101
|
Zenonos ZA, Rayner JC, Wright GJ. Towards a comprehensive Plasmodium falciparum merozoite cell surface and secreted recombinant protein library. Malar J 2014; 13:93. [PMID: 24620899 PMCID: PMC3995786 DOI: 10.1186/1475-2875-13-93] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 03/07/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Plasmodium falciparum is the aetiological agent for malaria, a deadly infectious disease for which no vaccine has yet been licensed. The proteins displayed on the merozoite cell surface have long been considered attractive vaccine targets because of their direct exposure to host antibodies; however, progress in understanding the functional role of these targets has been hindered by technical challenges associated with expressing these proteins in a functionally active recombinant form. To address this, a method that enables the systematic expression of functional extracellular Plasmodium proteins was previously developed, and used to create a library of 42 merozoite proteins. METHODS To compile a more comprehensive library of recombinant proteins representing the repertoire of P. falciparum merozoite extracellular proteins for systematic vaccine and functional studies, genome-wide expression profiling was used to identify additional candidates. Candidate proteins were recombinantly produced and their integrity and expression levels were tested by Western blotting and ELISA. RESULTS Twenty-five additional genes that were upregulated during late schizogony, and predicted to encode secreted and cell surface proteins, were identified and expressed as soluble recombinant proteins. A band consistent with the entire ectodomain was observed by immunoblotting for the majority of the proteins and their expression levels were quantified. By using sera from malaria-exposed immune adults, the immunoreactivity of 20 recombinant proteins was assessed, and most of the merozoite ligands were found to carry heat-labile epitopes. To facilitate systematic comparative studies across the entire library, multiple Plasmodium proteins were simultaneously purified using a custom-made platform. CONCLUSIONS A library of recombinant P. falciparum secreted and cell surface proteins was expanded by 20 additional proteins, which were shown to express at usable levels and contain conformational epitopes. This resource of extracellular P. falciparum merozoite proteins, which now contains 62 full-length ectodomains, will be a valuable tool in elucidating the function of these proteins during the blood stages of infection, and facilitate the comparative assessment of blood stage vaccine candidates.
Collapse
Affiliation(s)
| | | | - Gavin J Wright
- Cell Surface Signalling Laboratory, Wellcome Trust Sanger Institute, Cambridge CB10 1SA, UK.
| |
Collapse
|
102
|
Patarroyo ME, Bermúdez A, Moreno-Vranich A. Towards the development of a fully protectivePlasmodium falciparumantimalarial vaccine. Expert Rev Vaccines 2014; 11:1057-70. [DOI: 10.1586/erv.12.57] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
103
|
Douglas AD, Williams AR, Knuepfer E, Illingworth JJ, Furze JM, Crosnier C, Choudhary P, Bustamante LY, Zakutansky SE, Awuah DK, Alanine DGW, Theron M, Worth A, Shimkets R, Rayner JC, Holder AA, Wright GJ, Draper SJ. Neutralization of Plasmodium falciparum merozoites by antibodies against PfRH5. THE JOURNAL OF IMMUNOLOGY 2013; 192:245-58. [PMID: 24293631 DOI: 10.4049/jimmunol.1302045] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
There is intense interest in induction and characterization of strain-transcending neutralizing Ab against antigenically variable human pathogens. We have recently identified the human malaria parasite Plasmodium falciparum reticulocyte-binding protein homolog 5 (PfRH5) as a target of broadly neutralizing Abs, but there is little information regarding the functional mechanism(s) of Ab-mediated neutralization. In this study, we report that vaccine-induced polyclonal anti-PfRH5 Abs inhibit the tight attachment of merozoites to erythrocytes and are capable of blocking the interaction of PfRH5 with its receptor basigin. Furthermore, by developing anti-PfRH5 mAbs, we provide evidence of the following: 1) the ability to block the PfRH5-basigin interaction in vitro is predictive of functional activity, but absence of blockade does not predict absence of functional activity; 2) neutralizing mAbs bind spatially related epitopes on the folded protein, involving at least two defined regions of the PfRH5 primary sequence; 3) a brief exposure window of PfRH5 is likely to necessitate rapid binding of Ab to neutralize parasites; and 4) intact bivalent IgG contributes to but is not necessary for parasite neutralization. These data provide important insight into the mechanisms of broadly neutralizing anti-malaria Abs and further encourage anti-PfRH5-based malaria prevention efforts.
Collapse
|
104
|
Tran TM, Ongoiba A, Coursen J, Crosnier C, Diouf A, Huang CY, Li S, Doumbo S, Doumtabe D, Kone Y, Bathily A, Dia S, Niangaly M, Dara C, Sangala J, Miller LH, Doumbo OK, Kayentao K, Long CA, Miura K, Wright GJ, Traore B, Crompton PD. Naturally acquired antibodies specific for Plasmodium falciparum reticulocyte-binding protein homologue 5 inhibit parasite growth and predict protection from malaria. J Infect Dis 2013; 209:789-98. [PMID: 24133188 DOI: 10.1093/infdis/jit553] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Plasmodium falciparum reticulocyte-binding protein homologue 5 (PfRH5) is a blood-stage parasite protein essential for host erythrocyte invasion. PfRH5-specific antibodies raised in animals inhibit parasite growth in vitro, but the relevance of naturally acquired PfRH5-specific antibodies in humans is unclear. METHODS We assessed pre-malaria season PfRH5-specific immunoglobulin G (IgG) levels in 357 Malian children and adults who were uninfected with Plasmodium. Subsequent P. falciparum infections were detected by polymerase chain reaction every 2 weeks and malaria episodes by weekly physical examination and self-referral for 7 months. The primary outcome was time between the first P. falciparum infection and the first febrile malaria episode. PfRH5-specific IgG was assayed for parasite growth-inhibitory activity. RESULTS The presence of PfRH5-specific IgG at enrollment was associated with a longer time between the first blood-stage infection and the first malaria episode (PfRH5-seropositive median: 71 days, PfRH5-seronegative median: 18 days; P = .001). This association remained significant after adjustment for age and other factors associated with malaria risk/exposure (hazard ratio, .62; P = .02). Concentrated PfRH5-specific IgG purified from Malians inhibited P. falciparum growth in vitro. CONCLUSIONS Naturally acquired PfRH5-specific IgG inhibits parasite growth in vitro and predicts protection from malaria. These findings strongly support efforts to develop PfRH5 as an urgently needed blood-stage malaria vaccine. CLINICAL TRIALS REGISTRATION NCT01322581.
Collapse
Affiliation(s)
- Tuan M Tran
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
105
|
Bacterially expressed full-length recombinant Plasmodium falciparum RH5 protein binds erythrocytes and elicits potent strain-transcending parasite-neutralizing antibodies. Infect Immun 2013; 82:152-64. [PMID: 24126527 DOI: 10.1128/iai.00970-13] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Plasmodium falciparum reticulocyte binding-like homologous protein 5 (PfRH5) is an essential merozoite ligand that binds with its erythrocyte receptor, basigin. PfRH5 is an attractive malaria vaccine candidate, as it is expressed by a wide number of P. falciparum strains, cannot be genetically disrupted, and exhibits limited sequence polymorphisms. Viral vector-induced PfRH5 antibodies potently inhibited erythrocyte invasion. However, it has been a challenge to generate full-length recombinant PfRH5 in a bacterial-cell-based expression system. In this study, we have produced full-length recombinant PfRH5 in Escherichia coli that exhibits specific erythrocyte binding similar to that of the native PfRH5 parasite protein and also, importantly, elicits potent invasion-inhibitory antibodies against a number of P. falciparum strains. Antibasigin antibodies blocked the erythrocyte binding of both native and recombinant PfRH5, further confirming that they bind with basigin. We have thus successfully produced full-length PfRH5 as a functionally active erythrocyte binding recombinant protein with a conformational integrity that mimics that of the native parasite protein and elicits potent strain-transcending parasite-neutralizing antibodies. P. falciparum has the capability to develop immune escape mechanisms, and thus, blood-stage malaria vaccines that target multiple antigens or pathways may prove to be highly efficacious. In this regard, antibody combinations targeting PfRH5 and other key merozoite antigens produced potent additive inhibition against multiple worldwide P. falciparum strains. PfRH5 was immunogenic when immunized with other antigens, eliciting potent invasion-inhibitory antibody responses with no immune interference. Our results strongly support the development of PfRH5 as a component of a combination blood-stage malaria vaccine.
Collapse
|
106
|
RALP1 is a rhoptry neck erythrocyte-binding protein of Plasmodium falciparum merozoites and a potential blood-stage vaccine candidate antigen. Infect Immun 2013; 81:4290-8. [PMID: 24002067 DOI: 10.1128/iai.00690-13] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Erythrocyte invasion by merozoites is an obligatory stage of Plasmodium infection and is essential to disease progression. Proteins in the apical organelles of merozoites mediate the invasion of erythrocytes and are potential malaria vaccine candidates. Rhoptry-associated, leucine zipper-like protein 1 (RALP1) of Plasmodium falciparum was previously found to be specifically expressed in schizont stages and localized to the rhoptries of merozoites by immunofluorescence assay (IFA). Also, RALP1 has been refractory to gene knockout attempts, suggesting that it is essential for blood-stage parasite survival. These characteristics suggest that RALP1 can be a potential blood-stage vaccine candidate antigen, and here we assessed its potential in this regard. Antibodies were raised against recombinant RALP1 proteins synthesized by using the wheat germ cell-free system. Immunoelectron microscopy demonstrated for the first time that RALP1 is a rhoptry neck protein of merozoites. Moreover, our IFA data showed that RALP1 translocates from the rhoptry neck to the moving junction during merozoite invasion. Growth and invasion inhibition assays revealed that anti-RALP1 antibodies inhibit the invasion of erythrocytes by merozoites. The findings that RALP1 possesses an erythrocyte-binding epitope in the C-terminal region and that anti-RALP1 antibodies disrupt tight-junction formation, are evidence that RALP1 plays an important role during merozoite invasion of erythrocytes. In addition, human sera collected from areas in Thailand and Mali where malaria is endemic recognized this protein. Overall, our findings indicate that RALP1 is a rhoptry neck erythrocyte-binding protein and that it qualifies as a potential blood-stage vaccine candidate.
Collapse
|
107
|
Patel SD, Ahouidi AD, Bei AK, Dieye TN, Mboup S, Harrison SC, Duraisingh MT. Plasmodium falciparum merozoite surface antigen, PfRH5, elicits detectable levels of invasion-inhibiting antibodies in humans. J Infect Dis 2013; 208:1679-87. [PMID: 23904294 DOI: 10.1093/infdis/jit385] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Plasmodium falciparum is an intracellular protozoan parasite that infects erythrocytes and hepatocytes. The blood stage of its life cycle causes substantial morbidity and mortality associated with millions of infections each year, motivating an intensive search for potential components of a multi-subunit vaccine. In this study, we present data showing that antibodies from natural infections can recognize a recombinant form of the relatively conserved merozoite surface antigen, PfRH5. Furthermore, we performed invasion inhibition assays on clinical isolates and laboratory strains of P. falciparum in the presence of affinity purified antibodies to RH5 and show that these antibodies can inhibit invasion in vitro.
Collapse
|
108
|
Persson KEM, Fowkes FJI, McCallum FJ, Gicheru N, Reiling L, Richards JS, Wilson DW, Lopaticki S, Cowman AF, Marsh K, Beeson JG. Erythrocyte-binding antigens of Plasmodium falciparum are targets of human inhibitory antibodies and function to evade naturally acquired immunity. THE JOURNAL OF IMMUNOLOGY 2013; 191:785-94. [PMID: 23776178 DOI: 10.4049/jimmunol.1300444] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Abs that inhibit Plasmodium falciparum invasion of erythrocytes form an important component of human immunity against malaria, but key target Ags are largely unknown. Phenotypic variation by P. falciparum mediates the evasion of inhibitory Abs, contributing to the capacity of P. falciparum to cause repeat and chronic infections. However, Ags involved in mediating immune evasion have not been defined, and studies of the function of human Abs are limited. In this study, we used novel approaches to determine the importance of P. falciparum erythrocyte-binding Ags (EBAs), which are important invasion ligands, as targets of human invasion-inhibitory Abs and define their role in contributing to immune evasion through variation in function. We evaluated the invasion-inhibitory activity of acquired Abs from malaria-exposed children and adults from Kenya, using P. falciparum with disruption of genes encoding EBA140, EBA175, and EBA181, either individually or combined as EBA140/EBA175 or EBA175/EBA181 double knockouts. Our findings provide important new evidence that variation in the expression and function of the EBAs plays an important role in evasion of acquired Abs and that a substantial amount of phenotypic diversity results from variation in expression of different EBAs that contributes to immune evasion by P. falciparum. All three EBAs were identified as important targets of naturally acquired inhibitory Abs demonstrated by differential inhibition of parental parasites greater than EBA knockout lines. This knowledge will help to advance malaria vaccine development and suggests that multiple invasion ligands need to be targeted to overcome the capacity of P. falciparum for immune evasion.
Collapse
Affiliation(s)
- Kristina E M Persson
- Karolinska Institutet, Microbiology, Tumor and Cell Biology, 17177 Stockholm, Sweden.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
109
|
Bartholdson SJ, Crosnier C, Bustamante LY, Rayner JC, Wright GJ. Identifying novel Plasmodium falciparum erythrocyte invasion receptors using systematic extracellular protein interaction screens. Cell Microbiol 2013; 15:1304-12. [PMID: 23617720 PMCID: PMC3798119 DOI: 10.1111/cmi.12151] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 04/11/2013] [Accepted: 04/22/2013] [Indexed: 12/22/2022]
Abstract
The invasion of host erythrocytes by the parasite Plasmodium falciparum initiates the blood stage of infection responsible for the symptoms of malaria. Invasion involves extracellular protein interactions between host erythrocyte receptors and ligands on the merozoite, the invasive form of the parasite. Despite significant research effort, many merozoite surface ligands have no known erythrocyte binding partner, most likely due to the intractable biochemical nature of membrane-tethered receptor proteins and their interactions. The few receptor–ligand pairs that have been described have largely relied on sourcing erythrocytes from patients with rare blood groups, a serendipitous approach that is unsatisfactory for systematically identifying novel receptors. We have recently developed a scalable assay called AVEXIS (for AVidity-based EXtracellular Interaction Screen), designed to circumvent the technical difficulties associated with the identification of extracellular protein interactions, and applied it to identify erythrocyte receptors for orphan P. falciparum merozoite ligands. Using this approach, we have recently identified Basigin (CD147) and Semaphorin-7A (CD108) as receptors for RH5 and MTRAP respectively. In this essay, we review techniques used to identify Plasmodium receptors and discuss how they could beapplied in the future to identify novel receptors both for Plasmodium parasites but also other pathogens.
Collapse
Affiliation(s)
- S Josefin Bartholdson
- Cell Surface Signalling Laboratory, Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK
| | | | | | | | | |
Collapse
|
110
|
Counihan NA, Kalanon M, Coppel RL, de Koning-Ward TF. Plasmodium rhoptry proteins: why order is important. Trends Parasitol 2013; 29:228-36. [PMID: 23570755 DOI: 10.1016/j.pt.2013.03.003] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 02/28/2013] [Accepted: 03/04/2013] [Indexed: 11/26/2022]
Abstract
Apicomplexan parasites, including the Plasmodium species that cause malaria, contain three unusual apical secretory organelles (micronemes, rhoptries, and dense granules) that are required for the infection of new host cells. Because of their specialized nature, the majority of proteins secreted from these organelles are unique to Apicomplexans and are consequently poorly characterized. Although rhoptry proteins of Plasmodium have been implicated in events central to invasion, there is growing evidence to suggest that proteins originating from this organelle play key roles downstream of parasite entry into the host cell. Here we discuss recent work that has advanced our knowledge of rhoptry protein trafficking and function, and highlight areas of research that require further investigation.
Collapse
|
111
|
Conant KL, Kaleeba JAR. Dangerous liaisons: molecular basis for a syndemic relationship between Kaposi's sarcoma and P. falciparum malaria. Front Microbiol 2013; 4:35. [PMID: 23487416 PMCID: PMC3594938 DOI: 10.3389/fmicb.2013.00035] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Accepted: 02/07/2013] [Indexed: 11/13/2022] Open
Abstract
The most severe manifestations of malaria (caused by Plasmodium falciparum) occur as a direct result of parasitemia following invasion of erythrocytes by post-liver blood-stage merozoites, and during subsequent cyto-adherence of infected erythrocytes to the vascular endothelium. However, the disproportionate epidemiologic clustering of severe malaria with aggressive forms of endemic diseases such as Kaposi's sarcoma (KS), a neoplasm that is etiologically linked to infection with KS-associated herpesvirus (KSHV), underscores the significance of previously unexplored co-pathogenetic interactions that have the potential to modify the overall disease burden in co-infected individuals. Based on recent studies of the mechanisms that P. falciparum and KSHV have evolved to interact with their mutual human host, several new perspectives are emerging that highlight a surprising convergence of biological themes potentially underlying their associated co-morbidities. Against this background, ongoing studies are rapidly constructing a fascinating new paradigm in which the major host receptors that control parasite invasion (Basigin/CD147) and cyto-adherence (CD36) are, surprisingly, also important targets for exploitation by KSHV. In this article, we consider the major pathobiological implications of the co-option of Basigin/CD147 and CD36 signaling pathways by both P. falciparum and KSHV, not only as essential host factors for parasite persistence but also as important mediators of the pro-angiogenic phenotype within the virus-infected endothelial microenvironment. Consequently, the triangulation of interactions between P. falciparum, KSHV, and their mutual human host articulates a syndemic relationship that points to a conceptual framework for prevalence of aggressive forms of KS in malaria-endemic areas, with implications for the possibility of dual-use therapies against these debilitating infections in resource-limited parts of the world.
Collapse
Affiliation(s)
| | - Johnan A. R. Kaleeba
- Department of Microbiology and Immunology, Uniformed Services University of the Health SciencesBethesda, MD, USA
| |
Collapse
|
112
|
Cowman AF, Berry D, Baum J. The cellular and molecular basis for malaria parasite invasion of the human red blood cell. ACTA ACUST UNITED AC 2013; 198:961-71. [PMID: 22986493 PMCID: PMC3444787 DOI: 10.1083/jcb.201206112] [Citation(s) in RCA: 232] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Malaria is a major disease of humans caused by protozoan parasites from the genus Plasmodium. It has a complex life cycle; however, asexual parasite infection within the blood stream is responsible for all disease pathology. This stage is initiated when merozoites, the free invasive blood-stage form, invade circulating erythrocytes. Although invasion is rapid, it is the only time of the life cycle when the parasite is directly exposed to the host immune system. Significant effort has, therefore, focused on identifying the proteins involved and understanding the underlying mechanisms behind merozoite invasion into the protected niche inside the human erythrocyte.
Collapse
Affiliation(s)
- Alan F Cowman
- The Walter and Eliza Hall Institute of Medical Research, University of Melbourne, Victoria, 3052, Australia.
| | | | | |
Collapse
|
113
|
Arévalo-Pinzón G, Curtidor H, Muñoz M, Suarez D, Patarroyo MA, Patarroyo ME. Rh1 high activity binding peptides inhibit high percentages of Plasmodium falciparum FVO strain invasion. Vaccine 2013; 31:1830-7. [PMID: 23398931 DOI: 10.1016/j.vaccine.2013.01.052] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 01/12/2013] [Accepted: 01/25/2013] [Indexed: 11/30/2022]
Abstract
Identifying the minimal functional regions of the proteins which the malaria parasite uses when invading its host cells constitutes the first and most important approach in an effective design for a chemically synthesised, multi-antigen, multi-stage, subunit-based vaccine. This work has been aimed at identifying the PfRh1 protein binding regions (residues 1-2580) belonging to the reticulocyte binding-like (RBL or P. falciparum Rh [PfRh]) family implicated in the parasite's alternative target cell invasion routes. Eighteen peptide regions (called high activity binding peptides - HABPs) binding to red blood cells (RBC) were identified in peptides mapped in a highly robust, specific and sensitive receptor-ligand assay. These HABPs were saturable in the experimental conditions assayed here and most had an alpha helix structure. Polymorphism studies revealed that only six of the eighteen HABPs identified had changes at amino acid level amongst the seven P. falciparum strains evaluated. Most HABPs' specific binding became altered when RBC were treated with neuraminidase, chymotrypsin and trypsin, suggesting differing sensitivity for RBC membrane receptors. After ascertaining that the Rh1 gene was transcribed and expressed in late-stage schizonts of the FCB-2 strain, invasion inhibition assays were carried out. When most of these HABPs were assayed in P. falciparum in vitro culture they were able to inhibit high percentages of FVO strain invasion compared to low inhibition percentages observed with the FCB-2 strain. This data shows small Rh1 regions' participation during invasion and suggests that these units should be included in further immunological and structural studies.
Collapse
|
114
|
Miller LH, Ackerman HC, Su XZ, Wellems TE. Malaria biology and disease pathogenesis: insights for new treatments. Nat Med 2013; 19:156-67. [PMID: 23389616 DOI: 10.1038/nm.3073] [Citation(s) in RCA: 395] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Accepted: 12/17/2012] [Indexed: 12/12/2022]
Abstract
Plasmodium falciparum malaria, an infectious disease caused by a parasitic protozoan, claims the lives of nearly a million children each year in Africa alone and is a top public health concern. Evidence is accumulating that resistance to artemisinin derivatives, the frontline therapy for the asexual blood stage of the infection, is developing in southeast Asia. Renewed initiatives to eliminate malaria will benefit from an expanded repertoire of antimalarials, including new drugs that kill circulating P. falciparum gametocytes, thereby preventing transmission. Our current understanding of the biology of asexual blood-stage parasites and gametocytes and the ability to culture them in vitro lends optimism that high-throughput screenings of large chemical libraries will produce a new generation of antimalarial drugs. There is also a need for new therapies to reduce the high mortality of severe malaria. An understanding of the pathophysiology of severe disease may identify rational targets for drugs that improve survival.
Collapse
Affiliation(s)
- Louis H Miller
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Rockville, Maryland, USA.
| | | | | | | |
Collapse
|
115
|
Hayton K, Dumoulin P, Henschen B, Liu A, Papakrivos J, Wellems TE. Various PfRH5 polymorphisms can support Plasmodium falciparum invasion into the erythrocytes of owl monkeys and rats. Mol Biochem Parasitol 2013; 187:103-10. [PMID: 23305874 DOI: 10.1016/j.molbiopara.2012.12.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Revised: 12/15/2012] [Accepted: 12/17/2012] [Indexed: 12/29/2022]
Abstract
Aotus nancymaae, the owl monkey, provides a useful laboratory model for research to develop drugs and vaccines against human falciparum malaria; however, many Plasmodium falciparum parasites are unable to invade A. nancymaae erythrocytes, rendering the parasites noninfective to the monkeys. In previous work, we identified a key polymorphism that determined the inheritance of erythrocyte invasion in a genetic cross of two P. falciparum clones that were virulent (GB4) or noninfective (7G8) to A. nancymaae. This polymorphism, an isoleucine-to-lysine polymorphism at position 204 (I204K) of the GB4 erythrocyte binding protein PfRH5, was nevertheless not found in several other P. falciparum lines that could also invade A. nancymaae erythrocytes. Alternative PfRH5 polymorphisms occur at different positions in these virulent parasites, and additional polymorphisms are found in P. falciparum parasites that cannot infect A. nancymaae. By allelic replacement methods, we have introduced the polymorphisms of these A. nancymaae-virulent or noninfective parasites at codons 204, 347, 358, 362, 410, and 429 of the endogenous PfRH5 gene in the noninfective 7G8 line. 7G8 transformants expressing the polymorphisms of the A. nancymaae-virulent parasites show neuraminidase-sensitive (sialic acid-dependent) invasion into the monkey erythrocytes, whereas 7G8 transformants expressing the PfRH5 alleles of noninfective parasites show little or no invasion of these erythrocytes. Parasites harboring PfRH5 polymorphisms 204K or 204R are also able to invade rat erythrocytes and are differentially sensitive to the removal of surface sialic acids by neuraminidase. These studies offer insights into the PfRH5 receptor-binding domain and interactions that support the invasion of various primate and rodent erythrocytes by P. falciparum.
Collapse
Affiliation(s)
- Karen Hayton
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | | | | |
Collapse
|
116
|
Boyle MJ, Wilson DW, Beeson JG. New approaches to studying Plasmodium falciparum merozoite invasion and insights into invasion biology. Int J Parasitol 2012; 43:1-10. [PMID: 23220090 DOI: 10.1016/j.ijpara.2012.11.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Revised: 10/30/2012] [Accepted: 11/03/2012] [Indexed: 10/27/2022]
Abstract
Merozoite invasion of human red blood cells by Plasmodium falciparum is essential for blood stage asexual replication and the development of malaria disease. Despite this, many of the processes involved in invasion are poorly understood. Recent advances have been made in methods to isolate viable merozoites for studies of invasion. The application of these approaches is providing new insights into the kinetics of invasion and merozoite survival, as well as proteins and interactions involved in invasion, and will facilitate the development and testing of anti-merozoite vaccines and the identification of invasion-inhibitory compounds with potential for drug development. This review discusses these recent advances and considers potential avenues for future research.
Collapse
Affiliation(s)
- Michelle J Boyle
- The Burnet Institute for Medical Research and Public Health, Melbourne, Victoria, Australia
| | | | | |
Collapse
|
117
|
Identification of a potent combination of key Plasmodium falciparum merozoite antigens that elicit strain-transcending parasite-neutralizing antibodies. Infect Immun 2012. [PMID: 23184525 DOI: 10.1128/iai.01107-12] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Blood-stage malaria vaccines that target single Plasmodium falciparum antigens involved in erythrocyte invasion have not induced optimal protection in field trials. Blood-stage malaria vaccine development has faced two major hurdles, antigenic polymorphisms and molecular redundancy, which have led to an inability to demonstrate potent, strain-transcending, invasion-inhibitory antibodies. Vaccines that target multiple invasion-related parasite proteins may inhibit erythrocyte invasion more efficiently. Our approach is to develop a receptor-blocking blood-stage vaccine against P. falciparum that targets the erythrocyte binding domains of multiple parasite adhesins, blocking their interaction with their receptors and thus inhibiting erythrocyte invasion. However, with numerous invasion ligands, the challenge is to identify combinations that elicit potent strain-transcending invasion inhibition. We evaluated the invasion-inhibitory activities of 20 different triple combinations of antibodies mixed in vitro against a diverse set of six key merozoite ligands, including the novel ligands P. falciparum apical asparagine-rich protein (PfAARP), EBA-175 (PfF2), P. falciparum reticulocyte binding-like homologous protein 1 (PfRH1), PfRH2, PfRH4, and Plasmodium thrombospondin apical merozoite protein (PTRAMP), which are localized in different apical organelles and are translocated to the merozoite surface at different time points during invasion. They bind erythrocytes with different specificities and are thus involved in distinct invasion pathways. The antibody combination of EBA-175 (PfF2), PfRH2, and PfAARP produced the most efficacious strain-transcending inhibition of erythrocyte invasion against diverse P. falciparum clones. This potent antigen combination was selected for coimmunization as a mixture that induced balanced antibody responses against each antigen and inhibited erythrocyte invasion efficiently. We have thus demonstrated a novel two-step screening approach to identify a potent antigen combination that elicits strong strain-transcending invasion inhibition, supporting its development as a receptor-blocking malaria vaccine.
Collapse
|
118
|
Williams AR, Douglas AD, Miura K, Illingworth JJ, Choudhary P, Murungi LM, Furze JM, Diouf A, Miotto O, Crosnier C, Wright GJ, Kwiatkowski DP, Fairhurst RM, Long CA, Draper SJ. Enhancing blockade of Plasmodium falciparum erythrocyte invasion: assessing combinations of antibodies against PfRH5 and other merozoite antigens. PLoS Pathog 2012; 8:e1002991. [PMID: 23144611 PMCID: PMC3493472 DOI: 10.1371/journal.ppat.1002991] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Accepted: 09/11/2012] [Indexed: 02/01/2023] Open
Abstract
No vaccine has yet proven effective against the blood-stages of Plasmodium falciparum, which cause the symptoms and severe manifestations of malaria. We recently found that PfRH5, a P. falciparum-specific protein expressed in merozoites, is efficiently targeted by broadly-neutralizing, vaccine-induced antibodies. Here we show that antibodies against PfRH5 efficiently inhibit the in vitro growth of short-term-adapted parasite isolates from Cambodia, and that the EC50 values of antigen-specific antibodies against PfRH5 are lower than those against PfAMA1. Since antibody responses elicited by multiple antigens are speculated to improve the efficacy of blood-stage vaccines, we conducted detailed assessments of parasite growth inhibition by antibodies against PfRH5 in combination with antibodies against seven other merozoite antigens. We found that antibodies against PfRH5 act synergistically with antibodies against certain other merozoite antigens, most notably with antibodies against other erythrocyte-binding antigens such as PfRH4, to inhibit the growth of a homologous P. falciparum clone. A combination of antibodies against PfRH4 and basigin, the erythrocyte receptor for PfRH5, also potently inhibited parasite growth. This methodology provides the first quantitative evidence that polyclonal vaccine-induced antibodies can act synergistically against P. falciparum antigens and should help to guide the rational development of future multi-antigen vaccines. Malaria is the most devastating parasitic disease of humans, resulting in an estimated 0.6–1 million deaths per year. The symptoms of malaria are caused when merozoites invade and replicate within red blood cells, and therefore a vaccine which induced antibodies that effectively prevent this invasion process would be a major step towards the control of the disease. However, development of such a vaccine has proved extremely challenging. A major roadblock has been the probable need for extremely high levels of antibodies to achieve vaccine efficacy. We have now shown that antibodies against the merozoite protein PfRH5 are able to neutralize the invasion of red blood cells by malaria parasites at concentrations that are significantly lower than for antibodies against PfAMA1 – the previous leading blood-stage malaria vaccine target. This neutralization was observed in both laboratory-adapted parasite lines and in five different parasite isolates from Cambodian patients with malaria. Furthermore, we found that by combining antibodies against PfRH5 with antibodies against certain other merozoite antigens we could achieve synergistic neutralization of parasites, further lowering the amount of antibody needed to be induced by a vaccine. The development of vaccines encoding the PfRH5 antigen in combination with a second target may thus be the best way to achieve the long-sought after goal of an efficacious blood-stage malaria vaccine. Moreover, the methodology described here to assess the ability of antibodies against different targets to synergize should greatly aid the future rational design of improved vaccine candidates.
Collapse
|
119
|
Gunalan K, Gao X, Yap SSL, Huang X, Preiser PR. The role of the reticulocyte-binding-like protein homologues of Plasmodium in erythrocyte sensing and invasion. Cell Microbiol 2012; 15:35-44. [PMID: 23046317 DOI: 10.1111/cmi.12038] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Revised: 09/17/2012] [Accepted: 10/01/2012] [Indexed: 11/27/2022]
Abstract
Malaria remains a serious public health problem with significant morbidity and mortality accounting for nearly 20% of all childhood deaths in Africa. The cyclical invasion, cytoadherence and destruction of the host's erythrocyte by the parasite are responsible for the observed disease pathology. The invasive form of the parasite, the merozoite, uses a complex set of interactions between parasite ligands and erythrocyte receptors that leads to the formation of a tight junction and ultimately successful erythrocyte invasion. Understanding the molecular mechanism underlying host cell recognition and invasion is crucial for the development of a targeted intervention strategy. Two parasite protein families termed reticulocyte-binding-like protein homologues (RBL) and the erythrocyte-binding-like (EBL) protein family are conserved in all Plasmodium species and have been shown to play an important role in host cell recognition and invasion. Over the last few years significant new insights have been gained in understanding the function of the RBL family and this review attempts to provide an update with a specific focus on the role of RBL in signal transduction pathways during invasion.
Collapse
Affiliation(s)
- Karthigayan Gunalan
- Division of Molecular Genetics & Cell Biology, School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | | | | | | | | |
Collapse
|
120
|
Muramatsu T. Basigin: a multifunctional membrane protein with an emerging role in infections by malaria parasites. Expert Opin Ther Targets 2012; 16:999-1011. [PMID: 22880881 DOI: 10.1517/14728222.2012.711818] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
INTRODUCTION Malaria is one of the most serious infectious diseases at the beginning of the twenty-first century. Various membrane proteins are present in Plasmodium falciparum, the principal malaria pathogen. Among them, P. falciparum reticulocyte-binding protein homolog 5 (PfRh5) is indispensable for erythrocyte invasion, and has become a promising vaccine target. Basigin (CD147, EMMPRIN) has been identified as the erythrocyte receptor of PfRh5, and shown to be essential for the invasion of multiple strains of the pathogen. AREAS COVERED Fundamental information on basigin is fully described, including structure as a member of the immunoglobulin superfamily and function based on its interactions with external molecules and with proteins within the same membrane. The involvement of basigin in many diseases such as cancer and inflammatory diseases is also described, the implication being that anti-basigin therapy might be helpful to treat certain illnesses. Finally, PfRh5 as a vaccine candidate is covered, and its interaction with basigin is evaluated. EXPERT OPINION The identification of basigin, a well-characterized membrane protein, as a receptor essential for malaria infection will contribute significantly to prevention and treatment of malaria. As an example, anti-basigin therapy can be considered an alternative approach to the treatment of drug-resistant malaria.
Collapse
Affiliation(s)
- Takashi Muramatsu
- Aichi Gakuin University, Faculty of Psychological and Physical Science, Department of Health Science, 12 Araike, Iwasaki-cho, Nisshin, Aichi 470-0195, Japan.
| |
Collapse
|
121
|
Harvey KL, Gilson PR, Crabb BS. A model for the progression of receptor-ligand interactions during erythrocyte invasion by Plasmodium falciparum. Int J Parasitol 2012; 42:567-73. [PMID: 22710063 DOI: 10.1016/j.ijpara.2012.02.011] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Revised: 02/18/2012] [Accepted: 02/23/2012] [Indexed: 11/17/2022]
Abstract
Multiple and seemingly sequential interactions between parasite ligands and their receptors on host erythrocytes are an essential precursor to invasion by the obligate intracellular pathogen, Plasmodium falciparum. Consequently, identification and characterisation of the specific effectors that facilitate these recognition events are of special interest for the development of novel therapeutic and prophylactic solutions to malaria. There have been many recent advances regarding the identification of host-parasite receptor-ligand pairs, however the precise function and temporal aspects of these interactions are far from resolved. This review provides an update on the current details of these interactions to place them in sequence and super impose them upon the known kinetic events of invasion.
Collapse
|
122
|
An evolving picture of the interactions between malaria parasites and their host erythrocytes. Cell Res 2012; 22:453-6. [PMID: 22270182 DOI: 10.1038/cr.2012.14] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
123
|
Tham WH, Healer J, Cowman AF. Erythrocyte and reticulocyte binding-like proteins of Plasmodium falciparum. Trends Parasitol 2011; 28:23-30. [PMID: 22178537 DOI: 10.1016/j.pt.2011.10.002] [Citation(s) in RCA: 133] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Revised: 10/11/2011] [Accepted: 10/11/2011] [Indexed: 11/30/2022]
Abstract
The global agenda for malaria eradication would benefit from development of a highly efficacious vaccine that protects against disease and interrupts transmission of Plasmodium falciparum. It is likely that such a vaccine will be multi-component, with antigens from different stages of the parasite life cycle. In this review, inclusion of blood stage antigens in such a vaccine is discussed. Erythrocyte binding-like (EBL) and P. falciparum reticulocyte binding-like (PfRh) proteins are reviewed with respect to their function in erythrocyte invasion, their role in eliciting antibodies contributing to protective immunity and reduction of invasion, leading subsequently to inhibition of parasite multiplication.
Collapse
Affiliation(s)
- Wai-Hong Tham
- Walter and Eliza Hall Institute of Medical Research, University of Melbourne, Parkville, VIC, Australia
| | | | | |
Collapse
|