101
|
Jones SE, Ho L, Rees CA, Hill JE, Nodwell JR, Elliot MA. Streptomyces exploration is triggered by fungal interactions and volatile signals. eLife 2017; 6. [PMID: 28044982 PMCID: PMC5207766 DOI: 10.7554/elife.21738] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 11/15/2016] [Indexed: 12/24/2022] Open
Abstract
It has long been thought that the life cycle of Streptomyces bacteria encompasses three developmental stages: vegetative hyphae, aerial hyphae and spores. Here, we show interactions between Streptomyces and fungi trigger a previously unobserved mode of Streptomyces development. We term these Streptomyces cells 'explorers', for their ability to adopt a non-branching vegetative hyphal conformation and rapidly transverse solid surfaces. Fungi trigger Streptomyces exploratory growth in part by altering the composition of the growth medium, and Streptomyces explorer cells can communicate this exploratory behaviour to other physically separated streptomycetes using an airborne volatile organic compound (VOC). These results reveal that interkingdom interactions can trigger novel developmental behaviours in bacteria, here, causing Streptomyces to deviate from its classically-defined life cycle. Furthermore, this work provides evidence that VOCs can act as long-range communication signals capable of propagating microbial morphological switches.
Collapse
Affiliation(s)
- Stephanie E Jones
- Department of Biology, McMaster University, Hamilton, Canada.,Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Canada
| | - Louis Ho
- Department Biochemistry, University of Toronto, Toronto, Canada
| | - Christiaan A Rees
- Geisel School of Medicine, Dartmouth College, Hanover, United States.,Thayer School of Engineering, Dartmouth College, Hanover, United States
| | - Jane E Hill
- Geisel School of Medicine, Dartmouth College, Hanover, United States.,Thayer School of Engineering, Dartmouth College, Hanover, United States
| | | | - Marie A Elliot
- Department of Biology, McMaster University, Hamilton, Canada.,Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Canada
| |
Collapse
|
102
|
Benocci T, Aguilar-Pontes MV, Zhou M, Seiboth B, de Vries RP. Regulators of plant biomass degradation in ascomycetous fungi. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:152. [PMID: 28616076 PMCID: PMC5468973 DOI: 10.1186/s13068-017-0841-x] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 06/06/2017] [Indexed: 05/05/2023]
Abstract
Fungi play a major role in the global carbon cycle because of their ability to utilize plant biomass (polysaccharides, proteins, and lignin) as carbon source. Due to the complexity and heterogenic composition of plant biomass, fungi need to produce a broad range of degrading enzymes, matching the composition of (part of) the prevalent substrate. This process is dependent on a network of regulators that not only control the extracellular enzymes that degrade the biomass, but also the metabolic pathways needed to metabolize the resulting monomers. This review will summarize the current knowledge on regulation of plant biomass utilization in fungi and compare the differences between fungal species, focusing in particular on the presence or absence of the regulators involved in this process.
Collapse
Affiliation(s)
- Tiziano Benocci
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Maria Victoria Aguilar-Pontes
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Miaomiao Zhou
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Bernhard Seiboth
- Research Area Biochemical Technology, Institute of Chemical and Biological Engineering, TU Wien, 1060 Vienna, Austria
| | - Ronald P. de Vries
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| |
Collapse
|
103
|
Macheleidt J, Mattern DJ, Fischer J, Netzker T, Weber J, Schroeckh V, Valiante V, Brakhage AA. Regulation and Role of Fungal Secondary Metabolites. Annu Rev Genet 2016; 50:371-392. [DOI: 10.1146/annurev-genet-120215-035203] [Citation(s) in RCA: 219] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Juliane Macheleidt
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), 07745 Jena, Germany; , , , , , ,
| | - Derek J. Mattern
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), 07745 Jena, Germany; , , , , , ,
- Institute for Microbiology, Friedrich Schiller University Jena, 07737 Jena, Germany
| | - Juliane Fischer
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), 07745 Jena, Germany; , , , , , ,
- Institute for Microbiology, Friedrich Schiller University Jena, 07737 Jena, Germany
| | - Tina Netzker
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), 07745 Jena, Germany; , , , , , ,
- Institute for Microbiology, Friedrich Schiller University Jena, 07737 Jena, Germany
| | - Jakob Weber
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), 07745 Jena, Germany; , , , , , ,
- Institute for Microbiology, Friedrich Schiller University Jena, 07737 Jena, Germany
| | - Volker Schroeckh
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), 07745 Jena, Germany; , , , , , ,
| | - Vito Valiante
- Research Group Biobricks of Microbial Natural Product Syntheses, Leibniz Institute for Natural Product Research and Infection Biology (HKI), 07745 Jena, Germany;
| | - Axel A. Brakhage
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), 07745 Jena, Germany; , , , , , ,
- Institute for Microbiology, Friedrich Schiller University Jena, 07737 Jena, Germany
| |
Collapse
|
104
|
Bultman KM, Kowalski CH, Cramer RA. Aspergillus fumigatus virulence through the lens of transcription factors. Med Mycol 2016; 55:24-38. [PMID: 27816905 DOI: 10.1093/mmy/myw120] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 08/19/2016] [Accepted: 10/17/2016] [Indexed: 02/07/2023] Open
Abstract
Invasive aspergillosis (IA), most commonly caused by the filamentous fungus Aspergillus fumigatus, occurs in immune compromised individuals. The ability of A. fumigatus to proliferate in a multitude of environments is hypothesized to contribute to its pathogenicity and virulence. Transcription factors (TF) have long been recognized as critical proteins for fungal pathogenicity, as many are known to play important roles in the transcriptional regulation of pathways implicated in virulence. Such pathways include regulation of conidiation and development, adhesion, nutrient acquisition, adaptation to environmental stress, and interactions with the host immune system among others. In both murine and insect models of IA, TF loss of function in A. fumigatus results in cases of hyper- and hypovirulence as determined through host survival, fungal burden, and immune response analyses. Consequently, the study of specific TFs in A. fumigatus has revealed important insights into mechanisms of pathogenicity and virulence. Although in vitro studies have identified virulence-related functions of specific TFs, the full picture of their in vivo functions remain largely enigmatic and an exciting area of current research. Moreover, the vast majority of TFs remain to be characterized and studied in this important human pathogen. Here in this mini-review we provide an overview of selected TFs in A. fumigatus and their contribution to our understanding of this important human pathogen's pathogenicity and virulence.
Collapse
Affiliation(s)
- Katherine M Bultman
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| | - Caitlin H Kowalski
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| | - Robert A Cramer
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| |
Collapse
|
105
|
Krappmann S. How to invade a susceptible host: cellular aspects of aspergillosis. Curr Opin Microbiol 2016; 34:136-146. [PMID: 27816786 DOI: 10.1016/j.mib.2016.10.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 10/12/2016] [Accepted: 10/17/2016] [Indexed: 02/07/2023]
Abstract
Diseases caused by Aspergillus spp. and in particular A. fumigatus are manifold and affect individuals suffering from immune dysfunctions, among them immunocompromised ones. The determinants of whether the encounter of a susceptible host with infectious propagules of this filamentous saprobe results in infection have been characterized to a limited extent. Several cellular characteristics of A. fumigatus that have evolved in its natural environment contribute to its virulence, among them general traits as well as particular ones that affect interaction with the mammalian host. Among the latter, conidial constituents, cell wall components, secreted proteins as well as extrolites shape the tight interaction of A. fumigatus with the host milieu and also contribute to evasion from immune surveillance.
Collapse
Affiliation(s)
- Sven Krappmann
- Institute of Microbiology - Clinical Microbiology, Immunology and Hygiene, University Hospital Erlangen and Friedrich-Alexander University Erlangen-Nürnberg, Wasserturmstr. 3/5, D-91054 Erlangen, Germany.
| |
Collapse
|
106
|
Pais P, Costa C, Cavalheiro M, Romão D, Teixeira MC. Transcriptional Control of Drug Resistance, Virulence and Immune System Evasion in Pathogenic Fungi: A Cross-Species Comparison. Front Cell Infect Microbiol 2016; 6:131. [PMID: 27812511 PMCID: PMC5072224 DOI: 10.3389/fcimb.2016.00131] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 09/29/2016] [Indexed: 12/26/2022] Open
Abstract
Transcription factors are key players in the control of the activation or repression of gene expression programs in response to environmental stimuli. The study of regulatory networks taking place in fungal pathogens is a promising research topic that can help in the fight against these pathogens by targeting specific fungal pathways as a whole, instead of targeting more specific effectors of virulence or drug resistance. This review is focused on the analysis of regulatory networks playing a central role in the referred mechanisms in the human fungal pathogens Aspergillus fumigatus, Cryptococcus neoformans, Candida albicans, Candida glabrata, Candida parapsilosis, and Candida tropicalis. Current knowledge on the activity of the transcription factors characterized in each of these pathogenic fungal species will be addressed. Particular focus is given to their mechanisms of activation, regulatory targets and phenotypic outcome. The review further provides an evaluation on the conservation of transcriptional circuits among different fungal pathogens, highlighting the pathways that translate common or divergent traits among these species in what concerns their drug resistance, virulence and host immune evasion features. It becomes evident that the regulation of transcriptional networks is complex and presents significant variations among different fungal pathogens. Only the oxidative stress regulators Yap1 and Skn7 are conserved among all studied species; while some transcription factors, involved in nutrient homeostasis, pH adaptation, drug resistance and morphological switching are present in several, though not all species. Interestingly, in some cases not very homologous transcription factors display orthologous functions, whereas some homologous proteins have diverged in terms of their function in different species. A few cases of species specific transcription factors are also observed.
Collapse
Affiliation(s)
- Pedro Pais
- Biological Sciences Research Group, Department of Bioengineering, Instituto Superior Técnico, Universidade de LisboaLisbon, Portugal; Biological Sciences Research Group, Institute for Bioengineering and Biosciences, Instituto Superior TécnicoLisboa, Portugal
| | - Catarina Costa
- Biological Sciences Research Group, Department of Bioengineering, Instituto Superior Técnico, Universidade de LisboaLisbon, Portugal; Biological Sciences Research Group, Institute for Bioengineering and Biosciences, Instituto Superior TécnicoLisboa, Portugal
| | - Mafalda Cavalheiro
- Biological Sciences Research Group, Department of Bioengineering, Instituto Superior Técnico, Universidade de LisboaLisbon, Portugal; Biological Sciences Research Group, Institute for Bioengineering and Biosciences, Instituto Superior TécnicoLisboa, Portugal
| | - Daniela Romão
- Biological Sciences Research Group, Department of Bioengineering, Instituto Superior Técnico, Universidade de LisboaLisbon, Portugal; Biological Sciences Research Group, Institute for Bioengineering and Biosciences, Instituto Superior TécnicoLisboa, Portugal
| | - Miguel C Teixeira
- Biological Sciences Research Group, Department of Bioengineering, Instituto Superior Técnico, Universidade de LisboaLisbon, Portugal; Biological Sciences Research Group, Institute for Bioengineering and Biosciences, Instituto Superior TécnicoLisboa, Portugal
| |
Collapse
|
107
|
Virgilio S, Cupertino FB, Bernardes NE, Freitas FZ, Takeda AAS, Fontes MRDM, Bertolini MC. Molecular Components of the Neurospora crassa pH Signaling Pathway and Their Regulation by pH and the PAC-3 Transcription Factor. PLoS One 2016; 11:e0161659. [PMID: 27557053 PMCID: PMC4996508 DOI: 10.1371/journal.pone.0161659] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 08/09/2016] [Indexed: 11/19/2022] Open
Abstract
Environmental pH induces a stress response triggering a signaling pathway whose components have been identified and characterized in several fungi. Neurospora crassa shares all six components of the Aspergillus nidulans pH signaling pathway, and we investigate here their regulation during an alkaline pH stress response. We show that the N. crassa pal mutant strains, with the exception of Δpal-9, which is the A. nidulans palI homolog, exhibit low conidiation and are unable to grow at alkaline pH. Moreover, they accumulate the pigment melanin, most likely via regulation of the tyrosinase gene by the pH signaling components. The PAC-3 transcription factor binds to the tyrosinase promoter and negatively regulates its gene expression. PAC-3 also binds to all pal gene promoters, regulating their expression at normal growth pH and/or alkaline pH, which indicates a feedback regulation of PAC-3 in the pal gene expression. In addition, PAC-3 binds to the pac-3 promoter only at alkaline pH, most likely influencing the pac-3 expression at this pH suggesting that the activation of PAC-3 in N. crassa results from proteolytic processing and gene expression regulation by the pH signaling components. In N. crassa, PAC-3 is proteolytically processed in a single cleavage step predominately at alkaline pH; however, low levels of the processed protein can be observed at normal growth pH. We also demonstrate that PAC-3 preferentially localizes in the nucleus at alkaline pH stress and that the translocation may require the N. crassa importin-α since the PAC-3 nuclear localization signal (NLS) has a strong in vitro affinity with importin-α. The data presented here show that the pH signaling pathway in N. crassa shares all the components with the A. nidulans and S. cerevisiae pathways; however, it exhibits some properties not previously described in either organism.
Collapse
Affiliation(s)
- Stela Virgilio
- Departamento de Bioquímica e Tecnologia Química, Instituto de Química, Universidade Estadual Paulista, UNESP, 14.800-060, Araraquara, São Paulo, Brazil
| | - Fernanda Barbosa Cupertino
- Departamento de Bioquímica e Tecnologia Química, Instituto de Química, Universidade Estadual Paulista, UNESP, 14.800-060, Araraquara, São Paulo, Brazil
| | - Natália Elisa Bernardes
- Departamento de Física e Biofísica, Instituto de Biociências, Universidade Estadual Paulista, UNESP, 18.618-970, Botucatu, São Paulo, Brazil
| | - Fernanda Zanolli Freitas
- Departamento de Bioquímica e Tecnologia Química, Instituto de Química, Universidade Estadual Paulista, UNESP, 14.800-060, Araraquara, São Paulo, Brazil
| | - Agnes Alessandra Sekijima Takeda
- Departamento de Física e Biofísica, Instituto de Biociências, Universidade Estadual Paulista, UNESP, 18.618-970, Botucatu, São Paulo, Brazil
| | - Marcos Roberto de Mattos Fontes
- Departamento de Física e Biofísica, Instituto de Biociências, Universidade Estadual Paulista, UNESP, 18.618-970, Botucatu, São Paulo, Brazil
| | - Maria Célia Bertolini
- Departamento de Bioquímica e Tecnologia Química, Instituto de Química, Universidade Estadual Paulista, UNESP, 14.800-060, Araraquara, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
108
|
Amich J, Bignell E. Amino acid biosynthetic routes as drug targets for pulmonary fungal pathogens: what is known and why do we need to know more? Curr Opin Microbiol 2016; 32:151-158. [DOI: 10.1016/j.mib.2016.06.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 06/07/2016] [Accepted: 06/09/2016] [Indexed: 11/29/2022]
|
109
|
Lucena-Agell D, Hervás-Aguilar A, Múnera-Huertas T, Pougovkina O, Rudnicka J, Galindo A, Tilburn J, Arst HN, Peñalva MA. Mutational analysis of the Aspergillus ambient pH receptor PalH underscores its potential as a target for antifungal compounds. Mol Microbiol 2016; 101:982-1002. [PMID: 27279148 PMCID: PMC5026065 DOI: 10.1111/mmi.13438] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2016] [Indexed: 12/18/2022]
Abstract
The pal/RIM ambient pH signalling pathway is crucial for the ability of pathogenic fungi to infect hosts. The Aspergillus nidulans 7‐TMD receptor PalH senses alkaline pH, subsequently facilitating ubiquitination of the arrestin PalF. Ubiquitinated PalF triggers downstream signalling events. The mechanism(s) by which PalH transduces the alkaline pH signal to PalF is poorly understood. We show that PalH is phosphorylated in a signal dependent manner, resembling mammalian GPCRs, although PalH phosphorylation, in contrast to mammalian GPCRs, is arrestin dependent. A genetic screen revealed that an ambient‐exposed region comprising the extracellular loop connecting TM4‐TM5 and ambient‐proximal residues within TM5 is required for signalling. In contrast, substitution by alanines of four aromatic residues within TM6 and TM7 results in a weak ‘constitutive’ activation of the pathway. Our data support the hypothesis that PalH mechanistically resembles mammalian GPCRs that signal via arrestins, such that the relative positions of individual helices within the heptahelical bundle determines the Pro316‐dependent transition between inactive and active PalH conformations, governed by an ambient‐exposed region including critical Tyr259 that potentially represents an agonist binding site. These findings open the possibility of screening for agonist compounds stabilizing the inactive conformation of PalH, which might act as antifungal drugs against ascomycetes.
Collapse
Affiliation(s)
- Daniel Lucena-Agell
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas CSIC, Ramiro de Maeztu 9, Madrid, 28040, Spain
| | - América Hervás-Aguilar
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas CSIC, Ramiro de Maeztu 9, Madrid, 28040, Spain
| | - Tatiana Múnera-Huertas
- Section of Microbiology, Imperial College London, Flowers Building, Armstrong Road, London, SW7 2AZ, UK
| | - Olga Pougovkina
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas CSIC, Ramiro de Maeztu 9, Madrid, 28040, Spain
| | - Joanna Rudnicka
- Section of Microbiology, Imperial College London, Flowers Building, Armstrong Road, London, SW7 2AZ, UK
| | - Antonio Galindo
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas CSIC, Ramiro de Maeztu 9, Madrid, 28040, Spain
| | - Joan Tilburn
- Section of Microbiology, Imperial College London, Flowers Building, Armstrong Road, London, SW7 2AZ, UK
| | - Herbert N Arst
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas CSIC, Ramiro de Maeztu 9, Madrid, 28040, Spain.,Section of Microbiology, Imperial College London, Flowers Building, Armstrong Road, London, SW7 2AZ, UK
| | - Miguel A Peñalva
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas CSIC, Ramiro de Maeztu 9, Madrid, 28040, Spain.
| |
Collapse
|
110
|
Caffrey AK, Obar JJ. Alarmin(g) the innate immune system to invasive fungal infections. Curr Opin Microbiol 2016; 32:135-143. [PMID: 27351354 DOI: 10.1016/j.mib.2016.06.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 05/04/2016] [Accepted: 06/07/2016] [Indexed: 11/24/2022]
Abstract
Fungi encounter numerous stresses in a mammalian host, including the immune system, which they must adapt to in order to grow and cause disease. The host immune system tunes its response to the threat level posed by the invading pathogen. We discuss recent findings on how interleukin (IL)-1 signaling is central to tuning the immune response to the virulence potential of invasive fungi, as well as other pathogens. Moreover, we discuss fungal factors that may drive tissue invasion and destruction that regulate IL-1 cytokine release. Moving forward understanding the mechanisms of fungal adaption to the host, together with understanding how the host innate immune system recognizes invading fungal pathogens will increase our therapeutic options for treatment of invasive fungal infections.
Collapse
Affiliation(s)
- Alayna K Caffrey
- Montana State University, Department of Microbiology & Immunology, Bozeman, MT 59718, United States; Geisel School of Medicine at Dartmouth, Department of Microbiology & Immunology, Lebanon, NH 03756, United States
| | - Joshua J Obar
- Geisel School of Medicine at Dartmouth, Department of Microbiology & Immunology, Lebanon, NH 03756, United States.
| |
Collapse
|
111
|
Kaltdorf M, Srivastava M, Gupta SK, Liang C, Binder J, Dietl AM, Meir Z, Haas H, Osherov N, Krappmann S, Dandekar T. Systematic Identification of Anti-Fungal Drug Targets by a Metabolic Network Approach. Front Mol Biosci 2016; 3:22. [PMID: 27379244 PMCID: PMC4911368 DOI: 10.3389/fmolb.2016.00022] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 05/24/2016] [Indexed: 11/13/2022] Open
Abstract
New antimycotic drugs are challenging to find, as potential target proteins may have close human orthologs. We here focus on identifying metabolic targets that are critical for fungal growth and have minimal similarity to targets among human proteins. We compare and combine here: (I) direct metabolic network modeling using elementary mode analysis and flux estimates approximations using expression data, (II) targeting metabolic genes by transcriptome analysis of condition-specific highly expressed enzymes, and (III) analysis of enzyme structure, enzyme interconnectedness ("hubs"), and identification of pathogen-specific enzymes using orthology relations. We have identified 64 targets including metabolic enzymes involved in vitamin synthesis, lipid, and amino acid biosynthesis including 18 targets validated from the literature, two validated and five currently examined in own genetic experiments, and 38 further promising novel target proteins which are non-orthologous to human proteins, involved in metabolism and are highly ranked drug targets from these pipelines.
Collapse
Affiliation(s)
- Martin Kaltdorf
- Department of Bioinformatics, Biocenter, University of Würzburg Würzburg, Germany
| | - Mugdha Srivastava
- Department of Bioinformatics, Biocenter, University of Würzburg Würzburg, Germany
| | - Shishir K Gupta
- Department of Bioinformatics, Biocenter, University of Würzburg Würzburg, Germany
| | - Chunguang Liang
- Department of Bioinformatics, Biocenter, University of Würzburg Würzburg, Germany
| | - Jasmin Binder
- Microbiology Institute - Clinical Microbiology, Immunology and Hygiene, Friedrich-Alexander University Erlangen-Nürnberg, University Hospital of Erlangen Erlangen, Germany
| | - Anna-Maria Dietl
- Division of Molecular Biology/Biocenter, Medical University Innsbruck Innsbruck, Austria
| | - Zohar Meir
- Aspergillus and Antifungal Research Laboratory, Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University Tel-Aviv, Israel
| | - Hubertus Haas
- Division of Molecular Biology/Biocenter, Medical University Innsbruck Innsbruck, Austria
| | - Nir Osherov
- Aspergillus and Antifungal Research Laboratory, Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University Tel-Aviv, Israel
| | - Sven Krappmann
- Microbiology Institute - Clinical Microbiology, Immunology and Hygiene, Friedrich-Alexander University Erlangen-Nürnberg, University Hospital of Erlangen Erlangen, Germany
| | - Thomas Dandekar
- Department of Bioinformatics, Biocenter, University of Würzburg Würzburg, Germany
| |
Collapse
|
112
|
In Vivo Transcriptional Profiling of Human Pathogenic Fungi during Infection: Reflecting the Real Life? PLoS Pathog 2016; 12:e1005471. [PMID: 27078150 PMCID: PMC4831747 DOI: 10.1371/journal.ppat.1005471] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
113
|
Croft CA, Culibrk L, Moore MM, Tebbutt SJ. Interactions of Aspergillus fumigatus Conidia with Airway Epithelial Cells: A Critical Review. Front Microbiol 2016; 7:472. [PMID: 27092126 PMCID: PMC4823921 DOI: 10.3389/fmicb.2016.00472] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 03/21/2016] [Indexed: 02/05/2023] Open
Abstract
Aspergillus fumigatus is an environmental filamentous fungus that also acts as an opportunistic pathogen able to cause a variety of symptoms, from an allergic response to a life-threatening disseminated fungal infection. The infectious agents are inhaled conidia whose first point of contact is most likely to be an airway epithelial cell (AEC). The interaction between epithelial cells and conidia is multifaceted and complex, and has implications for later steps in pathogenesis. Increasing evidence has demonstrated a key role for the airway epithelium in the response to respiratory pathogens, particularly at early stages of infection; therefore, elucidating the early stages of interaction of conidia with AECs is essential to understand the establishment of infection in cohorts of at-risk patients. Here, we present a comprehensive review of the early interactions between A. fumigatus and AECs, including bronchial and alveolar epithelial cells. We describe mechanisms of adhesion, internalization of conidia by AECs, the immune response of AECs, as well as the role of fungal virulence factors, and patterns of fungal gene expression characteristic of early infection. A clear understanding of the mechanisms involved in the early establishment of infection by A. fumigatus could point to novel targets for therapy and prophylaxis.
Collapse
Affiliation(s)
- Carys A Croft
- Centre for Heart Lung Innovation, St. Paul's Hospital, University of British Columbia, Vancouver BC, Canada
| | - Luka Culibrk
- Centre for Heart Lung Innovation, St. Paul's Hospital, University of British Columbia, Vancouver BC, Canada
| | - Margo M Moore
- Department of Biological Sciences, Simon Fraser University, Burnaby BC, Canada
| | - Scott J Tebbutt
- Centre for Heart Lung Innovation, St. Paul's Hospital, University of British Columbia, VancouverBC, Canada; Prevention of Organ Failure Centre of Excellence, VancouverBC, Canada; Department of Medicine, Division of Respiratory Medicine, University of British Columbia, VancouverBC, Canada
| |
Collapse
|
114
|
The contribution of Aspergillus fumigatus stress responses to virulence and antifungal resistance. J Microbiol 2016; 54:243-53. [PMID: 26920884 DOI: 10.1007/s12275-016-5510-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 10/21/2015] [Accepted: 10/22/2015] [Indexed: 10/22/2022]
Abstract
Invasive aspergillosis has emerged as one of the most common life-threatening fungal disease of humans. The emergence of antifungal resistant pathogens represents a current and increasing threat to society. In turn, new strategies to combat fungal infection are urgently required. Fungal adaptations to stresses experienced within the human host are a prerequisite for the survival and virulence strategies of the pathogen. Here, we review the latest information on the signalling pathways in Aspergillus fumigatus that contribute to stress adaptations and virulence, while highlighting their potential as targets for the development of novel combinational antifungal therapies.
Collapse
|
115
|
Dietl AM, Amich J, Leal S, Beckmann N, Binder U, Beilhack A, Pearlman E, Haas H. Histidine biosynthesis plays a crucial role in metal homeostasis and virulence of Aspergillus fumigatus. Virulence 2016; 7:465-76. [PMID: 26854126 PMCID: PMC4871644 DOI: 10.1080/21505594.2016.1146848] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Aspergillus fumigatus is the most prevalent airborne fungal pathogen causing invasive fungal infections in immunosuppressed individuals. The histidine biosynthetic pathway is found in bacteria, archaebacteria, lower eukaryotes, and plants, but is absent in mammals. Here we demonstrate that deletion of the gene encoding imidazoleglycerol-phosphate dehydratase (HisB) in A. fumigatus causes (i) histidine auxotrophy, (ii) decreased resistance to both starvation and excess of various heavy metals, including iron, copper and zinc, which play a pivotal role in antimicrobial host defense, (iii) attenuation of pathogenicity in 4 virulence models: murine pulmonary infection, murine systemic infection, murine corneal infection, and wax moth larvae. In agreement with the in vivo importance of histidine biosynthesis, the HisB inhibitor 3-amino-1,2,4-triazole reduced the virulence of the A. fumigatus wild type and histidine supplementation partially rescued virulence of the histidine-auxotrophic mutant in the wax moth model. Taken together, this study reveals limited histidine availability in diverse A. fumigatus host niches, a crucial role for histidine in metal homeostasis, and the histidine biosynthetic pathway as being an attractive target for development of novel antifungal therapy approaches.
Collapse
Affiliation(s)
- Anna-Maria Dietl
- a Division of Molecular Biology, Biocenter, Medical University of Innsbruck , Innsbruck , Austria
| | - Jorge Amich
- b IZKF Forschergruppe für Experimentelle Stammzelltransplantation, Medizinische Klinik und Poliklinik II & Universitäts-Kinderklinik , Würzburg , Germany
| | - Sixto Leal
- c Department of Ophthalmology and Visual Sciences , Case Western Reserve University , Cleveland , OH , USA
| | - Nicola Beckmann
- a Division of Molecular Biology, Biocenter, Medical University of Innsbruck , Innsbruck , Austria
| | - Ulrike Binder
- d Division of Hygiene & Medical Microbiology, Medical University of Innsbruck , Innsbruck , Austria
| | - Andreas Beilhack
- b IZKF Forschergruppe für Experimentelle Stammzelltransplantation, Medizinische Klinik und Poliklinik II & Universitäts-Kinderklinik , Würzburg , Germany
| | - Eric Pearlman
- c Department of Ophthalmology and Visual Sciences , Case Western Reserve University , Cleveland , OH , USA
| | - Hubertus Haas
- a Division of Molecular Biology, Biocenter, Medical University of Innsbruck , Innsbruck , Austria
| |
Collapse
|
116
|
Amorim-Vaz S, Sanglard D. Novel Approaches for Fungal Transcriptomics from Host Samples. Front Microbiol 2016; 6:1571. [PMID: 26834721 PMCID: PMC4717316 DOI: 10.3389/fmicb.2015.01571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 12/28/2015] [Indexed: 11/13/2022] Open
Abstract
Candida albicans adaptation to the host requires a profound reprogramming of the fungal transcriptome as compared to in vitro laboratory conditions. A detailed knowledge of the C. albicans transcriptome during the infection process is necessary in order to understand which of the fungal genes are important for host adaptation. Such genes could be thought of as potential targets for antifungal therapy. The acquisition of the C. albicans transcriptome is, however, technically challenging due to the low proportion of fungal RNA in host tissues. Two emerging technologies were used recently to circumvent this problem. One consists of the detection of low abundance fungal RNA using capture and reporter gene probes which is followed by emission and quantification of resulting fluorescent signals (nanoString). The other is based first on the capture of fungal RNA by short biotinylated oligonucleotide baits covering the C. albicans ORFome permitting fungal RNA purification. Next, the enriched fungal RNA is amplified and subjected to RNA sequencing (RNA-seq). Here we detail these two transcriptome approaches and discuss their advantages and limitations and future perspectives in microbial transcriptomics from host material.
Collapse
Affiliation(s)
- Sara Amorim-Vaz
- Institute of Microbiology, University Hospital Center, University of Lausanne Lausanne, Switzerland
| | - Dominique Sanglard
- Institute of Microbiology, University Hospital Center, University of Lausanne Lausanne, Switzerland
| |
Collapse
|
117
|
Cairns TC, Studholme DJ, Talbot NJ, Haynes K. New and Improved Techniques for the Study of Pathogenic Fungi. Trends Microbiol 2015; 24:35-50. [PMID: 26549580 DOI: 10.1016/j.tim.2015.09.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Revised: 09/29/2015] [Accepted: 09/30/2015] [Indexed: 02/05/2023]
Abstract
Fungal pathogens pose serious threats to human, plant, and ecosystem health. Improved diagnostics and antifungal strategies are therefore urgently required. Here, we review recent developments in online bioinformatic tools and associated interactive data archives, which enable sophisticated comparative genomics and functional analysis of fungal pathogens in silico. Additionally, we highlight cutting-edge experimental techniques, including conditional expression systems, recyclable markers, RNA interference, genome editing, compound screens, infection models, and robotic automation, which are promising to revolutionize the study of both human and plant pathogenic fungi. These novel techniques will allow vital knowledge gaps to be addressed with regard to the evolution of virulence, host-pathogen interactions and antifungal drug therapies in both the clinic and agriculture. This, in turn, will enable delivery of improved diagnosis and durable disease-control strategies.
Collapse
Affiliation(s)
- Timothy C Cairns
- Institut für Biotechnologie, Technische Universität Berlin, Gustav-Meyer Allee 22, Berlin, Germany.
| | | | | | - Ken Haynes
- Biosciences, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| |
Collapse
|
118
|
Lou Y, Han Y, Yang L, Wu M, Zhang J, Cheng J, Wang M, Jiang D, Chen W, Li G. CmpacC regulates mycoparasitism, oxalate degradation and antifungal activity in the mycoparasitic fungus Coniothyrium minitans. Environ Microbiol 2015; 17:4711-29. [PMID: 26278965 DOI: 10.1111/1462-2920.13018] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 08/05/2015] [Accepted: 08/08/2015] [Indexed: 11/30/2022]
Abstract
The PacC/Rim101 pH-responsive transcription factor is an important pathogenicity element for many plant-pathogenic fungi. In this study, we investigated the roles of a PacC homologue, CmpacC, in the mycoparasitic fungus Coniothyrium minitans. CmpacC was confirmed to have the transcriptional activation activity by the transcriptional activation test in Saccharomyces cerevisiae. Disruption of CmpacC resulted in impaired fungal responses to ambient pH. Compared to the wild-type, the CmpacC-disruption mutant ΔCmpacC-29 was significantly suppressed for activities of chitinase and β-1,3-glucanase at pH 5 and 7, consistent with reduced expression levels of Cmch1 and Cmg1 coding for the two enzymes respectively. However, the mutant displayed acidity-mimicking phenotypes such as improved oxalate degradation and increased antifungal activity at pH 6 or higher. Improved efficacy in oxalate degradation by ΔCmpacC-29 was consistent with the enhanced expression level of Cmoxdc1 coding for oxalate decarboxylase. CmpacC transcriptional activation of Cmch1 and Cmg1 and repression of Cmoxdc1 were verified by the presence of the PacC/Rim101 consensus binding-motifs in gene promoter regions and by the promoter DNA-binding assays. This study suggests that CmpacC plays an activator role in regulation of C. minitans mycoparasitism, whereas plays a repressor role in regulation of oxalate degradation and possibly antifungal activity of C. minitans.
Collapse
Affiliation(s)
- Yi Lou
- State Key Laboratory of Agricultural Microbiology and Key Laboratory of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yongchao Han
- State Key Laboratory of Agricultural Microbiology and Key Laboratory of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan, 430070, China.,The Institute of Industrial Crops of Hubei Academy of Agricultural Sciences, Wuhan, 430064, China
| | - Long Yang
- State Key Laboratory of Agricultural Microbiology and Key Laboratory of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan, 430070, China
| | - Mingde Wu
- State Key Laboratory of Agricultural Microbiology and Key Laboratory of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jing Zhang
- State Key Laboratory of Agricultural Microbiology and Key Laboratory of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jiasen Cheng
- State Key Laboratory of Agricultural Microbiology and Key Laboratory of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan, 430070, China
| | - Moying Wang
- State Key Laboratory of Agricultural Microbiology and Key Laboratory of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan, 430070, China
| | - Daohong Jiang
- State Key Laboratory of Agricultural Microbiology and Key Laboratory of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan, 430070, China
| | - Weidong Chen
- United States Department of Agriculture, Agricultural Research Service, Washington State University, Pullman, WA, USA
| | - Guoqing Li
- State Key Laboratory of Agricultural Microbiology and Key Laboratory of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
119
|
Bussink HJ, Bignell EM, Múnera-Huertas T, Lucena-Agell D, Scazzocchio C, Espeso EA, Bertuzzi M, Rudnicka J, Negrete-Urtasun S, Peñas-Parilla MM, Rainbow L, Peñalva MÁ, Arst HN, Tilburn J. Refining the pH response in Aspergillus nidulans: a modulatory triad involving PacX, a novel zinc binuclear cluster protein. Mol Microbiol 2015; 98:1051-72. [PMID: 26303777 PMCID: PMC4832277 DOI: 10.1111/mmi.13173] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/20/2015] [Indexed: 01/18/2023]
Abstract
The Aspergillus nidulans PacC transcription factor mediates gene regulation in response to alkaline ambient pH which, signalled by the Pal pathway, results in the processing of PacC72 to PacC27 via PacC53. Here we investigate two levels at which the pH regulatory system is transcriptionally moderated by pH and identify and characterise a new component of the pH regulatory machinery, PacX. Transcript level analysis and overexpression studies demonstrate that repression of acid‐expressed palF, specifying the Pal pathway arrestin, probably by PacC27 and/or PacC53, prevents an escalating alkaline pH response. Transcript analyses using a reporter and constitutively expressed pacC
trans‐alleles show that pacC preferential alkaline‐expression results from derepression by depletion of the acid‐prevalent PacC72 form. We additionally show that pacC repression requires PacX. pacX mutations suppress PacC processing recalcitrant mutations, in part, through derepressed PacC levels resulting in traces of PacC27 formed by pH‐independent proteolysis. pacX was cloned by impala transposon mutagenesis. PacX, with homologues within the Leotiomyceta, has an unusual structure with an amino‐terminal coiled‐coil and a carboxy‐terminal zinc binuclear cluster. pacX mutations indicate the importance of these regions. One mutation, an unprecedented finding in A. nidulans genetics, resulted from an insertion of an endogenous Fot1‐like transposon.
Collapse
Affiliation(s)
- Henk-Jan Bussink
- Section of Microbiology, Imperial College London, Flowers Building, Armstrong Road, London, SW7 2AZ, UK
| | - Elaine M Bignell
- Section of Microbiology, Imperial College London, Flowers Building, Armstrong Road, London, SW7 2AZ, UK.,Manchester Fungal Infection Group, Institute for Inflammation and Repair, University of Manchester, 46 Grafton Street, Manchester, M13 9NT, UK
| | - Tatiana Múnera-Huertas
- Section of Microbiology, Imperial College London, Flowers Building, Armstrong Road, London, SW7 2AZ, UK
| | - Daniel Lucena-Agell
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas CSIC, Ramiro de Maeztu 9, Madrid, 28040, Spain
| | - Claudio Scazzocchio
- Section of Microbiology, Imperial College London, Flowers Building, Armstrong Road, London, SW7 2AZ, UK.,Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Orsay, France
| | - Eduardo A Espeso
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas CSIC, Ramiro de Maeztu 9, Madrid, 28040, Spain
| | - Margherita Bertuzzi
- Manchester Fungal Infection Group, Institute for Inflammation and Repair, University of Manchester, 46 Grafton Street, Manchester, M13 9NT, UK
| | - Joanna Rudnicka
- Section of Microbiology, Imperial College London, Flowers Building, Armstrong Road, London, SW7 2AZ, UK
| | - Susana Negrete-Urtasun
- Section of Microbiology, Imperial College London, Flowers Building, Armstrong Road, London, SW7 2AZ, UK
| | - Maria M Peñas-Parilla
- Section of Microbiology, Imperial College London, Flowers Building, Armstrong Road, London, SW7 2AZ, UK
| | - Lynne Rainbow
- Section of Microbiology, Imperial College London, Flowers Building, Armstrong Road, London, SW7 2AZ, UK
| | - Miguel Á Peñalva
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas CSIC, Ramiro de Maeztu 9, Madrid, 28040, Spain
| | - Herbert N Arst
- Section of Microbiology, Imperial College London, Flowers Building, Armstrong Road, London, SW7 2AZ, UK
| | - Joan Tilburn
- Section of Microbiology, Imperial College London, Flowers Building, Armstrong Road, London, SW7 2AZ, UK
| |
Collapse
|
120
|
Irmer H, Tarazona S, Sasse C, Olbermann P, Loeffler J, Krappmann S, Conesa A, Braus GH. RNAseq analysis of Aspergillus fumigatus in blood reveals a just wait and see resting stage behavior. BMC Genomics 2015; 16:640. [PMID: 26311470 PMCID: PMC4551469 DOI: 10.1186/s12864-015-1853-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 08/17/2015] [Indexed: 12/20/2022] Open
Abstract
Background Invasive aspergillosis is started after germination of Aspergillus fumigatus conidia that are inhaled by susceptible individuals. Fungal hyphae can grow in the lung through the epithelial tissue and disseminate hematogenously to invade into other organs. Low fungaemia indicates that fungal elements do not reside in the bloodstream for long. Results We analyzed whether blood represents a hostile environment to which the physiology of A. fumigatus has to adapt. An in vitro model of A. fumigatus infection was established by incubating mycelium in blood. Our model allowed to discern the changes of the gene expression profile of A. fumigatus at various stages of the infection. The majority of described virulence factors that are connected to pulmonary infections appeared not to be activated during the blood phase. Three active processes were identified that presumably help the fungus to survive the blood environment in an advanced phase of the infection: iron homeostasis, secondary metabolism, and the formation of detoxifying enzymes. Conclusions We propose that A. fumigatus is hardly able to propagate in blood. After an early stage of sensing the environment, virtually all uptake mechanisms and energy-consuming metabolic pathways are shut-down. The fungus appears to adapt by trans-differentiation into a resting mycelial stage. This might reflect the harsh conditions in blood where A. fumigatus cannot take up sufficient nutrients to establish self-defense mechanisms combined with significant growth. Electronic supplementary material The online version of this article (doi10.1186/s12864-015-1853-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Henriette Irmer
- Institut für Mikrobiologie und Genetik, Georg-August-Universität Göttingen, Grisebachstraße 8, D-37077, Göttingen, Germany.
| | - Sonia Tarazona
- Genomics of Gene Expression Lab, Prince Felipe Research Center, Av. Eduardo Primo Yufera 3, 46012, Valencia, Spain.
| | - Christoph Sasse
- Institut für Mikrobiologie und Genetik, Georg-August-Universität Göttingen, Grisebachstraße 8, D-37077, Göttingen, Germany.
| | - Patrick Olbermann
- Research Center for Infectious Diseases, Julius-Maximilians University Würzburg, Würzburg, Germany.
| | - Jürgen Loeffler
- Laboratory WÜ4i, Medical Clinic and Policlinic II, University Clinic Würzburg, Würzburg, Germany.
| | - Sven Krappmann
- Research Center for Infectious Diseases, Julius-Maximilians University Würzburg, Würzburg, Germany. .,Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinik Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
| | - Ana Conesa
- Genomics of Gene Expression Lab, Prince Felipe Research Center, Av. Eduardo Primo Yufera 3, 46012, Valencia, Spain. .,Department of Microbiology and Cell Science, Institute for Food and Agricultura Sciences, University of Florida at Gainesville, Gainesville, FL, USA.
| | - Gerhard H Braus
- Institut für Mikrobiologie und Genetik, Georg-August-Universität Göttingen, Grisebachstraße 8, D-37077, Göttingen, Germany.
| |
Collapse
|
121
|
Mellado L, Calcagno-Pizarelli AM, Lockington RA, Cortese MS, Kelly JM, Arst HN, Espeso EA. A second component of the SltA-dependent cation tolerance pathway in Aspergillus nidulans. Fungal Genet Biol 2015; 82:116-28. [PMID: 26119498 PMCID: PMC4557415 DOI: 10.1016/j.fgb.2015.06.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 06/07/2015] [Accepted: 06/13/2015] [Indexed: 11/30/2022]
Abstract
SltB is a novel component of the cation stress responsive pathway. Loss of SltB function results in sensitivity to elevated extracellular concentrations of cations and to alkalinity. SltB is involved in signaling to transcription factor SltA. SltA regulates expression of sltB. The Slt pathway is unique to fungi from the pezizomycotina subphylum.
The transcriptional response to alkali metal cation stress is mediated by the zinc finger transcription factor SltA in Aspergillus nidulans and probably in other fungi of the pezizomycotina subphylum. A second component of this pathway has been identified and characterized. SltB is a 1272 amino acid protein with at least two putative functional domains, a pseudo-kinase and a serine-endoprotease, involved in signaling to the transcription factor SltA. Absence of SltB activity results in nearly identical phenotypes to those observed for a null sltA mutant. Hypersensitivity to a variety of monovalent and divalent cations, and to medium alkalinization are among the phenotypes exhibited by a null sltB mutant. Calcium homeostasis is an exception and this cation improves growth of sltΔ mutants. Moreover, loss of kinase HalA in conjunction with loss-of-function sltA or sltB mutations leads to pronounced calcium auxotrophy. sltA sltB double null mutants display a cation stress sensitive phenotype indistinguishable from that of single slt mutants showing the close functional relationship between these two proteins. This functional relationship is reinforced by the fact that numerous mutations in both slt loci can be isolated as suppressors of poor colonial growth resulting from certain null vps (vacuolar protein sorting) mutations. In addition to allowing identification of sltB, our sltB missense mutations enabled prediction of functional regions in the SltB protein. Although the relationship between the Slt and Vps pathways remains enigmatic, absence of SltB, like that of SltA, leads to vacuolar hypertrophy. Importantly, the phenotypes of selected sltA and sltB mutations demonstrate that suppression of null vps mutations is not dependent on the inability to tolerate cation stress. Thus a specific role for both SltA and SltB in the VPS pathway seems likely. Finally, it is noteworthy that SltA and SltB have a similar, limited phylogenetic distribution, being restricted to the pezizomycotina subphylum. The relevance of the Slt regulatory pathway to cell structure, intracellular trafficking and cation homeostasis and its restricted phylogenetic distribution makes this pathway of general interest for future investigation and as a source of targets for antifungal drugs.
Collapse
Affiliation(s)
- Laura Mellado
- Departamento de Biología Celular y Molecular, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu, 9, 28040 Madrid, Spain
| | | | - Robin A Lockington
- Department of Genetics and Evolution, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Marc S Cortese
- Dept. of Applied Chemistry, Faculty of Chemistry, University of the Basque Country, Manuel de Lardizabal, 3, 20018 San Sebastian, Spain
| | - Joan M Kelly
- Department of Genetics and Evolution, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Herbert N Arst
- Departamento de Biología Celular y Molecular, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu, 9, 28040 Madrid, Spain; Section of Microbiology, Imperial College London, Flowers Building, Armstrong Road, London SW7 2AZ, UK
| | - Eduardo A Espeso
- Departamento de Biología Celular y Molecular, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu, 9, 28040 Madrid, Spain.
| |
Collapse
|
122
|
Bertuzzi M, Schrettl M, Alcazar-Fuoli L, Cairns TC, Muñoz A, Walker LA, Herbst S, Safari M, Cheverton AM, Chen D, Liu H, Saijo S, Fedorova ND, Armstrong-James D, Munro CA, Read ND, Filler SG, Espeso EA, Nierman WC, Haas H, Bignell EM. Correction: The pH-Responsive PacC Transcription Factor of Aspergillus fumigatus Governs Epithelial Entry and Tissue Invasion during Pulmonary Aspergillosis. PLoS Pathog 2015; 11:e1004943. [PMID: 26086393 PMCID: PMC4472839 DOI: 10.1371/journal.ppat.1004943] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
123
|
Ost KS, O’Meara TR, Huda N, Esher SK, Alspaugh JA. The Cryptococcus neoformans alkaline response pathway: identification of a novel rim pathway activator. PLoS Genet 2015; 11:e1005159. [PMID: 25859664 PMCID: PMC4393102 DOI: 10.1371/journal.pgen.1005159] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 03/19/2015] [Indexed: 12/28/2022] Open
Abstract
The Rim101/PacC transcription factor acts in a fungal-specific signaling pathway responsible for sensing extracellular pH signals. First characterized in ascomycete fungi such as Aspergillus nidulans and Saccharomyces cerevisiae, the Rim/Pal pathway maintains conserved features among very distantly related fungi, where it coordinates cellular adaptation to alkaline pH signals and micronutrient deprivation. However, it also directs species-specific functions in fungal pathogens such as Cryptococcus neoformans, where it controls surface capsule expression. Moreover, disruption of the Rim pathway central transcription factor, Rim101, results in a strain that causes a hyper-inflammatory response in animal infection models. Using targeted gene deletions, we demonstrate that several genes encoding components of the classical Rim/Pal pathway are present in the C. neoformans genome. Many of these genes are in fact required for Rim101 activation, including members of the ESCRT complex (Vps23 and Snf7), ESCRT-interacting proteins (Rim20 and Rim23), and the predicted Rim13 protease. We demonstrate that in neutral/alkaline pH, Rim23 is recruited to punctate regions on the plasma membrane. This change in Rim23 localization requires upstream ESCRT complex components but does not require other Rim101 proteolysis components, such as Rim20 or Rim13. Using a forward genetics screen, we identified the RRA1 gene encoding a novel membrane protein that is also required for Rim101 protein activation and, like the ESCRT complex, is functionally upstream of Rim23-membrane localization. Homologs of RRA1 are present in other Cryptococcus species as well as other basidiomycetes, but closely related genes are not present in ascomycetes. These findings suggest that major branches of the fungal Kingdom developed different mechanisms to sense and respond to very elemental extracellular signals such as changing pH levels.
Collapse
Affiliation(s)
- Kyla S. Ost
- Departments of Medicine/ Molecular Genetics & Microbiology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Teresa R. O’Meara
- Departments of Medicine/ Molecular Genetics & Microbiology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Naureen Huda
- Departments of Medicine/ Molecular Genetics & Microbiology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Shannon K. Esher
- Departments of Medicine/ Molecular Genetics & Microbiology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - J. Andrew Alspaugh
- Departments of Medicine/ Molecular Genetics & Microbiology, Duke University School of Medicine, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
124
|
Correction: The pH-responsive PacC transcription factor of Aspergillus fumigatus governs epithelial entry and tissue invasion during pulmonary aspergillosis. PLoS Pathog 2015; 11:e1004802. [PMID: 25853727 PMCID: PMC4390368 DOI: 10.1371/journal.ppat.1004802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
[This corrects the article DOI: 10.1371/journal.ppat.1004413.].
Collapse
|