101
|
Jeon JY, Lee M, Whang SH, Kim JW, Cho A, Yun M. Regulation of Acetate Utilization by Monocarboxylate Transporter 1 (MCT1) in Hepatocellular Carcinoma (HCC). Oncol Res 2017; 26:71-81. [PMID: 28390113 PMCID: PMC7844556 DOI: 10.3727/096504017x14902648894463] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Altered energy metabolism is a biochemical fingerprint of cancer cells. Hepatocellular carcinoma (HCC) shows reciprocal [18F]fluorodeoxyglucose (FDG) and [11C]acetate uptake, as revealed by positron emission tomography/computed tomography (PET/CT). Previous studies have focused on the role of FDG uptake in cancer cells. In this study, we evaluated the mechanism and roles of [11C]acetate uptake in human HCCs and cell lines. The expression of monocarboxylate transporters (MCTs) was assessed to determine the transporters of [11C]acetate uptake in HCC cell lines and human HCCs with different [11C]acetate uptake. Using two representative cell lines with widely different [11C]acetate uptake (HepG2 for high uptake and Hep3B for low uptake), changes in [11C]acetate uptake were measured after treatment with an MCT1 inhibitor or MCT1-targeted siRNA. To verify the roles of MCT1 in cells, oxygen consumption rate and the amount of lipid synthesis were measured. HepG2 cells with high [11C]acetate uptake showed higher MCT1 expression than other HCC cell lines with low [11C]acetate uptake. MCT1 expression was elevated in human HCCs with high [11C]acetate uptake compared to those with low [11C]acetate uptake. After blocking MCT1 with AR-C155858 or MCT1 knockdown, [11C]acetate uptake in HepG2 cells was significantly reduced. Additionally, inhibition of MCT1 suppressed mitochondrial oxidative phosphorylation, lipid synthesis, and cellular proliferation in HCC cells with high [11C]acetate uptake. MCT1 may be a new therapeutic target for acetate-dependent HCCs with high [11C]acetate uptake, which can be selected by [11C]acetate PET/CT imaging in clinical practice.
Collapse
Affiliation(s)
- Jeong Yong Jeon
- Department of Nuclear Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Misu Lee
- Department of Nuclear Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Sang Hyun Whang
- Department of Nuclear Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Jung-Whan Kim
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Arthur Cho
- Department of Nuclear Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Mijin Yun
- Department of Nuclear Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
102
|
Abstract
The pathogenesis of hepatocellular carcinoma (HCC) is a multistep process involving the progressive accumulation of molecular alterations pinpointing different molecular and cellular events. The next-generation sequencing technology is facilitating the global and systematic evaluation of molecular landscapes in HCC. There is emerging evidence supporting the importance of cancer metabolism and tumor microenvironment in providing a favorable and supportive niche to expedite HCC development. Moreover, recent studies have identified distinct surface markers of cancer stem cell (CSC) in HCC, and they also put forward the profound involvement of altered signaling pathways and epigenetic modifications in CSCs, in addition to the concomitant drug resistance and metastasis. Taken together, multiple key genetic and non-genetic factors, as well as liver CSCs, result in the development and progression of HCC.
Collapse
Affiliation(s)
- Daniel Wai-Hung Ho
- Department of Pathology, The University of Hong Kong, Hong Kong, SAR, China,State Key Laboratory for Liver Research, The University of Hong Kong, Hong Kong, SAR, China
| | - Regina Cheuk-Lam Lo
- Department of Pathology, The University of Hong Kong, Hong Kong, SAR, China,State Key Laboratory for Liver Research, The University of Hong Kong, Hong Kong, SAR, China
| | - Lo-Kong Chan
- Department of Pathology, The University of Hong Kong, Hong Kong, SAR, China,State Key Laboratory for Liver Research, The University of Hong Kong, Hong Kong, SAR, China
| | - Irene Oi-Lin Ng
- Department of Pathology, The University of Hong Kong, Hong Kong, SAR, China,State Key Laboratory for Liver Research, The University of Hong Kong, Hong Kong, SAR, China,*Irene O. L. Ng, MD, PhD, Department of Pathology and State Key Laboratory for Liver Research, The University of Hong Kong, Room 127B, University Pathology Building, Department of Pathology, The University of Hong Kong, Queen Mary, Hospital, Pokfulam, Hong Kong, SAR (China), Tel. +852 2255 3967, E-Mail
| |
Collapse
|
103
|
Lehuédé C, Dupuy F, Rabinovitch R, Jones RG, Siegel PM. Metabolic Plasticity as a Determinant of Tumor Growth and Metastasis. Cancer Res 2016; 76:5201-8. [DOI: 10.1158/0008-5472.can-16-0266] [Citation(s) in RCA: 180] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 04/21/2016] [Indexed: 12/11/2022]
|
104
|
Siebeneicher H, Cleve A, Rehwinkel H, Neuhaus R, Heisler I, Müller T, Bauser M, Buchmann B. Identification and Optimization of the First Highly Selective GLUT1 Inhibitor BAY-876. ChemMedChem 2016; 11:2261-2271. [PMID: 27552707 PMCID: PMC5095872 DOI: 10.1002/cmdc.201600276] [Citation(s) in RCA: 209] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 07/20/2016] [Indexed: 12/12/2022]
Abstract
Despite the long‐known fact that the facilitative glucose transporter GLUT1 is one of the key players safeguarding the increase in glucose consumption of many tumor entities even under conditions of normal oxygen supply (known as the Warburg effect), only few endeavors have been undertaken to find a GLUT1‐selective small‐molecule inhibitor. Because other transporters of the GLUT1 family are involved in crucial processes, these transporters should not be addressed by such an inhibitor. A high‐throughput screen against a library of ∼3 million compounds was performed to find a small molecule with this challenging potency and selectivity profile. The N‐(1H‐pyrazol‐4‐yl)quinoline‐4‐carboxamides were identified as an excellent starting point for further compound optimization. After extensive structure–activity relationship explorations, single‐digit nanomolar inhibitors with a selectivity factor of >100 against GLUT2, GLUT3, and GLUT4 were obtained. The most promising compound, BAY‐876 [N4‐[1‐(4‐cyanobenzyl)‐5‐methyl‐3‐(trifluoromethyl)‐1H‐pyrazol‐4‐yl]‐7‐fluoroquinoline‐2,4‐dicarboxamide], showed good metabolic stability in vitro and high oral bioavailability in vivo.
Collapse
Affiliation(s)
| | - Arwed Cleve
- Bayer AG, Drug Discovery, 13353, Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
105
|
Garufi A, Trisciuoglio D, Cirone M, D'Orazi G. ZnCl2 sustains the adriamycin-induced cell death inhibited by high glucose. Cell Death Dis 2016; 7:e2280. [PMID: 27362798 PMCID: PMC5108333 DOI: 10.1038/cddis.2016.178] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 05/14/2016] [Accepted: 05/30/2016] [Indexed: 12/15/2022]
Abstract
Hyperglycemia, the condition of high blood glucose, is typical of diabetes and obesity and represents a significant clinical problem. The relationship between hyperglycemia and cancer risk has been established by several studies. Moreover, hyperglycemia has been shown to reduce cancer cell response to therapies, conferring resistance to drug-induced cell death. Therefore, counteracting the negative effects of hyperglycemia may positively improve the cancer cell death induced by chemotherapies. Recent studies showed that zinc supplementation may have beneficial effects on glycemic control. Here we aimed at evaluating whether ZnCl2 could counteract the high-glucose (HG) effects and consequently restore the drug-induced cancer cell death. At the molecular level we found that the HG-induced expression of genes known to be involved in chemoresistance (such as HIF-1α, GLUT1, and HK2 glycolytic genes, as well as NF-κB activity) was reduced by ZnCl2 treatment. In agreement, the adryamicin (ADR)-induced apoptotic cancer cell death was significantly impaired by HG and efficiently re-established by ZnCl2 cotreatment. Mechanistically, the ADR-induced c-Jun N-terminal kinase/stress-activated protein kinase (JNK/SAPK) phosphorylation, inhibited by HG, was efficiently restored by ZnCl2. The JNK involvement in apoptotic cell death was assessed by the use of JNK dominant-negative expression vector that indeed impaired the ZnCl2 ability to restore drug-induced cell death in HG condition. Altogether, these findings indicate that ZnCl2 supplementation efficiently restored the drug-induced cancer cell death, inhibited by HG, by both sustaining JNK activation and counteracting the glycolytic pathway.
Collapse
Affiliation(s)
- A Garufi
- Department of Research, Advanced Diagnostics, and Technological Innovation, Regina Elena National Cancer Institute, Rome, Italy.,Department of Medical, Oral and Biotechnological Sciences, Tumor Biology Section, University 'G. d'Annunzio', Chieti, Italy
| | - D Trisciuoglio
- Department of Research, Advanced Diagnostics, and Technological Innovation, Regina Elena National Cancer Institute, Rome, Italy
| | - M Cirone
- Department of Experimental Medicine, Pasteur-Fondazione Cenci Bolognetti Institute, Sapienza University, Rome, Italy
| | - G D'Orazi
- Department of Research, Advanced Diagnostics, and Technological Innovation, Regina Elena National Cancer Institute, Rome, Italy.,Department of Medical, Oral and Biotechnological Sciences, Tumor Biology Section, University 'G. d'Annunzio', Chieti, Italy
| |
Collapse
|
106
|
Zheng C, Yang K, Zhang M, Zou M, Bai E, Ma Q, Xu R. Specific protein 1 depletion attenuates glucose uptake and proliferation of human glioma cells by regulating GLUT3 expression. Oncol Lett 2016; 12:125-131. [PMID: 27347112 PMCID: PMC4906678 DOI: 10.3892/ol.2016.4599] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 04/18/2016] [Indexed: 12/02/2022] Open
Abstract
It has been reported previously that the expression of glucose transporter member 3 (GLUT3) is increased in malignant glioma cells compared with normal glial cells. However, the regulating mechanism that causes this phenomenon remains unknown. The present study investigated the regulating role of transcription factor specific protein 1 (Sp1) in GLUT3 expression in a human glioma cell line. In the present study, Sp1 was identified to directly bind to the GLUT3 5′-untranslated region in human glioma U251 cells. Small interfering RNA- and the Sp1-inhibitor mithramycin A-mediated Sp1 knockdown experiments revealed that Sp1 depletion decreased glucose uptake and inhibited cell growth and invasion of U251 cells by downregulating GLUT3 expression. Therefore Sp1 is an important positive regulator for the expression of GLUT3 in human glioma cells, and may explain the overexpression of GLUT3 in U251 cells. These results suggest that Sp1 may have a role in glioma treatment.
Collapse
Affiliation(s)
- Chuanyi Zheng
- Affiliated Bayi Brain Hospital, General Hospital of Beijing Military Region, Southern Medical University, Beijing 100072, P.R. China; Department of Neurosurgery, The Affiliated Hospital of Hainan Medical College, Haikou, Hainan 570102, P.R. China
| | - Kun Yang
- Department of Neurosurgery, The Affiliated Hospital of Hainan Medical College, Haikou, Hainan 570102, P.R. China
| | - Maoying Zhang
- Affiliated Bayi Brain Hospital, General Hospital of Beijing Military Region, Southern Medical University, Beijing 100072, P.R. China; Department of Neurosurgery, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong 510610, P.R. China
| | - Mingming Zou
- Affiliated Bayi Brain Hospital, General Hospital of Beijing Military Region, Southern Medical University, Beijing 100072, P.R. China
| | - Enqi Bai
- Department of Neurosurgery, The Affiliated Hospital of Hainan Medical College, Haikou, Hainan 570102, P.R. China
| | - Quanhong Ma
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Institute of Neuroscience, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Ruxiang Xu
- Affiliated Bayi Brain Hospital, General Hospital of Beijing Military Region, Southern Medical University, Beijing 100072, P.R. China
| |
Collapse
|
107
|
Mechanism of inhibition of human glucose transporter GLUT1 is conserved between cytochalasin B and phenylalanine amides. Proc Natl Acad Sci U S A 2016; 113:4711-6. [PMID: 27078104 PMCID: PMC4855560 DOI: 10.1073/pnas.1603735113] [Citation(s) in RCA: 153] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Cancerous cells have an acutely increased demand for energy, leading to increased levels of human glucose transporter 1 (hGLUT1). This up-regulation suggests hGLUT1 as a target for therapeutic inhibitors addressing a multitude of cancer types. Here, we present three inhibitor-bound, inward-open structures of WT-hGLUT1 crystallized with three different inhibitors: cytochalasin B, a nine-membered bicyclic ring fused to a 14-membered macrocycle, which has been described extensively in the literature of hGLUTs, and two previously undescribed Phe amide-derived inhibitors. Despite very different chemical backbones, all three compounds bind in the central cavity of the inward-open state of hGLUT1, and all binding sites overlap the glucose-binding site. The inhibitory action of the compounds was determined for hGLUT family members, hGLUT1-4, using cell-based assays, and compared with homology models for these hGLUT members. This comparison uncovered a probable basis for the observed differences in inhibition between family members. We pinpoint regions of the hGLUT proteins that can be targeted to achieve isoform selectivity, and show that these same regions are used for inhibitors with very distinct structural backbones. The inhibitor cocomplex structures of hGLUT1 provide an important structural insight for the design of more selective inhibitors for hGLUTs and hGLUT1 in particular.
Collapse
|
108
|
Identification of novel GLUT inhibitors. Bioorg Med Chem Lett 2016; 26:1732-7. [DOI: 10.1016/j.bmcl.2016.02.050] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 02/15/2016] [Accepted: 02/18/2016] [Indexed: 01/01/2023]
|
109
|
Kimura Y, Kasamatsu A, Nakashima D, Yamatoji M, Minakawa Y, Koike K, Fushimi K, Higo M, Endo-Sakamoto Y, Shiiba M, Tanzawa H, Uzawa K. ARNT2 Regulates Tumoral Growth in Oral Squamous Cell Carcinoma. J Cancer 2016; 7:702-10. [PMID: 27076852 PMCID: PMC4829557 DOI: 10.7150/jca.14208] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 01/22/2016] [Indexed: 01/22/2023] Open
Abstract
Aryl hydrocarbon receptor nuclear translocator (ARNT) 2 is a transcriptional factor related to adaptive responses against cellular stress from a xenobiotic substance. Recent evidence indicates ARNT is involved in carcinogenesis and cancer progression; however, little is known about the relevance of ARNT2 in the behavior of oral squamous cell carcinoma (OSCC). In the current study, we evaluated the ARNT2 mRNA and protein expression levels in OSCC in vitro and in vivo and the clinical relationship between ARNT2 expression levels in primary OSCCs and their clinicopathologic status by quantitative reverse transcriptase-polymerase chain reaction, immunoblotting, and immunohistochemistry. Using ARNT2 overexpression models, we performed functional analyses to investigate the critical roles of ARNT2 in OSCC. ARNT2 mRNA and protein were down-regulated significantly (P < 0.05 for both comparisons) in nine OSCC-derived cells and primary OSCC (n=100 patients) compared with normal counterparts. In addition to the data from exogenous experiments that ARNT2-overexpressed cells showed decreased cellular proliferation, ARNT2-positive OSCC cases were correlated significantly (P < 0.05) with tumoral size. Since von Hippel-Lindau tumor suppressor, E3 ubiquitin protein ligase, a negative regulator of hypoxia-inducible factor (HIF1)-α, is a downstream molecule of ARNT2, we speculated that HIF1-α and its downstream molecules would have key functions in cellular growth. Consistent with our hypothesis, overexpressed ARNT2 cells showed down-regulation of HIF1-α, which causes hypofunctioning of glucose transporter 1, leading to decreased cellular growth. Our results proposed for the first time that the ARNT2 level is an indicator of cellular proliferation in OSCCs. Therefore, ARNT2 may be a potential therapeutic target against progression of OSCCs.
Collapse
Affiliation(s)
- Yasushi Kimura
- 1. Department of Oral Science, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Atsushi Kasamatsu
- 2. Department of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Dai Nakashima
- 2. Department of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Masanobu Yamatoji
- 2. Department of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Yasuyuki Minakawa
- 1. Department of Oral Science, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Kazuyuki Koike
- 2. Department of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Kazuaki Fushimi
- 2. Department of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Morihiro Higo
- 2. Department of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Yosuke Endo-Sakamoto
- 2. Department of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Masashi Shiiba
- 3. Department of Medical Oncology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Hideki Tanzawa
- 1. Department of Oral Science, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan;; 2. Department of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Katsuhiro Uzawa
- 1. Department of Oral Science, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan;; 2. Department of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| |
Collapse
|
110
|
Brito AF, Ribeiro M, Abrantes AM, Mamede AC, Laranjo M, Casalta-Lopes JE, Gonçalves AC, Sarmento-Ribeiro AB, Tralhão JG, Botelho MF. New Approach for Treatment of Primary Liver Tumors: The Role of Quercetin. Nutr Cancer 2016; 68:250-66. [PMID: 26943884 DOI: 10.1080/01635581.2016.1145245] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver tumor (PLT), with cholangiocarcinoma (CC) being the second most frequent. Glucose transporter 1 (GLUT-1) expression is increased in PLTs and therefore it is suggested as a therapeutic target. Flavonoids, like quercetin, are GLUT-1 competitive inhibitors and may be considered as potential therapeutic agents for PLTs. The objective of this study was evaluation of quercetin anticancer activity in three human HCC cell lines (HepG2, HuH7, and Hep3B2.1-7) and in a human CC cell line (TFK-1). The possible synergistic effect between quercetin and sorafenib, a nonspecific multikinase inhibitor used in clinical practice in patients with advanced HCC, was also evaluated. It was found that in all the cell lines, quercetin induced inhibition of the metabolic activity and cell death by apoptosis, followed by increase in BAX/BCL-2 ratio. Treatment with quercetin caused DNA damage in HepG2, Hep3B2.1-7, and TFK-1 cell lines. The effect of quercetin appears to be independent of P53. Incubation with quercetin induced an increase in GLUT-1 membrane expression and a consequent reduction in the cytoplasmic fraction, observed as a decrease in (18)F-FDG uptake, indicating a GLUT-1 competitive inhibition. The occurrence of synergy when sorafenib and quercetin were added simultaneously to HCC cell lines was noticed. Thus, the use of quercetin seems to be a promising approach for PLTs through GLUT-1 competitive inhibition.
Collapse
Affiliation(s)
- Ana Filipa Brito
- a Biophysics and Biomathematics Institute, IBILI-Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,b Center of Investigation on Environmental, Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra , Coimbra , Portugal
| | - Marina Ribeiro
- a Biophysics and Biomathematics Institute, IBILI-Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,c Faculty of Sciences and Technology, University of Coimbra , Coimbra , Portugal
| | - Ana Margarida Abrantes
- a Biophysics and Biomathematics Institute, IBILI-Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,b Center of Investigation on Environmental, Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra , Coimbra , Portugal.,d CNC.IBILI, Faculty of Medicine, University of Coimbra , Coimbra , Portugal
| | - Ana Catarina Mamede
- a Biophysics and Biomathematics Institute, IBILI-Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,b Center of Investigation on Environmental, Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra , Coimbra , Portugal.,d CNC.IBILI, Faculty of Medicine, University of Coimbra , Coimbra , Portugal.,e CICS-UBI, Health Sciences Research Centre, University of Beira Interior , Covilhã , Portugal
| | - Mafalda Laranjo
- a Biophysics and Biomathematics Institute, IBILI-Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,b Center of Investigation on Environmental, Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra , Coimbra , Portugal.,d CNC.IBILI, Faculty of Medicine, University of Coimbra , Coimbra , Portugal
| | - João Eduardo Casalta-Lopes
- a Biophysics and Biomathematics Institute, IBILI-Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,b Center of Investigation on Environmental, Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra , Coimbra , Portugal
| | - Ana Cristina Gonçalves
- b Center of Investigation on Environmental, Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra , Coimbra , Portugal.,d CNC.IBILI, Faculty of Medicine, University of Coimbra , Coimbra , Portugal.,f Applied Molecular Biology and Hematology Group, Faculty of Medicine, University of Coimbra , Coimbra , Portugal
| | - Ana Bela Sarmento-Ribeiro
- b Center of Investigation on Environmental, Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra , Coimbra , Portugal.,d CNC.IBILI, Faculty of Medicine, University of Coimbra , Coimbra , Portugal.,f Applied Molecular Biology and Hematology Group, Faculty of Medicine, University of Coimbra , Coimbra , Portugal
| | - José Guilherme Tralhão
- a Biophysics and Biomathematics Institute, IBILI-Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,b Center of Investigation on Environmental, Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra , Coimbra , Portugal.,g Surgical Department , Surgery A, CHUC , Coimbra , Portugal
| | - Maria Filomena Botelho
- a Biophysics and Biomathematics Institute, IBILI-Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,b Center of Investigation on Environmental, Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra , Coimbra , Portugal.,d CNC.IBILI, Faculty of Medicine, University of Coimbra , Coimbra , Portugal
| |
Collapse
|
111
|
Leung CON, Wong CCL, Fan DNY, Kai AKL, Tung EKK, Xu IMJ, Ng IOL, Lo RCL. PIM1 regulates glycolysis and promotes tumor progression in hepatocellular carcinoma. Oncotarget 2016; 6:10880-92. [PMID: 25834102 PMCID: PMC4484426 DOI: 10.18632/oncotarget.3534] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 02/18/2015] [Indexed: 12/14/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is characteristically one of the most rapidly proliferating tumors which outgrows functional blood supply and results in regional oxygen deprivation. Overexpression of PIM1, a serine/threonine kinase, has been identified recently in human cancers. Knowledge on PIM1 in HCC is however, scarce. By immunohistochemical analysis on 56 human primary HCC samples, we observed overexpression of PIM1 in 39% of the cases. In two independent cohorts of paired primary and extra-hepatic metastatic HCC tissues, PIM1 expression was higher (p=0.002) in the extra-hepatic metastatic HCC tissues as compared with the corresponding primary HCCs. PIM1 was markedly up-regulated in multiple HCC cell lines in hypoxic condition (1% O2) versus normoxia (20% O2). Silencing of PIM1 suppressed HCC cell invasion in vitro as compared to non-target control, and decreased HCC cell proliferation in vitro and tumor growth and metastatic potential in vivo. Knockdown of PIM1 significantly reduced glucose uptake by HCC cells and was associated with decreased levels of p-AKT and key molecules in the glycolytic pathway. Taken together, PIM1 is up-regulated by hypoxia in HCC and promotes tumor growth and metastasis through facilitating cancer cell glycolysis. Targeting PIM1 may have potential role in the management of HCC.
Collapse
Affiliation(s)
| | - Carmen Chak-lui Wong
- Department of Pathology, The University of Hong Kong, Hong Kong, China.,State Key Laboratory for Liver Research, The University of Hong Kong, Hong Kong, China
| | | | - Alan Ka-lun Kai
- Department of Pathology, The University of Hong Kong, Hong Kong, China
| | | | - Iris Ming-jing Xu
- Department of Pathology, The University of Hong Kong, Hong Kong, China
| | - Irene Oi-lin Ng
- Department of Pathology, The University of Hong Kong, Hong Kong, China.,State Key Laboratory for Liver Research, The University of Hong Kong, Hong Kong, China
| | - Regina Cheuk-lam Lo
- Department of Pathology, The University of Hong Kong, Hong Kong, China.,State Key Laboratory for Liver Research, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
112
|
Liu Y, Zhao Y, Guo L. Effects of orexin A on glucose metabolism in human hepatocellular carcinoma in vitro via PI3K/Akt/mTOR-dependent and -independent mechanism. Mol Cell Endocrinol 2016; 420:208-16. [PMID: 26549689 DOI: 10.1016/j.mce.2015.11.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 10/31/2015] [Accepted: 11/02/2015] [Indexed: 12/20/2022]
Abstract
Orexins are hypothalamic neuropeptides that regulate food intake, energy homeostasis, reward system and sleep/wakefulness states. The purpose of this study was to investigate the effects of orexin A on glucose metabolism in human hepatocellular carcinoma cell line, Hep3B, and determine the possible mechanisms. Hep3B cells were incubated with different concentrations of orexin A (10(-9)-10(-7) M) in vitro in the presence or absence of the orexin receptor 1 (OX1R) inhibitor (SB334867), Akt inhibitor (PF-04691502) and mammalian target of rapamycin (mTOR) inhibitor (temsirolimus). Subsequently, OX1R protein expression, glucose transporter 1 (GLUT1) expression, glucose uptake, the mRNA expression of lactate dehydrogenase (LDHA), pyruvate dehydrogenase kinase 1 (PDK1) and pyruvate dehydrogenase B (PDHB), lactate generation and mitochondrial pyruvate dehydrogenase (PDH) enzyme activity were measured. The activity of phosphoinositide 3-kinase (PI3K)/Akt/mTOR signaling was also determined. OX1R was expressed in hepatoma tissues and Hep3B cells. Stimulation of the Hep3B cells with orexin A resulted in a dose-dependent increase of GLUT1 expression and glucose uptake, which was associated with the activation of PI3K/Akt/mTOR pathway. Further, orexin A increased PDHB expression and PDH enzyme activity, decreased LDHA, PDK1 mRNA levels and lactate generation independent of PI3K/Akt/mTOR pathway. Our results demonstrated that orexin A directed the cellular metabolism towards mitochondrial glucose oxidation rather than glycolysis. These findings provide functional evidence of the metabolic actions of orexin A in hepatocellular carcinoma cells.
Collapse
Affiliation(s)
- Yuanyuan Liu
- Department of Endocrinology, First Affiliated Hospital, China Medical University, Shenyang, Liaoning, 110001, PR China
| | - Yuyan Zhao
- Department of Endocrinology, First Affiliated Hospital, China Medical University, Shenyang, Liaoning, 110001, PR China
| | - Lei Guo
- Department of Orthopedic Surgery, First Affiliated Hospital, China Medical University, Shenyang, Liaoning, 110001, PR China.
| |
Collapse
|
113
|
Peng C, Kaščáková S, Chiappini F, Olaya N, Sandt C, Yousef I, Samuel D, Dumas P, Guettier C, Le Naour F. Discrimination of cirrhotic nodules, dysplastic lesions and hepatocellular carcinoma by their vibrational signature. J Transl Med 2016; 14:9. [PMID: 26754490 PMCID: PMC4710034 DOI: 10.1186/s12967-016-0763-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 01/02/2016] [Indexed: 01/14/2023] Open
Abstract
Background Hepatocarcinogenesis is a multistep process characterized in patients with chronic liver diseases by a spectrum of hepatic nodules that mark the progression from regenerative nodules to dysplastic lesions followed by hepatocellular carcinoma (HCC). The differential diagnosis between precancerous dysplastic nodules and early HCC still represents a challenge for both radiologists and pathologists. We addressed the potential of Fourier transform-infrared (FTIR) microspectroscopy for grading cirrhotic nodules on frozen tissue sections. Methods The study was focused on 39 surgical specimens including normal livers (n = 11), dysplastic nodules (n = 6), early HCC (n = 1), progressed HCC on alcoholic cirrhosis (n = 10) or hepatitis C virus cirrhosis (n = 11). The use of the bright infrared source emitted by the synchrotron radiation allowed investigating the biochemical composition at the cellular level. Chemical mapping on whole tissue sections was further performed using a FTIR microscope equipped with a laboratory-based infrared source. The variance was addressed by principal component analysis. Results Profound alterations of the biochemical composition of the pathological liver were demonstrated by FTIR microspectroscopy. Indeed, dramatic changes were observed in lipids, proteins and sugars highlighting the metabolic reprogramming in carcinogenesis. Quantifiable spectral markers were characterized by calculating ratios of areas under specific bands along the infrared spectrum. These markers allowed the discrimination of cirrhotic nodules, dysplastic lesions and HCC. Finally, the spectral markers can be measured using a laboratory FTIR microscope that may be easily implemented at the hospital. Conclusion Metabolic reprogramming in liver carcinogenesis can constitute a signature easily detectable using FTIR microspectroscopy for the diagnosis of precancerous and cancerous lesions. Electronic supplementary material The online version of this article (doi:10.1186/s12967-016-0763-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chengyuan Peng
- Inserm, Unité 1193, 94800, Villejuif, France. .,Univ Paris-Sud, UMR-S1193, 94800, Villejuif, France.
| | - Slávka Kaščáková
- Inserm, Unité 1193, 94800, Villejuif, France. .,Univ Paris-Sud, UMR-S1193, 94800, Villejuif, France.
| | - Franck Chiappini
- Inserm, Unité 1193, 94800, Villejuif, France. .,Univ Paris-Sud, UMR-S1193, 94800, Villejuif, France.
| | - Natalia Olaya
- Instituto Nacional de Cancerologia, Bogota, Colombia.
| | | | | | - Didier Samuel
- Inserm, Unité 1193, 94800, Villejuif, France. .,Univ Paris-Sud, UMR-S1193, 94800, Villejuif, France. .,Centre Hépato-Biliaire, AP-HP Hôpital Paul Brousse, 94800, Villejuif, France.
| | - Paul Dumas
- SOLEIL Synchrotron, 91192, Gif sur Yvette, France.
| | - Catherine Guettier
- Inserm, Unité 1193, 94800, Villejuif, France. .,Univ Paris-Sud, UMR-S1193, 94800, Villejuif, France. .,Service d'Anatomopathologie, AP-HP Hôpital Bicêtre, 94275, Le Kremlin-Bicêtre, France.
| | - François Le Naour
- Inserm, Unité 1193, 94800, Villejuif, France. .,Univ Paris-Sud, UMR-S1193, 94800, Villejuif, France.
| |
Collapse
|
114
|
Deng D, Yan N. GLUT, SGLT, and SWEET: Structural and mechanistic investigations of the glucose transporters. Protein Sci 2016; 25:546-58. [PMID: 26650681 DOI: 10.1002/pro.2858] [Citation(s) in RCA: 195] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 11/20/2015] [Accepted: 12/01/2015] [Indexed: 12/12/2022]
Abstract
Glucose is the primary fuel to life on earth. Cellular uptake of glucose is a fundamental process for metabolism, growth, and homeostasis. Three families of secondary glucose transporters have been identified in human, including the major facilitator superfamily glucose facilitators GLUTs, the sodium-driven glucose symporters SGLTs, and the recently identified SWEETs. Structures of representative members or their prokaryotic homologs of all three families were obtained. This review focuses on the recent advances in the structural elucidation of the glucose transporters and the mechanistic insights derived from these structures, including the molecular basis for substrate recognition, alternating access, and stoichiometric coupling of co-transport.
Collapse
Affiliation(s)
- Dong Deng
- State Key Laboratory of Bio-Membrane and Membrane Biotechnology, Center for Structural Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences and School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Nieng Yan
- State Key Laboratory of Bio-Membrane and Membrane Biotechnology, Center for Structural Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences and School of Medicine, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
115
|
RRAD inhibits aerobic glycolysis, invasion, and migration and is associated with poor prognosis in hepatocellular carcinoma. Tumour Biol 2015; 37:5097-105. [PMID: 26546438 DOI: 10.1007/s13277-015-4329-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 10/26/2015] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most prevalent and lethal cancer worldwide. However, the mechanism underlying the HCC development remains unclear. Ras-related associated with diabetes (RRAD) is a small Ras-related GTPase which has been implicated in metabolic disease and several types of cancer, yet its functions in HCC remain unknown. A tissue microarray constructed by 90 paired HCC tissues and adjacent non-cancerous liver tissues was used to examine the protein levels of RRAD, and the messenger RNA (mRNA) expression of RRAD was also detected in a subset of this cohort. The prognostic significance of RRAD was estimated by the Kaplan-Meier analysis and Cox regression. The glucose utilization assay and lactate production assay were performed to measure the role of RRAD in HCC glycolysis. The effect of RRAD in HCC invasion and metastasis was analyzed by transwell assays. Our results suggested that the expression of RRAD was downregulated in HCC tissues compared to the adjacent non-tumorous liver tissues both in mRNA and protein levels and lower RRAD expression served as an independent prognostic indicator for the survival of HCC patients. Moreover, RRAD inhibited hepatoma cell aerobic glycolysis by negatively regulating the expression of glucose transporter 1 (GLUT1) and hexokinase II (HK-II). In addition, RRAD inhibition dramatically increased hepatoma cell invasion and metastasis. In conclusion, our study revealed that RRAD expression was decreased in HCC tumor tissues and predicted poor clinical outcome for HCC patients and played an important role in regulating aerobic glycolysis and cell invasion and metastasis and may represent potential targets for improving the treatment of HCC.
Collapse
|
116
|
Koch A, Lang SA, Wild PJ, Gantner S, Mahli A, Spanier G, Berneburg M, Müller M, Bosserhoff AK, Hellerbrand C. Glucose transporter isoform 1 expression enhances metastasis of malignant melanoma cells. Oncotarget 2015; 6:32748-60. [PMID: 26293674 PMCID: PMC4741727 DOI: 10.18632/oncotarget.4977] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 07/11/2015] [Indexed: 12/29/2022] Open
Abstract
The glucose transporter isoform 1 (GLUT1; SLC2A1) is a key rate-limiting factor in the transport of glucose into cancer cells. Enhanced GLUT1 expression and accelerated glycolysis have been found to promote aggressive growth in a range of tumor entities. However, it was unknown whether GLUT1 directly impacts metastasis. Here, we aimed at analyzing the expression and function of GLUT1 in malignant melanoma. Immunohistochemical analysis of 78 primary human melanomas on a tissue micro array showed that GLUT1 expression significantly correlated with the mitotic activity and a poor survival. To determine the functional role of GLUT1 in melanoma, we stably suppressed GLUT1 in the murine melanoma cell line B16 with shRNA. GLUT1 suppressed melanoma cells revealed significantly reduced proliferation, apoptosis resistance, migratory activity and matrix metalloproteinase 2 (MMP2) expression. In a syngeneic murine model of hepatic metastasis, GLUT1-suppressed cells formed significantly less metastases and showed increased apoptosis compared to metastases formed by control cells. Treatment of four different human melanoma cell lines with a pharmacological GLUT1 inhibitor caused a dose-dependent reduction of proliferation, apoptosis resistance, migratory activity and MMP2 expression. Analysis of MAPK signal pathways showed that GLUT1 inhibition significantly decreased JNK activation, which regulates a wide range of targets in the metastatic cascade. In summary, our study provides functional evidence that enhanced GLUT1 expression in melanoma cells favors their metastatic behavior. These findings specify GLUT1 as an attractive therapeutic target and prognostic marker for this highly aggressive tumor.
Collapse
Affiliation(s)
- Andreas Koch
- Department of Internal Medicine I, University Hospital Regensburg, Germany
| | - Sven Arke Lang
- Department of Surgery, University Hospital Regensburg, Germany
| | | | - Susanne Gantner
- Department of Dermatology, University Hospital Regensburg, Germany
| | - Abdo Mahli
- Department of Internal Medicine I, University Hospital Regensburg, Germany
| | - Gerrit Spanier
- Department of Cranio-Maxillo-Facial Surgery, University Hospital Regensburg, Germany
| | - Mark Berneburg
- Department of Dermatology, University Hospital Regensburg, Germany
| | - Martina Müller
- Department of Internal Medicine I, University Hospital Regensburg, Germany
| | | | - Claus Hellerbrand
- Department of Internal Medicine I, University Hospital Regensburg, Germany
| |
Collapse
|
117
|
Brito AF, Abrantes AM, Ribeiro M, Oliveira R, Casalta-Lopes J, Gonçalves AC, Sarmento-Ribeiro AB, Tralhão JG, Botelho MF. Fluorine-18 Fluorodeoxyglucose Uptake in Hepatocellular Carcinoma: Correlation with Glucose Transporters and p53 Expression. J Clin Exp Hepatol 2015; 5:183-9. [PMID: 26628835 PMCID: PMC4632095 DOI: 10.1016/j.jceh.2015.05.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 05/25/2015] [Indexed: 02/07/2023] Open
Abstract
INTRODUCTION Hepatocellular Carcinoma (HCC) is one of most lethal cancers worldwide. The prognosis is very poor and therapeutic options are limited. The aim of this study was to determine the correlation of the [(18)F]FDG uptake profile of three HCC cell lines with p53 and glucose transporters (GLUTs) 1, 2, 3, 5 and 12 expression and with the glucose level present in the cell culture medium. METHODS Cell lines used are HepG2 (wp53), HuH7 (overexpress p53) and Hep3B2.1-7 (p53null). An immunocytochemical analysis was performed to evaluate p53 expression. Through uptake studies were analyzed the [(18)F]FDG uptake profiles of all cell lines under study. The expression of GLUTs were quantified by flow cytometry. The [(18)F]FDG uptake studies GLUTs expression analysis were performed on cells that grew in a high and low glucose medium in order to determine the effect of glucose concentration on GLUTs expression and on [(18)F]FDG uptake. RESULTS Immunocytochemical analysis confirmed the p53 expression profiles of all cell lines. It was found out that for all cell lines, [(18)F]FDG uptake is higher when cells grow in low glucose medium, however, the glucose level doesn't affect mostly the GLUTs expression. The Hep3B2.1-7 (p53null) is always the one that have higher [(18)F]FDG uptake. It was found that not always GLUT1 and GLUT3 are the most expressed by these cell lines. CONCLUSIONS Our results shown that the p53 expression influences [(18)F]FDG uptake. This suggests that [(18)F]FDG may be used in HCC diagnosis, and may even provide some information about the genetic profile of the tumor.
Collapse
Affiliation(s)
- Ana F. Brito
- Biophysics Unit, Faculty of Medicine of University of Coimbra, Coimbra, Portugal,Center of Investigation on Environmental, Genetics and Oncobiology (CIMAGO), Faculty of Medicine of University of Coimbra, Coimbra, Portugal,CNC.IBILI, University of Coimbra, Coimbra, Portugal,Address for correspondence: Ana F. Brito, Biophysics Unit, Faculty of Medicine of University of Coimbra, Pólo III – Pólo das Ciências da Saúde, Azinhaga de Santa Comba, Celas. 3000-548 Coimbra, Portugal. Tel.: +351 239480200; fax: +351 239480217.
| | - Ana M. Abrantes
- Biophysics Unit, Faculty of Medicine of University of Coimbra, Coimbra, Portugal,Center of Investigation on Environmental, Genetics and Oncobiology (CIMAGO), Faculty of Medicine of University of Coimbra, Coimbra, Portugal
| | - Marina Ribeiro
- Biophysics Unit, Faculty of Medicine of University of Coimbra, Coimbra, Portugal,Faculty of Sciences and Technology of University of Coimbra, Coimbra, Portugal
| | - Rui Oliveira
- Biophysics Unit, Faculty of Medicine of University of Coimbra, Coimbra, Portugal,Center of Investigation on Environmental, Genetics and Oncobiology (CIMAGO), Faculty of Medicine of University of Coimbra, Coimbra, Portugal,Anatomical Pathology Department, CHUC, Coimbra, Portugal
| | - João Casalta-Lopes
- Biophysics Unit, Faculty of Medicine of University of Coimbra, Coimbra, Portugal,Center of Investigation on Environmental, Genetics and Oncobiology (CIMAGO), Faculty of Medicine of University of Coimbra, Coimbra, Portugal
| | - Ana C. Gonçalves
- Center of Investigation on Environmental, Genetics and Oncobiology (CIMAGO), Faculty of Medicine of University of Coimbra, Coimbra, Portugal,CNC.IBILI, University of Coimbra, Coimbra, Portugal,Applied Molecular Biology and Hematology Group, Faculty of Medicine of University of Coimbra, Coimbra, Portugal
| | - Ana B. Sarmento-Ribeiro
- Center of Investigation on Environmental, Genetics and Oncobiology (CIMAGO), Faculty of Medicine of University of Coimbra, Coimbra, Portugal,CNC.IBILI, University of Coimbra, Coimbra, Portugal,Applied Molecular Biology and Hematology Group, Faculty of Medicine of University of Coimbra, Coimbra, Portugal
| | - José G. Tralhão
- Biophysics Unit, Faculty of Medicine of University of Coimbra, Coimbra, Portugal,Center of Investigation on Environmental, Genetics and Oncobiology (CIMAGO), Faculty of Medicine of University of Coimbra, Coimbra, Portugal,Surgical Department A, CHUC, Coimbra, Portugal
| | - Maria F. Botelho
- Biophysics Unit, Faculty of Medicine of University of Coimbra, Coimbra, Portugal,Center of Investigation on Environmental, Genetics and Oncobiology (CIMAGO), Faculty of Medicine of University of Coimbra, Coimbra, Portugal,CNC.IBILI, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
118
|
Deng D, Sun P, Yan C, Ke M, Jiang X, Xiong L, Ren W, Hirata K, Yamamoto M, Fan S, Yan N. Molecular basis of ligand recognition and transport by glucose transporters. Nature 2015; 526:391-6. [DOI: 10.1038/nature14655] [Citation(s) in RCA: 255] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 06/12/2015] [Indexed: 01/20/2023]
|
119
|
Chigaev A. Does aberrant membrane transport contribute to poor outcome in adult acute myeloid leukemia? Front Pharmacol 2015; 6:134. [PMID: 26191006 PMCID: PMC4489100 DOI: 10.3389/fphar.2015.00134] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 06/15/2015] [Indexed: 12/31/2022] Open
Abstract
Acute myeloid leukemia in adults is a highly heterogeneous disease. Gene expression profiling performed using unsupervised algorithms can be used to distinguish specific groups of patients within a large patient cohort. The identified gene expression signatures can offer insights into underlying physiological mechanisms of disease pathogenesis. Here, the analysis of several related gene expression clusters associated with poor outcome, worst overall survival and highest rates of resistant disease and obtained from the patients at the time of diagnosis or from previously untreated individuals is presented. Surprisingly, these gene clusters appear to be enriched for genes corresponding to proteins involved in transport across membranes (transporters, carriers and channels). Several ideas describing the possible relationship of membrane transport activity and leukemic cell biology, including the "Warburg effect," the specific role of chloride ion transport, direct "import" of metabolic energy through uptake of creatine phosphate, and modification of the bone marrow niche microenvironment are discussed.
Collapse
Affiliation(s)
- Alexandre Chigaev
- Department of Pathology and Cancer Center, University of New Mexico Health Sciences Center, University of New Mexico Albuquerque, NM, USA
| |
Collapse
|
120
|
Positron emission tomography diagnostic imaging in multidrug-resistant hepatocellular carcinoma: focus on 2-deoxy-2-(18F)Fluoro-D-Glucose. Mol Diagn Ther 2015; 18:495-504. [PMID: 24852041 DOI: 10.1007/s40291-014-0106-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the most lethal cancers worldwide. Surgical resection and liver transplantation are still the best options for treatment. Nevertheless, as the number of patients who may benefit from these therapies is limited, alternative therapies have been developed, including chemotherapy. However, partly due to the expression of multidrug resistance (MDR) proteins, it has been found that HCC is a highly chemoresistant tumor. The major family of MDR proteins is the ATP-binding cassette (ABC) transporter superfamily, which includes P-glycoprotein (Pgp) and MDR-associated protein 1 (MRP1). Positron emission tomography using the radiolabeled analog of glucose, 2-deoxy-2-((18)F)fluoro-D-glucose ([(18)F]FDG), has been used in diagnostic imaging of various types of tumors. Clinical studies are inconsistent but experimental studies have shown that [(18)F]FDG uptake is associated with tumor grade and is inversely proportional to Pgp expression in HCC. These studies unveil that [(18)F]FDG can be a substrate of Pgp, although that relationship remains unclear. This review sums up the relationship between MDR expression in HCC, and [(18)F]FDG uptake by tumor cells, showing that this radiopharmaceutical may provide a useful tool for the study of chemoresistance in HCC, and that the use of this marker may contribute to the therapeutic choice on this highly aggressive tumor.
Collapse
|
121
|
Sun P, Hu JW, Xiong WJ, Mi J. miR-186 regulates glycolysis through Glut1 during the formation of cancer-associated fibroblasts. Asian Pac J Cancer Prev 2015; 15:4245-50. [PMID: 24935378 DOI: 10.7314/apjcp.2014.15.10.4245] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Emerging evidence has suggested that glycolysis is enhanced in cancer-associated fibroblasts (CAF), and miR-186 is downregulated during the CAF formation. However, it is not clear whether miR-186 is involved in the regulation of glycolysis and what the role of miR-186 plays during the CAF formation. In this study, quantitative PCR analysises show miR-186 is downregulated during the CAF formation. Moreover, miR-186 targets the 3' UTR of Glut1, and its overexpression results in the degradation of Glut1 mRNA, which eventually reduces the level of Glut1 protein. On the other hand, knockdown of miR-186 increased the expression of Glut1. Both time course and dose response experiments also demonstrated that the protein and mRNA levels of Glut1 increase during CAF formation, according to Western blot and quantitative PCR analyses, respectively. Most importantly, besides the regulation on cell cycle progression, miR-186 regulates glucose uptake and lactate production which is mediated by Glut1. These observations suggest that miR-186 plays important roles in glycolysis regulation as well as cell cycle checkpoint activation.
Collapse
Affiliation(s)
- Pan Sun
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, China E-mail : ,
| | | | | | | |
Collapse
|
122
|
Teng CF, Hsieh WC, Wu HC, Lin YJ, Tsai HW, Huang W, Su IJ. Hepatitis B Virus Pre-S2 Mutant Induces Aerobic Glycolysis through Mammalian Target of Rapamycin Signal Cascade. PLoS One 2015; 10:e0122373. [PMID: 25909713 PMCID: PMC4409318 DOI: 10.1371/journal.pone.0122373] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 02/13/2015] [Indexed: 12/11/2022] Open
Abstract
Hepatitis B virus (HBV) pre-S2 mutant can induce hepatocellular carcinoma (HCC) via the induction of endoplasmic reticulum stress to activate mammalian target of rapamycin (MTOR) signaling. The association of metabolic syndrome with HBV-related HCC raises the possibility that pre-S2 mutant-induced MTOR activation may drive the development of metabolic disorders to promote tumorigenesis in chronic HBV infection. To address this issue, glucose metabolism and gene expression profiles were analyzed in transgenic mice livers harboring pre-S2 mutant and in an in vitro culture system. The pre-S2 mutant transgenic HCCs showed glycogen depletion. The pre-S2 mutant initiated an MTOR-dependent glycolytic pathway, involving the eukaryotic translation initiation factor 4E binding protein 1 (EIF4EBP1), Yin Yang 1 (YY1), and myelocytomatosis oncogene (MYC) to activate the solute carrier family 2 (facilitated glucose transporter), member 1 (SLC2A1), contributing to aberrant glucose uptake and lactate production at the advanced stage of pre-S2 mutant transgenic tumorigenesis. Such a glycolysis-associated MTOR signal cascade was validated in human HBV-related HCC tissues and shown to mediate the inhibitory effect of a model of combined resveratrol and silymarin product on tumor growth. Our results provide the mechanism of pre-S2 mutant-induced MTOR activation in the metabolic switch in HBV tumorigenesis. Chemoprevention can be designed along this line to prevent HCC development in high-risk HBV carriers.
Collapse
Affiliation(s)
- Chiao-Fang Teng
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Tainan, Taiwan
| | - Wen-Chuan Hsieh
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Tainan, Taiwan
| | - Han-Chieh Wu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Tainan, Taiwan
| | - Yih-Jyh Lin
- Department of Surgery, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Hung-Wen Tsai
- Department of Pathology, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Wenya Huang
- Department of Medical Laboratory Science and Biotechnology, National Cheng Kung University College of Medicine, Tainan, Taiwan
| | - Ih-Jen Su
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Tainan, Taiwan
- Department of Surgery, National Cheng Kung University Hospital, Tainan, Taiwan
- Department of Pathology, National Cheng Kung University Hospital, Tainan, Taiwan
- * E-mail:
| |
Collapse
|
123
|
Reikvam H, Hoang TTV, Bruserud Ø. Emerging therapeutic targets in human acute myeloid leukemia (part 2) – bromodomain inhibition should be considered as a possible strategy for various patient subsets. Expert Rev Hematol 2015; 8:315-27. [DOI: 10.1586/17474086.2015.1036025] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
124
|
Reikvam H, Hauge M, Brenner AK, Hatfield KJ, Bruserud Ø. Emerging therapeutic targets for the treatment of human acute myeloid leukemia (part 1) - gene transcription, cell cycle regulation, metabolism and intercellular communication. Expert Rev Hematol 2015; 8:299-313. [PMID: 25835070 DOI: 10.1586/17474086.2015.1032935] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Human acute myeloid leukemia is a heterogeneous disease and the effect of therapeutic targeting of specific molecular mechanisms will probably vary between patient subsets. Cell cycle regulators are among the emerging targets (e.g., aurora and polo-like kinases, cyclin-dependent kinases). Inhibition of communication between acute myeloid leukemia and stromal cells is also considered; among the most promising of these strategies are inhibition of hedgehog-initiated, CXCR4-CXCL12 and Axl-Gas6 signaling. Finally, targeting of energy and protein metabolism is considered, the most promising strategy being inhibition of isocitrate dehydrogenase in patients with IDH mutations. Thus, several strategies are now considered, and a major common challenge for all of them is to clarify how they should be combined with each other or with conventional chemotherapy, and whether their use should be limited to certain subsets of patients.
Collapse
Affiliation(s)
- Håkon Reikvam
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | | | | | | | | |
Collapse
|
125
|
Guo Y, Zhang Y, Li J, Zhang Y, Lu Y, Jiang X, He X, Ma H, An S, Jiang C. Cell microenvironment-controlled antitumor drug releasing-nanomicelles for GLUT1-targeting hepatocellular carcinoma therapy. ACS APPLIED MATERIALS & INTERFACES 2015; 7:5444-5453. [PMID: 25686400 DOI: 10.1021/am5091462] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
In clinical therapy, the poor prognosis of hepatocellular carcinoma (HCC) is mainly attributed to the failure of chemotherapeutical agents to accumulate in tumor as well as their serious systemic toxicity. In this work, we developed actively tumor-targeting trilayer micelles with microenvironment-sensitive cross-links as a novel nanocarrier for HCC therapy. These micelles comprised biodegradable PEG-pLys-pPhe polymers, in which pLys could react with a disulfide-containing agent to form redox-responsive cross-links. In vitro drug release and pharmacokinetics studies showed that these cross-links were stable in physiological condition whereas cleaved once internalized into cells due to the high level of glutathione, resulting in facilitated intracellular doxorubicin release. In addition, dehydroascorbic acid (DHAA) was decorated on the surface of micelles for specific recognition of tumor cells via GLUT1, a member of glucose transporter family overexpressed on hepatocarcinoma cells. Moreover, DHAA exhibited a "one-way" continuous accumulation within tumor cells. Cellular uptake and in vivo imaging studies proved that these micelles had remarkable targeting property toward hepatocarcinoma cells and tumor. Enhanced anti-HCC efficacy of the micelles was also confirmed both in vitro and in vivo. Therefore, this micellar system may be a potential platform of chemotherapeutics delivery for HCC therapy.
Collapse
Affiliation(s)
- Yubo Guo
- Key Laboratory of Smart Drug Delivery, Ministry of Education, Department of Pharmaceutics, School of Pharmacy, Fudan University , 826 Zhangheng Road, Shanghai 201203, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
126
|
Huang C, Qin H, Qian J, Zhang J, Zhao S, Changyi Y, Li B, Zhang J, Zhu J, Xing D, Yang S, Li C. Multi-parametric imaging of the invasiveness-permissive acidic microenvironment in human glioma xenografts. RSC Adv 2015. [DOI: 10.1039/c5ra07685d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Non-invasive multi-parametric imaging demonstrated the positive correlation between the invasiveness and extracellular acidity in glioma xenografts.
Collapse
|
127
|
Kubo T, Shimose S, Fujimori J, Furuta T, Arihiro K, Ochi M. Does expression of glucose transporter protein-1 relate to prognosis and angiogenesis in osteosarcoma? Clin Orthop Relat Res 2015; 473:305-10. [PMID: 25193692 PMCID: PMC4390948 DOI: 10.1007/s11999-014-3910-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 08/19/2014] [Indexed: 01/31/2023]
Abstract
BACKGROUND The survival of patients who present with nonmetastatic extremity osteosarcoma has dramatically improved, but there are some patients who do not respond to chemotherapy. The ability to identify patients with a poorer prognosis might allow us to target different therapy for these patients. Glucose transporter protein-1 (Glut-1), one of the key factors in glucose metabolism, has been reported to be an independent prognostic factor in various tumors. However, little is known about the role of the Glut-1 pathway in osteosarcoma. QUESTIONS/PURPOSES We asked (1) if Glut-1 expression is a prognostic marker for survival in patients with osteosarcoma, and (2) if there is a relationship between Glut-1 expression and tumor angiogenesis. PATIENTS AND METHODS Thirty-seven patients with resectable high-grade osteosarcomas treated between 1982 and 2007 were reviewed retrospectively. Patients were excluded if representative biopsy material and followup data were not available. The expression of Glut-1 and the number of CD34-positive microvessels for angiogenic activity were measured immunohistochemically. The median followup was 6 years 6 months (range, 11-211 months). Survival analyses were evaluated using the Kaplan-Meier method and the Cox proportional hazards model. The association between Glut-1 expression and microvessel density was analyzed using Student's t-test and chi-square test. For 12 (32.4%) of 37 patients with osteosarcoma, the expression of Glut-1 was positive, with four patients (10.8%) showing strong expression of Glut-1 protein. RESULTS The expression of Glut-1 correlated with a shorter disease-free survival period (relative risk, 20.13; 95% CI, 1.77-229.3; p=0.0016). The microvessel density mean value of positive Glut-1 expression (mean±SD, 26.5±19.4) was lower than that of negative expression (mean±SD, 46.4±35.3; Student's t-test, p=0.038). When more than 50 was defined as a high microvessel density, positive expression of Glut-1 was significantly associated with low microvessel density (chi-square test, p=0.049). CONCLUSIONS These findings indicate that Glut-1 is a potential predictor of survival in patients with osteosarcoma and that glucose metabolism may be negatively associated with angiogenesis. If substantiated in larger numbers of patients, these findings might stimulate the development of novel treatments for patients with a poorer prognosis. LEVEL OF EVIDENCE Level III, prognostic study. See the Instructions for Authors for a complete description of levels of evidence.
Collapse
Affiliation(s)
- Tadahiko Kubo
- Department of Orthopaedic Surgery, Graduate School of Biomedical Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan,
| | | | | | | | | | | |
Collapse
|
128
|
Song K, Li M, Xu XJ, Xuan L, Huang GN, Song XL, Liu QF. HIF-1α and GLUT1 gene expression is associated with chemoresistance of acute myeloid leukemia. Asian Pac J Cancer Prev 2014; 15:1823-9. [PMID: 24641416 DOI: 10.7314/apjcp.2014.15.4.1823] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
AIMS Much evidence suggests that increased glucose metabolism in tumor cells might contribute to the development of acquired chemoresistance. However, the molecular mechanisms are not fully clear. Therefore, we investigated a possible correlation of mRNA expression of HIF-1α and GLUT1 with chemoresistance in acute myeloid leukemia (AML). METHODS Bone marrow samples were obtained from newly diagnosed and relapsed AML (M3 exclusion) cases. RNA interference with short hairpin RNA (shRNA) was used to stably silence GLUT1 or HIF-1α gene expression in an AML cell line and HIF-1α and GLUT1 mRNA expression was measured by real-time quantitative polymerase chain reaction assay (qPCR). RESULTS High levels of HIF-1α and GLUT1 were associated with poor responsiveness to chemotherapy in AML. Down-regulation of the expression of GLUT1 by RNA interference obviously sensitized drug-resistant HL-60/ADR cells to adriamycin (ADR) in vitro, comparable with RNA interference for the HIF-1α gene. CONCLUSIONS Our data revealed that over-expression of HIF-1α and GLUT1 might play a role in the chemoresistance of AML. GLUT1 might be a potential target to reverse such drug resistance.
Collapse
Affiliation(s)
- Kui Song
- Department of Hematology, Nanfang Hospital of Southern Medical University, Guangzhou, China E-mail :
| | | | | | | | | | | | | |
Collapse
|
129
|
Shukla SK, Gebregiworgis T, Purohit V, Chaika NV, Gunda V, Radhakrishnan P, Mehla K, Pipinos II, Powers R, Yu F, Singh PK. Metabolic reprogramming induced by ketone bodies diminishes pancreatic cancer cachexia. Cancer Metab 2014; 2:18. [PMID: 25228990 PMCID: PMC4165433 DOI: 10.1186/2049-3002-2-18] [Citation(s) in RCA: 179] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 08/11/2014] [Indexed: 12/14/2022] Open
Abstract
Background Aberrant energy metabolism is a hallmark of cancer. To fulfill the increased energy requirements, tumor cells secrete cytokines/factors inducing muscle and fat degradation in cancer patients, a condition known as cancer cachexia. It accounts for nearly 20% of all cancer-related deaths. However, the mechanistic basis of cancer cachexia and therapies targeting cancer cachexia thus far remain elusive. A ketogenic diet, a high-fat and low-carbohydrate diet that elevates circulating levels of ketone bodies (i.e., acetoacetate, β-hydroxybutyrate, and acetone), serves as an alternative energy source. It has also been proposed that a ketogenic diet leads to systemic metabolic changes. Keeping in view the significant role of metabolic alterations in cancer, we hypothesized that a ketogenic diet may diminish glycolytic flux in tumor cells to alleviate cachexia syndrome and, hence, may provide an efficient therapeutic strategy. Results We observed reduced glycolytic flux in tumor cells upon treatment with ketone bodies. Ketone bodies also diminished glutamine uptake, overall ATP content, and survival in multiple pancreatic cancer cell lines, while inducing apoptosis. A decrease in levels of c-Myc, a metabolic master regulator, and its recruitment on glycolytic gene promoters, was in part responsible for the metabolic phenotype in tumor cells. Ketone body-induced intracellular metabolomic reprogramming in pancreatic cancer cells also leads to a significantly diminished cachexia in cell line models. Our mouse orthotopic xenograft models further confirmed the effect of a ketogenic diet in diminishing tumor growth and cachexia. Conclusions Thus, our studies demonstrate that the cachectic phenotype is in part due to metabolic alterations in tumor cells, which can be reverted by a ketogenic diet, causing reduced tumor growth and inhibition of muscle and body weight loss.
Collapse
Affiliation(s)
- Surendra K Shukla
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | | | - Vinee Purohit
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA ; Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Nina V Chaika
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Venugopal Gunda
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Prakash Radhakrishnan
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Kamiya Mehla
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Iraklis I Pipinos
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198, USA ; Department of Surgery, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Robert Powers
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Fang Yu
- Department of Biostatistics, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Pankaj K Singh
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA ; Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA ; Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA ; Department of Genetic Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
130
|
Different expression of glucose transporters in the progression of intrahepatic cholangiocarcinoma. Hum Pathol 2014; 45:1610-7. [DOI: 10.1016/j.humpath.2014.03.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 03/12/2014] [Accepted: 03/21/2014] [Indexed: 12/22/2022]
|
131
|
Deng D, Xu C, Sun P, Wu J, Yan C, Hu M, Yan N. Crystal structure of the human glucose transporter GLUT1. Nature 2014; 510:121-5. [PMID: 24847886 DOI: 10.1038/nature13306] [Citation(s) in RCA: 563] [Impact Index Per Article: 51.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Accepted: 04/01/2014] [Indexed: 12/11/2022]
Abstract
The glucose transporter GLUT1 catalyses facilitative diffusion of glucose into erythrocytes and is responsible for glucose supply to the brain and other organs. Dysfunctional mutations may lead to GLUT1 deficiency syndrome, whereas overexpression of GLUT1 is a prognostic indicator for cancer. Despite decades of investigation, the structure of GLUT1 remains unknown. Here we report the crystal structure of human GLUT1 at 3.2 Å resolution. The full-length protein, which has a canonical major facilitator superfamily fold, is captured in an inward-open conformation. This structure allows accurate mapping and potential mechanistic interpretation of disease-associated mutations in GLUT1. Structure-based analysis of these mutations provides an insight into the alternating access mechanism of GLUT1 and other members of the sugar porter subfamily. Structural comparison of the uniporter GLUT1 with its bacterial homologue XylE, a proton-coupled xylose symporter, allows examination of the transport mechanisms of both passive facilitators and active transporters.
Collapse
Affiliation(s)
- Dong Deng
- 1] State Key Laboratory of Bio-membrane and Membrane Biotechnology, Tsinghua University, Beijing 100084, China [2] Center for Structural Biology, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China [3] Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China [4]
| | - Chao Xu
- 1] State Key Laboratory of Bio-membrane and Membrane Biotechnology, Tsinghua University, Beijing 100084, China [2] Center for Structural Biology, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China [3] Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China [4]
| | - Pengcheng Sun
- 1] State Key Laboratory of Bio-membrane and Membrane Biotechnology, Tsinghua University, Beijing 100084, China [2] Center for Structural Biology, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China [3]
| | - Jianping Wu
- 1] State Key Laboratory of Bio-membrane and Membrane Biotechnology, Tsinghua University, Beijing 100084, China [2] Center for Structural Biology, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China [3] Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China [4]
| | - Chuangye Yan
- 1] State Key Laboratory of Bio-membrane and Membrane Biotechnology, Tsinghua University, Beijing 100084, China [2] Center for Structural Biology, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Mingxu Hu
- 1] State Key Laboratory of Bio-membrane and Membrane Biotechnology, Tsinghua University, Beijing 100084, China [2] Center for Structural Biology, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China [3] Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Nieng Yan
- 1] State Key Laboratory of Bio-membrane and Membrane Biotechnology, Tsinghua University, Beijing 100084, China [2] Center for Structural Biology, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China [3] Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
132
|
Alabi OD, Gunnink SM, Kuiper BD, Kerk SA, Braun E, Louters LL. Osthole activates glucose uptake but blocks full activation in L929 fibroblast cells, and inhibits uptake in HCLE cells. Life Sci 2014; 102:105-10. [PMID: 24657891 DOI: 10.1016/j.lfs.2014.03.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Revised: 03/04/2014] [Accepted: 03/10/2014] [Indexed: 12/20/2022]
Abstract
AIMS Osthole, a coumarin derivative, has been used in Chinese medicine and studies have suggested a potential use in treatment of diabetes and cancers. Therefore, we investigated the effects of osthole and other coumarins on GLUT1 activity in two cell lines that exclusively express GLUT1. MAIN METHODS We measured the magnitude and time frame of the effects of osthole and related coumarins on glucose uptake in two cells lines; L929 fibroblast cells which have low GLUT1 expression levels and low basal glucose uptake and HCLE cells which have high GLUT1 concentrations and high basal uptake. We also explored the effects of these coumarins in combination with other GLUT1 activators. KEY FINDINGS Osthole activates glucose uptake in L929 cells with a modest maximum 1.7-fold activation achieved by 50 μM with both activation and recovery occurring within minutes. However, osthole blocks full acute activation of glucose uptake by other, more robust activators. This behavior mimics the effects of other thiol reactive compounds and suggests that osthole is interacting with cysteine residues, possibly within GLUT1 itself. Coumarin, 7-hydroxycoumarin, and 7-methoxycoumarin, do not affect glucose uptake, which is consistent with the notion that the isoprenoid structure in osthole may be important to gain membrane access to GLUT1. In contrast to its effects in L929 cells, osthole inhibits basal glucose uptake in the more active HCLE cells. SIGNIFICANCE The differential effects of osthole in L929 and HCLE cells indicated that regulation of GLUT1 varies, likely depending on its membrane concentration.
Collapse
Affiliation(s)
- Ola D Alabi
- Department of Chemistry and Biochemistry, Calvin College, Grand Rapids, MI 49546, USA
| | - Stephen M Gunnink
- Department of Chemistry and Biochemistry, Calvin College, Grand Rapids, MI 49546, USA
| | - Benjamin D Kuiper
- Department of Chemistry and Biochemistry, Calvin College, Grand Rapids, MI 49546, USA
| | - Samuel A Kerk
- Department of Chemistry and Biochemistry, Calvin College, Grand Rapids, MI 49546, USA
| | - Emily Braun
- Department of Chemistry and Biochemistry, Calvin College, Grand Rapids, MI 49546, USA
| | - Larry L Louters
- Department of Chemistry and Biochemistry, Calvin College, Grand Rapids, MI 49546, USA.
| |
Collapse
|
133
|
Ma J, Liu W, Guo H, Li S, Cao W, Du X, Lei S, Hou W, Xiong L, Yao L, Li N, Li Y. N-myc downstream-regulated gene 2 expression is associated with glucose transport and correlated with prognosis in breast carcinoma. Breast Cancer Res 2014; 16:R27. [PMID: 24636131 PMCID: PMC4053222 DOI: 10.1186/bcr3628] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 03/11/2014] [Indexed: 01/01/2023] Open
Abstract
Introduction N-myc downstream-regulated gene 2 (NDRG2), a novel tumour suppressor and cell stress-related gene, is involved in many cell metabolic processes, such as hormone, ion and fluid metabolism. We investigated whether NDRG2 is involved in any glucose-dependent energy metabolism, as well as the nature of its correlation with breast carcinoma. Methods The correlations between NDRG2 expression and glucose transporter 1 (GLUT1) expression in clinical breast carcinoma tissues were analysed. The effects of NDRG2 on glucose uptake were assessed in breast cancer cells and xenograft tumours. The consequences of NDRG2-induced regulation of GLUT1 at the transcription and translation levels and the interaction between NDRG2 and GLUT1 were examined. Results Data derived from clinical breast carcinoma specimens revealed that (1) patients with high NDRG2 expression had better disease-free survival and overall survival than those with low NDRG2 expression and (2) NDRG2 expression was negatively correlated with GLUT1 expression in these breast carcinoma tissues. NDRG2 inhibited glucose uptake by promoting GLUT1 protein degradation without affecting GLUT1 transcription in both breast cancer cells and xenograft tumours. In addition, NDRG2 protein interacted and partly colocalised with GLUT1 protein in cell cytoplasm areas. Conclusions The results of our study support the notion that NDRG2 plays an important role in tumour glucose metabolism, in which GLUT1 is a likely candidate contributor to glucose uptake suppression and tumour growth. Targeting the actions of NDRG2 in cell glucose-dependent energy delivery may provide an attractive strategy for therapeutic intervention in human breast carcinoma.
Collapse
|
134
|
Zhang D, Wang Y, Dong L, Huang Y, Yuan J, Ben W, Yang Y, Ning N, Lu M, Guan Y. Therapeutic role of EF24 targeting glucose transporter 1-mediated metabolism and metastasis in ovarian cancer cells. Cancer Sci 2013; 104:1690-6. [PMID: 24112101 DOI: 10.1111/cas.12293] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 09/11/2013] [Accepted: 09/12/2013] [Indexed: 01/04/2023] Open
Abstract
Cancer cells require glucose to support their rapid growth through a process known as aerobic glycolysis, or the Warburg effect. As in ovarian cancer cells, increased metabolic activity and glucose concentration has been linked to aggressiveness of cancer. However, it is unclear as to whether targeting the glycolytic pathway may kill the malignant cells and likely have broad therapeutic implications against ovarian cancer metastasis. In the present research, we found that EF24, a HIF-1α inhibitor, could significantly block glucose uptake, the rate of glycolysis, and lactate production compared with vehicle treatment in SKOV-3, A2780 and OVCAR-3 cells. These results might possibly contribute to the further observation that EF24 could inhibit ovarian cancer cell migration and invasion from wound healing and Transwell assays. Furthermore, as an important mediator of glucose metabolism, glucose transporter 1 (Glut1) was found to contribute to the function of EF24 in both energy metabolism and metastasis. To examine the effect of EF24 and the mediated role of Glut1 in vivo in a xenograph subcutaneous tumor model, intraperitoneal metastasis and lung metastasis model were introduced. Our results indicated that EF24 treatment could inhibit tumor growth, intraperitoneal metastasis and lung metastasis of SKOV-3 cells, and Glut1 is a possible mediator for the role of EF24. In conclusion, our results highlight that an anti-cancer reagent with an inhibiting effect on energy metabolism could inhibit metastasis, and EF24 is a possible candidate for anti-metastasis therapeutic applications for ovarian cancer.
Collapse
Affiliation(s)
- Dandan Zhang
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
135
|
Tuccinardi T, Granchi C, Iegre J, Paterni I, Bertini S, Macchia M, Martinelli A, Qian Y, Chen X, Minutolo F. Oxime-based inhibitors of glucose transporter 1 displaying antiproliferative effects in cancer cells. Bioorg Med Chem Lett 2013; 23:6923-7. [PMID: 24200808 DOI: 10.1016/j.bmcl.2013.09.037] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 09/09/2013] [Accepted: 09/11/2013] [Indexed: 01/04/2023]
Abstract
An analysis of the main pharmacophoric features present in the still limited number of inhibitors of glucose transporter GLUT1 led to the identification of new oxime-based inhibitors, which proved to be able to efficiently hinder glucose uptake and cell growth in H1299 lung cancer cells. The most important interactions of a representative inhibitor were indicated by a novel computational model of GLUT1, which was purposely developed to explain these results and to provide useful indications for the design and the development of new and more efficient GLUT1 inhibitors.
Collapse
Affiliation(s)
- Tiziano Tuccinardi
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
136
|
Rask-Andersen M, Masuram S, Fredriksson R, Schiöth HB. Solute carriers as drug targets: current use, clinical trials and prospective. Mol Aspects Med 2013; 34:702-10. [PMID: 23506903 DOI: 10.1016/j.mam.2012.07.015] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Accepted: 05/28/2012] [Indexed: 11/18/2022]
Abstract
Solute carriers (SLCs) comprise a large family of membrane transporters responsible for the transmembrane transport of a wide variety of substrates such as inorganic ions, amino acids, neurotransmitters and sugars. Despite being the largest family of membrane transport proteins, SLCs have been relatively under-utilized as therapeutic drug targets by approved drugs. In this paper, we aim to catalogue therapeutic SLCs utilized by approved drugs or currently in clinical trials. By mining information on clinical trials from the Centerwatch.com "drugs in clinical trials database" we were able to identify potentially novel SLC drug targets currently under development. We also searched the literature for SLCs that have been discussed as future therapeutic drug targets. We find SLCs to be utilized as therapeutic targets in treatment of a wide variety of diseases and disorders, such as major depression, ADHD, osteoporosis and hypertension. Drugs targeting SLCs for treatment of diabetes, constipation and hypercholesterolaemia are currently in clinical trials. SLC drug targets have also been explored in clinical trials for cardioprotection after an ischemic event. SLCs are of particular interest as targets in antineoplastic treatment and for the targeted transport of cytotoxic drugs into tumors, e.g. via the glucose transporters GLUT1-5 and SGLT1-3.
Collapse
Affiliation(s)
- Mathias Rask-Andersen
- Department of Neuroscience, Functional Pharmacology, Uppsala University, BMC, Uppsala SE 75124, Sweden.
| | | | | | | |
Collapse
|
137
|
Lai JH, Jan HJ, Liu LW, Lee CC, Wang SG, Hueng DY, Cheng YY, Lee HM, Ma HI. Nodal regulates energy metabolism in glioma cells by inducing expression of hypoxia-inducible factor 1α. Neuro Oncol 2013; 15:1330-41. [PMID: 23911596 DOI: 10.1093/neuonc/not086] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND A shift in glucose metabolism from oxidative phosphorylation to anaerobic glycolysis is the biochemical hallmark of malignant cancer cells. METHODS In the present study, we demonstrated that Nodal stimulated the expression of glycolytic enzymes and decreased reliance on mitochondrial oxidative phosphorylation in human glioma cancer cells. The shift in glucose metabolism was mediated by induction of the hypoxia-inducible factor (HIF). RESULTS Nodal protein expression was shown to be correlated with expression levels of glucose transporter (Glut)-1, hexokinase (HK)-II, pyruvate dehydrogenase kinase (PDK)-1, the phosphorylation level of pyruvate dehydrogenase (PDH), glucose uptake, and lactate accumulation in human glioma cells. These effects were inversely correlated with mitochondrial oxygen consumption and ATP production. Knockdown of Nodal expression with specific small hairpin RNA reduced Glut-1, HK-II, and PDK-1 expressions and PDH phosphorylation. Nodal knockdown also reduced glucose uptake and lactate generation, which in turn increased mitochondrial membrane potential (Ψ), O2 utilization, and ATP synthesis. The ectopic expression of Nodal in low-expressing Nodal glioma cells resulted in the opposite results compared with those of Nodal knockdown glioma cells. Treatment of cells with recombinant Nodal increased HIF-1 expression, and this effect was regulated at the transcriptional level. Blockage of the Nodal receptor by a pharmacological inhibitor or Nodal knockdown in U87MG cells decreased HIF-1α expression. Furthermore, HIF-1α knockdown in U87MG cells decreased Glut-1, HK-II, and PDK-1 expressions and PDH phosphorylation, which were similar to results in Nodal knockdown cells. CONCLUSION Taken together, these results suggest that Nodal affects energy metabolism through HIF-1α.
Collapse
Affiliation(s)
- Jing-Huei Lai
- Corresponding Authors: Horng-Mo Lee, PhD, Department of Medical Laboratory Sciences and Biotechnology, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei 110, Taiwan. Hsin-I Ma, Department of Neurological Surgery, Tri-Service General Hospital, National Defense Medical Center, No.325, Sec.2, Chenggong Rd., Neihu District, Taipei 114, Taiwan, ROC
| | | | | | | | | | | | | | | | | |
Collapse
|
138
|
Costantini S, Di Bernardo G, Cammarota M, Castello G, Colonna G. Gene expression signature of human HepG2 cell line. Gene 2013; 518:335-345. [PMID: 23357223 DOI: 10.1016/j.gene.2012.12.106] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Revised: 12/21/2012] [Accepted: 12/24/2012] [Indexed: 01/12/2023]
Abstract
Hepatocellular carcinoma (HCC) is the fifth most common cancer worldwide and is associated with various clinico-pathological characteristics such as genetic mutations and viral infections. Therefore, numerous laboratories look out for identifying always new putative markers for the improvement of HCC diagnosis/prognosis. Many molecular profiling studies investigated gene expression changes related to HCC. HepG2 represents a pure cell line of human liver carcinoma, often used as HCC model due to the absence of viral infection. In this study we compare gene expression profiles associated with HepG2 (as HCC model) and normal hepatocyte cells by microarray technology. Hierarchical cluster analysis of genes evidenced that 2646 genes significantly down-regulated in HepG2 cells compared to hepatocytes whereas a further 3586 genes significantly up-regulated. By using the Ingenuity Pathway Analysis (IPA) program, we have classified the genes that were differently expressed and studied the functional networks correlating these genes in the complete human interactome. Moreover, to confirm the differentially expressed genes as well as the reliability of our microarray data, we performed a quantitative Real time RT-PCR analysis on 9 up-regulated and 11 down-regulated genes, respectively. In conclusion this work i) provides a gene signature of human hepatoma cells showing genes that change their expression as a consequence of liver cancer in the absence of any genetic mutations or viral infection, ii) evidences new differently expressed genes found in our signature compared to previous published studies and iii) suggests some genes on which to focus future studies to understand if they can be used to improve the HCC prognosis/diagnosis.
Collapse
Affiliation(s)
- S Costantini
- INT Pascale, Cancer Research Centre of Mercogliano, Mercogliano, Italy.
| | | | | | | | | |
Collapse
|
139
|
Szablewski L. Expression of glucose transporters in cancers. Biochim Biophys Acta Rev Cancer 2013; 1835:164-9. [DOI: 10.1016/j.bbcan.2012.12.004] [Citation(s) in RCA: 253] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 12/09/2012] [Accepted: 12/10/2012] [Indexed: 12/12/2022]
|
140
|
Abstract
PURPOSE OF REVIEW Transformed cells exhibit a high rate of glucose consumption beyond that necessary for ATP synthesis. Glucose aids in the generation of biomass and regulates cellular signaling critical for oncogenic progression. A key rate-limiting step in glucose utilization is the transport of glucose across the plasma membrane. This review will highlight key glucose transporters (GLUTs) and current therapies targeting this class of proteins. RECENT FINDINGS GLUTs, enabling the facilitative entry of glucose into a cell, are increasingly found to be deregulated in cancer. Although cancer-specific expression patterns for GLUTs are being identified, comprehensive analyses substantiating a role for individual GLUTs are still required. Studies defining GLUTs as being rate-limiting in specific tumor contexts, the identification of GLUT1 inhibitors via synthetic lethality screens, novel engagement of the insulin-responsive GLUT4 in myeloma and identification of GLUT9 being a urate transporter, are key advances underscoring the need for continued investigation of this large and enigmatic class of proteins. SUMMARY Tumor cells exhibit elevated levels of glucose uptake, a phenomenon that has been capitalized upon for the prognostic and diagnostic imaging of a wide range of cancers using radio-labeled glucose analogs. We have, however, not yet been able to target glucose entry in a tumor cell-specific manner for therapy. GLUTs have been identified as rate-limiting in specific tumor contexts. The identification and targeting of tumor-specific GLUTs provide a promising approach to block glucose-regulated metabolism and signaling more comprehensively.
Collapse
|
141
|
Cancer driver-passenger distinction via sporadic human and dog cancer comparison: a proof-of-principle study with colorectal cancer. Oncogene 2013; 33:814-22. [PMID: 23416983 PMCID: PMC3932186 DOI: 10.1038/onc.2013.17] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 11/20/2012] [Accepted: 12/25/2012] [Indexed: 01/09/2023]
Abstract
Herein we report a proof of principle study illustrating a novel dog-human comparison strategy that addresses a central aim of cancer research, namely cancer driver–passenger distinction. We previously demonstrated that sporadic canine colorectal cancers (CRCs) share similar molecular pathogenesis mechanisms as their human counterparts. In this study, we compared the genome-wide copy number abnormalities between 29 human- and 10 canine sporadic CRCs. This led to the identification of 73 driver candidate genes (DCGs), altered in both species and with 27 from the whole genome and 46 from dog-human genomic rearrangement breakpoint (GRB) regions, as well as 38 passenger candidate genes (PCGs), altered in humans only and located in GRB regions. We noted that DCGs significantly differ from PCGs in every analysis conducted to assess their cancer relevance and biological functions. Importantly, while PCGs are not enriched in any specific functions, DCGs possess significantly enhanced functionality closely associated with cell proliferation and death regulation, as well as with epithelial cell apicobasal polarity establishment/maintenance. These observations support the notion that, in sporadic CRCs of both species, cell polarity genes not only contribute in preventing cancer cell invasion and spreading, but also likely serve as tumor suppressors by modulating cell growth. This pilot study validates our novel strategy and has uncovered four new potential cell polarity and colorectal tumor suppressor genes (RASA3, NUPL1, DENND5A, and AVL9). Expansion of this study would make more driver-passenger distinctions for cancers with large genomic amplifications or deletions, and address key questions regarding the relationship between cancer pathogenesis and epithelial cell polarity control in mammals.
Collapse
|
142
|
Yan N. Structural advances for the major facilitator superfamily (MFS) transporters. Trends Biochem Sci 2013; 38:151-9. [PMID: 23403214 DOI: 10.1016/j.tibs.2013.01.003] [Citation(s) in RCA: 268] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 01/03/2013] [Accepted: 01/07/2013] [Indexed: 01/18/2023]
Abstract
The major facilitator superfamily (MFS) is one of the largest groups of secondary active transporters conserved from bacteria to humans. MFS proteins selectively transport a wide spectrum of substrates across biomembranes and play a pivotal role in multiple physiological processes. Despite intense investigation, only seven MFS proteins from six subfamilies have been structurally elucidated. These structures were captured in distinct states during a transport cycle involving alternating access to binding sites from either side of the membrane. This review discusses recent progress in MFS structure analysis and focuses on the molecular basis for substrate binding, co-transport coupling, and alternating access.
Collapse
Affiliation(s)
- Nieng Yan
- State Key Laboratory of Bio-membrane and Membrane Biotechnology, Center for Structural Biology, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
143
|
Ramani P, Headford A, May MT. GLUT1 protein expression correlates with unfavourable histologic category and high risk in patients with neuroblastic tumours. Virchows Arch 2013; 462:203-9. [PMID: 23307190 DOI: 10.1007/s00428-012-1370-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 11/28/2012] [Accepted: 12/31/2012] [Indexed: 12/11/2022]
Abstract
GLUT1 is a hypoxia-induced gene that has many biologically important functions, and the overexpression of the GLUT1 protein correlates with poor prognosis in several adult cancers. The clinical significance of the GLUT1 protein in peripheral neuroblastic tumours (NTs) has not been comprehensively documented. In the present retrospective study, immunohistochemical analyses revealed the presence of GLUT1 in 44/96 (46 %) NTs. Membranous GLUT1 was present in neuroblasts of 44/87 neuroblastomas (NBs) and nodular ganglioneuroblastomas (nGNBs) but was absent in ganglion cells. The presence of GLUT1 was significantly increased in NBs and nGNBs compared with maturing ganglioneuromas and intermixed ganglioneuroblastomas (P < 0.001). The proportion of NBs and nGNBs expressing GLUT1 was significantly increased in the high-risk and low/intermediate-risk groups compared with the very-low-risk group (P = 0.022) and the unfavourable compared with the favourable pathology prognostic group (P = 0.027). In the Cox regression analyses, GLUT1 expression indicated a worse overall survival (OS; hazard rate ratio (HR) 2.29, P = 0.053) and event-free survival (EFS; HR 1.68, P = 0.181) which was not attenuated by adjustment for the mitosis-karyorrhexis index and MYCN amplification (OS: adjusted HR 2.44, P = 0.053 and EFS: adjusted HR 1.63, P = 0.244). This indicated that GLUT1 protein expression was independent of mitosis-karyorrhexis index and MYCN amplification as a prognostic factor. Our data may have clinical significance because GLUT1 was also present in a higher proportion of high-risk NTs.
Collapse
Affiliation(s)
- Pramila Ramani
- Department of Histopathology, Bristol Royal Infirmary, Bristol, BS2 8HW, UK.
| | | | | |
Collapse
|
144
|
Shen YC, Ou DL, Hsu C, Lin KL, Chang CY, Lin CY, Liu SH, Cheng AL. Activating oxidative phosphorylation by a pyruvate dehydrogenase kinase inhibitor overcomes sorafenib resistance of hepatocellular carcinoma. Br J Cancer 2012; 108:72-81. [PMID: 23257894 PMCID: PMC3553537 DOI: 10.1038/bjc.2012.559] [Citation(s) in RCA: 151] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Background: Sorafenib is the only drug approved for the treatment of hepatocellular carcinoma (HCC). The bioenergetic propensity of cancer cells has been correlated to anticancer drug resistance, but such correlation is unclear in sorafenib resistance of HCC. Methods: Six sorafenib-naive HCC cell lines and one sorafenib-resistant HCC cell line (Huh-7R; derived from sorafenib-sensitive Huh-7) were used. The bioenergetic propensity was calculated by measurement of lactate in the presence or absence of oligomycin. Dichloroacetate (DCA), a pyruvate dehydrogenase kinase (PDK) inhibitor, and siRNA of hexokinase 2 (HK2) were used to target relevant pathways of cancer metabolism. Cell viability, mitochondrial membrane potential, and sub-G1 fraction were measured for in vitro efficacy. Reactive oxygen species (ROS), adenosine triphosphate (ATP) and glucose uptake were also measured. A subcutaneous xenograft mouse model was used for in vivo efficacy. Results: The bioenergetic propensity for using glycolysis correlated with decreased sorafenib sensitivity (R2=0.9067, among sorafenib-naive cell lines; P=0.003, compared between Huh-7 and Huh-7 R). DCA reduced lactate production and increased ROS and ATP, indicating activation of oxidative phosphorylation (OXPHOS). DCA markedly sensitised sorafenib-resistant HCC cells to sorafenib-induced apoptosis (sub-G1 (combination vs sorafenib): Hep3B, 65.4±8.4% vs 13±2.9% Huh-7 R, 25.3± 5.7% vs 4.3±1.5% each P<0.0001), whereas siRNA of HK2 did not. Sorafenib (10 mg kg−1 per day) plus DCA (100 mg kg−1 per day) also resulted in superior tumour regression than sorafenib alone in mice (tumour size: −87% vs −36%, P<0.001). Conclusion: The bioenergetic propensity is a potentially useful predictive biomarker of sorafenib sensitivity, and activation of OXPHOS by PDK inhibitors may overcome sorafenib resistance of HCC.
Collapse
Affiliation(s)
- Y-C Shen
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
145
|
Sun L, Zeng X, Yan C, Sun X, Gong X, Rao Y, Yan N. Crystal structure of a bacterial homologue of glucose transporters GLUT1-4. Nature 2012; 490:361-6. [PMID: 23075985 DOI: 10.1038/nature11524] [Citation(s) in RCA: 356] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Accepted: 08/17/2012] [Indexed: 12/22/2022]
Abstract
Glucose transporters are essential for metabolism of glucose in cells of diverse organisms from microbes to humans, exemplified by the disease-related human proteins GLUT1, 2, 3 and 4. Despite rigorous efforts, the structural information for GLUT1-4 or their homologues remains largely unknown. Here we report three related crystal structures of XylE, an Escherichia coli homologue of GLUT1-4, in complex with d-xylose, d-glucose and 6-bromo-6-deoxy-D-glucose, at resolutions of 2.8, 2.9 and 2.6 Å, respectively. The structure consists of a typical major facilitator superfamily fold of 12 transmembrane segments and a unique intracellular four-helix domain. XylE was captured in an outward-facing, partly occluded conformation. Most of the important amino acids responsible for recognition of D-xylose or d-glucose are invariant in GLUT1-4, suggesting functional and mechanistic conservations. Structure-based modelling of GLUT1-4 allows mapping and interpretation of disease-related mutations. The structural and biochemical information reported here constitutes an important framework for mechanistic understanding of glucose transporters and sugar porters in general.
Collapse
Affiliation(s)
- Linfeng Sun
- State Key Laboratory of Bio-membrane and Membrane Biotechnology, Center for Structural Biology, Tsinghua University, Beijing 100084, China
| | | | | | | | | | | | | |
Collapse
|
146
|
Differential regulation of GLUT1 activity in human corneal limbal epithelial cells and fibroblasts. Biochimie 2012; 95:258-63. [PMID: 23009931 DOI: 10.1016/j.biochi.2012.09.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Accepted: 09/17/2012] [Indexed: 11/22/2022]
Abstract
The corneal epithelial tissue is a layer of rapidly growing cells that are highly glycolytic and express GLUT1 as the major glucose transporter. It has been shown that GLUT1 in L929 fibroblast cells and other cell lines can be acutely activated by a variety agents. However, the acute regulation of glucose uptake in corneal cells has not been systematically investigated. Therefore, we examined glucose uptake in an immortalized human corneal-limbal epithelial (HCLE) cell line and compared it to glucose uptake in L929 fibroblast cells, a cell line where glucose uptake has been well characterized. We report that the expression of GLUT1 in HCLE cells is 6.6-fold higher than in L929 fibroblast cells, but the HCLE cells have a 25-fold higher basal rate of glucose uptake. Treatment with agents that interfere with mitochondrial metabolism, such as sodium azide and berberine, activate glucose uptake in L929 cells over 3-fold, but have no effect on glucose uptake HCLE cells. Also, agents known to react with thiols, such cinnamaldehyde, phenylarsine oxide and nitroxyl stimulate glucose uptake in L929 cells 3-4-fold, but actually inhibit glucose uptake in HCLE cells. These data suggest that in the fast growing HCLE cells, GLUT1 is expressed at a higher concentration and is already highly activated at basal conditions. These data support a model for the acute activation of GLUT1 that suggests that the activity of GLUT1 is enhanced by the formation of an internal disulfide bond within GLUT1 itself.
Collapse
|
147
|
Rakheja D, Khokhar S, Mitui M, Cost NG. Immunohistochemical expression of GLUT1 and its correlation with unfavorable histology and TP53 codon 72 polymorphism in Wilms tumors. Pediatr Dev Pathol 2012; 15:286-92. [PMID: 22483234 DOI: 10.2350/12-01-1151-oa.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Reprogramming of energy metabolism, such as increased glycolysis, is a hallmark of cancer cells. One mechanism by which cancer cells fuel glycolysis is through increased uptake of glucose across cell membranes via the glucose transporter GLUT1. One of the transcriptional repressors of GLUT1 is wild-type TP53, and cancer-associated loss of function mutations within the DNA-binding domain of TP53 impairs the repressive effect of TP53 on transcriptional activity of the GLUT1 gene promoter. Because TP53 mutations are associated with unfavorable histology (diffuse anaplasia) in Wilms tumors, we hypothesized increased expression of GLUT1 in these tumors. To evaluate this hypothesis, we performed tissue microarray-based immunohistochemistry for GLUT1 in a set of 50 Wilms tumors, including 5 with unfavorable histology. In a subset of 16 favorable histology Wilms tumors, we compared the GLUT1 immunoexpression with TP53 codon 72 polymorphism status. We found consistently stronger immunoexpression of GLUT1 in unfavorable histology Wilms tumors compared to favorable histology Wilms tumors (P = 0.04). We noted that the favorable histology Wilms tumors with a proline residue at position 72 of TP53 tended to have higher immunoexpression of GLUT1, although this immunoexpression did not reach statistical significance in this small set of cases. In summary, our finding of strong GLUT1 immunoexpression in unfavorable histology Wilms tumors indicates that these tumors are likely to be 2-deoxy-2-((18)F)fluoro-d-glucose avid and that GLUT1 should be evaluated as a therapeutic target for these tumors that otherwise show resistance to conventional therapy.
Collapse
Affiliation(s)
- Dinesh Rakheja
- Department of Pathology, Children's Medical Center, Dallas, TX, USA.
| | | | | | | |
Collapse
|
148
|
Chen JQ, Russo J. Dysregulation of glucose transport, glycolysis, TCA cycle and glutaminolysis by oncogenes and tumor suppressors in cancer cells. Biochim Biophys Acta Rev Cancer 2012; 1826:370-84. [PMID: 22750268 DOI: 10.1016/j.bbcan.2012.06.004] [Citation(s) in RCA: 153] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Revised: 06/16/2012] [Accepted: 06/18/2012] [Indexed: 12/19/2022]
Abstract
A common set of functional characteristics of cancer cells is that cancer cells consume a large amount of glucose, maintain high rate of glycolysis and convert a majority of glucose into lactic acid even in the presence of oxygen compared to that of normal cells (Warburg's Effects). In addition, cancer cells exhibit substantial alterations in several energy metabolism pathways including glucose transport, tricarboxylic acid (TCA) cycle, glutaminolysis, mitochondrial respiratory chain oxidative phosphorylation and pentose phosphate pathway (PPP). In the present work, we focused on reviewing the current knowledge about the dysregulation of the proteins/enzymes involved in the key regulatory steps of glucose transport, glycolysis, TCA cycle and glutaminolysis by several oncogenes including c-Myc and hypoxia inducible factor-1 (HIF-1) and tumor suppressor, p53, in cancer cells. The dysregulation of glucose transport and energy metabolism pathways by oncogenes and lost functions of the tumor suppressors have been implicated as important biomarkers for cancer detection and as valuable targets for the development of new anticancer therapies.
Collapse
Affiliation(s)
- Jin-Qiang Chen
- Breast Cancer Research Laboratory, Fox Chase Cancer Center, Philadelphia, PA 19111, USA.
| | | |
Collapse
|
149
|
Grabellus F, Worm K, Schmid KW, Sheu SY. The BRAF V600E mutation in papillary thyroid carcinoma is associated with glucose transporter 1 overexpression. Thyroid 2012; 22:377-82. [PMID: 22376167 DOI: 10.1089/thy.2011.0401] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
BACKGROUND The glucose transporter 1 (GLUT1) is a key protein that facilitates the extensive glucose uptake of cancer cells, and its overexpression is associated with more aggressive tumor phenotypes. In cases of BRAF mutations, GLUT1 seems to be a target of the constitutive activation of the RAF/MEK/ERK pathway. In this study, we hypothesized that the common BRAF V600E mutation was associated with GLUT1 overexpression and proliferation in papillary thyroid carcinomas (PTCs). METHODS A total of 57 cases of paraffin-embedded PTC (31 BRAF V600E, 26 wild-type BRAF) were investigated using immunohistochemistry with antibodies against GLUT1 and Ki-67 (MK167) protein. The BRAF V600E mutations were detected using direct sequencing of genomic DNA that was isolated from formalin-fixed paraffin-embedded tumor tissues. GLUT1 expression was assessed using the Remmele immunoreactive score and subdivided into three groups (I=negative, II=weakly positive, and III=positive). The Ki-67 labeling index (Ki-67 LI) was determined by counting Ki-67-positive nuclei. RESULTS GLUT1 expression was found in 39/57 (68.4%) samples of PTC. The occurrence of the BRAF V600E genetic variant was significantly correlated with GLUT1 overexpression (p=0.007) and showed a trend toward higher proliferation, which was indicated by Ki-67 LI (p=0.06). Moreover, GLUT1 overexpression was positively associated with Ki-67 labeling (p=0.023). CONCLUSIONS The V600E BRAF mutation in PTC may contribute to the initiation of the glycolytic phenotype and confers growth advantages in cancer cells. Better understanding of the molecular mechanisms of cancer cell energy metabolism may lead to the implementation of targeted treatment modalities, which regulate cancer glucose uptake.
Collapse
Affiliation(s)
- Florian Grabellus
- Institute of Pathology and Neuropathology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany.
| | | | | | | |
Collapse
|
150
|
Bechmann LP, Hannivoort RA, Gerken G, Hotamisligil GS, Trauner M, Canbay A. The interaction of hepatic lipid and glucose metabolism in liver diseases. J Hepatol 2012; 56:952-64. [PMID: 22173168 DOI: 10.1016/j.jhep.2011.08.025] [Citation(s) in RCA: 697] [Impact Index Per Article: 53.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Revised: 08/09/2011] [Accepted: 08/10/2011] [Indexed: 12/31/2022]
Abstract
It is widely known that the liver is a central organ in lipogenesis, gluconeogenesis and cholesterol metabolism. However, over the last decades, a variety of pathological conditions highlighted the importance of metabolic functions within the diseased liver. As observed in Western societies, an increase in the prevalence of obesity and the metabolic syndrome promotes pathophysiological changes that cause non-alcoholic fatty liver disease (NAFLD). NAFLD increases the susceptibility of the liver to acute liver injury and may lead to cirrhosis and hepatocellular cancer. Alterations in insulin response, β-oxidation, lipid storage and transport, autophagy and an imbalance in chemokines and nuclear receptor signaling are held accountable for these changes. Furthermore, recent studies revealed a role for lipid accumulation in inflammation and ER stress in the clinical context of liver regeneration and hepatic carcinogenesis. This review focuses on novel findings related to nuclear receptor signaling - including the vitamin D receptor and the liver receptor homolog 1 - in hepatic lipid and glucose uptake, storage and metabolism in the clinical context of NAFLD, liver regeneration, and cancer.
Collapse
Affiliation(s)
- Lars P Bechmann
- Department of Gastroenterology and Hepatology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | | | | | | | | | | |
Collapse
|