101
|
Wang Z, Zhang Y, Fang J, Yu F, Heng D, Fan Y, Xu J, Peng B, Liu W, Han S, He X. Decreased Methylation Level of H3K27me3 Increases Seizure Susceptibility. Mol Neurobiol 2016; 54:7343-7352. [PMID: 27815838 DOI: 10.1007/s12035-016-0197-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 10/11/2016] [Indexed: 01/01/2023]
Abstract
Epigenetic modifications including histone modifications are associated with seizure development and epileptogenesis; however, its underlying mechanism remains to be elucidated. Dipeptidyl peptidase 4 (DPP4) and IL6 are identified as febrile seizure (FS)-related genes using gene microarray analysis in hyperthermia prone (HP) rats. This purpose of the study focused on exploring whether epigenetic modifications marker histone H3 lysine 27 trimethylation (H3K27me3)-regulated DPP4 and IL6 expression further affected seizures development. Herein, we reported broad between-group differences in the global levels of H3K27me3 with increased seizure severity in vivo. Using chromatin immunoprecipitation (ChIP), we identified markedly decreased H3K27me3 enrichment at their promoters of DPP4 and IL6 in vivo. We further showed that hyperthermia significantly decreased protein levels of H3K27me3, increased mRNA levels of DPP4 and IL6 by decreasing H3K27me3 enrichment at their promoters of DPP4 and IL6 in vitro. Importantly, H3K27me3 loss via enhancer of zeste homolog 2 (EZH2) knockdown promoted expression of DPP4 and IL6 via the same mechanism in vitro. EZH2 knockdown also increased neuronal firing frequency in vitro and FS susceptibility in vivo companied with upregulation expression of DPP4 and IL6. Taken together, our study provided the first evidence that hyperthermia-induced decreased of H3K27me3 promoted seizure susceptibility via regulating the expression pattern of DPP4 and IL6. These findings suggested that the methylation level of H3K27me3 might be a key regulator of seizure susceptibility.
Collapse
Affiliation(s)
- Zhongcheng Wang
- Department of Pathophysiology, School of Basic Medical Sciences, Wuhan University, Donghu Road No. 185, Wuchang, Wuhan, 430071, China
| | - Yusong Zhang
- Department of Pathophysiology, School of Basic Medical Sciences, Wuhan University, Donghu Road No. 185, Wuchang, Wuhan, 430071, China
| | - Jian Fang
- Department of Pathophysiology, School of Basic Medical Sciences, Wuhan University, Donghu Road No. 185, Wuchang, Wuhan, 430071, China
| | - Fang Yu
- Department of Pathophysiology, School of Basic Medical Sciences, Wuhan University, Donghu Road No. 185, Wuchang, Wuhan, 430071, China
| | - Duanhe Heng
- Department of Pathophysiology, School of Basic Medical Sciences, Wuhan University, Donghu Road No. 185, Wuchang, Wuhan, 430071, China
| | - Yuanteng Fan
- Department of Neurology, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Jian Xu
- Weifang Maternity and Child Hospital, Weifang, China
| | - Biwen Peng
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Wanhong Liu
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Song Han
- Department of Pathophysiology, School of Basic Medical Sciences, Wuhan University, Donghu Road No. 185, Wuchang, Wuhan, 430071, China.
| | - Xiaohua He
- Department of Pathophysiology, School of Basic Medical Sciences, Wuhan University, Donghu Road No. 185, Wuchang, Wuhan, 430071, China.
| |
Collapse
|
102
|
Cavallucci V, Fidaleo M, Pani G. Neural Stem Cells and Nutrients: Poised Between Quiescence and Exhaustion. Trends Endocrinol Metab 2016; 27:756-769. [PMID: 27387597 DOI: 10.1016/j.tem.2016.06.007] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 06/10/2016] [Accepted: 06/13/2016] [Indexed: 02/08/2023]
Abstract
Adult neurogenesis initiated by neural stem cells (NSCs) contributes to brain homeostasis, damage repair, and cognition. Energy metabolism plays a pivotal role in neurogenic cell fate decisions regarding self-renewal, expansion and multilineage differentiation. NSCs need to fine-tune quiescence and proliferation/commitment to guarantee lifelong neurogenesis and avoid premature exhaustion. Accumulating evidence supports a model whereby calorie restriction or increased energy expenditure reinforce NSC quiescence and promote self-renewal. Conversely, growth/proliferation inputs and anabolic signals, although necessary for neurogenesis, deplete the NSCs pool in the long run. This framework incorporates the emerging neurogenic roles of nutrient-sensing signaling pathways, providing a rationale for the alarming connection between nutritional imbalances, metabolic disorders and accelerated brain aging.
Collapse
Affiliation(s)
- Virve Cavallucci
- Institute of General Pathology, Università Cattolica School of Medicine, 00168 Rome, Italy
| | - Marco Fidaleo
- Institute of General Pathology, Università Cattolica School of Medicine, 00168 Rome, Italy
| | - Giovambattista Pani
- Institute of General Pathology, Università Cattolica School of Medicine, 00168 Rome, Italy.
| |
Collapse
|
103
|
Chen Y, Li W, Li W, Chai R, Li H. Spatiotemporal expression of Ezh2 in the developing mouse cochlear sensory epithelium. Front Med 2016; 10:330-5. [PMID: 27465826 DOI: 10.1007/s11684-016-0459-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 05/20/2016] [Indexed: 10/21/2022]
Abstract
The enhancer of zeste 2 polycomb repressive complex 2 subunit (Ezh2) is a histone-lysine Nmethyltransferase enzyme that participates in DNA methylation. Ezh2 has also been reported to play crucial roles in stem cell proliferation and differentiation. However, the detailed expression profile of Ezh2 during mouse cochlear development has not been investigated. Here, we examined the spatiotemporal expression of Ezh2 in the cochlea during embryonic and postnatal development. Ezh2 expression began to be observed in the whole otocyst nuclei at embryonic day 9.5 (E9.5). At E12.5, Ezh2 was expressed in the nuclei of the cochlear prosensory epithelium. At E13.5 and E15.5, Ezh2 was expressed from the apical to the basal turns in the nuclei of the differentiating cochlear epithelium. At postnatal day (P) 0 and 7, the Ezh2 expression was located in the nuclei of the cochlear epithelium in all three turns and could be clearly seen in outer and inner hair cells, supporting cells, the stria vascularis, and spiral ganglion cells. Ezh2 continued to be expressed in the cochlear epithelium of adult mice. Our results provide the basic Ezh2 expression pattern and might be useful for further investigating the detailed role of Ezh2 during cochlear development.
Collapse
Affiliation(s)
- Yan Chen
- Otorhinolaryngology Department of Affiliated Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200031, China.,Central Laboratory, Affiliated Eye and ENT Hospital, Fudan University, Shanghai, 200031, China.,Key Laboratory of Hearing Medicine of the National Health and Family Planning Commission, Shanghai, 200031, China
| | - Wenyan Li
- Otorhinolaryngology Department of Affiliated Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200031, China.,Key Laboratory of Hearing Medicine of the National Health and Family Planning Commission, Shanghai, 200031, China
| | - Wen Li
- Otorhinolaryngology Department of Affiliated Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200031, China.,Central Laboratory, Affiliated Eye and ENT Hospital, Fudan University, Shanghai, 200031, China.,Key Laboratory of Hearing Medicine of the National Health and Family Planning Commission, Shanghai, 200031, China
| | - Renjie Chai
- MOE Key Laboratory of Developmental Genes and Human Disease, State Key Laboratory of Bioelectronics, Institute of Life Sciences, Southeast University, Nanjing, 210096, China. .,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China.
| | - Huawei Li
- Otorhinolaryngology Department of Affiliated Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200031, China. .,Key Laboratory of Hearing Medicine of the National Health and Family Planning Commission, Shanghai, 200031, China. .,Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
104
|
Tian J, Luo Y, Chen W, Yang S, Wang H, Cui J, Lu Z, Lin Y, Bi Y. MeHg Suppressed Neuronal Potency of Hippocampal NSCs Contributing to the Puberal Spatial Memory Deficits. Biol Trace Elem Res 2016; 172:424-436. [PMID: 26743863 DOI: 10.1007/s12011-015-0609-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 12/23/2015] [Indexed: 12/21/2022]
Abstract
Hippocampal neurogenesis-related structural damage, particularly that leading to defective adult cognitive function, is considered an important risk factor for neurodegenerative and psychiatric diseases. Normal differentiation of neurons and glial cells during development is crucial in neurogenesis, which is particularly sensitive to the environmental toxicant methylmercury (MeHg). However, the exact effects of MeHg on hippocampal neural stem cell (hNSC) differentiation during puberty remain unknown. This study investigates whether MeHg exposure induces changes in hippocampal neurogenesis and whether these changes underlie cognitive defects in puberty. A rat model of methylmercury chloride (MeHgCl) exposure (0.4 mg/kg/day, PND 5-PND 33, 28 days) was established, and the Morris water maze was used to assess cognitive function. Primary hNSCs from hippocampal tissues of E16-day Sprague-Dawley rats were purified, identified, and cloned. hNSC proliferation and differentiation and the growth and morphology of newly generated neurons were observed by MTT and immunofluorescence assays. MeHg exposure induced defects in spatial learning and memory accompanied by a decrease in number of doublecortin (DCX)-positive cells in the dentate gyrus (DG). DCX is a surrogate marker for newly generated neurons. Proliferation and differentiation of hNSCs significantly decreased in the MeHg-treated groups. MeHg attenuated microtubule-associated protein-2 (MAP-2) expression in neurons and enhanced the glial fibrillary acidic protein (GFAP)-positive cell differentiation of hNSCs, thereby inducing degenerative changes in a dose-dependent manner. Moreover, MeHg induced deficits in hippocampus-dependent spatial learning and memory during adolescence as a consequence of decreased generation of DG neurons. Our findings suggested that MeHg exposure could be a potential risk factor for psychiatric and neurodegenerative diseases.
Collapse
Affiliation(s)
- Jianying Tian
- School of Public Health, Wuhan University, 115 Donghu Road, Wuchang District, Wuhan, Hubei, 430071, China.
- Basic Medical School, Ningxia Medical University, 1160 Shengli Street, Xingqing District, Yinchuan, Ningxia, 750004, China.
| | - Yougen Luo
- The Research Center of Neurodegenerative Diseases and Aging, Medical College of Jinggangshan University, Ji'an, Jiangxi, 343000, China
| | - Weiwei Chen
- School of Public Health, Wuhan University, 115 Donghu Road, Wuchang District, Wuhan, Hubei, 430071, China
| | - Shengsen Yang
- School of Public Health, Wuhan University, 115 Donghu Road, Wuchang District, Wuhan, Hubei, 430071, China
| | - Hao Wang
- School of Public Health, Wuhan University, 115 Donghu Road, Wuchang District, Wuhan, Hubei, 430071, China
| | - Jing Cui
- School of Public Health, Wuhan University, 115 Donghu Road, Wuchang District, Wuhan, Hubei, 430071, China
| | - Zhiyan Lu
- School of Public Health, Wuhan University, 115 Donghu Road, Wuchang District, Wuhan, Hubei, 430071, China
| | - Yuanye Lin
- School of Public Health, Wuhan University, 115 Donghu Road, Wuchang District, Wuhan, Hubei, 430071, China
| | - Yongyi Bi
- School of Public Health, Wuhan University, 115 Donghu Road, Wuchang District, Wuhan, Hubei, 430071, China.
| |
Collapse
|
105
|
Abstract
The Mendelian disorders of the epigenetic machinery are genetic disorders that involve disruption of the various components of the epigenetic machinery (writers, erasers, readers, and remodelers) and are thus expected to have widespread downstream epigenetic consequences. Studying this group may offer a unique opportunity to learn about the role of epigenetics in health and disease. Among these patients, neurological dysfunction and, in particular, intellectual disability appears to be a common phenotype; however, this is often seen in association with other more specific features in respective disorders. The specificity of some of the clinical features raises the question whether specific cell types are particularly sensitive to the loss of these factors. Most of these disorders demonstrate dosage sensitivity as loss of a single allele appears to be sufficient to cause the observed phenotypes. Although the pathogenic sequence is unknown for most of these disorders, there are several examples where disrupted expression of downstream target genes accounts for a substantial portion of the phenotype; hence, it may be useful to systematically map such disease-relevant target genes. Finally, two of these disorders (Rubinstein-Taybi and Kabuki syndromes) have shown post-natal rescue of markers of the neurological dysfunction with drugs that lead to histone deacetylase inhibition, indicating that some of these disorders may be treatable causes of intellectual disability.
Collapse
Affiliation(s)
- Hans Tomas Bjornsson
- McKusick-Nathans Institute of Genetic Medicine and Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA
| |
Collapse
|
106
|
Adult neurogenesis and pattern separation in rodents: A critical evaluation of data, tasks and interpretation. ACTA ACUST UNITED AC 2016. [DOI: 10.1007/s11515-016-1406-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
107
|
Bond AM, Ming GL, Song H. Adult Mammalian Neural Stem Cells and Neurogenesis: Five Decades Later. Cell Stem Cell 2016; 17:385-95. [PMID: 26431181 DOI: 10.1016/j.stem.2015.09.003] [Citation(s) in RCA: 595] [Impact Index Per Article: 66.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Adult somatic stem cells in various organs maintain homeostatic tissue regeneration and enhance plasticity. Since its initial discovery five decades ago, investigations of adult neurogenesis and neural stem cells have led to an established and expanding field that has significantly influenced many facets of neuroscience, developmental biology, and regenerative medicine. Here we review recent progress and focus on questions related to adult mammalian neural stem cells that also apply to other somatic stem cells. We further discuss emerging topics that are guiding the field toward better understanding adult neural stem cells and ultimately applying these principles to improve human health.
Collapse
Affiliation(s)
- Allison M Bond
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Guo-Li Ming
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; The Solomon Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Hongjun Song
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; The Solomon Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
108
|
Garza-Lombó C, Gonsebatt ME. Mammalian Target of Rapamycin: Its Role in Early Neural Development and in Adult and Aged Brain Function. Front Cell Neurosci 2016; 10:157. [PMID: 27378854 PMCID: PMC4910040 DOI: 10.3389/fncel.2016.00157] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 05/30/2016] [Indexed: 01/14/2023] Open
Abstract
The kinase mammalian target of rapamycin (mTOR) integrates signals triggered by energy, stress, oxygen levels, and growth factors. It regulates ribosome biogenesis, mRNA translation, nutrient metabolism, and autophagy. mTOR participates in various functions of the brain, such as synaptic plasticity, adult neurogenesis, memory, and learning. mTOR is present during early neural development and participates in axon and dendrite development, neuron differentiation, and gliogenesis, among other processes. Furthermore, mTOR has been shown to modulate lifespan in multiple organisms. This protein is an important energy sensor that is present throughout our lifetime its role must be precisely described in order to develop therapeutic strategies and prevent diseases of the central nervous system. The aim of this review is to present our current understanding of the functions of mTOR in neural development, the adult brain and aging.
Collapse
Affiliation(s)
- Carla Garza-Lombó
- Departamento de Medicina Genómica, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México México
| | - María E Gonsebatt
- Departamento de Medicina Genómica, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México México
| |
Collapse
|
109
|
Wang S, Liang Q, Qiao H, Li H, Shen T, Ji F, Jiao J. DISC1 regulates astrogenesis in the embryonic brain via modulation of RAS/MEK/ERK signaling through RASSF7. Development 2016; 143:2732-40. [PMID: 27287808 DOI: 10.1242/dev.133066] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 05/26/2016] [Indexed: 01/13/2023]
Abstract
Disrupted in schizophrenia 1 (DISC1) is known as a high susceptibility gene for schizophrenia. Recent studies have indicated that schizophrenia might be caused by glia defects and dysfunction. However, there is no direct evidence of a link between the schizophrenia gene DISC1 and gliogenesis defects. Thus, an investigation into the involvement of DISC1 (a ubiquitously expressed brain protein) in astrogenesis during the late stage of mouse embryonic brain development is warranted. Here, we show that suppression of DISC1 expression represses astrogenesis in vitro and in vivo, and that DISC1 overexpression substantially enhances the process. Furthermore, mouse and human DISC1 overexpression rescued the astrogenesis defects caused by DISC1 knockdown. Mechanistically, DISC1 activates the RAS/MEK/ERK signaling pathway via direct association with RASSF7. Also, the pERK complex undergoes nuclear translocation and influences the expression of genes related to astrogenesis. In summary, our results demonstrate that DISC1 regulates astrogenesis by modulating RAS/MEK/ERK signaling via RASSF7 and provide a framework for understanding how DISC1 dysfunction might lead to neuropsychiatric diseases.
Collapse
Affiliation(s)
- Shukun Wang
- The State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China The State Key Laboratory of Brain and Cognitive Sciences, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Qingli Liang
- The State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huimin Qiao
- The State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong Li
- The State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Tianjin Shen
- The State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fen Ji
- The State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jianwei Jiao
- The State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
110
|
Tian JY, Chen WW, Cui J, Wang H, Chao C, Lu ZY, Bi YY. Effect of Lycium bararum polysaccharides on methylmercury-induced abnormal differentiation of hippocampal stem cells. Exp Ther Med 2016; 12:683-689. [PMID: 27446261 PMCID: PMC4950050 DOI: 10.3892/etm.2016.3415] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 02/04/2016] [Indexed: 12/19/2022] Open
Abstract
The aim of the present study was to observe the effects of a general extract of Lycium bararum polysaccharides (LBPs) on methylmercury (MeHg)-induced damage in hippocampus neural stem cells (hNSCs). The hippocampal tissues of embryonic day 16 Sprague-Dawley rats were extracted for the isolation, purification and cloning of hNSCs. Following passage and proliferation for 10 days, the cells were allocated at random into the following groups: Control, LBPs, MeHg and MeHg + LBPs. MTT and microtubule-associated protein 2 (MAP-2)/glial fibrillary acidic protein/Hoechst immunofluorescence tests were performed to detect the differentiation and growth of hNSCs in the various groups. The differentiation rate of MeHg-treated hNSCs and the perimeter of MAP-2-positive neurons were 3.632±0.63% and 62.36±5.58 µm, respectively, significantly lower compared with the control group values of 6.500±0.81% and 166±8.16 µm (P<0.05). Furthermore, the differentiation rate and the perimeter of MAP-2-positive neurons in LBPs groups cells was 7.75±0.59% and 253.3±11.21 µm, respectively, significantly higher compared with the control group (P<0.05). The same parameters in the MeHg + LBPs group were 5.92±0.98% and 111.9±6.07 µm, respectively, significantly higher than the MeHg group (P<0.05). The astrocyte differentiation rates in the MeHg and MeHg + LBPs group were 41.19±2.14 and 34.58±1.70, respectively (P<0.05). These results suggest that LBPs may promote the generation and development of new neurons and inhibit the MeHg-induced abnormal differentiation of astrocytes. Thus, LBPs may be considered to be a potential new treatment for MeHg-induced neurotoxicity in hNSCs.
Collapse
Affiliation(s)
- Jian-Ying Tian
- Department of Health, Labor Health and Environment, School of Public Health, Wuhan University, Wuhan, Hubei 430072, P.R. China; Department of Anatomy, Basic Medical School, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Wei-Wei Chen
- Department of Health, Labor Health and Environment, School of Public Health, Wuhan University, Wuhan, Hubei 430072, P.R. China
| | - Jing Cui
- Department of Health, Labor Health and Environment, School of Public Health, Wuhan University, Wuhan, Hubei 430072, P.R. China
| | - Hao Wang
- Department of Health, Labor Health and Environment, School of Public Health, Wuhan University, Wuhan, Hubei 430072, P.R. China
| | - Ci Chao
- Department of Health, Labor Health and Environment, School of Public Health, Wuhan University, Wuhan, Hubei 430072, P.R. China
| | - Zhi-Yan Lu
- Department of Health, Labor Health and Environment, School of Public Health, Wuhan University, Wuhan, Hubei 430072, P.R. China
| | - Yong-Yi Bi
- Department of Health, Labor Health and Environment, School of Public Health, Wuhan University, Wuhan, Hubei 430072, P.R. China
| |
Collapse
|
111
|
Aguilar R, Bustos FJ, Saez M, Rojas A, Allende ML, van Wijnen AJ, van Zundert B, Montecino M. Polycomb PRC2 complex mediates epigenetic silencing of a critical osteogenic master regulator in the hippocampus. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1859:1043-55. [PMID: 27216774 DOI: 10.1016/j.bbagrm.2016.05.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 05/18/2016] [Accepted: 05/19/2016] [Indexed: 12/12/2022]
Abstract
During hippocampal neuron differentiation, the expression of critical inducers of non-neuronal cell lineages must be efficiently silenced. Runx2 transcription factor is the master regulator of mesenchymal cells responsible for intramembranous osteoblast differentiation and formation of the craniofacial bone tissue that surrounds and protects the central nervous system (CNS) in mammalian embryos. The molecular mechanisms that mediate silencing of the Runx2 gene and its downstream target osteogenic-related genes in neuronal cells have not been explored. Here, we assess the epigenetic mechanisms that mediate silencing of osteoblast-specific genes in CNS neurons. In particular, we address the contribution of histone epigenetic marks and histone modifiers on the silencing of the Runx2/p57 bone-related isoform in rat hippocampal tissues at embryonic to adult stages. Our results indicate enrichment of repressive chromatin histone marks and of the Polycomb PRC2 complex at the Runx2/p57 promoter region. Knockdown of PRC2 H3K27-methyltransferases Ezh2 and Ezh1, or forced expression of the Trithorax/COMPASS subunit Wdr5 activates Runx2/p57 mRNA expression in both immature and mature hippocampal cells. Together these results indicate that complementary epigenetic mechanisms progressively and efficiently silence critical osteoblastic genes during hippocampal neuron differentiation.
Collapse
Affiliation(s)
- Rodrigo Aguilar
- Center for Biomedical Research, Universidad Andres Bello, Santiago 8370146, Chile; FONDAP Center for Genome Regulation, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello, Santiago 8370146, Chile
| | - Fernando J Bustos
- Center for Biomedical Research, Universidad Andres Bello, Santiago 8370146, Chile; FONDAP Center for Genome Regulation, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello, Santiago 8370146, Chile
| | - Mauricio Saez
- Center for Biomedical Research, Universidad Andres Bello, Santiago 8370146, Chile; FONDAP Center for Genome Regulation, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello, Santiago 8370146, Chile
| | - Adriana Rojas
- Center for Biomedical Research, Universidad Andres Bello, Santiago 8370146, Chile; FONDAP Center for Genome Regulation, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello, Santiago 8370146, Chile
| | - Miguel L Allende
- FONDAP Center for Genome Regulation, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello, Santiago 8370146, Chile; Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago 7800003, Chile
| | | | - Brigitte van Zundert
- Center for Biomedical Research, Universidad Andres Bello, Santiago 8370146, Chile
| | - Martin Montecino
- Center for Biomedical Research, Universidad Andres Bello, Santiago 8370146, Chile; FONDAP Center for Genome Regulation, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello, Santiago 8370146, Chile.
| |
Collapse
|
112
|
Rhodes CT, Sandstrom RS, Huang SWA, Wang Y, Schotta G, Berger MS, Lin CHA. Cross-species Analyses Unravel the Complexity of H3K27me3 and H4K20me3 in the Context of Neural Stem Progenitor Cells. ACTA ACUST UNITED AC 2016; 6:10-25. [PMID: 27429906 DOI: 10.1016/j.nepig.2016.04.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Neural stem progenitor cells (NSPCs) in the human subventricular zone (SVZ) potentially contribute to life-long neurogenesis, yet subtypes of glioblastoma multiforme (GBM) contain NSPC signatures that highlight the importance of cell fate regulation. Among numerous regulatory mechanisms, the post-translational methylations onto histone tails are crucial regulator of cell fate. The work presented here focuses on the role of two repressive chromatin marks tri-methylations on histone H3 lysine 27 (H3K27me3) and histone H4 lysine 20 (H4K20me3) in the adult NSPC within the SVZ. To best model healthy human NSPCs as they exist in vivo for epigenetic profiling of H3K27me3 and H4K20me3, we utilized NSPCs isolated from the adult SVZ of baboon brain (Papio anubis) with brain structure and genomic level similar to human. The putative role of H3K27me3 in normal NSPCs predominantly falls into the regulation of gene expression, cell cycle, and differentiation, whereas H4K20me3 is involved in DNA replication/repair, metabolism, and cell cycle. Using conditional knock-out mouse models to diminish Ezh2 and Suv4-20h responsible for H3K27me3 and H4K20me3, respectively, we found that both repressive marks have irrefutable function for cell cycle regulation in the NSPC population. While both EZH2/H3K27me3 and Suv4-20h/H4K20me3 have implication in cancers, our comparative genomics approach between healthy NSPCs and human GBM specimens revealed that substantial sets of genes enriched with H3K27me3 and H4K20me3 in the NSPCs are altered in the human GBM. In sum, our integrated analyses across species highlight important roles of H3K27me3 and H4K20me3 in normal and disease conditions in the context of NSPC.
Collapse
Key Words
- Chromatin Immunoprecipitation (ChIP)
- Cre recombinant protein
- Enhancer of zeste (Human- Gene: EZH2, Protein: EZH2) (Mouse- Gene: Ezh2, Protein: Histone-lysine N-methyltransferase EZH2)
- Epigenetic Repression
- Glioblastoma Multiforme (GBM)
- Neural Stem Progenitor Cells (NSPCs)
- Stereotaxic injection
- Suppressor of variegation homolog 1 (Human- Gene: KMT5B or SUV420H1, Protein: lysine methyltransferase 5B, synonym Suv4-20h1) (Mouse- Gene: Suv4-20h1, synonym Kmt5b, Protein: Histone-lysine N-methyltransferase KMT5B, synonym Suv4-20h1)
- Suppressor of variegation homolog 2 (Human- Gene: KMT5C or SUV420H2, Protein: lysine methyltransferase 5C, synonym Suv4-20h2) (Mouse- Gene: Suv4-20h2, synonym Kmt5c, Protein: Histone-lysine N-methyltransferase KMT5C, synonym Suv4-20h2)
- tri-methylation at histone 3 lysine 27 (H3K27me3) and histone 4 lysine 20 (H4K20me3).
Collapse
Affiliation(s)
- Christopher T Rhodes
- Department of Biology, University of Texas at San Antonio, San Antonio, Texas 78249, USA
| | - Richard S Sandstrom
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Shu-Wei Angela Huang
- Department of Biology, University of Texas at San Antonio, San Antonio, Texas 78249, USA
| | - Yufeng Wang
- Department of Biology, University of Texas at San Antonio, San Antonio, Texas 78249, USA
| | - Gunnar Schotta
- Ludwig Maximilians University and Munich Center for Integrated Protein Science (CiPSM), Biomedical Center, Planegg-Martinsried, Germany
| | - Mitchel S Berger
- Department of Neurological Surgery, University of California at San Francisco, San Francisco, California 94143, USA
| | - Chin-Hsing Annie Lin
- Department of Biology, University of Texas at San Antonio, San Antonio, Texas 78249, USA; Neuroscience Institute, University of Texas at San Antonio, San Antonio, Texas 78249, USA
| |
Collapse
|
113
|
Pusalkar M, Ghosh S, Jaggar M, Husain BFA, Galande S, Vaidya VA. Acute and Chronic Electroconvulsive Seizures (ECS) Differentially Regulate the Expression of Epigenetic Machinery in the Adult Rat Hippocampus. Int J Neuropsychopharmacol 2016; 19:pyw040. [PMID: 27207907 PMCID: PMC5043647 DOI: 10.1093/ijnp/pyw040] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Accepted: 04/27/2016] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Electroconvulsive seizure treatment is a fast-acting antidepressant therapy that evokes rapid transcriptional, neurogenic, and behavioral changes. Epigenetic mechanisms contribute to altered gene regulation, which underlies the neurogenic and behavioral effects of electroconvulsive seizure. We hypothesized that electroconvulsive seizure may modulate the expression of epigenetic machinery, thus establishing potential alterations in the epigenetic landscape. METHODS We examined the influence of acute and chronic electroconvulsive seizure on the gene expression of histone modifiers, namely histone acetyltransferases, histone deacetylases, histone methyltransferases, and histone (lysine) demethylases as well as DNA modifying enzymes, including DNA methyltransferases, DNA demethylases, and methyl-CpG-binding proteins in the hippocampi of adult male Wistar rats using quantitative real time-PCR analysis. Further, we examined the influence of acute and chronic electroconvulsive seizure on global and residue-specific histone acetylation and methylation levels within the hippocampus, a brain region implicated in the cellular and behavioral effects of electroconvulsive seizure. RESULTS Acute and chronic electroconvulsive seizure induced a primarily unique, and in certain cases bidirectional, regulation of histone and DNA modifiers, and methyl-CpG-binding proteins, with an overlapping pattern of gene regulation restricted to Sirt4, Mll3, Jmjd3, Gadd45b, Tet2, and Tet3. Global histone acetylation and methylation levels were predominantly unchanged, with the exception of a significant decline in H3K9 acetylation in the hippocampus following chronic electroconvulsive seizure. CONCLUSIONS Electroconvulsive seizure treatment evokes the transcriptional regulation of several histone and DNA modifiers, and methyl-CpG-binding proteins within the hippocampus, with a predominantly distinct pattern of regulation induced by acute and chronic electroconvulsive seizure.
Collapse
Affiliation(s)
- Madhavi Pusalkar
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, Maharashtra, India (Dr Pusalkar, Ms Ghosh, Ms Jaggar, Ms Husain, and Dr Vaidya); Centre of Excellence in Epigenetics, Indian Institute of Science Education and Research, Pune, Maharashtra, India (Dr Galande)
| | - Shreya Ghosh
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, Maharashtra, India (Dr Pusalkar, Ms Ghosh, Ms Jaggar, Ms Husain, and Dr Vaidya); Centre of Excellence in Epigenetics, Indian Institute of Science Education and Research, Pune, Maharashtra, India (Dr Galande)
| | - Minal Jaggar
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, Maharashtra, India (Dr Pusalkar, Ms Ghosh, Ms Jaggar, Ms Husain, and Dr Vaidya); Centre of Excellence in Epigenetics, Indian Institute of Science Education and Research, Pune, Maharashtra, India (Dr Galande)
| | - Basma Fatima Anwar Husain
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, Maharashtra, India (Dr Pusalkar, Ms Ghosh, Ms Jaggar, Ms Husain, and Dr Vaidya); Centre of Excellence in Epigenetics, Indian Institute of Science Education and Research, Pune, Maharashtra, India (Dr Galande)
| | - Sanjeev Galande
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, Maharashtra, India (Dr Pusalkar, Ms Ghosh, Ms Jaggar, Ms Husain, and Dr Vaidya); Centre of Excellence in Epigenetics, Indian Institute of Science Education and Research, Pune, Maharashtra, India (Dr Galande)
| | - Vidita A Vaidya
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, Maharashtra, India (Dr Pusalkar, Ms Ghosh, Ms Jaggar, Ms Husain, and Dr Vaidya); Centre of Excellence in Epigenetics, Indian Institute of Science Education and Research, Pune, Maharashtra, India (Dr Galande).
| |
Collapse
|
114
|
Crea F, Venalainen E, Ci X, Cheng H, Pikor L, Parolia A, Xue H, Nur Saidy NR, Lin D, Lam W, Collins C, Wang Y. The role of epigenetics and long noncoding RNA MIAT in neuroendocrine prostate cancer. Epigenomics 2016; 8:721-31. [PMID: 27096814 DOI: 10.2217/epi.16.6] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Neuroendocrine prostate cancer (NEPC) is the most lethal prostatic neoplasm. NEPC is thought to originate from the transdifferentiation of AR-positive adenocarcinoma cells. We have previously shown that an epigenetic/noncoding interactome (ENI) orchestrates cancer cells' plasticity, thereby allowing the emergence of metastatic, drug-resistant neoplasms. The primary objective of this manuscript is to discuss evidence indicating that some components of the ENI (Polycomb genes, miRNAs) play a key role in NEPC initiation and progression. Long noncoding RNAs represent vast and largely unexplored component of the ENI. Their role in NEPC has not been investigated. We show preliminary evidence indicating that a lncRNA (MIAT) is selectively upregulated in NEPCs and might interact with Polycomb genes. Our results indicate that long noncoding RNAs can be exploited as new biomarkers and therapeutic targets for NEPC.
Collapse
Affiliation(s)
- Francesco Crea
- Experimental Therapeutics, BC Cancer Agency Cancer Research Centre, Vancouver, BC, Canada.,Department of Life Health & Chemical Sciences, The Open University, Milton Keynes, UK
| | - Erik Venalainen
- Experimental Therapeutics, BC Cancer Agency Cancer Research Centre, Vancouver, BC, Canada
| | - Xinpei Ci
- Experimental Therapeutics, BC Cancer Agency Cancer Research Centre, Vancouver, BC, Canada.,Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Hongwei Cheng
- Experimental Therapeutics, BC Cancer Agency Cancer Research Centre, Vancouver, BC, Canada.,Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Larissa Pikor
- Genetics Unit, Integrative Oncology, BC Cancer Agency Cancer Research Centre, Vancouver, BC, Canada
| | - Abhijit Parolia
- Experimental Therapeutics, BC Cancer Agency Cancer Research Centre, Vancouver, BC, Canada
| | - Hui Xue
- Experimental Therapeutics, BC Cancer Agency Cancer Research Centre, Vancouver, BC, Canada
| | - Nur Ridzwan Nur Saidy
- Experimental Therapeutics, BC Cancer Agency Cancer Research Centre, Vancouver, BC, Canada
| | - Dong Lin
- Experimental Therapeutics, BC Cancer Agency Cancer Research Centre, Vancouver, BC, Canada.,Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Wan Lam
- Genetics Unit, Integrative Oncology, BC Cancer Agency Cancer Research Centre, Vancouver, BC, Canada
| | - Colin Collins
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Yuzhuo Wang
- Experimental Therapeutics, BC Cancer Agency Cancer Research Centre, Vancouver, BC, Canada.,Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
115
|
Palomer E, Carretero J, Benvegnù S, Dotti CG, Martin MG. Neuronal activity controls Bdnf expression via Polycomb de-repression and CREB/CBP/JMJD3 activation in mature neurons. Nat Commun 2016; 7:11081. [PMID: 27010597 PMCID: PMC4820842 DOI: 10.1038/ncomms11081] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 02/19/2016] [Indexed: 01/07/2023] Open
Abstract
It has been recently described that in embryonic stem cells, the expression of some important developmentally regulated genes is repressed, but poised for fast activation under the appropriate stimuli. In this work we show that Bdnf promoters are repressed by Polycomb Complex 2 in mature hippocampal neurons, and basal expression is guaranteed by the coexistence with activating histone marks. Neuronal stimulation triggered by N-methyl-D-aspartate application induces the transcription of these promoters by H3K27Me3 demethylation and H3K27Me3 phosphorylation at Serine 28 leading to displacement of EZH2, the catalytic subunit of Polycomb Repressor Complex 2. Our data show that the fast transient expression of Bdnf promoters II and VI after neuronal stimulation is dependent on acetylation of histone H3K27 by CREB-p/CBP. Thus, regulatory mechanisms established during development seem to remain after differentiation controlling genes induced by different stimuli, as would be the case of early memory genes in mature neurons. In neurons, brain-derived neurotrophic factor (BDNF) transcription is activated by synaptic activity, in part by epigenetic regulation of its promoter regions. Here the authors characterize histone modifications in response to NMDA treatment that result in different kinetics of Bdnf activation from its different promoter regions.
Collapse
Affiliation(s)
- Ernest Palomer
- Departamento de Neurobiología Molecular, Centro Biología Molecular 'Severo Ochoa' CSIC-UAM, 28049 Madrid, Spain
| | - Javier Carretero
- Departamento de Neurobiología Molecular, Centro Biología Molecular 'Severo Ochoa' CSIC-UAM, 28049 Madrid, Spain
| | - Stefano Benvegnù
- Departamento de Neurobiología Molecular, Centro Biología Molecular 'Severo Ochoa' CSIC-UAM, 28049 Madrid, Spain
| | - Carlos G Dotti
- Departamento de Neurobiología Molecular, Centro Biología Molecular 'Severo Ochoa' CSIC-UAM, 28049 Madrid, Spain
| | - Mauricio G Martin
- Departamento de Neurobiología Molecular, Centro Biología Molecular 'Severo Ochoa' CSIC-UAM, 28049 Madrid, Spain.,Laboratorio de Neurobiología, Instituto de Investigaciones Médicas Mercedes y Martín Ferreyra (INIMEC-CONICET-UNC), Universidad Nacional de Córdoba, 5016 Córdoba, Argentina
| |
Collapse
|
116
|
Calstabin 2: An important regulator for learning and memory in mice. Sci Rep 2016; 6:21087. [PMID: 26888649 PMCID: PMC4758079 DOI: 10.1038/srep21087] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 01/14/2016] [Indexed: 12/20/2022] Open
Abstract
Calstabin2, also named FK506 binding protein 12.6 (FKBP12.6), is a subunit of ryanodine receptor subtype 2 (RyR2) macromolecular complex, which is an intracellular calcium channel and abundant in the brain. Previous studies identified a role of leaky neuronal RyR2 in posttraumatic stress disorder (PTSD). However, the functional role of Calstabin2 in the cognitive function remains unclear. Herein, we used a mouse model of genetic deletion of Calstabin2 to investigate the function of Calstabin2 in cognitive dysfunction. We found that Calstabin2 knockout (KO) mice showed significantly reduced performance in Morris Water Maze (MWM), long-term memory (LTM) contextual fear testing, and rotarod test when compared to wild type (WT) littermates. Indeed, genetic deletion of Calstabin2 reduced long-term potentiation (LTP) at the hippocampal CA3-CA1 connection, increased membrane excitability, and induced RyR2 leak. Finally, we demonstrated that the increase in cytoplasmic calcium activated Ca(2+) dependent potassium currents and led to neuronal apoptosis in KO hippocampal neurons. Thus, these results suggest that neuronal RyR2 Ca(2+) leak due to Calstabin2 deletion contributes to learning deficiency and memory impairment.
Collapse
|
117
|
|
118
|
Adult Hippocampal Neurogenesis, Fear Generalization, and Stress. Neuropsychopharmacology 2016; 41:24-44. [PMID: 26068726 PMCID: PMC4677119 DOI: 10.1038/npp.2015.167] [Citation(s) in RCA: 157] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 05/29/2015] [Accepted: 06/05/2015] [Indexed: 12/21/2022]
Abstract
The generalization of fear is an adaptive, behavioral, and physiological response to the likelihood of threat in the environment. In contrast, the overgeneralization of fear, a cardinal feature of posttraumatic stress disorder (PTSD), manifests as inappropriate, uncontrollable expression of fear in neutral and safe environments. Overgeneralization of fear stems from impaired discrimination of safe from aversive environments or discernment of unlikely threats from those that are highly probable. In addition, the time-dependent erosion of episodic details of traumatic memories might contribute to their generalization. Understanding the neural mechanisms underlying the overgeneralization of fear will guide development of novel therapeutic strategies to combat PTSD. Here, we conceptualize generalization of fear in terms of resolution of interference between similar memories. We propose a role for a fundamental encoding mechanism, pattern separation, in the dentate gyrus (DG)-CA3 circuit in resolving interference between ambiguous or uncertain threats and in preserving episodic content of remote aversive memories in hippocampal-cortical networks. We invoke cellular-, circuit-, and systems-based mechanisms by which adult-born dentate granule cells (DGCs) modulate pattern separation to influence resolution of interference and maintain precision of remote aversive memories. We discuss evidence for how these mechanisms are affected by stress, a risk factor for PTSD, to increase memory interference and decrease precision. Using this scaffold we ideate strategies to curb overgeneralization of fear in PTSD.
Collapse
|
119
|
Li J, You Y, Yue W, Yu H, Lu T, Wu Z, Jia M, Ruan Y, Liu J, Zhang D, Wang L. Chromatin remodeling gene EZH2 involved in the genetic etiology of autism in Chinese Han population. Neurosci Lett 2015; 610:182-6. [PMID: 26552012 DOI: 10.1016/j.neulet.2015.10.074] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 10/29/2015] [Accepted: 10/30/2015] [Indexed: 01/17/2023]
Abstract
Autism spectrum disorder (ASD) is a group of severe neurodevelopmental disorders. Epigenetic factors play a critical role in the etiology of ASD. Enhancer of zest homolog 2 (EZH2), which encodes a histone methyltransferase, plays an important role in the process of chromatin remodeling during neurodevelopment. Further, EZH2 is located in chromosome 7q35-36, which is one of the linkage regions for autism. However, the genetic relationship between autism and EZH2 remains unclear. To investigate the association between EZH2 and autism in Chinese Han population, we performed a family-based association study between autism and three tagged single nucleotide polymorphisms (SNPs) that covered 95.4% of the whole region of EZH2. In the discovery cohort of 239 trios, two SNPs (rs740949 and rs6464926) showed a significant association with autism. To decrease false positive results, we expanded the sample size to 427 trios. A SNP (rs6464926) was significantly associated with autism even after Bonferroni correction (p=0.008). Haplotype G-T (rs740949 and rs6464926) was a risk factor for autism (Z=2.655, p=0.008, Global p=0.024). In silico function prediction for SNPs indicated that these two SNPs might be regulatory SNPs. Expression pattern of EZH2 showed that it is highly expressed in human embryonic brains. In conclusion, our findings demonstrate that EZH2 might contribute to the genetic etiology of autism in Chinese Han population.
Collapse
Affiliation(s)
- Jun Li
- Institute of Mental Health, The Sixth Hospital, Peking University, Beijing, PR China; Key Laboratory of Mental Health, Ministry of Health & National Clinical Research Center for Mental Disorders (Peking University), Beijing, PR China
| | - Yang You
- Institute of Mental Health, The Sixth Hospital, Peking University, Beijing, PR China; Key Laboratory of Mental Health, Ministry of Health & National Clinical Research Center for Mental Disorders (Peking University), Beijing, PR China
| | - Weihua Yue
- Institute of Mental Health, The Sixth Hospital, Peking University, Beijing, PR China; Key Laboratory of Mental Health, Ministry of Health & National Clinical Research Center for Mental Disorders (Peking University), Beijing, PR China
| | - Hao Yu
- Institute of Mental Health, The Sixth Hospital, Peking University, Beijing, PR China; Key Laboratory of Mental Health, Ministry of Health & National Clinical Research Center for Mental Disorders (Peking University), Beijing, PR China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, PR China
| | - Tianlan Lu
- Institute of Mental Health, The Sixth Hospital, Peking University, Beijing, PR China; Key Laboratory of Mental Health, Ministry of Health & National Clinical Research Center for Mental Disorders (Peking University), Beijing, PR China
| | - Zhiliu Wu
- Institute of Mental Health, The Sixth Hospital, Peking University, Beijing, PR China; Key Laboratory of Mental Health, Ministry of Health & National Clinical Research Center for Mental Disorders (Peking University), Beijing, PR China
| | - Meixiang Jia
- Institute of Mental Health, The Sixth Hospital, Peking University, Beijing, PR China; Key Laboratory of Mental Health, Ministry of Health & National Clinical Research Center for Mental Disorders (Peking University), Beijing, PR China
| | - Yanyan Ruan
- Institute of Mental Health, The Sixth Hospital, Peking University, Beijing, PR China; Key Laboratory of Mental Health, Ministry of Health & National Clinical Research Center for Mental Disorders (Peking University), Beijing, PR China
| | - Jing Liu
- Institute of Mental Health, The Sixth Hospital, Peking University, Beijing, PR China; Key Laboratory of Mental Health, Ministry of Health & National Clinical Research Center for Mental Disorders (Peking University), Beijing, PR China.
| | - Dai Zhang
- Institute of Mental Health, The Sixth Hospital, Peking University, Beijing, PR China; Key Laboratory of Mental Health, Ministry of Health & National Clinical Research Center for Mental Disorders (Peking University), Beijing, PR China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, PR China; PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, PR China.
| | - Lifang Wang
- Institute of Mental Health, The Sixth Hospital, Peking University, Beijing, PR China; Key Laboratory of Mental Health, Ministry of Health & National Clinical Research Center for Mental Disorders (Peking University), Beijing, PR China.
| |
Collapse
|
120
|
Ezh2 is involved in radial neuronal migration through regulating Reelin expression in cerebral cortex. Sci Rep 2015; 5:15484. [PMID: 26499080 PMCID: PMC4620455 DOI: 10.1038/srep15484] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 09/28/2015] [Indexed: 01/29/2023] Open
Abstract
Radial migration of pyramidal neurons is an important event during the development of cerebral cortex. Neurons experience series of morphological and directional transitions to get to their final laminar positions. Here we report that the histone methyltransferase enhancer of zest homolog 2 (Ezh2) is involved in the regulation of cortical radial migration. We show that Ezh2 knockdown leads to disturbed neuronal orientation, which results in the impairment of radial migration. Further results reveal that this migration deficiency may be due to the derepression of Reelin transcription in the migrating neurons. Our study provides evidence that epigenetic regulation of Reelin by Ezh2 maintains appropriate Reelin expression pattern to fulfill proper orientation of migrating neurons.
Collapse
|
121
|
Abstract
TOR (target of rapamycin) and its mammalian ortholog mTOR have been discovered in an effort to understand the mechanisms of action of the immunosuppressant drug rapamycin extracted from a bacterium of the Easter Island (Rapa Nui) soil. mTOR is a serine/threonine kinase found in two functionally distinct complexes, mTORC1 and mTORC2, which are differentially regulated by a great number of nutrients such as glucose and amino acids, energy (oxygen and ATP/AMP content), growth factors, hormones, and neurotransmitters. mTOR controls many basic cellular functions such as protein synthesis, energy metabolism, cell size, lipid metabolism, autophagy, mitochondria, and lysosome biogenesis. In addition, mTOR-controlled signaling pathways regulate many integrated physiological functions of the nervous system including neuronal development, synaptic plasticity, memory storage, and cognition. Thus it is not surprising that deregulation of mTOR signaling is associated with many neurological and psychiatric disorders. Preclinical and preliminary clinical studies indicate that inhibition of mTORC1 can be beneficial for some pathological conditions such as epilepsy, cognitive impairment, and brain tumors, whereas stimulation of mTORC1 (direct or indirect) can be beneficial for other pathologies such as depression or axonal growth and regeneration.
Collapse
Affiliation(s)
- Joël Bockaert
- Centre National de la Recherche Scientifique, UMR-5203, Institut de Génomique Fonctionnelle, Montpellier, France; Institut National de la Santé et de la Recherche Médicale U1191, Montpellier, France; and Université de Montpellier, UMR-5203, Montpellier, France
| | - Philippe Marin
- Centre National de la Recherche Scientifique, UMR-5203, Institut de Génomique Fonctionnelle, Montpellier, France; Institut National de la Santé et de la Recherche Médicale U1191, Montpellier, France; and Université de Montpellier, UMR-5203, Montpellier, France
| |
Collapse
|
122
|
Katoh M. Mutation spectra of histone methyltransferases with canonical SET domains and EZH2-targeted therapy. Epigenomics 2015; 8:285-305. [PMID: 26411517 DOI: 10.2217/epi.15.89] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Germline mutations in canonical SET-methyltransferases have been identified in autism and intellectual disability syndromes and gain-of-function somatic alterations in EZH2, MLL3, NSD1, WHSC1 (NSD2) and WHSC1L1 (NSD3) in cancer. EZH2 interacts with AR, ERα, β-catenin, FOXP3, NF-κB, PRC2, REST and SNAI2, resulting in context-dependent transcriptional activation and repression. Pharmacological EZH2 inhibitors are currently in clinical trials for the treatment of B-cell lymphomas and solid tumors. EZH2 inhibitors might also be applicable in the treatment of SWI/SNF-mutant cancers, reflecting the reciprocal expression of and functional overlap between EZH2 and SMARCA4. Because of the risks for autoimmune diseases, cognitive impairment, cardiomyopathy and myelodysplastic syndrome, EZH2 inhibitors should be utilized for cancer treatment in patients receiving long-term surveillance but not for cancer chemoprevention.
Collapse
Affiliation(s)
- Masaru Katoh
- Department of Omics Network, National Cancer Center, 5-1-1 Tsukiji, Chuo-ward, Tokyo 104-0045, Japan
| |
Collapse
|
123
|
Lee DY. Roles of mTOR Signaling in Brain Development. Exp Neurobiol 2015; 24:177-85. [PMID: 26412966 PMCID: PMC4580744 DOI: 10.5607/en.2015.24.3.177] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 09/02/2015] [Accepted: 09/02/2015] [Indexed: 12/18/2022] Open
Abstract
mTOR is a serine/threonine kinase composed of multiple protein components. Intracellular signaling of mTOR complexes is involved in many of physiological functions including cell survival, proliferation and differentiation through the regulation of protein synthesis in multiple cell types. During brain development, mTOR-mediated signaling pathway plays a crucial role in the process of neuronal and glial differentiation and the maintenance of the stemness of neural stem cells. The abnormalities in the activity of mTOR and its downstream signaling molecules in neural stem cells result in severe defects of brain developmental processes causing a significant number of brain disorders, such as pediatric brain tumors, autism, seizure, learning disability and mental retardation. Understanding the implication of mTOR activity in neural stem cells would be able to provide an important clue in the development of future brain developmental disorder therapies.
Collapse
Affiliation(s)
- Da Yong Lee
- Stem Cell Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
| |
Collapse
|
124
|
McAvoy K, Besnard A, Sahay A. Adult hippocampal neurogenesis and pattern separation in DG: a role for feedback inhibition in modulating sparseness to govern population-based coding. Front Syst Neurosci 2015; 9:120. [PMID: 26347621 PMCID: PMC4542503 DOI: 10.3389/fnsys.2015.00120] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 08/07/2015] [Indexed: 12/17/2022] Open
Abstract
The dentate gyrus (DG) of mammals harbors neural stem cells that generate new dentate granule cells (DGCs) throughout life. Behavioral studies using the contextual fear discrimination paradigm have found that selectively augmenting or blocking adult hippocampal neurogenesis enhances or impairs discrimination under conditions of high, but not low, interference suggestive of a role in pattern separation. Although contextual discrimination engages population-based coding mechanisms underlying pattern separation such as global remapping in the DG and CA3, how adult hippocampal neurogenesis modulates pattern separation in the DG is poorly understood. Here, we propose a role for adult-born DGCs in re-activation coupled modulation of sparseness through feed-back inhibition to govern global remapping in the DG.
Collapse
Affiliation(s)
- Kathleen McAvoy
- Center for Regenerative Medicine, Massachusetts General Hospital, Harvard Medical School Boston, MA, USA
| | - Antoine Besnard
- Center for Regenerative Medicine, Massachusetts General Hospital, Harvard Medical School Boston, MA, USA
| | - Amar Sahay
- Center for Regenerative Medicine, Massachusetts General Hospital, Harvard Medical School Boston, MA, USA ; Harvard Stem Cell Institute, Harvard University Cambridge, MA, USA ; Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School Boston, MA, USA
| |
Collapse
|
125
|
Abstract
Stem cell decline is an important cellular driver of aging-associated pathophysiology in multiple tissues. Epigenetic regulation is central to establishing and maintaining stem cell function, and emerging evidence indicates that epigenetic dysregulation contributes to the altered potential of stem cells during aging. Unlike terminally differentiated cells, the impact of epigenetic dysregulation in stem cells is propagated beyond self; alterations can be heritably transmitted to differentiated progeny, in addition to being perpetuated and amplified within the stem cell pool through self-renewal divisions. This Review focuses on recent studies examining epigenetic regulation of tissue-specific stem cells in homeostasis, aging, and aging-related disease.
Collapse
Affiliation(s)
- Isabel Beerman
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Program in Cellular and Molecular Medicine, Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02116, USA
| | - Derrick J Rossi
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Program in Cellular and Molecular Medicine, Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02116, USA.
| |
Collapse
|
126
|
Montalbán-Loro R, Domingo-Muelas A, Bizy A, Ferrón SR. Epigenetic regulation of stemness maintenance in the neurogenic niches. World J Stem Cells 2015; 7:700-710. [PMID: 26029342 PMCID: PMC4444611 DOI: 10.4252/wjsc.v7.i4.700] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 12/12/2014] [Accepted: 03/20/2015] [Indexed: 02/06/2023] Open
Abstract
In the adult mouse brain, the subventricular zone lining the lateral ventricles and the subgranular zone in the dentate gyrus of the hippocampus are two zones that contain neural stem cells (NSCs) with the capacity to give rise to neurons and glia during the entire life of the animal. Spatial and temporal regulation of gene expression in the NSCs population is established and maintained by the coordinated interaction between transcription factors and epigenetic regulators which control stem cell fate. Epigenetic mechanisms are heritable alterations in genome function that do not involve changes in DNA sequence itself but that modulate gene expression, acting as mediators between the environment and the genome. At the molecular level, those epigenetic mechanisms comprise chemical modifications of DNA such as methylation, hydroxymethylation and histone modifications needed for the maintenance of NSC identity. Genomic imprinting is another normal epigenetic process leading to parental-specific expression of a gene, known to be implicated in the control of gene dosage in the neurogenic niches. The generation of induced pluripotent stem cells from NSCs by expression of defined transcription factors, provide key insights into fundamental principles of stem cell biology. Epigenetic modifications can also occur during reprogramming of NSCs to pluripotency and a better understanding of this process will help to elucidate the mechanisms required for stem cell maintenance. This review takes advantage of recent studies from the epigenetic field to report knowledge regarding the mechanisms of stemness maintenance of neural stem cells in the neurogenic niches.
Collapse
|
127
|
Szyf M. Prospects for the development of epigenetic drugs for CNS conditions. Nat Rev Drug Discov 2015; 14:461-74. [DOI: 10.1038/nrd4580] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
128
|
Reynolds JP, Miller-Delaney SFC, Jimenez-Mateos EM, Sano T, McKiernan RC, Simon RP, Henshall DC. Transcriptional Response of Polycomb Group Genes to Status Epilepticus in Mice is Modified by Prior Exposure to Epileptic Preconditioning. Front Neurol 2015; 6:46. [PMID: 25806020 PMCID: PMC4354380 DOI: 10.3389/fneur.2015.00046] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Accepted: 02/23/2015] [Indexed: 12/23/2022] Open
Abstract
Exposure of the brain to brief, non-harmful seizures can activate protective mechanisms that temporarily generate a damage-refractory state. This process, termed epileptic tolerance, is associated with large-scale down-regulation of gene expression. Polycomb group (PcG) proteins are master controllers of gene silencing during development that are re-activated by injury to the brain. Here, we explored the transcriptional response of genes associated with polycomb repressive complex (PRC) 1 (Ring1A, Ring1B, and Bmi1) and PRC2 (Ezh1, Ezh2, and Suz12), as well as additional transcriptional regulators Sirt1, Yy1, and Yy2, in a mouse model of status epilepticus (SE). Findings were contrasted to changes after SE in mice previously given brief seizures to evoke tolerance. Real-time quantitative PCR showed SE prompted an early (1 h) increase in expression of several genes in PRC1 and PRC2 in the hippocampus, followed by down-regulation of many of the same genes at later times points (4, 8, and 24 h). Spatio-temporal differences were found among PRC2 genes in epileptic tolerance, including increased expression of Ezh2, Suz12, and Yy2 relative to the normal injury response to SE. In contrast, PRC1 complex genes including Ring 1B and Bmi1 displayed differential down-regulation in epileptic tolerance. The present study characterizes PcG gene expression following SE and shows prior seizure exposure produces select changes to PRC1 and PRC2 composition that may influence differential gene expression in epileptic tolerance.
Collapse
Affiliation(s)
- James P Reynolds
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland , Dublin , Ireland
| | | | - Eva M Jimenez-Mateos
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland , Dublin , Ireland
| | - Takanori Sano
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland , Dublin , Ireland ; Department of Neurosurgery, Mie University School of Medicine , Tsu, Mie , Japan
| | - Ross C McKiernan
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland , Dublin , Ireland
| | | | - David C Henshall
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland , Dublin , Ireland
| |
Collapse
|
129
|
Swaminathan A, Kumar M, Halder Sinha S, Schneider-Anthony A, Boutillier AL, Kundu TK. Modulation of neurogenesis by targeting epigenetic enzymes using small molecules: an overview. ACS Chem Neurosci 2014; 5:1164-77. [PMID: 25250644 DOI: 10.1021/cn500117a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Neurogenesis consists of a plethora of complex cellular processes including neural stem cell (NSC) proliferation, migration, maturation or differentiation to neurons, and finally integration into the pre-existing neural circuits in the brain, which are temporally regulated and coordinated sequentially. Mammalian neurogenesis begins during embryonic development and continues in postnatal brain (adult neurogenesis). It is now evident that adult neurogenesis is driven by extracellular and intracellular signaling pathways, where epigenetic modifications like reversible histone acetylation, methylation, as well as DNA methylation play a vital role. Epigenetic regulation of gene expression during neural development is governed mainly by histone acetyltransferases (HATs), histone methyltransferase (HMTs), DNA methyltransferases (DNMTs), and also the enzymes for reversal, like histone deacetylases (HDACs), and many of these have also been shown to be involved in the regulation of adult neurogenesis. The contribution of these epigenetic marks to neurogenesis is increasingly being recognized, through knockout studies and small molecule modulator based studies. These small molecules are directly involved in regeneration and repair of neurons, and not only have applications from a therapeutic point of view, but also provide a tool to study the process of neurogenesis itself. In the present Review, we will focus on small molecules that act predominantly on epigenetic enzymes to enhance neurogenesis and neuroprotection and discuss the mechanism and recent advancements in their synthesis, targeting, and biology.
Collapse
Affiliation(s)
- Amrutha Swaminathan
- Transcription and
Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O, Bangalore-560064, India
| | - Manoj Kumar
- Transcription and
Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O, Bangalore-560064, India
| | - Sarmistha Halder Sinha
- Transcription and
Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O, Bangalore-560064, India
| | - Anne Schneider-Anthony
- Laboratoire de Neurosciences
Cognitives et Adaptatives (LNCA), UMR7364, Université de Strasbourg-CNRS,
GDR CNRS 2905, Faculté de Psychologie, 12 rue Goethe, 67000 Strasbourg, France
| | - Anne-Laurence Boutillier
- Laboratoire de Neurosciences
Cognitives et Adaptatives (LNCA), UMR7364, Université de Strasbourg-CNRS,
GDR CNRS 2905, Faculté de Psychologie, 12 rue Goethe, 67000 Strasbourg, France
| | - Tapas K Kundu
- Transcription and
Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O, Bangalore-560064, India
| |
Collapse
|
130
|
Networks of protein kinases and phosphatases in the individual phases of contextual fear conditioning in the C57BL/6J mouse. Behav Brain Res 2014; 280:45-50. [PMID: 25461266 DOI: 10.1016/j.bbr.2014.11.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Revised: 11/08/2014] [Accepted: 11/12/2014] [Indexed: 01/05/2023]
Abstract
Although protein kinases and phosphatases have been reported to be involved in fear memory, information about these signalling molecules in the individual phases of contextual fear conditioning (cFC) is limited. C57BL/6J mice were tested in cFC, sacrificed and hippocampi were used for screening of approximately 800 protein kinases and phosphatases by protein microarrays with subsequent Western blot confirmation of threefold higher or lower hippocampal levels as compared to foot shock controls. Immunoblotting of the protein kinases and phosphatases screened out was carried out by Western blotting. A network of protein kinases and phosphatases was generated (STRING 9.1). Animals learned the task in the paradigm and protein kinase and phosphatase levels were determined in the individual phases acquisition, consolidation and retrieval and compared to foot shock controls. Protein kinases discoidin containing receptor 2 (DDR2), mitogen activated protein kinase kinase kinase 7 (TAK1), protein phosphatases dual specificity protein phosphatase (PTEN) and protein phosphatase 2a (PP2A) were modulated in the individual phases of cFC. Phosphatidyl-inositol-3,4,5-triphosphate 3-phosphatase and phosphatidylinositol-3 kinase (PI3K) that is interacting with PTEN were modulated as well. Freezing time was correlating with PP2A levels in the retrieval phase of cFC. The abovementioned protein kinases, phosphatases and inositol-signalling enzymes were not reported so far in cFC and the results are relevant for interpretation of previous and design of future studies in cFC or fear memory. Protein phosphatase PP2A was, however, the only signalling compound tested that was directly linked to retrieval in the cFC.
Collapse
|
131
|
Xuan AG, Chen Y, Long DH, Zhang M, Ji WD, Zhang WJ, Liu JH, Hong LP, He XS, Chen WL. PPARα Agonist Fenofibrate Ameliorates Learning and Memory Deficits in Rats Following Global Cerebral Ischemia. Mol Neurobiol 2014; 52:601-9. [DOI: 10.1007/s12035-014-8882-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 08/27/2014] [Indexed: 01/01/2023]
|