shown that host angiogenesis, the homeostatic compensatory response to tissue hypoxia, is downregulated by Aspergillus fumigatus secondary metabolites. A. fumigatus metabolites inhibit multiple key angiogenic mediators, notably basic FGF, VEGF and their respective receptors. Moreover, repletion of basic FGF and VEGF enhances angiogenesis at the site of infection, induces trafficking of polymorphonuclear leukocytes into fungal-infected tissue and enhances antifungal drug activity. This review summarizes the emerging roles of vasculopathy and angiogenesis in the pathogenesis of IA, emphasizing the importance of the underlying mode of immunosuppression. Modulation of angiogenesis is a potential target for novel therapeutic strategies against IA.
Collapse
Affiliation(s)
- Ronen Ben-Ami
- Infectious Diseases Unit, Tel Aviv Medical Center & the Sackler School of Medicine, Tel Aviv University, Israel.
| |
Collapse
|
118
|
Morton CO, Fliesser M, Dittrich M, Mueller T, Bauer R, Kneitz S, Hope W, Rogers TR, Einsele H, Loeffler J. Gene expression profiles of human dendritic cells interacting with Aspergillus fumigatus in a bilayer model of the alveolar epithelium/endothelium interface. PLoS One 2014; 9:e98279. [PMID: 24870357 PMCID: PMC4037227 DOI: 10.1371/journal.pone.0098279] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 04/30/2014] [Indexed: 01/13/2023] Open
Abstract
The initial stages of the interaction between the host and Aspergillus fumigatus at the alveolar surface of the human lung are critical in the establishment of aspergillosis. Using an in vitro bilayer model of the alveolus, including both the epithelium (human lung adenocarcinoma epithelial cell line, A549) and endothelium (human pulmonary artery epithelial cells, HPAEC) on transwell membranes, it was possible to closely replicate the in vivo conditions. Two distinct sub-groups of dendritic cells (DC), monocyte-derived DC (moDC) and myeloid DC (mDC), were included in the model to examine immune responses to fungal infection at the alveolar surface. RNA in high quantity and quality was extracted from the cell layers on the transwell membrane to allow gene expression analysis using tailored custom-made microarrays, containing probes for 117 immune-relevant genes. This microarray data indicated minimal induction of immune gene expression in A549 alveolar epithelial cells in response to germ tubes of A. fumigatus. In contrast, the addition of DC to the system greatly increased the number of differentially expressed immune genes. moDC exhibited increased expression of genes including CLEC7A, CD209 and CCL18 in the absence of A. fumigatus compared to mDC. In the presence of A. fumigatus, both DC subgroups exhibited up-regulation of genes identified in previous studies as being associated with the exposure of DC to A. fumigatus and exhibiting chemotactic properties for neutrophils, including CXCL2, CXCL5, CCL20, and IL1B. This model closely approximated the human alveolus allowing for an analysis of the host pathogen interface that complements existing animal models of IA.
Collapse
Affiliation(s)
| | - Mirjam Fliesser
- Universität Wuerzburg, Medizinische Klinik & Poliklinik II, WÜ4i, Wuerzburg, Germany
| | - Marcus Dittrich
- Department of Bioinformatics, Biocenter, University of Wuerzburg, Wuerzburg, Germany
| | - Tobias Mueller
- Department of Bioinformatics, Biocenter, University of Wuerzburg, Wuerzburg, Germany
| | - Ruth Bauer
- Universität Wuerzburg, Medizinische Klinik & Poliklinik II, WÜ4i, Wuerzburg, Germany
| | - Susanne Kneitz
- Department of Bioinformatics, Biocenter, University of Wuerzburg, Wuerzburg, Germany
| | - William Hope
- Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, United Kingdom
| | - Thomas Richard Rogers
- Department of Clinical Microbiology, Sir Patrick Research Laboratory, Trinity College Dublin, Dublin, Ireland
| | - Hermann Einsele
- Universität Wuerzburg, Medizinische Klinik & Poliklinik II, WÜ4i, Wuerzburg, Germany
| | - Juergen Loeffler
- Universität Wuerzburg, Medizinische Klinik & Poliklinik II, WÜ4i, Wuerzburg, Germany
- * E-mail:
| |
Collapse
|
119
|
Schoberle TJ, Nguyen-Coleman CK, Herold J, Yang A, Weirauch M, Hughes TR, McMurray JS, May GS. A novel C2H2 transcription factor that regulates gliA expression interdependently with GliZ in Aspergillus fumigatus. PLoS Genet 2014; 10:e1004336. [PMID: 24784729 PMCID: PMC4006717 DOI: 10.1371/journal.pgen.1004336] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 03/13/2014] [Indexed: 12/30/2022] Open
Abstract
Secondary metabolites are produced by numerous organisms and can either be beneficial, benign, or harmful to humans. Genes involved in the synthesis and transport of these secondary metabolites are frequently found in gene clusters, which are often coordinately regulated, being almost exclusively dependent on transcription factors that are located within the clusters themselves. Gliotoxin, which is produced by a variety of Aspergillus species, Trichoderma species, and Penicillium species, exhibits immunosuppressive properties and has therefore been the subject of research for many laboratories. There have been a few proteins shown to regulate the gliotoxin cluster, most notably GliZ, a Zn2Cys6 binuclear finger transcription factor that lies within the cluster, and LaeA, a putative methyltransferase that globally regulates secondary metabolism clusters within numerous fungal species. Using a high-copy inducer screen in A. fumigatus, our lab has identified a novel C2H2 transcription factor, which plays an important role in regulating the gliotoxin biosynthetic cluster. This transcription factor, named GipA, induces gliotoxin production when present in extra copies. Furthermore, loss of gipA reduces gliotoxin production significantly. Through protein binding microarray and mutagenesis, we have identified a DNA binding site recognized by GipA that is in extremely close proximity to a potential GliZ DNA binding site in the 5' untranslated region of gliA, which encodes an efflux pump within the gliotoxin cluster. Not surprisingly, GliZ and GipA appear to work in an interdependent fashion to positively control gliA expression.
Collapse
Affiliation(s)
- Taylor J. Schoberle
- The University of Texas Graduate School of Biomedical Sciences at Houston, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - C. Kim Nguyen-Coleman
- The University of Texas Graduate School of Biomedical Sciences at Houston, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Jennifer Herold
- The University of Texas Graduate School of Biomedical Sciences at Houston, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
- Microbiology and Molecular Genetics, Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Ally Yang
- Banting and Best Department of Medical Research, Donnelly Centre, and Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Matt Weirauch
- Banting and Best Department of Medical Research, Donnelly Centre, and Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Timothy R. Hughes
- Banting and Best Department of Medical Research, Donnelly Centre, and Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - John S. McMurray
- The University of Texas Graduate School of Biomedical Sciences at Houston, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
- Department of Experimental Therapeutics, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Gregory S. May
- The University of Texas Graduate School of Biomedical Sciences at Houston, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
- Microbiology and Molecular Genetics, Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
- Program in Genes and Development, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| |
Collapse
|
120
|
Thornton CR. Breaking the mould - novel diagnostic and therapeutic strategies for invasive pulmonary aspergillosis in the immune deficient patient. Expert Rev Clin Immunol 2014; 10:771-80. [PMID: 24689528 DOI: 10.1586/1744666x.2014.904747] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Invasive pulmonary aspergillosis (IPA) caused by the ubiquitous environmental fungus Aspergillus is a frequently fatal lung disease of immunocompromised humans accounting for more than 200,000 infections each year, with an associated mortality rate of 30-90%. This review addresses the current status of IPA diagnosis and treatment and the urgent need to develop accurate, non-invasive strategies for identifying pulmonary infections in the ever-expanding population of immune deficient patients at risk of acquiring opportunistic fungal infections including hematological malignancy and hematopoetic stem cell transplant patients. Recent advances in the use of an Aspergillus-specific monoclonal antibody, JF5, for point-of-care diagnosis of IPA using lateral-flow technology is examined, as is its use in PET/MRI bioimaging and radio-immunotherapy using radionuclide-labeled single chain antibody fragments, Fab fragments, and a fully humanized JF5 derivative.
Collapse
|
121
|
Distinct roles of Candida albicans-specific genes in host-pathogen interactions. EUKARYOTIC CELL 2014; 13:977-89. [PMID: 24610660 DOI: 10.1128/ec.00051-14] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Human fungal pathogens are distributed throughout their kingdom, suggesting that pathogenic potential evolved independently. Candida albicans is the most virulent member of the CUG clade of yeasts and a common cause of both superficial and invasive infections. We therefore hypothesized that C. albicans possesses distinct pathogenicity mechanisms. In silico genome subtraction and comparative transcriptional analysis identified a total of 65 C. albicans-specific genes (ASGs) expressed during infection. Phenotypic characterization of six ASG-null mutants demonstrated that these genes are dispensable for in vitro growth but play defined roles in host-pathogen interactions. Based on these analyses, we investigated two ASGs in greater detail. An orf19.6688Δ mutant was found to be fully virulent in a mouse model of disseminated candidiasis and to induce higher levels of the proinflammatory cytokine interleukin-1β (IL-1β) following incubation with murine macrophages. A pga16Δ mutant, on the other hand, exhibited attenuated virulence. Moreover, we provide evidence that secondary filamentation events (multiple hyphae emerging from a mother cell and hyphal branching) contribute to pathogenicity: PGA16 deletion did not influence primary hypha formation or extension following contact with epithelial cells; however, multiple hyphae and hyphal branching were strongly reduced. Significantly, these hyphae failed to damage host cells as effectively as the multiple hypha structures formed by wild-type C. albicans cells. Together, our data show that species-specific genes of a eukaryotic pathogen can play important roles in pathogenicity.
Collapse
|
122
|
Huber F, Bignell E. Distribution, expression and expansion of Aspergillus fumigatus LINE-like retrotransposon populations in clinical and environmental isolates. Fungal Genet Biol 2014; 64:36-44. [DOI: 10.1016/j.fgb.2014.01.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 01/06/2014] [Accepted: 01/08/2014] [Indexed: 11/28/2022]
|
123
|
Affiliation(s)
- Daniel H. Scharf
- Leibniz Institute for Natural Product Research and Infection Biology, HKI, Jena, Germany
- Friedrich Schiller University, Jena, Germany
| | - Thorsten Heinekamp
- Leibniz Institute for Natural Product Research and Infection Biology, HKI, Jena, Germany
- Friedrich Schiller University, Jena, Germany
| | - Axel A. Brakhage
- Leibniz Institute for Natural Product Research and Infection Biology, HKI, Jena, Germany
- Friedrich Schiller University, Jena, Germany
- * E-mail:
| |
Collapse
|
124
|
pH signaling in human fungal pathogens: a new target for antifungal strategies. EUKARYOTIC CELL 2014; 13:342-52. [PMID: 24442891 DOI: 10.1128/ec.00313-13] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Fungi are exposed to broadly fluctuating environmental conditions, to which adaptation is crucial for their survival. An ability to respond to a wide pH range, in particular, allows them to cope with rapid changes in their extracellular settings. PacC/Rim signaling elicits the primary pH response in both model and pathogenic fungi and has been studied in multiple fungal species. In the predominant human pathogenic fungi, namely, Candida albicans, Aspergillus fumigatus, and Cryptococcus neoformans, this pathway is required for many functions associated with pathogenesis and virulence. Aspects of this pathway are fungus specific and do not exist in mammalian cells. In this review, we highlight recent advances in our understanding of PacC/Rim-mediated functions and discuss the growing interest in this cascade and its factors as potential drug targets for antifungal strategies. We focus on both conserved and distinctive features in model and pathogenic fungi, highlighting the specificities of PacC/Rim signaling in C. albicans, A. fumigatus, and C. neoformans. We consider the role of this pathway in fungal virulence, including modulation of the host immune response. Finally, as now recognized for other signaling cascades, we highlight the role of pH in adaptation to antifungal drug pressure. By acting on the PacC/Rim pathway, it may therefore be possible (i) to ensure fungal specificity and to limit the side effects of drugs, (ii) to ensure broad-spectrum efficacy, (iii) to attenuate fungal virulence, (iv) to obtain additive or synergistic effects with existing antifungal drugs through tolerance inhibition, and (v) to slow the emergence of resistant mutants.
Collapse
|
125
|
Role of ferric reductases in iron acquisition and virulence in the fungal pathogen Cryptococcus neoformans. Infect Immun 2013; 82:839-50. [PMID: 24478097 DOI: 10.1128/iai.01357-13] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Iron acquisition is critical for the ability of the pathogenic yeast Cryptococcus neoformans to cause disease in vertebrate hosts. In particular, iron overload exacerbates cryptococcal disease in an animal model, defects in iron acquisition attenuate virulence, and iron availability influences the expression of major virulence factors. C. neoformans acquires iron by multiple mechanisms, including a ferroxidase-permease high-affinity system, siderophore uptake, and utilization of both heme and transferrin. In this study, we examined the expression of eight candidate ferric reductase genes and their contributions to iron acquisition as well as to ferric and cupric reductase activities. We found that loss of the FRE4 gene resulted in a defect in production of the virulence factor melanin and increased susceptibility to azole antifungal drugs. In addition, the FRE2 gene was important for growth on the iron sources heme and transferrin, which are relevant for proliferation in the host. Fre2 may participate with the ferroxidase Cfo1 of the high-affinity uptake system for growth on heme, because a mutant lacking both genes showed a more pronounced growth defect than the fre2 single mutant. A role for Fre2 in iron acquisition is consistent with the attenuation of virulence observed for the fre2 mutant. This mutant also was defective in accumulation in the brains of infected mice, a phenotype previously observed for mutants with defects in high-affinity iron uptake (e.g., the cfo1 mutant). Overall, this study provides a more detailed view of the iron acquisition components required for C. neoformans to cause cryptococcosis.
Collapse
|
126
|
Kwon-Chung KJ, Sugui JA. Aspergillus fumigatus--what makes the species a ubiquitous human fungal pathogen? PLoS Pathog 2013; 9:e1003743. [PMID: 24348239 PMCID: PMC3857757 DOI: 10.1371/journal.ppat.1003743] [Citation(s) in RCA: 269] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Affiliation(s)
- Kyung J. Kwon-Chung
- Molecular Microbiology Section, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| | - Janyce A. Sugui
- Molecular Microbiology Section, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
127
|
Krishnan K, Askew DS. The fungal UPR: a regulatory hub for virulence traits in the mold pathogen Aspergillus fumigatus. Virulence 2013; 5:334-40. [PMID: 24189125 PMCID: PMC3956511 DOI: 10.4161/viru.26571] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Aspergillus fumigatus is an opportunistic pathogen that is responsible for a life-threatening fungal infection known as invasive aspergillosis. Current therapies for the treatment of this disease continue to be associated with a poor outcome, so there is a need for more information about aspects of the fungus-host interaction that could offer novel targets for drug intervention. One attractive possibility is the unfolded protein response (UPR), an intracellular signaling network that helps the fungus meet the demand for secretion in the host environment. The major function of the UPR is to mitigate ER stress by maintaining an equilibrium between the load of client proteins entering the endoplasmic reticulum (ER) and the protein folding capacity of the organelle. However, recent findings suggest that A. fumigatus, as well as several other pathogenic fungi, also rely upon this pathway for virulence. In this review, we provide an update on the A. fumigatus UPR, discuss emerging evidence that the UPR is situated at the nexus of a number of physiological functions that are vital for the virulence of this fungus, and suggest exciting possibilities for future therapeutic targeting of this pathway for the treatment of aspergillosis.
Collapse
Affiliation(s)
- Karthik Krishnan
- Department of Pathology & Laboratory Medicine; University of Cincinnati College of Medicine; Cincinnati, OH USA
| | - David S Askew
- Department of Pathology & Laboratory Medicine; University of Cincinnati College of Medicine; Cincinnati, OH USA
| |
Collapse
|
128
|
Regulation of sulphur assimilation is essential for virulence and affects iron homeostasis of the human-pathogenic mould Aspergillus fumigatus. PLoS Pathog 2013; 9:e1003573. [PMID: 24009505 PMCID: PMC3757043 DOI: 10.1371/journal.ppat.1003573] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Accepted: 07/08/2013] [Indexed: 11/19/2022] Open
Abstract
Sulphur is an essential element that all pathogens have to absorb from their surroundings in order to grow inside their infected host. Despite its importance, the relevance of sulphur assimilation in fungal virulence is largely unexplored. Here we report a role of the bZIP transcription factor MetR in sulphur assimilation and virulence of the human pathogen Aspergillus fumigatus. The MetR regulator is essential for growth on a variety of sulphur sources; remarkably, it is fundamental for assimilation of inorganic S-sources but dispensable for utilization of methionine. Accordingly, it strongly supports expression of genes directly related to inorganic sulphur assimilation but not of genes connected to methionine metabolism. On a broader scale, MetR orchestrates the comprehensive transcriptional adaptation to sulphur-starving conditions as demonstrated by digital gene expression analysis. Surprisingly, A. fumigatus is able to utilize volatile sulphur compounds produced by its methionine catabolism, a process that has not been described before and that is MetR-dependent. The A. fumigatus MetR transcriptional activator is important for virulence in both leukopenic mice and an alternative mini-host model of aspergillosis, as it was essential for the development of pulmonary aspergillosis and supported the systemic dissemination of the fungus. MetR action under sulphur-starving conditions is further required for proper iron regulation, which links regulation of sulphur metabolism to iron homeostasis and demonstrates an unprecedented regulatory crosstalk. Taken together, this study provides evidence that regulation of sulphur assimilation is not only crucial for A. fumigatus virulence but also affects the balance of iron in this prime opportunistic pathogen.
Collapse
|
129
|
Bimodular peptide synthetase SidE produces fumarylalanine in the human pathogen Aspergillus fumigatus. Appl Environ Microbiol 2013; 79:6670-6. [PMID: 23974138 DOI: 10.1128/aem.02642-13] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The filamentous mold Aspergillus fumigatus causes invasive aspergillosis, a potentially life-threatening infectious disease, in humans. The sidE gene encodes a bimodular peptide synthetase and was shown previously to be strongly upregulated during initiation of murine lung infection. In this study, we characterized the two adenylation domains of SidE with the ATP-[(32)P]pyrophosphate exchange assay in vitro, which identified fumarate and l-alanine, respectively, as the preferred substrates. Using full-length holo-SidE, fumarylalanine (FA) formation was observed in vitro. Furthermore, FA was identified in A. fumigatus culture supernatants under inducing conditions, unless sidE was genetically inactivated. As FA is structurally related to established pharmaceutical products exerting immunomodulatory activity, this work may contribute to our understanding of the virulence of A. fumigatus.
Collapse
|
130
|
|
131
|
Jambunathan K, Watson DS, Najvar LK, Wiederhold NP, Kirkpatrick WR, Patterson TF, Askew DS, Kodukula K, Galande AK. Prolyl endopeptidase activity in bronchoalveolar lavage fluid: a novel diagnostic biomarker in a guinea pig model of invasive pulmonary aspergillosis. Med Mycol 2013; 51:592-602. [DOI: 10.3109/13693786.2012.761360] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
132
|
The immune interplay between the host and the pathogen in Aspergillus fumigatus lung infection. BIOMED RESEARCH INTERNATIONAL 2013; 2013:693023. [PMID: 23984400 PMCID: PMC3745895 DOI: 10.1155/2013/693023] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 06/14/2013] [Indexed: 12/22/2022]
Abstract
The interplay between Aspergillus fumigatus and the host immune response in lung infection has been subject of studies over the last years due to its importance in immunocompromised patients. The multifactorial virulence factors of A. fumigatus are related to the fungus biological characteristics, for example, structure, ability to grow and adapt to high temperatures and stress conditions, besides capability of evading the immune system and causing damage to the host. In this context, the fungus recognition by the host innate immunity occurs when the pathogen disrupts the natural and chemical barriers followed by the activation of acquired immunity. It seems clear that a Th1 response has a protective role, whereas Th2 reactions are often associated with higher fungal burden, and Th17 response is still controversial. Furthermore, a fine regulation of the effector immunity is required to avoid excessive tissue damage associated with fungal clearance, and this role could be attributed to regulatory T cells. Finally, in this work we reviewed the aspects involved in the complex interplay between the host immune response and the pathogen virulence factors, highlighting the immunological issues and the importance of its better understanding to the development of novel therapeutic approaches for invasive lung aspergillosis.
Collapse
|
133
|
Lee IR, Morrow CA, Fraser JA. Nitrogen regulation of virulence in clinically prevalent fungal pathogens. FEMS Microbiol Lett 2013; 345:77-84. [PMID: 23701678 DOI: 10.1111/1574-6968.12181] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Revised: 05/17/2013] [Accepted: 05/18/2013] [Indexed: 11/25/2022] Open
Abstract
The habitats of fungal pathogens range from environmental to commensal, and the nutrient content of these different niches varies considerably. Upon infection of humans, nutrient availability changes significantly depending on the site and pathophysiology of infection. Nonetheless, a common feature enabling successful establishment in these niches is the ability to metabolise available nutrients including sources of nitrogen, carbon and essential metals such as iron. In particular, nitrogen source utilisation influences specific morphological transitions, sexual and asexual sporulation and virulence factor production. All these physiological changes confer selective advantages to facilitate fungal survival, proliferation and colonisation. The three most well-studied components of the nitrogen regulatory circuit that commonly impact fungal pathogenesis are the ammonium permeases (the nitrogen availability sensor candidate), ureases (a nitrogen-scavenging enzyme) and GATA transcription factors (global regulators of nitrogen catabolism). In certain species, the ammonium permease induces a morphological switch from yeast to invasive filamentous growth forms or infectious spores, while in others, urease is a bona fide virulence factor. In all species studied thus far, transcription of the ammonium permease and urease-encoding genes is modulated by GATA factors. Fungal pathogens therefore integrate the expression of different virulence-associated phenotypes into the regulatory network controlling nitrogen catabolism.
Collapse
Affiliation(s)
- I Russel Lee
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Qld, Australia
| | | | | |
Collapse
|
134
|
Genome-wide survey of repetitive DNA elements in the button mushroom Agaricus bisporus. Fungal Genet Biol 2013; 55:6-21. [DOI: 10.1016/j.fgb.2013.04.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Revised: 04/05/2013] [Accepted: 04/07/2013] [Indexed: 02/07/2023]
|
135
|
de Jonge R, Bolton MD, Kombrink A, van den Berg GCM, Yadeta KA, Thomma BPHJ. Extensive chromosomal reshuffling drives evolution of virulence in an asexual pathogen. Genome Res 2013; 23:1271-82. [PMID: 23685541 PMCID: PMC3730101 DOI: 10.1101/gr.152660.112] [Citation(s) in RCA: 218] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Sexual recombination drives genetic diversity in eukaryotic genomes and fosters adaptation to novel environmental challenges. Although strictly asexual microorganisms are often considered as evolutionary dead ends, they comprise many devastating plant pathogens. Presently, it remains unknown how such asexual pathogens generate the genetic variation that is required for quick adaptation and evolution in the arms race with their hosts. Here, we show that extensive chromosomal rearrangements in the strictly asexual plant pathogenic fungus Verticillium dahliae establish highly dynamic lineage-specific (LS) genomic regions that act as a source for genetic variation to mediate aggressiveness. We show that such LS regions are greatly enriched for in planta-expressed effector genes encoding secreted proteins that enable host colonization. The LS regions occur at the flanks of chromosomal breakpoints and are enriched for retrotransposons and other repetitive sequence elements. Our results suggest that asexual pathogens may evolve by prompting chromosomal rearrangements, enabling rapid development of novel effector genes. Likely, chromosomal reshuffling can act as a general mechanism for adaptation in asexually propagating organisms.
Collapse
Affiliation(s)
- Ronnie de Jonge
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | | | | | | | | | | |
Collapse
|
136
|
|
137
|
Wiedner SD, Ansong C, Webb-Robertson BJ, Pederson LM, Fortuin S, Hofstad BA, Shukla AK, Panisko EA, Smith RD, Wright AT. Disparate proteome responses of pathogenic and nonpathogenic aspergilli to human serum measured by activity-based protein profiling (ABPP). Mol Cell Proteomics 2013; 12:1791-805. [PMID: 23599423 DOI: 10.1074/mcp.m112.026534] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Aspergillus fumigatus is the primary pathogen causing the devastating pulmonary disease Invasive Aspergillosis in immunocompromised individuals. There is high genomic synteny between A. fumigatus and closely related rarely pathogenic Neosartorya fischeri and Aspergillus clavatus genomes. We applied activity-based protein profiling to compare unique or overexpressed activity-based probe-reactive proteins of all three fungi over time in minimal media growth and in response to human serum. We found 360 probe-reactive proteins exclusive to A. fumigatus, including known virulence associated proteins, and 13 proteins associated with stress response exclusive to A. fumigatus culture in serum. Though the fungi are highly orthologous, A. fumigatus has a significantly greater number of ABP-reactive proteins across varied biological process. Only 50% of expected orthologs of measured A. fumigatus reactive proteins were observed in N. fischeri and A. clavatus. Activity-based protein profiling identified a number of processes that were induced by human serum in A. fumigatus relative to N. fischeri and A. clavatus. These included actin organization and assembly, transport, and fatty acid, cell membrane, and cell wall synthesis. Additionally, signaling proteins regulating vegetative growth, conidiation, and cell wall integrity, required for appropriate cellular response to external stimuli, had higher activity-based probe-protein reaction over time in A. fumigatus and N. fisheri, but not in A. clavatus. Together, we show that measured proteins and physiological processes identified solely or significantly over-represented in A. fumigatus reveal a unique adaptive response to human protein not found in closely related, but rarely pathogenic aspergilli. These unique activity-based probe-protein responses to culture condition may reveal how A. fumigatus initiates pulmonary invasion leading to Invasive Aspergillosis.
Collapse
Affiliation(s)
- Susan D Wiedner
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
138
|
Marty AJ, Wüthrich M, Carmen JC, Sullivan TD, Klein BS, Cuomo CA, Gauthier GM. Isolation of Blastomyces dermatitidis yeast from lung tissue during murine infection for in vivo transcriptional profiling. Fungal Genet Biol 2013; 56:1-8. [PMID: 23499858 DOI: 10.1016/j.fgb.2013.03.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 02/15/2013] [Accepted: 03/03/2013] [Indexed: 11/30/2022]
Abstract
Blastomyces dermatitidis belongs to a group of thermally dimorphic fungi that grow as sporulating mold in the soil and convert to pathogenic yeast in the lung following inhalation of spores. Knowledge about the molecular events important for fungal adaptation and survival in the host remains limited. The development of high-throughput analytic tools such as RNA sequencing (RNA-Seq) has potential to provide novel insight on fungal pathogenesis especially if applied in vivo during infection. However, in vivo transcriptional profiling is hindered by the low abundance of fungal cells relative to mammalian tissue and difficulty in isolating fungal cells from the tissues they infect. For the purpose of obtaining B. dermatitidis RNA for in vivo transcriptional analysis by RNA-Seq, we developed a simple technique for isolating yeast from murine lung tissue. Using a two-step approach of filtration and centrifugation following lysis of murine lung cells, 91% of yeast cells causing infection were isolated from lung tissue. B. dermatitidis recovered from the lung yielded high-quality RNA with minimal murine contamination and was suitable for RNA-Seq. Approximately 87% of the sequencing reads obtained from the recovered yeast aligned with the B. dermatitidis genome. This was similar to 93% alignment for yeast grown in vitro. The use of near-freezing temperature along with short ex vivo time minimized transcriptional changes that would have otherwise occurred with higher temperature or longer processing time. In conclusion, we have developed a technique that recovers the majority of yeast causing pulmonary infection and yields high-quality fungal RNA with minimal contamination by mammalian RNA.
Collapse
Affiliation(s)
- Amber J Marty
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin - Madison, 1550 Linden Drive, Microbial Sciences Building, Room 4335A, Madison, WI 53706, USA.
| | | | | | | | | | | | | |
Collapse
|
139
|
Transcriptional profiling of Candida glabrata during phagocytosis by neutrophils and in the infected mouse spleen. Infect Immun 2013; 81:1325-33. [PMID: 23403555 DOI: 10.1128/iai.00851-12] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Expression microarray analysis of Candida glabrata following phagocytosis by human neutrophils was performed, and results were compared with those from C. glabrata incubated under conditions of carbohydrate or nitrogen deprivation. Twenty genes were selected to represent the major cell processes altered by phagocytosis or nutrient deprivation. Quantitative real-time PCR (qRT-PCR) with TaqMan chemistry was used to assess expression of the same genes in spleens of mice infected intravenously with Candida glabrata. The results in spleen closely paralleled gene expression in neutrophils or following carbohydrate deprivation. Fungal cells responded by upregulating alternative energy sources through gluconeogenesis, glyoxylate cycle, and long-chain fatty acid metabolism. Autophagy was likely employed to conserve intracellular resources. Aspartyl protease upregulation occurred and may represent defense against attacks on cell wall integrity. Downregulated genes were in the pathways of protein and ergosterol synthesis. Upregulation of the sterol transport gene AUS1 suggested that murine cholesterol may have been used to replace ergosterol, as has been reported in vitro. C. glabrata isolates in spleens of gp91(phox-/-) knockout mice with reduced oxidative phagocyte defenses were grossly similar although with a reduced level of response. These results are consistent with reported results of other fungi responding to phagocytosis, indicating that a rapid shift in metabolism is required for growth in a carbohydrate-limited intracellular environment.
Collapse
|
140
|
Abstract
Over 450 peer-reviewed papers containing the keyword Aspergillus fumigatus were published in 2011. Although this method may be an impossible task, I have selected three clusters of papers describing exciting recent advances in research on A. fumigatus. The first is the novel approach of in vivo imagining of experimental aspergillosis by the use of (68) Ga-labeled siderophores, internalized by the fungus, and detected via positron emission tomography to image the site infection. This work may lead to improved diagnosis of aspergillosis. The second important finding is that NK lymphocytes, not thought to be involved in host resistance to aspergillosis, can kill aspergilli through direct contact, either through perforin or interferon-γ, or both. The third area pertains to a novel first-in-class antifungal drug, E1210 (Eisai), which inhibits GPI anchoring of fungal-associated cell wall proteins. Thus far, it shows promising in vitro activity against a broad range of fungi including Aspergilli, as well as those that are difficult to treat with currently available therapies. Overall, these three areas demonstrate the exciting promise, progress, and utility of basic research against A. fumigatus.
Collapse
Affiliation(s)
- Nir Osherov
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine Ramat-Aviv, Tel-Aviv, Israel.
| |
Collapse
|
141
|
Heinekamp T, Thywißen A, Macheleidt J, Keller S, Valiante V, Brakhage AA. Aspergillus fumigatus melanins: interference with the host endocytosis pathway and impact on virulence. Front Microbiol 2013; 3:440. [PMID: 23346079 PMCID: PMC3548413 DOI: 10.3389/fmicb.2012.00440] [Citation(s) in RCA: 129] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Accepted: 12/19/2012] [Indexed: 11/13/2022] Open
Abstract
The opportunistic human pathogenic fungus Aspergillus fumigatus produces at least two types of melanin, namely pyomelanin and dihydroxynaphthalene (DHN) melanin. Pyomelanin is produced during tyrosine catabolism via accumulation of homogentisic acid. Although pyomelanin protects the fungus against reactive oxygen species (ROS) and acts as a defense compound in response to cell wall stress, mutants deficient for pyomelanin biosynthesis do not differ in virulence when tested in a murine infection model for invasive pulmonary aspergillosis. DHN melanin is responsible for the characteristic gray-greenish color of A. fumigatus conidia. Mutants lacking a functional polyketide synthase PksP, the enzyme responsible for the initial step in DHN-melanin formation, i.e., the synthesis of naphthopyrone, produce white spores and are attenuated in virulence. The activity of PksP was found to be essential not only for inhibition of apoptosis of phagocytes by interfering with the host PI3K/Akt signaling cascade but also for effective inhibition of acidification of conidia-containing phagolysosomes. These features allow A. fumigatus to survive in phagocytes and thereby to escape from human immune effector cells and to become a successful pathogen.
Collapse
Affiliation(s)
- Thorsten Heinekamp
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute Jena, Germany
| | | | | | | | | | | |
Collapse
|
142
|
Alcazar-Fuoli L, Mellado E. Ergosterol biosynthesis in Aspergillus fumigatus: its relevance as an antifungal target and role in antifungal drug resistance. Front Microbiol 2013; 3:439. [PMID: 23335918 PMCID: PMC3541703 DOI: 10.3389/fmicb.2012.00439] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Accepted: 12/19/2012] [Indexed: 11/13/2022] Open
Abstract
Ergosterol, the major sterol of fungal membranes, is essential for developmental growth and the main target of antifungals that are currently used to treat fatal fungal infections. Emergence of resistance to existing antifungals is a current problem and several secondary resistance mechanisms have been described in Aspergillus fumigatus clinical isolates. A full understanding of ergosterol biosynthetic control therefore appears to be essential for improvement of antifungal efficacy and to prevent antifungal resistance. An ergosterol biosynthesis pathway in A. fumigatus has been proposed with 14 sterol intermediates resulting in ergosterol and another secondary final compound C-24 ethyl sterol. Transcriptomic analysis of the A. fumigatus response to host-imposed stresses or antifungal agents is expanding our understanding of both sterol biosynthesis and the modes of action of antifungal drugs. Ultimately, the identification of new targets for novel drug design, or the study of combinatorial effects of targeting sterol biosynthesis together with other metabolic pathways, is warranted.
Collapse
Affiliation(s)
- Laura Alcazar-Fuoli
- Mycology Reference Laboratory, Centro Nacional de Microbiologia, Instituto de Salud Carlos III, Madrid, Spain
| | | |
Collapse
|
143
|
Morton CO, Bouzani M, Loeffler J, Rogers TR. Direct interaction studies between Aspergillus fumigatus and human immune cells; what have we learned about pathogenicity and host immunity? Front Microbiol 2012; 3:413. [PMID: 23264771 PMCID: PMC3525292 DOI: 10.3389/fmicb.2012.00413] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Accepted: 11/15/2012] [Indexed: 12/24/2022] Open
Abstract
Invasive aspergillosis is a significant threat to health and is a major cause of mortality in immunocompromised individuals. Understanding the interaction between the fungus and the immune system is important in determining how the immunocompetent host remains disease free. Several studies examining the direct interaction between Aspergillus fumigatus and purified innate immune cells have been conducted to measure the responses of both the host cells and the pathogen. It has been revealed that innate immune cells have different modes of action ranging from effective fungal killing by neutrophils to the less aggressive response of dendritic cells. Natural killer cells do not phagocytose the fungus unlike the other innate immune cells mentioned but appear to mediate their antifungal effect through the release of gamma interferon. Transcriptional analysis of A. fumigatus interacting with these cells has indicated that it can adapt to the harsh microenvironment of the phagosome and produces toxins, ribotoxin and gliotoxin, that can induce cell death in the majority of innate immune cells. These data point toward potential novel antifungal treatments including the use of innate immune cells as antifungal vaccines.
Collapse
Affiliation(s)
- Charles O Morton
- School of Science and Health, University of Western Sydney Campbelltown, NSW, Australia
| | | | | | | |
Collapse
|
144
|
Amich J, Krappmann S. Deciphering metabolic traits of the fungal pathogen Aspergillus fumigatus: redundancy vs. essentiality. Front Microbiol 2012; 3:414. [PMID: 23264772 PMCID: PMC3525513 DOI: 10.3389/fmicb.2012.00414] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Accepted: 11/15/2012] [Indexed: 11/13/2022] Open
Abstract
Incidence rates of infections caused by environmental opportunistic fungi have risen over recent decades. Aspergillus species have emerged as serious threat for the immunecompromised, and detailed knowledge about virulence-determining traits is crucial for drug target identification. As a prime saprobe, A. fumigatus has evolved to efficiently adapt to various stresses and to sustain nutritional supply by osmotrophy, which is characterized by extracellular substrate digestion followed by efficient uptake of breakdown products that are then fed into the fungal primary metabolism. These intrinsic metabolic features are believed to be related with its virulence ability. The plethora of genes that encode underlying effectors has hampered their in-depth analysis with respect to pathogenesis. Recent developments in Aspergillus molecular biology allow conditional gene expression or comprehensive targeting of gene families to cope with redundancy. Furthermore, identification of essential genes that are intrinsically connected to virulence opens accurate perspectives for novel targets in antifungal therapy.
Collapse
Affiliation(s)
- Jorge Amich
- Research Center for Infectious Diseases, Julius-Maximilians-Universität Würzburg Würzburg, Germany
| | | |
Collapse
|
145
|
Abstract
Fungi produce a multitude of low-molecular-mass compounds known as secondary metabolites, which have roles in a range of cellular processes such as transcription, development and intercellular communication. In addition, many of these compounds now have important applications, for instance, as antibiotics or immunosuppressants. Genome mining efforts indicate that the capability of fungi to produce secondary metabolites has been substantially underestimated because many of the fungal secondary metabolite biosynthesis gene clusters are silent under standard cultivation conditions. In this Review, I describe our current understanding of the regulatory elements that modulate the transcription of genes involved in secondary metabolism. I also discuss how an improved knowledge of these regulatory elements will ultimately lead to a better understanding of the physiological and ecological functions of these important compounds and will pave the way for a novel avenue to drug discovery through targeted activation of silent gene clusters.
Collapse
|
146
|
Gibbons JG, Rokas A. The function and evolution of the Aspergillus genome. Trends Microbiol 2012; 21:14-22. [PMID: 23084572 DOI: 10.1016/j.tim.2012.09.005] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2012] [Revised: 09/20/2012] [Accepted: 09/24/2012] [Indexed: 10/27/2022]
Abstract
Species in the filamentous fungal genus Aspergillus display a wide diversity of lifestyles and are of great importance to humans. The decoding of genome sequences from a dozen species that vary widely in their degree of evolutionary affinity has galvanized studies of the function and evolution of the Aspergillus genome in clinical, industrial, and agricultural environments. Here, we synthesize recent key findings that shed light on the architecture of the Aspergillus genome, on the molecular foundations of the genus' astounding dexterity and diversity in secondary metabolism, and on the genetic underpinnings of virulence in Aspergillus fumigatus, one of the most lethal fungal pathogens. Many of these insights dramatically expand our knowledge of fungal and microbial eukaryote genome evolution and function and argue that Aspergillus constitutes a superb model clade for the study of functional and comparative genomics.
Collapse
Affiliation(s)
- John G Gibbons
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| | | |
Collapse
|
147
|
Wiedner SD, Burnum KE, Pederson LM, Anderson LN, Fortuin S, Chauvigné-Hines LM, Shukla AK, Ansong C, Panisko EA, Smith RD, Wright AT. Multiplexed activity-based protein profiling of the human pathogen Aspergillus fumigatus reveals large functional changes upon exposure to human serum. J Biol Chem 2012; 287:33447-59. [PMID: 22865858 PMCID: PMC3460446 DOI: 10.1074/jbc.m112.394106] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Revised: 07/27/2012] [Indexed: 11/06/2022] Open
Abstract
Environmental adaptability is critical for survival of the fungal human pathogen Aspergillus fumigatus in the immunocompromised host lung. We hypothesized that exposure of the fungal pathogen to human serum would lead to significant alterations to the organism's physiology, including metabolic activity and stress response. Shifts in functional pathway and corresponding enzyme reactivity of A. fumigatus upon exposure to the human host may represent much needed prognostic indicators of fungal infection. To address this, we employed a multiplexed activity-based protein profiling (ABPP) approach coupled to quantitative mass spectrometry-based proteomics to measure broad enzyme reactivity of the fungus cultured with and without human serum. ABPP showed a shift from aerobic respiration to ethanol fermentation and utilization over time in the presence of human serum, which was not observed in serum-free culture. Our approach provides direct insight into this pathogen's ability to survive, adapt, and proliferate. Additionally, our multiplexed ABPP approach captured a broad swath of enzyme reactivity and functional pathways and provides a method for rapid assessment of the A. fumigatus response to external stimuli.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Ellen A. Panisko
- the Chemical and Biological Processes Development Group, Pacific Northwest National Laboratory, Richland, Washington 99352
| | | | | |
Collapse
|
148
|
Soukup AA, Farnoodian M, Berthier E, Keller NP. NosA, a transcription factor important in Aspergillus fumigatus stress and developmental response, rescues the germination defect of a laeA deletion. Fungal Genet Biol 2012; 49:857-65. [PMID: 23022264 DOI: 10.1016/j.fgb.2012.09.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2012] [Revised: 09/11/2012] [Accepted: 09/13/2012] [Indexed: 10/27/2022]
Abstract
Aspergillus fumigatus is an increasingly serious pathogen of immunocompromised patients, causing the often fatal disease invasive aspergillosis (IA). One A. fumigatus virulence determinant of IA is LaeA, a conserved virulence factor in pathogenic fungi. To further understand the role of LaeA in IA, the expression profile of ΔlaeA was compared to wild type, and several transcription factors were found significantly misregulated by LaeA loss. One of the transcription factors up-regulated over 4-fold in the ΔlaeA strain was Afu4g09710, similar in sequence to Aspergillus nidulans NosA, which is involved in sexual development. Here we assessed loss of nosA (ΔnosA) and overexpression of nosA (OE::nosA) on A. fumigatus in both a wild type and ΔlaeA background. Based on the multiple alterations of physiological development of single and double mutants, we suggest that NosA mediates the decreased radial growth and delayed conidial germination observed in ΔlaeA strains, the former in a light dependent manner. The ΔnosA mutant showed increased virulence in the Galleria mellonella larvae model of disseminated aspergillosis, potentially due to its increased growth and germination rate. Furthermore, the A. fumigatus nosA allele was able to partially remediate sexual development in an A. nidulans ΔnosA background. Likewise, the A. nidulans nosA allele was able to restore the menadione sensitivity defect of the A. fumigatus ΔnosA strain, suggesting conservation of function of the NosA protein in these two species.
Collapse
Affiliation(s)
- Alexandra A Soukup
- Department of Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | | | | |
Collapse
|
149
|
Shimizu M, Masuo S, Fujita T, Doi Y, Kamimura Y, Takaya N. Hydrolase controls cellular NAD, sirtuin, and secondary metabolites. Mol Cell Biol 2012; 32:3743-55. [PMID: 22801369 PMCID: PMC3430197 DOI: 10.1128/mcb.00032-12] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Accepted: 07/09/2012] [Indexed: 12/21/2022] Open
Abstract
Cellular levels of NAD(+) and NADH are thought to be controlled by de novo and salvage mechanisms, although evidence has not yet indicated that they are regulated by NAD(+) degradation. Here we show that the conserved nudix hydrolase isozyme NdxA hydrolyzes and decreases cellular NAD(+) and NADH in Aspergillus nidulans. The NdxA-deficient fungus accumulated more NAD(+) during the stationary growth phase, indicating that NdxA maintains cellular NAD(+)/NADH homeostasis. The deficient strain also generated less of the secondary metabolites sterigmatocystin and penicillin G and of their gene transcripts than did the wild type. These defects were associated with a reduction in acetylated histone H4 on the gene promoters of aflR and ipnA that are involved in synthesizing secondary metabolites. Thus, NdxA increases acetylation levels of histone H4. We discovered that the novel fungal sirtuin isozyme SirA uses NAD(+) as a cosubstrate to deacetylate the lysine 16 residue of histone H4 on the gene promoter and represses gene expression. The impaired acetylation of histone and secondary metabolite synthesis in the NdxA-deficient strain were restored by eliminating functional SirA, indicating that SirA mediates NdxA-dependent regulation. These results indicated that NdxA controls total levels of NAD(+)/NADH and negatively regulates sirtuin function and chromatin structure.
Collapse
Affiliation(s)
- Motoyuki Shimizu
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | | | | | | | | | | |
Collapse
|
150
|
Dinamarco TM, Freitas FZ, Almeida RS, Brown NA, dos Reis TF, Ramalho LNZ, Savoldi M, Goldman MHS, Bertolini MC, Goldman GH. Functional characterization of an Aspergillus fumigatus calcium transporter (PmcA) that is essential for fungal infection. PLoS One 2012; 7:e37591. [PMID: 22649543 PMCID: PMC3359301 DOI: 10.1371/journal.pone.0037591] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Accepted: 04/22/2012] [Indexed: 02/01/2023] Open
Abstract
Aspergillus fumigatus is a primary and opportunistic pathogen, as well as a major allergen, of mammals. The Ca(+2)-calcineurin pathway affects virulence, morphogenesis and antifungal drug action in A. fumigatus. Here, we investigated three components of the A. fumigatus Ca(+2)-calcineurin pathway, pmcA,-B, and -C, which encode calcium transporters. We demonstrated that CrzA can directly control the mRNA accumulation of the pmcA-C genes by binding to their promoter regions. CrzA-binding experiments suggested that the 5'-CACAGCCAC-3' and 5'-CCCTGCCCC-3' sequences upstream of pmcA and pmcC genes, respectively, are possible calcineurin-dependent response elements (CDREs)-like consensus motifs. Null mutants were constructed for pmcA and -B and a conditional mutant for pmcC demonstrating pmcC is an essential gene. The ΔpmcA and ΔpmcB mutants were more sensitive to calcium and resistant to manganese and cyclosporin was able to modulate the sensitivity or resistance of these mutants to these salts, supporting the interaction between calcineurin and the function of these transporters. The pmcA-C genes have decreased mRNA abundance into the alveoli in the ΔcalA and ΔcrzA mutant strains. However, only the A. fumigatus ΔpmcA was avirulent in the murine model of invasive pulmonary aspergillosis.
Collapse
Affiliation(s)
- Taísa Magnani Dinamarco
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | | | - Ricardo S. Almeida
- Department of Microbiology, University of Londrina, Londrina, Paraná, Brazil
| | - Neil Andrew Brown
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Thaila Fernanda dos Reis
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | | | - Marcela Savoldi
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Maria Helena S. Goldman
- Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | | | - Gustavo Henrique Goldman
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol – CTBE, Campinas, São Paulo, Brazil
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|