101
|
Sutela S, Poimala A, Vainio EJ. Viruses of fungi and oomycetes in the soil environment. FEMS Microbiol Ecol 2019; 95:5542194. [DOI: 10.1093/femsec/fiz119] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 07/30/2019] [Indexed: 12/17/2022] Open
Abstract
ABSTRACTSoils support a myriad of organisms hosting highly diverse viromes. In this minireview, we focus on viruses hosted by true fungi and oomycetes (members of Stamenopila, Chromalveolata) inhabiting bulk soil, rhizosphere and litter layer, and representing different ecological guilds, including fungal saprotrophs, mycorrhizal fungi, mutualistic endophytes and pathogens. Viruses infecting fungi and oomycetes are characterized by persistent intracellular nonlytic lifestyles and transmission via spores and/or hyphal contacts. Almost all fungal and oomycete viruses have genomes composed of single-stranded or double-stranded RNA, and recent studies have revealed numerous novel viruses representing yet unclassified family-level groups. Depending on the virus–host combination, infections can be asymptomatic, beneficial or detrimental to the host. Thus, mycovirus infections may contribute to the multiplex interactions of hosts, therefore likely affecting the dynamics of fungal communities required for the functioning of soil ecosystems. However, the effects of fungal and oomycete viruses on soil ecological processes are still mostly unknown. Interestingly, new metagenomics data suggest an extensive level of horizontal virus transfer between plants, fungi and insects.
Collapse
Affiliation(s)
- Suvi Sutela
- Forest Health and Biodiversity, Natural Resources Institute Finland (Luke), Latokartanonkaari 9, 00790 Helsinki, Finland
| | - Anna Poimala
- Forest Health and Biodiversity, Natural Resources Institute Finland (Luke), Latokartanonkaari 9, 00790 Helsinki, Finland
| | - Eeva J Vainio
- Forest Health and Biodiversity, Natural Resources Institute Finland (Luke), Latokartanonkaari 9, 00790 Helsinki, Finland
| |
Collapse
|
102
|
Mahillon M, Decroës A, Liénard C, Bragard C, Legrève A. Full genome sequence of a new polymycovirus infecting Fusarium redolens. Arch Virol 2019; 164:2215-2219. [PMID: 31165276 DOI: 10.1007/s00705-019-04301-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 05/02/2019] [Indexed: 12/22/2022]
Abstract
By screening a collection of Fusarium spp. for the presence of dsRNA, the Fusarium redolens strain A63-1 was found harboring a pattern of multiple dsRNA bands when analyzed by agarose gel electrophoresis. Using NextSeq Illumina sequencing, the full sequences of eight dsRNA molecules were determined, compared to databases, and gathered into a new viral genome. This novel virus shares similarities with mycoviruses that were recently grouped in the proposed family "Polymycoviridae". Hence, the name "Fusarium redolens polymycovirus 1" is proposed for this virus. Each viral dsRNA contains only one ORF, except dsRNA 7, which has an additional one. Based on amino acid sequence similarities, the functions of the proteins encoded by dsRNA 1-4 can be hypothesized. On the other hand, the putative proteins encoded by dsRNA 5-8 exhibit no relevant homology to known proteins. In this report, the full genome sequence of this new virus is presented along with a primary bioinformatics analysis.
Collapse
Affiliation(s)
- Mathieu Mahillon
- Earth and Life Institute, Applied Microbiology, Phytopathology, Université Catholique de Louvain, Louvain-la-Neuve, Belgium.
| | - Alain Decroës
- Earth and Life Institute, Applied Microbiology, Phytopathology, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Charlotte Liénard
- Earth and Life Institute, Applied Microbiology, Phytopathology, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Claude Bragard
- Earth and Life Institute, Applied Microbiology, Phytopathology, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Anne Legrève
- Earth and Life Institute, Applied Microbiology, Phytopathology, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| |
Collapse
|
103
|
Liu H, Liu R, Li CX, Wang H, Zhu HJ, Gao BD, Zhou Q, Zhong J. A Victorivirus and Two Novel Mitoviruses Co-Infected the Plant Pathogen Nigrospora oryzae. Viruses 2019; 11:E83. [PMID: 30669450 PMCID: PMC6356909 DOI: 10.3390/v11010083] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 01/16/2019] [Accepted: 01/17/2019] [Indexed: 12/24/2022] Open
Abstract
Three dsRNAs, in sizes of approximately 2.5⁻5 kbp, were detected in the plant pathogenic fungus Nigrospora oryzae strain CS-7.5-4. Genomic analysis showed that the 5.0 kb dsRNA was a victorivirus named as Nigrospora oryzae victorivirus 2 (NoRV2). The genome of NoRV2 was 5166 bp in length containing two overlapping open reading frames (ORFs), ORF1 and ORF2. ORF1 was deduced to encode a coat protein (CP) showing homology to the CPs of viruses belonging to the Totiviridae family. The stop codon of ORF1 and the start codon of ORF2 were overlapped by the tetranucleotide sequence AUGA. ORF2 was predicted to encode an RNA-dependent RNA polymerase (RdRp), which was highly similar to the RdRps of victoriviruses. Virus-like particle examination demonstrated that the genome of NoRV2 was solely encapsidated by viral particles with a diameter of approximately 35 nm. The other two dsRNAs that were less than 3.0 kb were predicted to be the genomes of two mitoviruses, named as Nigrospora oryzae mitovirus 1 (NoMV1) and Nigrospora oryzae mitovirus 2 (NoMV2). Both NoMV1 and NoMV2 were A-U rich and with lengths of 2865 and 2507 bp, respectively. Mitochondrial codon usage inferred that each of the two mitoviruses contains a major large ORF encoding a mitoviral RdRp. Horizontal transfer experiments showed that the NoMV1 and NoMV2 could be cotransmitted horizontally via hyphal contact to other virus-free N. oryzae strains and causes phenotypic change to the recipient, such as an increase in growth rate. This is the first report of mitoviruses in N. oryzae.
Collapse
Affiliation(s)
- Hong Liu
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha 410128, China.
| | - Rui Liu
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha 410128, China.
| | - Chang Xin Li
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha 410128, China.
| | - Hui Wang
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha 410128, China.
| | - Hong Jian Zhu
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha 410128, China.
| | - Bi Da Gao
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha 410128, China.
| | - Qian Zhou
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha 410128, China.
| | - Jie Zhong
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
104
|
Je M, Kim H, Son HS. Analysis of the codon usage pattern of the RdRP gene of mycovirus infecting Aspergillus spp. Virol J 2019; 16:10. [PMID: 30651145 PMCID: PMC6335760 DOI: 10.1186/s12985-019-1115-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 01/01/2019] [Indexed: 12/21/2022] Open
Abstract
Background Mycoviruses that infect fungi generally do not have a significant effect on the host and, instead, reduce the toxicity of the fungi. However, recent studies have shown that polymycovirus-1, a mycovirus that infects Aspergillus species known to cause disease in humans, is related to increased virulence of the fungus. Methods Comparative analysis was performed of RdRP gene codon usage patterns of Aspergillus fumigatus polymycovirus-1 (AfuPmV-1) and other mycoviruses known to infect Aspergillus spp. to examine the genetic characteristics of AfuPmV-1. In addition, codon usage analysis was performed to determine whether the nucleotide composition and codon usage characteristics of AfuPmV-1 were also present in other polymycoviruses and hypervirulence-related mycoviruses. Phylogenetic analysis was also performed to investigate their evolutionary relationship. Results Analysis of nucleotide composition indicated that AfuPmV-1 had the highest GC content among analyzed mycoviruses and relative synonymous codon usage analysis indicated that all of the codons preferred by AfuPmV-1 ended with C or G, while codons ending with A or U were not observed. Moreover, the effective number of codons, the codon adaptation index, and correspondence analysis showed that AfuPmV-1 had greater codon preference compared with other mycoviruses and that AfuPmV-1 had relatively high adaptability to humans and fungi. These results were generally similar among polymycoviruses. Conclusions The codon usage pattern of AfuPmV-1 differs from other mycoviruses that infect Aspergillus spp. This difference may be related to the hypervirulence effect of AfuPmV-1. Analysis of AfuPmV-1 codon usage patterns could contribute to the identification and prediction of virulence effects of mycoviruses with similar genetic characteristics.
Collapse
Affiliation(s)
- Mikyung Je
- SNU Bioinformatics Institute, Interdisciplinary Graduate Program in Bioinformatics, College of Natural Science, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Korea.,Laboratory of Computational Biology & Bioinformatics, Institute of Public Health and Environment, Graduate School of Public Health, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Korea
| | - Hayeon Kim
- Department of Biomedical Laboratory Science, Kyungdong University, 815 Gyeonhwon-ro, Munmak, Wonju, Gangwondo, 24695, Korea
| | - Hyeon S Son
- SNU Bioinformatics Institute, Interdisciplinary Graduate Program in Bioinformatics, College of Natural Science, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Korea. .,Laboratory of Computational Biology & Bioinformatics, Institute of Public Health and Environment, Graduate School of Public Health, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Korea.
| |
Collapse
|
105
|
Shah UA, Kotta-Loizou I, Fitt BDL, Coutts RHA. Identification, Molecular Characterization, and Biology of a Novel Quadrivirus Infecting the Phytopathogenic Fungus Leptosphaeria biglobosa. Viruses 2018; 11:E9. [PMID: 30585188 PMCID: PMC6356713 DOI: 10.3390/v11010009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 12/20/2018] [Accepted: 12/22/2018] [Indexed: 01/18/2023] Open
Abstract
Here we report the molecular characterisation of a novel dsRNA virus isolated from the filamentous, plant pathogenic fungus Leptosphaeria biglobosa and known to cause significant alterations to fungal pigmentation and growth and to result in hypervirulence, as illustrated by comparisons between virus-infected and -cured isogenic fungal strains. The virus forms isometric particles approximately 40⁻45 nm in diameter and has a quadripartite dsRNA genome structure with size ranges of 4.9 to 4 kbp, each possessing a single ORF. Sequence analysis of the putative proteins encoded by dsRNAs 1⁻4, termed P1⁻P4, respectively, revealed modest similarities to the amino acid sequences of equivalent proteins predicted from the nucleotide sequences of known and suspected members of the family Quadriviridae and for that reason the virus was nominated Leptosphaeria biglobosa quadrivirus-1 (LbQV-1). Sequence and phylogenetic analysis using the P3 sequence, which encodes an RdRP, revealed that LbQV-1 was most closely related to known and suspected quadriviruses and monopartite totiviruses rather than other quadripartite mycoviruses including chrysoviruses and alternaviruses. Of the remaining encoded proteins, LbQV-1 P2 and P4 are structural proteins but the function of P1 is unknown. We propose that LbQV-1 is a novel member of the family Quadriviridae.
Collapse
Affiliation(s)
- Unnati A Shah
- Department of Biological and Environmental Sciences, University of Hertfordshire, Hatfield AL10 9AB, UK.
| | - Ioly Kotta-Loizou
- Department of Biological and Environmental Sciences, University of Hertfordshire, Hatfield AL10 9AB, UK.
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK.
| | - Bruce D L Fitt
- Department of Biological and Environmental Sciences, University of Hertfordshire, Hatfield AL10 9AB, UK.
| | - Robert H A Coutts
- Department of Biological and Environmental Sciences, University of Hertfordshire, Hatfield AL10 9AB, UK.
| |
Collapse
|
106
|
Sato Y, Castón JR, Suzuki N. The biological attributes, genome architecture and packaging of diverse multi-component fungal viruses. Curr Opin Virol 2018; 33:55-65. [DOI: 10.1016/j.coviro.2018.07.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 06/29/2018] [Accepted: 07/05/2018] [Indexed: 12/19/2022]
|
107
|
Wolf YI, Kazlauskas D, Iranzo J, Lucía-Sanz A, Kuhn JH, Krupovic M, Dolja VV, Koonin EV. Origins and Evolution of the Global RNA Virome. mBio 2018; 9:e02329-18. [PMID: 30482837 PMCID: PMC6282212 DOI: 10.1128/mbio.02329-18] [Citation(s) in RCA: 334] [Impact Index Per Article: 47.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 10/31/2018] [Indexed: 01/12/2023] Open
Abstract
Viruses with RNA genomes dominate the eukaryotic virome, reaching enormous diversity in animals and plants. The recent advances of metaviromics prompted us to perform a detailed phylogenomic reconstruction of the evolution of the dramatically expanded global RNA virome. The only universal gene among RNA viruses is the gene encoding the RNA-dependent RNA polymerase (RdRp). We developed an iterative computational procedure that alternates the RdRp phylogenetic tree construction with refinement of the underlying multiple-sequence alignments. The resulting tree encompasses 4,617 RNA virus RdRps and consists of 5 major branches; 2 of the branches include positive-sense RNA viruses, 1 is a mix of positive-sense (+) RNA and double-stranded RNA (dsRNA) viruses, and 2 consist of dsRNA and negative-sense (-) RNA viruses, respectively. This tree topology implies that dsRNA viruses evolved from +RNA viruses on at least two independent occasions, whereas -RNA viruses evolved from dsRNA viruses. Reconstruction of RNA virus evolution using the RdRp tree as the scaffold suggests that the last common ancestors of the major branches of +RNA viruses encoded only the RdRp and a single jelly-roll capsid protein. Subsequent evolution involved independent capture of additional genes, in particular, those encoding distinct RNA helicases, enabling replication of larger RNA genomes and facilitating virus genome expression and virus-host interactions. Phylogenomic analysis reveals extensive gene module exchange among diverse viruses and horizontal virus transfer between distantly related hosts. Although the network of evolutionary relationships within the RNA virome is bound to further expand, the present results call for a thorough reevaluation of the RNA virus taxonomy.IMPORTANCE The majority of the diverse viruses infecting eukaryotes have RNA genomes, including numerous human, animal, and plant pathogens. Recent advances of metagenomics have led to the discovery of many new groups of RNA viruses in a wide range of hosts. These findings enable a far more complete reconstruction of the evolution of RNA viruses than was attainable previously. This reconstruction reveals the relationships between different Baltimore classes of viruses and indicates extensive transfer of viruses between distantly related hosts, such as plants and animals. These results call for a major revision of the existing taxonomy of RNA viruses.
Collapse
Affiliation(s)
- Yuri I Wolf
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | - Darius Kazlauskas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
- Département de Microbiologie, Institut Pasteur, Paris, France
| | - Jaime Iranzo
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | - Adriana Lucía-Sanz
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA
- Centro Nacional de Biotecnología, Madrid, Spain
| | - Jens H Kuhn
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland, USA
| | - Mart Krupovic
- Département de Microbiologie, Institut Pasteur, Paris, France
| | - Valerian V Dolja
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, USA
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
108
|
Mycoviral Population Dynamics in Spanish Isolates of the Entomopathogenic Fungus Beauveria bassiana. Viruses 2018; 10:v10120665. [PMID: 30477213 PMCID: PMC6315922 DOI: 10.3390/v10120665] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 11/19/2018] [Accepted: 11/21/2018] [Indexed: 12/17/2022] Open
Abstract
The use of mycoviruses to manipulate the virulence of entomopathogenic fungi employed as biocontrol agents may lead to the development of novel methods to control attacks by insect pests. Such approaches are urgently required, as existing agrochemicals are being withdrawn from the market due to environmental and health concerns. The aim of this work is to investigate the presence and diversity of mycoviruses in large panels of entomopathogenic fungi, mostly from Spain and Denmark. In total, 151 isolates belonging to the genera Beauveria, Metarhizium, Lecanicillium, Purpureocillium, Isaria, and Paecilomyces were screened for the presence of dsRNA elements and 12 Spanish B. bassiana isolates were found to harbor mycoviruses. All identified mycoviruses belong to three previously characterised species, the officially recognised Beauveria bassiana victorivirus 1 (BbVV-1) and the proposed Beauveria bassiana partitivirus 2 (BbPV-2) and Beauveria bassiana polymycovirus 1 (BbPmV-1); individual B. bassiana isolates may harbor up to three of these mycoviruses. Notably, these mycovirus species are under distinct selection pressures, while recombination of viral genomes increases population diversity. Phylogenetic analysis of the RNA-dependent RNA polymerase gene sequences revealed that the current population structure in Spain is potentially a result of both vertical and horizontal mycovirus transmission. Finally, pathogenicity experiments using the Mediterranean fruit fly Ceratitis capitata showed no direct correlation between the presence of any particular mycovirus and the virulence of the B. bassiana isolates, but illustrated potentially interesting isolates that exhibit relatively high virulence, which will be used in more detailed virulence experimentation in the future.
Collapse
|
109
|
Kalvnadi E, Mirmoayedi A, Alizadeh M, Pourian HR. Sub-lethal concentrations of the entomopathogenic fungus, Beauveria bassiana increase fitness costs of Helicoverpa armigera (Lepidoptera: Noctuidae) offspring. J Invertebr Pathol 2018; 158:32-42. [PMID: 30145233 DOI: 10.1016/j.jip.2018.08.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 08/16/2018] [Accepted: 08/19/2018] [Indexed: 01/04/2023]
Abstract
We assessed the effects of exposure of the cotton bollworm, Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) larvae to the entomopathogenic fungus Beauveria bassiana (isolate DC2) on life history parameters of the subsequent generation. Mortality assays against second instar larvae showed B. bassiana isolates to be significantly virulent, causing high mortality. Life history parameters such as developmental time, fecundity and survivorship were affected in the offspring of survivors of exposure to LC25 and LC50 concentrations of B. bassiana DC2. Pre-adult duration of H. armigera was significantly extended and total longevity and female progeny fecundity were decreased. Oviposition duration was shortened compared to offspring of untreated controls. All population parameters including intrinsic (r) and finite (λ) rates of increase and net (R0) and gross (GRR) reproductive rates were significantly decreased in offspring derived from H. armigera larvae treated with B. bassiana DC2. The intrinsic rate of increase (r) was 0.198 d-1, 0.120 d-1 and 0.111 d-1, respectively, for the F1 generation of controls (untreated), LC25- and LC50-treated cotton bollworm. The morphogenetic effects of B. bassiana observed due to the indirect effect of sub-lethal concentrations included abnormal pupae and adults and mortality resulted from the malformations. Pupal weight was reduced in offspring of treated individuals but sex ratios did not differ. Our results revealed that B. bassiana increased fitness costs of H. armigera in both direct (mortality) and indirect (disruption of normal development) ways. Adverse effects of sub-lethal fungal treatments on the parent generation carried over to the next generation.
Collapse
Affiliation(s)
- Elham Kalvnadi
- Department of Plant Protection, Campus of Agriculture and Natural Resources, Razi University, Kermanshah, Iran
| | - Alinaghi Mirmoayedi
- Department of Plant Protection, Campus of Agriculture and Natural Resources, Razi University, Kermanshah, Iran
| | - Marzieh Alizadeh
- Department of Plant Protection, Campus of Agriculture and Natural Resources, Razi University, Kermanshah, Iran.
| | - Hamid-Reza Pourian
- Department of Plant Protection, Campus of Agriculture and Natural Resources, Razi University, Kermanshah, Iran
| |
Collapse
|
110
|
Zoll J, Verweij PE, Melchers WJG. Discovery and characterization of novel Aspergillus fumigatus mycoviruses. PLoS One 2018; 13:e0200511. [PMID: 30044844 PMCID: PMC6059430 DOI: 10.1371/journal.pone.0200511] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 06/27/2018] [Indexed: 11/20/2022] Open
Abstract
In the last few years, increasing numbers of viruses infecting fungi have been identified. In this study, we used an in silico approach for the analysis of deep RNA sequencing data in order to discover and characterize putative genomic ssRNA or dsRNA mycovirus sequences in Aspergillus fumigatus. RNA sequencing reads of A. fumigatus strains were mapped against the A. fumigatus Af293 reference genome. Unmapped reads were collected for de novo assembly. Contigs were analyzed by Blastx comparison with a mycovirus protein database. Assembled viral genomes were used as template for remapping of RNA sequencing reads. In total, deep RNA sequencing results from 11 A. fumigatus strains were analyzed for the presence of mycoviral genomic RNAs. In 9 out of 11 strains, putative mycoviral RNA genomes were identified. Three strains were infected with two different mycovirus species. Two strains were infected with Aspergillus fumigatus polymycovirus type-1 (AfuPmV-1). Four strains contained fully recovered genomic RNA of unknown narna-like viruses designated as Aspergillus fumigatus narnavirus-1 and Aspergillus fumigatus narnavirus-2 (AfuNV-1 and AfuNV-2). Both viruses showed 38% amino acid sequence identity to Beihai narna-like virus-21. Three strains contained partially recovered genomic RNA of an unknown narna-like virus. Two strains contained fully recovered genomic RNAs of an unknown partitivirus designated as Aspergillus fumigatus partitivirus-2 (AfuPV-2) which showed 50% amino acid sequence identity to Alternaria alternata partitivirus-1. Finally, one strain contained fully recovered genomic RNA of an unknown mitovirus designated as Aspergillus fumigatus mitovirus-1 (AfuMV-1) which showed 34% amino acid sequence identity to Sclerotina sclerotiorum mitovirus. In silico analysis of deep RNA sequencing results showed that a majority of the A. fumigatus strains used here were infected with mycoviruses. Four novel A. fumigatus RNA mycoviruses could be identified: two different Aspergillus fumigatus narna-like viruses, one Aspergillus fumigatus partitivirus, and one Aspergillus fumigatus mitovirus.
Collapse
Affiliation(s)
- Jan Zoll
- Department of Medical Microbiology, Radboud University Medical Center, and Center of Expertise in Mycology Radboudumc/CWZ, Nijmegen, The Netherlands
- * E-mail:
| | - Paul E. Verweij
- Department of Medical Microbiology, Radboud University Medical Center, and Center of Expertise in Mycology Radboudumc/CWZ, Nijmegen, The Netherlands
| | - Willem J. G. Melchers
- Department of Medical Microbiology, Radboud University Medical Center, and Center of Expertise in Mycology Radboudumc/CWZ, Nijmegen, The Netherlands
| |
Collapse
|
111
|
Zhai L, Zhang M, Hong N, Xiao F, Fu M, Xiang J, Wang G. Identification and Characterization of a Novel Hepta-Segmented dsRNA Virus From the Phytopathogenic Fungus Colletotrichum fructicola. Front Microbiol 2018; 9:754. [PMID: 29725323 PMCID: PMC5917037 DOI: 10.3389/fmicb.2018.00754] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 04/04/2018] [Indexed: 11/19/2022] Open
Abstract
A novel hepta-segmented double-stranded RNA (dsRNA) virus was isolated and characterized from the strain FJ-4 of the phytopathogenic fungus Colletotrichum fructicola, and was named Colletotrichum fructicola chrysovirus 1 (CfCV1). The full-length cDNAs of dsRNA1–7 were 3620, 2801, 2687, 2437, 1750, 1536, and 1211 bp, respectively. The 5′- and 3′-untranslated regions of the seven dsRNAs share highly similar internal sequence and contain conserved sequence stretches, indicating that they have a common virus origin. The 5′-and 3′-UTRs of the seven dsRNAs were predicted to fold into stable stem-loop structures. CfCV1 contains spherical virions that are 35 nm in diameter consisting of seven segments. The largest dsRNA of CfCV1 encodes an RNA-dependent RNA polymerase (RdRp), and the second dsRNA encodes a viral capsid protein (CP). The dsRNA5 encodes a C2H2-type zinc finger protein containing an R-rich region and a G-rich region. The smallest dsRNA is a satellite-like RNA. The functions of the other proteins encoded by dsRNA3, dsRNA4, dsRNA6 are unknown. Phylogenetic analysis, based on RdRp and CP, indicated that CfCV1 is phylogenetically related to Botryosphaeria dothidea chrysovirus 1 (BdCV1), and Penicillium janczewskii chrysovirus 2 (PjCV2), a cluster of an independent cluster II group in the family Chrysoviridae. Importantly, all the seven segments of CfCV1 were transmitted successfully to other virus-free strains with an all-or-none fashion. CfCV1 exerts minor influence on the growth of C. fructicola but can confer hypovirulence to the fungal host. To our knowledge, this is the first report of a hepta-segmented tentative chrysovirus in C. fructicola.
Collapse
Affiliation(s)
- Lifeng Zhai
- College of Life Science and Technology, Yangtze Normal University, Chongqing, China.,National Key Laboratory of Agromicrobiology, Huazhong Agricultural University, Wuhan, China
| | - Meixin Zhang
- College of Life Science and Technology, Yangtze Normal University, Chongqing, China.,National Key Laboratory of Agromicrobiology, Huazhong Agricultural University, Wuhan, China
| | - Ni Hong
- National Key Laboratory of Agromicrobiology, Huazhong Agricultural University, Wuhan, China.,College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Feng Xiao
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Min Fu
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jun Xiang
- Institute of Plant Quarantine, Chinese Academy of Inspection and Quarantine, Beijing, China
| | - Guoping Wang
- National Key Laboratory of Agromicrobiology, Huazhong Agricultural University, Wuhan, China.,College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
112
|
Niu Y, Yuan Y, Mao J, Yang Z, Cao Q, Zhang T, Wang S, Liu D. Characterization of two novel mycoviruses from Penicillium digitatum and the related fungicide resistance analysis. Sci Rep 2018; 8:5513. [PMID: 29615698 PMCID: PMC5882929 DOI: 10.1038/s41598-018-23807-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 01/03/2018] [Indexed: 01/09/2023] Open
Abstract
Pathogenic fungi including Penicillium digitatum and Penicillium italicum are the main destructive pathogens in the citrus industry, causing great losses during postharvest process. To our knowledge, only one mycovirus from P. digitatum has been reported, and the prevalence of such mycoviruses against citrus postharvest pathogenic fungi and their genotyping were still under investigation. In the present study, we showed that 39 of 152 Penicillium isolates from main citrus-growing areas in China were infected with various mycoviruses belonging to polymycoviruses, Narna-like viruses, and families Totiviridae, Partitivirdae and Chrysoviridae. The next generation sequencing (NGS) towards virus genome library and the following molecular analysis revealed two novel mycoviruses Penicillium digitatum polymycovirus 1 (PdPmV1) and Penicillium digitatum Narna-like virus 1 (PdNLV1), coexisting in P. digitatum strain HS-RH2. The fungicide-resistant P. digitatum strains HS-F6 and HS-E9 coinfected by PdPmV1 and PdNLV1 exhibited obvious reduction in triazole drug prochloraz resistance by mycelial growth analysis on both PDA plates and citrus fruit epidermis with given prochloraz concentration. This report at the first time characterized two novel mycoviruses from P. digitatum and revealed the mycovirus-induced reduction of fungicide resistance.
Collapse
Affiliation(s)
- Yuhui Niu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, P. R. China
| | - Yongze Yuan
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, P. R. China
| | - Jiali Mao
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, P. R. China
| | - Zhu Yang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, P. R. China
| | - Qianwen Cao
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, P. R. China
| | - Tingfu Zhang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, P. R. China
| | - Shengqiang Wang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, P. R. China
| | - Deli Liu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, P. R. China.
| |
Collapse
|
113
|
Mu F, Xie J, Cheng S, You MP, Barbetti MJ, Jia J, Wang Q, Cheng J, Fu Y, Chen T, Jiang D. Virome Characterization of a Collection of S. sclerotiorum from Australia. Front Microbiol 2018; 8:2540. [PMID: 29375495 PMCID: PMC5768646 DOI: 10.3389/fmicb.2017.02540] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 12/06/2017] [Indexed: 11/13/2022] Open
Abstract
Sclerotinia sclerotiorum is a devastating plant pathogen that attacks numerous economically important broad acre and vegetable crops worldwide. Mycoviruses are widespread viruses that infect fungi, including S. sclerotiorum. As there were no previous reports of the presence of mycoviruses in this pathogen in Australia, studies were undertaken using RNA_Seq analysis to determine the diversity of mycoviruses in 84 Australian S. sclerotiorum isolates collected from various hosts. After RNA sequences were subjected to BLASTp analysis using NCBI database, 285 contigs representing partial or complete genomes of 57 mycoviruses were obtained, and 34 of these (59.6%) were novel viruses. These 57 viruses were grouped into 10 distinct lineages, namely Endornaviridae (four novel mycoviruses), Genomoviridae (isolate of SsHADV-1), Hypoviridae (two novel mycoviruses), Mononegavirales (four novel mycovirusess), Narnaviridae (10 novel mycoviruses), Partitiviridae (two novel mycoviruses), Ourmiavirus (two novel mycovirus), Tombusviridae (two novel mycoviruses), Totiviridae (one novel mycovirus), Tymovirales (five novel mycoviruses), and two non-classified mycoviruses lineages (one Botrytis porri RNA virus 1, one distantly related to Aspergillus fumigatus tetramycovirus-1). Twenty-five mitoviruses were determined and mitoviruses were dominant in the isolates tested. This is not only the first study to show existence of mycoviruses in S. sclerotiorum in Australia, but highlights how they are widespread and that many novel mycoviruses occur there. Further characterization of these mycoviruses is warranted, both in terms of exploring these novel mycoviruses for innovative biocontrol of Sclerotinia diseases and in enhancing our overall knowledge on viral diversity, taxonomy, ecology, and evolution.
Collapse
Affiliation(s)
- Fan Mu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Jiatao Xie
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Shufen Cheng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Ming Pei You
- Faculty of Science, UWA School of Agriculture and Environment and The UWA Institute of Agriculture, The University of Western Australia, Crawley, WA, Australia
| | - Martin J. Barbetti
- Faculty of Science, UWA School of Agriculture and Environment and The UWA Institute of Agriculture, The University of Western Australia, Crawley, WA, Australia
| | - Jichun Jia
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Qianqian Wang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Jiasen Cheng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Yanping Fu
- The Provincial Key Lab of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Tao Chen
- The Provincial Key Lab of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Daohong Jiang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
114
|
A neo-virus lifestyle exhibited by a (+)ssRNA virus hosted in an unrelated dsRNA virus: Taxonomic and evolutionary considerations. Virus Res 2018; 244:75-83. [DOI: 10.1016/j.virusres.2017.11.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 11/04/2017] [Accepted: 11/05/2017] [Indexed: 12/21/2022]
|
115
|
Abstract
Plant-associated fungi are infected by viruses at the incidence rates from a few % to over 90%. Multiple viruses often coinfect fungal hosts, and occasionally alter their phenotypes, but most of the infections are asymptomatic. Phenotypic alterations are grouped into two types: harmful or beneficial to the host fungi. Harmful interactions between viruses and hosts include hypovirulence and/or debilitation that are documented in a number of phytopathogenic fungi, exemplified by the chestnut blight, white root rot, and rapeseed rot fungi. Beneficial interactions are observed in a limited number of plant endophytic and pathogenic fungi where heat tolerance and virulence are enhanced, respectively. Coinfections of fungi provided a platform for discoveries of interesting virus/virus interactions that include synergistic, as in the case for those in plants, and unique antagonistic and mutualistic interactions between unrelated RNA viruses. Also discussed here are coinfection-induced genome rearrangements and frequently observed coinfections by the simplest positive-strand RNA virus, the mitoviruses.
Collapse
Affiliation(s)
- Bradley I Hillman
- Plant Biology and Pathology, Rutgers University, New Brunswick, NJ, United States.
| | - Aulia Annisa
- Institute of Plant Science and Resources (IPSR), Okayama University, Kurashiki, Japan
| | - Nobuhiro Suzuki
- Institute of Plant Science and Resources (IPSR), Okayama University, Kurashiki, Japan.
| |
Collapse
|
116
|
Metagenomics reshapes the concepts of RNA virus evolution by revealing extensive horizontal virus transfer. Virus Res 2017; 244:36-52. [PMID: 29103997 PMCID: PMC5801114 DOI: 10.1016/j.virusres.2017.10.020] [Citation(s) in RCA: 137] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 10/30/2017] [Accepted: 10/31/2017] [Indexed: 12/22/2022]
Abstract
Virus metagenomics is a young research filed but it has already transformed our understanding of virus diversity and evolution, and illuminated at a new level the connections between virus evolution and the evolution and ecology of the hosts. In this review article, we examine the new picture of the evolution of RNA viruses, the dominant component of the eukaryotic virome, that is emerging from metagenomic data analysis. The major expansion of many groups of RNA viruses through metagenomics allowed the construction of substantially improved phylogenetic trees for the conserved virus genes, primarily, the RNA-dependent RNA polymerases (RdRp). In particular, a new superfamily of widespread, small positive-strand RNA viruses was delineated that unites tombus-like and noda-like viruses. Comparison of the genome architectures of RNA viruses discovered by metagenomics and by traditional methods reveals an extent of gene module shuffling among diverse virus genomes that far exceeds the previous appreciation of this evolutionary phenomenon. Most dramatically, inclusion of the metagenomic data in phylogenetic analyses of the RdRp resulted in the identification of numerous, strongly supported groups that encompass RNA viruses from diverse hosts including different groups of protists, animals and plants. Notwithstanding potential caveats, in particular, incomplete and uneven sampling of eukaryotic taxa, these highly unexpected findings reveal horizontal virus transfer (HVT) between diverse hosts as the central aspect of RNA virus evolution. The vast and diverse virome of invertebrates, particularly nematodes and arthropods, appears to be the reservoir, from which the viromes of plants and vertebrates evolved via multiple HVT events.
Collapse
|
117
|
Kotta-Loizou I, Coutts RHA. Mycoviruses in Aspergilli: A Comprehensive Review. Front Microbiol 2017; 8:1699. [PMID: 28932216 PMCID: PMC5592211 DOI: 10.3389/fmicb.2017.01699] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Accepted: 08/23/2017] [Indexed: 12/31/2022] Open
Abstract
Fungi, similar to all species, are susceptible to viral infection. Aspergillus is arguably the most well studied fungal genus because of its medical, ecological and economical significance. Mycoviruses were initially detected in Aspergillus species almost 50 years ago and the field continues to be active today with ground-breaking discoveries. The aim of the present review is to cover the scientific progress in all aspects of mycovirology as exemplified by Aspergillus-focused research. Initially an overview of the population studies illustrating the presence of mycoviruses in numerous important Aspergillus species, such as A. niger, A. flavus, and A. fumigatus with be presented. Moreover the intricacies of mycovirus transmission, both inter- and intra-species, will be discussed together with the methodologies used to investigate viral dispersion in a laboratory setting. Subsequently, the genomic features of all molecularly characterized mycoviruses to date will be analyzed in depth. These include members of established viral families, such as Partitiviridae, Chrysoviridae and Totiviridae, but also more recent, novel discoveries that led to the proposal of new viral families, such as Polymycoviridae, Alternaviridae and, in the context of the present review, Exartaviridae. Finally, the major issue of phenotypic effects of mycoviral infection on the host is addressed, including aflatoxin production in A. flavus, together with growth and virulence in A. fumigatus. Although the molecular mechanisms behind these phenomena are yet to be elucidated, recent studies suggest that by implication, RNA silencing may be involved.
Collapse
Affiliation(s)
- Ioly Kotta-Loizou
- Department of Life Sciences, Imperial College LondonLondon, United Kingdom
| | - Robert H A Coutts
- Department of Biological and Environmental Sciences, University of HertfordshireHatfield, United Kingdom
| |
Collapse
|
118
|
Abstract
Viruses with double-stranded RNA genomes form isometric particles or are capsidless. Here we report a double-stranded RNA virus, Colletotrichum camelliae filamentous virus 1 (CcFV-1) isolated from a fungal pathogen, that forms filamentous particles. CcFV-1 has eight genomic double-stranded RNAs, ranging from 990 to 2444 bp, encoding 10 putative open reading frames, of which open reading frame 1 encodes an RNA-dependent RNA polymerase and open reading frame 4 a capsid protein. When inoculated, the naked CcFV-1 double-stranded RNAs are infectious and induce the accumulation of the filamentous particles in vivo. CcFV-1 is phylogenetically related to Aspergillus fumigatus tetramycovirus-1 and Beauveria bassiana polymycovirus-1, but differs in morphology and in the number of genomic components. CcFV-1 might be an intermediate virus related to truly capsidated viruses, or might represent a distinct encapsidating strategy. In terms of genome and particle architecture, our findings are a significant addition to the knowledge of the virosphere diversity. Viruses with double-stranded RNA (dsRNA) genomes form typically isometric particles or are capsid-less. Here, the authors identify a mycovirus with an eight-segmented dsRNA genome that forms exceptionally long filamentous particles and could represent an evolutionary link between ssRNA and dsRNA viruses.
Collapse
|