101
|
Sinha D, Matz LM, Cameron TA, De Lay NR. Poly(A) polymerase is required for RyhB sRNA stability and function in Escherichia coli. RNA (NEW YORK, N.Y.) 2018; 24:1496-1511. [PMID: 30061117 PMCID: PMC6191717 DOI: 10.1261/rna.067181.118] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 07/24/2018] [Indexed: 05/05/2023]
Abstract
Small regulatory RNAs (sRNAs) are an important class of bacterial post-transcriptional regulators that control numerous physiological processes, including stress responses. In Gram-negative bacteria including Escherichia coli, the RNA chaperone Hfq binds many sRNAs and facilitates pairing to target transcripts, resulting in changes in mRNA transcription, translation, or stability. Here, we report that poly(A) polymerase (PAP I), which promotes RNA degradation by exoribonucleases through the addition of poly(A) tails, has a crucial role in the regulation of gene expression by Hfq-dependent sRNAs. Specifically, we show that deletion of pcnB, encoding PAP I, paradoxically resulted in an increased turnover of certain Hfq-dependent sRNAs, including RyhB. RyhB instability in the pcnB deletion strain was suppressed by mutations in hfq or ryhB that disrupt pairing of RyhB with target RNAs, by mutations in the 3' external transcribed spacer of the glyW-cysT-leuZ transcript (3'ETSLeuZ) involved in pairing with RyhB, or an internal deletion in rne, which encodes the endoribonuclease RNase E. Finally, the reduced stability of RyhB in the pcnB deletion strain resulted in impaired regulation of some of its target mRNAs, specifically sodB and sdhCDAB. Altogether our data support a model where PAP I plays a critical role in ensuring the efficient decay of the 3'ETSLeuZ In the absence of PAP I, the 3'ETSLeuZ transcripts accumulate, bind Hfq, and pair with RyhB, resulting in its depletion via RNase E-mediated decay. This ultimately leads to a defect in RyhB function in a PAP I deficient strain.
Collapse
Affiliation(s)
- Dhriti Sinha
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center, Houston, Texas 77030, USA
| | - Lisa M Matz
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center, Houston, Texas 77030, USA
| | - Todd A Cameron
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center, Houston, Texas 77030, USA
| | - Nicholas R De Lay
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center, Houston, Texas 77030, USA
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, University of Texas Health Science Center, Houston, Texas 77030, USA
| |
Collapse
|
102
|
Mihailovic MK, Vazquez-Anderson J, Li Y, Fry V, Vimalathas P, Herrera D, Lease RA, Powell WB, Contreras LM. High-throughput in vivo mapping of RNA accessible interfaces to identify functional sRNA binding sites. Nat Commun 2018; 9:4084. [PMID: 30287822 PMCID: PMC6172242 DOI: 10.1038/s41467-018-06207-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 08/10/2018] [Indexed: 12/18/2022] Open
Abstract
Herein we introduce a high-throughput method, INTERFACE, to reveal the capacity of contiguous RNA nucleotides to establish in vivo intermolecular RNA interactions for the purpose of functional characterization of intracellular RNA. INTERFACE enables simultaneous accessibility interrogation of an unlimited number of regions by coupling regional hybridization detection to transcription elongation outputs measurable by RNA-seq. We profile over 900 RNA interfaces in 71 validated, but largely mechanistically under-characterized, Escherichia coli sRNAs in the presence and absence of a global regulator, Hfq, and find that two-thirds of tested sRNAs feature Hfq-dependent regions. Further, we identify in vivo hybridization patterns that hallmark functional regions to uncover mRNA targets. In this way, we biochemically validate 25 mRNA targets, many of which are not captured by typically tested, top-ranked computational predictions. We additionally discover direct mRNA binding activity within the GlmY terminator, highlighting the information value of high-throughput RNA accessibility data. Mapping RNA accessibility is valuable for identifying functional/regulatory RNA regions. Here the authors introduce INTERFACE, an intracellular method that quantifies antisense hybridization efficacy of any number of RNA regions simultaneously via a transcriptional elongation output, measurable via RNA-seq
Collapse
Affiliation(s)
- Mia K Mihailovic
- McKetta Department of Chemical Engineering, University of Texas at Austin, 200 E. Dean Keeton St., Stop C0400, Austin, TX, 78712, USA
| | - Jorge Vazquez-Anderson
- McKetta Department of Chemical Engineering, University of Texas at Austin, 200 E. Dean Keeton St., Stop C0400, Austin, TX, 78712, USA
| | - Yan Li
- Department of Operations Research and Financial Engineering, Princeton University, Sherrerd Hall, Charlton St., Princeton, NJ, 08544, USA
| | - Victoria Fry
- McKetta Department of Chemical Engineering, University of Texas at Austin, 200 E. Dean Keeton St., Stop C0400, Austin, TX, 78712, USA
| | - Praveen Vimalathas
- McKetta Department of Chemical Engineering, University of Texas at Austin, 200 E. Dean Keeton St., Stop C0400, Austin, TX, 78712, USA
| | - Daniel Herrera
- Department of Computer Science, University of Texas at Austin, 2317 Speedway Stop D9500, Austin, TX, 78712, USA
| | - Richard A Lease
- Department of Chemical and Biomolecular Engineering, The Ohio State University, 151W. Woodruff Ave, Columbus, OH, 43210, USA.,Department of Chemistry and Biochemistry, The Ohio State University, 100W. 18th Ave, Columbus, OH, 43210, USA
| | - Warren B Powell
- Department of Operations Research and Financial Engineering, Princeton University, Sherrerd Hall, Charlton St., Princeton, NJ, 08544, USA
| | - Lydia M Contreras
- McKetta Department of Chemical Engineering, University of Texas at Austin, 200 E. Dean Keeton St., Stop C0400, Austin, TX, 78712, USA.
| |
Collapse
|
103
|
Lalaouna D, Desgranges E, Caldelari I, Marzi S. MS2-Affinity Purification Coupled With RNA Sequencing Approach in the Human Pathogen Staphylococcus aureus. Methods Enzymol 2018; 612:393-411. [PMID: 30502950 DOI: 10.1016/bs.mie.2018.08.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Staphylococcus aureus is a Gram-positive major human pathogen involved in a wide range of human infectious diseases (from minor skin infections to septicemia, endocarditis or toxic shock syndrome). The treatment of S. aureus infections is very challenging due to the emergence of multiple antibiotic-resistant isolates. The high diversity of clinical symptoms caused by S. aureus depends on the precise expression of numerous virulence factors and stress response pathways, which are tightly regulated at every level (transcriptional, posttranscriptional, translational, and posttranslational). During the last two decades, it has become evident that small regulatory RNAs (sRNAs) play a major role in fast adaptive responses, mainly by targeting mRNA translation. sRNAs act as antisense RNAs by forming noncontiguous pairings with their target mRNAs and their mechanisms of action vary according to the interaction site. To obtain a global and detailed view of the regulatory networks involved in the adaptive processes of S. aureus, we have adapted the MAPS approach to get individual sRNA targetomes. We also set up different strategies to validate MAPS results and establish sRNA regulatory activities. As this method has been first developed in Gram-negative bacteria, we provide here a protocol for its application in S. aureus and highlight underlying differences. Finally, we discuss several points that have been and could be further improved and provide a workflow file for the automatic analysis of the sequencing in Galaxy.
Collapse
Affiliation(s)
- David Lalaouna
- Architecture et Réactivité de l'ARN, Université de Strasbourg, IBMC-CNRS, Strasbourg, France
| | - Emma Desgranges
- Architecture et Réactivité de l'ARN, Université de Strasbourg, IBMC-CNRS, Strasbourg, France
| | - Isabelle Caldelari
- Architecture et Réactivité de l'ARN, Université de Strasbourg, IBMC-CNRS, Strasbourg, France.
| | - Stefano Marzi
- Architecture et Réactivité de l'ARN, Université de Strasbourg, IBMC-CNRS, Strasbourg, France.
| |
Collapse
|
104
|
Leistra AN, Gelderman G, Sowa SW, Moon-Walker A, Salis HM, Contreras LM. A Canonical Biophysical Model of the CsrA Global Regulator Suggests Flexible Regulator-Target Interactions. Sci Rep 2018; 8:9892. [PMID: 29967470 PMCID: PMC6028588 DOI: 10.1038/s41598-018-27474-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 06/04/2018] [Indexed: 02/04/2023] Open
Abstract
Bacterial global post-transcriptional regulators execute hundreds of interactions with targets that display varying molecular features while retaining specificity. Herein, we develop, validate, and apply a biophysical, statistical thermodynamic model of canonical target mRNA interactions with the CsrA global post-transcriptional regulator to understand the molecular features that contribute to target regulation. Altogether, we model interactions of CsrA with a pool of 236 mRNA: 107 are experimentally regulated by CsrA and 129 are suspected interaction partners. Guided by current understanding of CsrA-mRNA interactions, we incorporate (i) mRNA nucleotide sequence, (ii) cooperativity of CsrA-mRNA binding, and (iii) minimization of mRNA structural changes to identify an ensemble of likely binding sites and their free energies. The regulatory impact of bound CsrA on mRNA translation is determined with the RBS calculator. Predicted regulation of 66 experimentally regulated mRNAs adheres to the principles of canonical CsrA-mRNA interactions; the remainder implies that other, diverse mechanisms may underlie CsrA-mRNA interaction and regulation. Importantly, results suggest that this global regulator may bind targets in multiple conformations, via flexible stretches of overlapping predicted binding sites. This novel observation expands the notion that CsrA always binds to its targets at specific consensus sequences.
Collapse
Affiliation(s)
- A N Leistra
- McKetta Department of Chemical Engineering, University of Texas at Austin, 200 E. Dean Keeton St. Stop C0400, Austin, TX, 78712, USA
| | - G Gelderman
- McKetta Department of Chemical Engineering, University of Texas at Austin, 200 E. Dean Keeton St. Stop C0400, Austin, TX, 78712, USA
| | - S W Sowa
- Microbiology Graduate Program, University of Texas at Austin, 100 E. 24th St. Stop A6500, Austin, TX, 78712, USA
| | - A Moon-Walker
- Biological Sciences Program College of Natural Sciences, University of Texas at Austin, 120 Inner Campus Drive Stop G2500, Austin, TX, 78712, USA
| | - H M Salis
- Department of Chemical Engineering, Pennsylvania State University, 210 Agricultural Engineering Building, University Park, PA, 16802, USA
| | - L M Contreras
- McKetta Department of Chemical Engineering, University of Texas at Austin, 200 E. Dean Keeton St. Stop C0400, Austin, TX, 78712, USA.
| |
Collapse
|
105
|
Santiago-Frangos A, Woodson SA. Hfq chaperone brings speed dating to bacterial sRNA. WILEY INTERDISCIPLINARY REVIEWS. RNA 2018; 9:e1475. [PMID: 29633565 PMCID: PMC6002925 DOI: 10.1002/wrna.1475] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 02/22/2018] [Accepted: 02/26/2018] [Indexed: 11/11/2022]
Abstract
Hfq is a ubiquitous, Sm-like RNA binding protein found in most bacteria and some archaea. Hfq binds small regulatory RNAs (sRNAs), facilitates base pairing between sRNAs and their mRNA targets, and directly binds and regulates translation of certain mRNAs. Because sRNAs regulate many stress response pathways in bacteria, Hfq is essential for adaptation to different environments and growth conditions. The chaperone activities of Hfq arise from multipronged RNA binding by three different surfaces of the Hfq hexamer. The manner in which the structured Sm core of Hfq binds RNA has been well studied, but recent work shows that the intrinsically disordered C-terminal domain of Hfq modulates sRNA binding, creating a kinetic hierarchy of RNA competition for Hfq and ensuring the release of double-stranded sRNA-mRNA complexes. A combination of structural, biophysical, and genetic experiments reveals how Hfq recognizes its RNA substrates and plays matchmaker for sRNAs and mRNAs in the cell. The interplay between structured and disordered domains of Hfq optimizes sRNA-mediated post-transcriptional regulation, and is a common theme in RNA chaperones. This article is categorized under: Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes RNA Structure and Dynamics > RNA Structure, Dynamics, and Chemistry.
Collapse
Affiliation(s)
- Andrew Santiago-Frangos
- Program in Cellular, Molecular and Developmental Biology and Biophysics, Johns Hopkins University, Baltimore, Maryland
| | - Sarah A Woodson
- T. C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
106
|
Fröhlich KS, Gottesman S. Small Regulatory RNAs in the Enterobacterial Response to Envelope Damage and Oxidative Stress. Microbiol Spectr 2018; 6:10.1128/microbiolspec.rwr-0022-2018. [PMID: 29992897 PMCID: PMC10361636 DOI: 10.1128/microbiolspec.rwr-0022-2018] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Indexed: 01/05/2023] Open
Abstract
The ability of bacteria to thrive in diverse habitats and to adapt to ever-changing environmental conditions relies on the rapid and stringent modulation of gene expression. It has become evident in the past decade that small regulatory RNAs (sRNAs) are central components of networks controlling the bacterial responses to stress. Functioning at the posttranscriptional level, sRNAs base-pair with cognate mRNAs to alter translation, stability, or both to either repress or activate the targeted transcripts; the RNA chaperone Hfq participates in stabilizing sRNAs and in promoting pairing between target and sRNA. In particular, sRNAs act at the heart of crucial stress responses, including those dedicated to overcoming membrane damage and oxidative stress, discussed here. The bacterial cell envelope is the outermost protective barrier against the environment and thus is constantly monitored and remodeled. Here, we review the integration of sRNAs into the complex networks of several major envelope stress responses of Gram-negative bacteria, including the RpoE (σE), Cpx, and Rcs regulons. Oxidative stress, caused by bacterial respiratory activity or induced by toxic molecules, can lead to significant damage of cellular components. In Escherichia coli and related bacteria, sRNAs also contribute significantly to the function of the RpoS (σS)-dependent general stress response as well as the specific OxyR- and SoxR/S-mediated responses to oxidative damage. Their activities in gene regulation and crosstalk to other stress-induced regulons are highlighted.
Collapse
Affiliation(s)
- Kathrin S Fröhlich
- Department of Biology I, Microbiology, LMU Munich, 82152 Martinsried, Germany
| | - Susan Gottesman
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892
| |
Collapse
|
107
|
Höfer K, Jäschke A. Epitranscriptomics: RNA Modifications in Bacteria and Archaea. Microbiol Spectr 2018; 6:10.1128/microbiolspec.rwr-0015-2017. [PMID: 29916347 PMCID: PMC11633594 DOI: 10.1128/microbiolspec.rwr-0015-2017] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Indexed: 02/07/2023] Open
Abstract
The increasingly complex functionality of RNA is contrasted by its simple chemical composition. RNA is generally built from only four different nucleotides (adenine, guanine, cytosine, and uracil). To date, >160 chemical modifications are known to decorate RNA molecules and thereby alter their function or stability. Many RNA modifications are conserved throughout bacteria, archaea, and eukaryotes, while some are unique to each branch of life. Most known modifications occur at internal positions, while there is limited diversity at the termini. The dynamic nature of RNA modifications and newly discovered regulatory functions of some of these RNA modifications gave birth to a new field, now often referred to as "epitranscriptomics." This review highlights the major developments in this field and summarizes detection principles for internal as well as 5'-terminal mRNA modifications in prokaryotes and archaea to investigate their biological significance.
Collapse
MESH Headings
- Archaea/genetics
- Archaea/metabolism
- Bacteria/genetics
- Bacteria/metabolism
- Epigenesis, Genetic
- RNA Processing, Post-Transcriptional
- RNA Stability
- RNA, Archaeal/chemistry
- RNA, Archaeal/genetics
- RNA, Archaeal/metabolism
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Transfer/chemistry
- RNA, Transfer/genetics
- RNA, Transfer/metabolism
- Transcriptome
Collapse
Affiliation(s)
- Katharina Höfer
- Institute of Pharmacy and Molecular Biotechnology, Im Neuenheimer Feld 364, Heidelberg University, 69120 Heidelberg, Germany
| | - Andres Jäschke
- Institute of Pharmacy and Molecular Biotechnology, Im Neuenheimer Feld 364, Heidelberg University, 69120 Heidelberg, Germany
| |
Collapse
|
108
|
Berry KE, Hochschild A. A bacterial three-hybrid assay detects Escherichia coli Hfq-sRNA interactions in vivo. Nucleic Acids Res 2018; 46:e12. [PMID: 29140461 PMCID: PMC5778611 DOI: 10.1093/nar/gkx1086] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 09/21/2017] [Accepted: 10/20/2017] [Indexed: 01/08/2023] Open
Abstract
The interaction of RNA molecules with proteins is a critical aspect of gene regulation across all domains of life. Here, we report the development of a bacterial three-hybrid (B3H) assay to genetically detect RNA-protein interactions. The basis for this three-hybrid assay is a transcription-based bacterial two-hybrid assay that has been used widely to detect and dissect protein-protein interactions. In the three-hybrid assay, a DNA-bound protein with a fused RNA-binding moiety (the coat protein of bacteriophage MS2 (MS2CP)) is used to recruit a hybrid RNA upstream of a test promoter. The hybrid RNA consists of a constant region that binds the tethered MS2CP and a variable region. Interaction between the variable region of the hybrid RNA and a target RNA-binding protein that is fused to a subunit of Escherichia coli RNA polymerase (RNAP) stabilizes the binding of RNAP to the test promoter, thereby activating transcription of a reporter gene. We demonstrate that this three-hybrid assay detects interaction between non-coding small RNAs (sRNAs) and the hexameric RNA chaperone Hfq from E. coli and enables the identification of Hfq mutants with sRNA-binding defects. Our findings suggest that this B3H assay will be broadly applicable for the study of RNA-protein interactions.
Collapse
Affiliation(s)
- Katherine E Berry
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Ann Hochschild
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
109
|
Lee YJ, Moon TS. Design rules of synthetic non-coding RNAs in bacteria. Methods 2018; 143:58-69. [PMID: 29309838 DOI: 10.1016/j.ymeth.2018.01.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 12/31/2017] [Accepted: 01/03/2018] [Indexed: 12/21/2022] Open
Abstract
One of the long-term goals of synthetic biology is to develop designable genetic parts with predictable behaviors that can be utilized to implement diverse cellular functions. The discovery of non-coding RNAs and their importance in cellular processing have rapidly attracted researchers' attention towards designing functional non-coding RNA molecules. These synthetic non-coding RNAs have simple design principles governed by Watson-Crick base pairing, but exhibit increasingly complex functions. Importantly, due to their specific and modular behaviors, synthetic non-coding RNAs have been widely adopted to modulate transcription and translation of target genes. In this review, we summarize various design rules and strategies employed to engineer synthetic non-coding RNAs. Specifically, we discuss how RNA molecules can be transformed into powerful regulators and utilized to control target gene expression. With the establishment of generalizable non-coding RNA design rules, the research community will shift its focus to RNA regulators from protein regulators.
Collapse
Affiliation(s)
- Young Je Lee
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Tae Seok Moon
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA.
| |
Collapse
|
110
|
Gans J, Osborne J, Cheng J, Djapgne L, Oglesby-Sherrouse AG. Sequence-Specific Affinity Chromatography of Bacterial Small Regulatory RNA-Binding Proteins from Bacterial Cells. Methods Mol Biol 2018; 1737:341-350. [PMID: 29484602 DOI: 10.1007/978-1-4939-7634-8_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Bacterial small RNA molecules (sRNAs) are increasingly recognized as central regulators of bacterial stress responses and pathogenesis. In many cases, RNA-binding proteins are critical for the stability and function of sRNAs. Previous studies have adopted strategies to genetically tag an sRNA of interest, allowing isolation of RNA-protein complexes from cells. Here we present a sequence-specific affinity purification protocol that requires no prior genetic manipulation of bacterial cells, allowing isolation of RNA-binding proteins bound to native RNA molecules.
Collapse
Affiliation(s)
- Jonathan Gans
- Department of Pharmaceutical Sciences, University of Maryland, School of Pharmacy, Baltimore, MD, USA
| | - Jonathan Osborne
- Department of Pharmaceutical Sciences, University of Maryland, School of Pharmacy, Baltimore, MD, USA
| | - Juliet Cheng
- Department of Pharmaceutical Sciences, University of Maryland, School of Pharmacy, Baltimore, MD, USA
| | - Louise Djapgne
- Department of Pharmaceutical Sciences, University of Maryland, School of Pharmacy, Baltimore, MD, USA
| | | |
Collapse
|
111
|
|
112
|
Kavita K, de Mets F, Gottesman S. New aspects of RNA-based regulation by Hfq and its partner sRNAs. Curr Opin Microbiol 2017; 42:53-61. [PMID: 29125938 PMCID: PMC10367044 DOI: 10.1016/j.mib.2017.10.014] [Citation(s) in RCA: 160] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 10/15/2017] [Accepted: 10/19/2017] [Indexed: 12/30/2022]
Abstract
Hfq, an RNA chaperone, promotes the pairing of small RNAs (sRNAs) to target mRNAs, mediating post-transcriptional regulation of mRNA stability and translation. This regulation contributes to bacterial adaptation during stress and pathogenesis. Recent advances in sequencing techniques demonstrate the presence of sRNAs encoded not only in intergenic regions but also from the 3' and 5' UTRs of mRNAs, expanding sRNA regulatory networks. Additional layers of regulation by Hfq and its associated RNAs continue to be found. Newly identified RNA sponges modulate the activity of some sRNAs. A subset of sRNAs are proving to be bifunctional, able to pair with targets and also encoding small ORFs or binding other RNA binding proteins, such as CsrA. In addition, there are accumulating examples of Hfq inhibiting mRNA translation in the absence of sRNAs.
Collapse
Affiliation(s)
- Kumari Kavita
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Francois de Mets
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Susan Gottesman
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA.
| |
Collapse
|
113
|
Märtens B, Sharma K, Urlaub H, Bläsi U. The SmAP2 RNA binding motif in the 3'UTR affects mRNA stability in the crenarchaeum Sulfolobus solfataricus. Nucleic Acids Res 2017; 45:8957-8967. [PMID: 28911098 PMCID: PMC5587771 DOI: 10.1093/nar/gkx581] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 06/28/2017] [Indexed: 01/02/2023] Open
Abstract
Sm and Sm-like proteins represent an evolutionarily conserved family with key roles in RNA metabolism in Pro- and Eukaryotes. In this study, a collection of 53 mRNAs that co-purified with Sulfolobus solfataricus (Sso) SmAP2 were surveyed for a specific RNA binding motif (RBM). SmAP2 was shown to bind with high affinity to the deduced consensus RNA binding motif (SmAP2-cRBM) in vitro. Residues in SmAP2 interacting with the SmAP2-cRBM were mapped by UV-induced crosslinking in combination with mass-spectrometry, and verified by mutational analyses. The RNA-binding site on SmAP2 includes a modified uracil binding pocket containing a unique threonine (T40) located on the L3 face and a second residue, K25, located in the pore. To study the function of the SmAP2-RBM in vivo, three authentic RBMs were inserted in the 3′UTR of a lacS reporter gene. The presence of the SmAP2-RBM in the reporter-constructs resulted in decreased LacS activity and reduced steady state levels of lacS mRNA. Moreover, the presence of the SmAP2-cRBM in and the replacement of the lacS 3′UTR with that of Sso2194 encompassing a SmAP2-RBM apparently impacted on the stability of the chimeric transcripts. These results are discussed in light of the function(s) of eukaryotic Lsm proteins in RNA turnover.
Collapse
Affiliation(s)
- Birgit Märtens
- Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, Center of Molecular Biology, University of Vienna, Vienna Biocenter, Dr. Bohrgasse 9, 1030 Vienna, Austria
| | - Kundan Sharma
- Bioanalytics Group, Institute for Clinical Chemistry, University Medical Center Göttingen, Robert Koch Strasse 40, 37075 Göttingen, Germany.,Bioanalytical Mass Spectrometry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Henning Urlaub
- Bioanalytics Group, Institute for Clinical Chemistry, University Medical Center Göttingen, Robert Koch Strasse 40, 37075 Göttingen, Germany.,Bioanalytical Mass Spectrometry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Udo Bläsi
- Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, Center of Molecular Biology, University of Vienna, Vienna Biocenter, Dr. Bohrgasse 9, 1030 Vienna, Austria
| |
Collapse
|
114
|
Fuli X, Wenlong Z, Xiao W, Jing Z, Baohai H, Zhengzheng Z, Bin-Guang M, Youguo L. A Genome-Wide Prediction and Identification of Intergenic Small RNAs by Comparative Analysis in Mesorhizobium huakuii 7653R. Front Microbiol 2017; 8:1730. [PMID: 28943874 PMCID: PMC5596092 DOI: 10.3389/fmicb.2017.01730] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 08/24/2017] [Indexed: 01/23/2023] Open
Abstract
In bacteria, small non-coding RNAs (sRNAs) are critical regulators of cellular adaptation to changes in metabolism, physiology, or the external environment. In the last decade, more than 2000 of sRNA families have been reported in the Rfam database and have been shown to exert various regulatory functions in bacterial transcription and translation. However, little is known about sRNAs and their functions in Mesorhizobium. Here, we predicted putative sRNAs in the intergenic regions (IGRs) of M. huakuii 7653R by genome-wide comparisons with four related Mesorhizobial strains. The expression and transcribed regions of candidate sRNAs were analyzed using a set of high-throughput RNA deep sequencing data. In all, 39 candidate sRNAs were found, with 5 located in the symbiotic megaplasmids and 34 in the chromosome of M. huakuii 7653R. Of these, 24 were annotated as functional sRNAs in the Rfam database and 15 were recognized as putative novel sRNAs. The expression of nine selected sRNAs was confirmed by Northern blotting, and most of the nine selected sRNAs were highly expressed in 28 dpi nodules and under symbiosis-mimicking conditions. For those putative novel sRNAs, functional categorizations of their target genes were performed by analyzing the enriched GO terms. In addition, MH_s15 was shown to be an abundant and conserved sRNA.
Collapse
Affiliation(s)
- Xie Fuli
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural UniversityWuhan, China
| | - Zhao Wenlong
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural UniversityWuhan, China
| | - Wang Xiao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural UniversityWuhan, China
| | - Zhang Jing
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural UniversityWuhan, China
| | - Hao Baohai
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural UniversityWuhan, China
| | - Zou Zhengzheng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural UniversityWuhan, China
| | - Ma Bin-Guang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural UniversityWuhan, China
| | - Li Youguo
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural UniversityWuhan, China
| |
Collapse
|
115
|
Morita T, Nishino R, Aiba H. Role of the terminator hairpin in the biogenesis of functional Hfq-binding sRNAs. RNA (NEW YORK, N.Y.) 2017; 23:1419-1431. [PMID: 28606943 PMCID: PMC5558911 DOI: 10.1261/rna.060756.117] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 05/30/2017] [Indexed: 05/23/2023]
Abstract
Rho-independent transcription terminators of the genes encoding bacterial Hfq-binding sRNAs possess a set of seven or more T residues at the 3' end, as noted in previous studies. Here, we have studied the role of the terminator hairpin in the biogenesis of sRNAs focusing on SgrS and RyhB in Escherichia coli. We constructed variant sRNA genes in which the GC-rich inverted repeat sequences are extended to stabilize the terminator hairpins. We demonstrate that the extension of the hairpin stem leads to generation of heterogeneous transcripts in which the poly(U) tail is shortened. The transcripts with shortened poly(U) tails no longer bind to Hfq and lose the ability to repress the target mRNAs. The shortened transcripts are generated in an in vitro transcription system with purified RNA polymerase, indicating that the generation of shortened transcripts is caused by premature transcription termination. We conclude that the terminator structure of sRNA genes is optimized to generate functional sRNAs. Thus, the Rho-independent terminators of sRNA genes possess two common features: a long T residue stretch that is a prerequisite for generation of functional sRNAs and a moderate strength of hairpin structure that ensures the termination at the seventh or longer position within the consecutive T stretch. The modulation of the termination position at the Rho-independent terminators is critical for biosynthesis of functional sRNAs.
Collapse
Affiliation(s)
- Teppei Morita
- Faculty of Pharmaceutical Sciences, Suzuka University of Medical Sciences, Suzuka, Mie, 513-8670, Japan
| | - Ryo Nishino
- Faculty of Pharmaceutical Sciences, Suzuka University of Medical Sciences, Suzuka, Mie, 513-8670, Japan
| | - Hiroji Aiba
- Faculty of Pharmaceutical Sciences, Suzuka University of Medical Sciences, Suzuka, Mie, 513-8670, Japan
| |
Collapse
|
116
|
Schulz EC, Seiler M, Zuliani C, Voigt F, Rybin V, Pogenberg V, Mücke N, Wilmanns M, Gibson TJ, Barabas O. Intermolecular base stacking mediates RNA-RNA interaction in a crystal structure of the RNA chaperone Hfq. Sci Rep 2017; 7:9903. [PMID: 28852099 PMCID: PMC5575007 DOI: 10.1038/s41598-017-10085-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 08/02/2017] [Indexed: 11/18/2022] Open
Abstract
The RNA-chaperone Hfq catalyses the annealing of bacterial small RNAs (sRNAs) with target mRNAs to regulate gene expression in response to environmental stimuli. Hfq acts on a diverse set of sRNA-mRNA pairs using a variety of different molecular mechanisms. Here, we present an unusual crystal structure showing two Hfq-RNA complexes interacting via their bound RNA molecules. The structure contains two Hfq6:A18 RNA assemblies positioned face-to-face, with the RNA molecules turned towards each other and connected via interdigitating base stacking interactions at the center. Biochemical data further confirm the observed interaction, and indicate that RNA-mediated contacts occur between Hfq-RNA complexes with various (ARN)X motif containing RNA sequences in vitro, including the stress response regulator OxyS and its target, fhlA. A systematic computational survey also shows that phylogenetically conserved (ARN)X motifs are present in a subset of sRNAs, some of which share similar modular architectures. We hypothesise that Hfq can co-opt RNA-RNA base stacking, an unanticipated structural trick, to promote the interaction of (ARN)X motif containing sRNAs with target mRNAs on a “speed-dating” fashion, thereby supporting their regulatory function.
Collapse
Affiliation(s)
- Eike C Schulz
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, 69117, Heidelberg, Germany.,Hamburg Outstation, European Molecular Biology Laboratory, Hamburg, 22603, Germany.,Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761, Hamburg, Germany
| | - Markus Seiler
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, 69117, Heidelberg, Germany.,Buchmann Institute for Molecular Life Sciences, Max-von-Laue-Str. 15, 60438, Frankfurt a.M., Germany
| | - Cecilia Zuliani
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, 69117, Heidelberg, Germany
| | - Franka Voigt
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, 69117, Heidelberg, Germany.,Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058, Basel, Switzerland
| | - Vladimir Rybin
- Protein Expression and Purification Core Facility, European Molecular Biology Laboratory, 69117, Heidelberg, Germany
| | - Vivian Pogenberg
- Hamburg Outstation, European Molecular Biology Laboratory, Hamburg, 22603, Germany
| | - Norbert Mücke
- Division Biophysics of Macromolecules, German Cancer Research Center, Heidelberg, 69120, Germany
| | - Matthias Wilmanns
- Hamburg Outstation, European Molecular Biology Laboratory, Hamburg, 22603, Germany
| | - Toby J Gibson
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, 69117, Heidelberg, Germany
| | - Orsolya Barabas
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, 69117, Heidelberg, Germany.
| |
Collapse
|
117
|
Santiago-Frangos A, Jeliazkov JR, Gray JJ, Woodson SA. Acidic C-terminal domains autoregulate the RNA chaperone Hfq. eLife 2017; 6:27049. [PMID: 28826489 PMCID: PMC5606850 DOI: 10.7554/elife.27049] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 08/03/2017] [Indexed: 11/15/2022] Open
Abstract
The RNA chaperone Hfq is an Sm protein that facilitates base pairing between bacterial small RNAs (sRNAs) and mRNAs involved in stress response and pathogenesis. Hfq possesses an intrinsically disordered C-terminal domain (CTD) that may tune the function of the Sm domain in different organisms. In Escherichia coli, the Hfq CTD increases kinetic competition between sRNAs and recycles Hfq from the sRNA-mRNA duplex. Here, de novo Rosetta modeling and competitive binding experiments show that the acidic tip of the E. coli Hfq CTD transiently binds the basic Sm core residues necessary for RNA annealing. The CTD tip competes against non-specific RNA binding, facilitates dsRNA release, and prevents indiscriminate DNA aggregation, suggesting that this acidic peptide mimics nucleic acid to auto-regulate RNA binding to the Sm ring. The mechanism of CTD auto-inhibition predicts the chaperone function of Hfq in bacterial genera and illuminates how Sm proteins may evolve new functions.
Collapse
Affiliation(s)
- Andrew Santiago-Frangos
- Cell, Molecular and Developmental Biology and Biophysics Program, Johns Hopkins University, Baltimore, United States
| | - Jeliazko R Jeliazkov
- Program in Molecular Biophysics, Johns Hopkins University, Baltimore, United States
| | - Jeffrey J Gray
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, United States
| | - Sarah A Woodson
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, United States
| |
Collapse
|
118
|
Chen J, Gottesman S. Hfq links translation repression to stress-induced mutagenesis in E. coli. Genes Dev 2017; 31:1382-1395. [PMID: 28794186 PMCID: PMC5580658 DOI: 10.1101/gad.302547.117] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 07/17/2017] [Indexed: 01/08/2023]
Abstract
Here, Chen et al. show an example of Hfq repressing translation in the absence of sRNAs via major remodeling of the mRNA. They demonstrate that, by interacting with the mutS leader, Hfq serves as a critical switch that modulates bacteria from high-fidelity DNA replication to stress-induced mutagenesis. Mismatch repair (MMR) is a conserved mechanism exploited by cells to correct DNA replication errors both in growing cells and under nongrowing conditions. Hfq (host factor for RNA bacteriophage Qβ replication), a bacterial Lsm family RNA-binding protein, chaperones RNA–RNA interactions between regulatory small RNAs (sRNAs) and target messenger RNAs (mRNAs), leading to alterations of mRNA translation and/or stability. Hfq has been reported to post-transcriptionally repress the DNA MMR gene mutS in stationary phase, possibly limiting MMR to allow increased mutagenesis. Here we report that Hfq deploys dual mechanisms to control mutS expression. First, Hfq binds directly to an (AAN)3 motif within the mutS 5′ untranslated region (UTR), repressing translation in the absence of sRNA partners both in vivo and in vitro. Second, Hfq acts in a canonical pathway, promoting base-pairing of ArcZ sRNA with the mutS leader to inhibit translation. Most importantly, using pathway-specific mutS chromosomal alleles that specifically abrogate either regulatory pathway or both, we demonstrate that tight control of MutS levels in stationary phase contributes to stress-induced mutagenesis. By interacting with the mutS leader, Hfq serves as a critical switch that modulates bacteria from high-fidelity DNA replication to stress-induced mutagenesis.
Collapse
Affiliation(s)
- Jiandong Chen
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, USA
| | - Susan Gottesman
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, USA
| |
Collapse
|
119
|
Nemchinova M, Balobanov V, Nikonova E, Lekontseva N, Mikhaylina A, Tishchenko S, Nikulin A. An Experimental Tool to Estimate the Probability of a Nucleotide Presence in the Crystal Structures of the Nucleotide-Protein Complexes. Protein J 2017; 36:157-165. [PMID: 28317076 DOI: 10.1007/s10930-017-9709-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A correlation between the ligand-protein affinity and the identification of the ligand in the experimental electron density maps obtained by X-ray crystallography has been tested for a number of RNA-binding proteins. Bacterial translation regulators ProQ, TRAP, Rop, and Hfq together with their archaeal homologues SmAP have been used. The equilibrium dissociation constants for the N-methyl-anthraniloyl-labelled adenosine and guanosine monophosphates titrated by the proteins have been determined by the fluorescent anisotropy measurements. The estimated stability of the nucleotide-protein complexes has been matched with a presence of the nucleotides in the structures of the proposed nucleotide-protein complexes. It has been shown that the ribonucleotides can be definitely identified in the experimental electron density maps at equilibrium dissociation constant <10 μM. At KD of 20-40 μM, long incubation of the protein crystals in the nucleotide solution is required to obtain the structures of the complexes. The complexes with KD value higher than 50 μM are not stable enough to survive in crystallization conditions.
Collapse
Affiliation(s)
- Maria Nemchinova
- Institute of Protein Research RAS, Pushchino, Russian Federation
| | - Vitaly Balobanov
- Institute of Protein Research RAS, Pushchino, Russian Federation
| | | | | | - Alisa Mikhaylina
- Institute of Protein Research RAS, Pushchino, Russian Federation
| | | | - Alexey Nikulin
- Institute of Protein Research RAS, Pushchino, Russian Federation.
| |
Collapse
|
120
|
RNA search engines empower the bacterial intranet. Biochem Soc Trans 2017; 45:987-997. [PMID: 28710287 PMCID: PMC5652223 DOI: 10.1042/bst20160373] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 04/08/2017] [Accepted: 04/11/2017] [Indexed: 11/17/2022]
Abstract
RNA acts not only as an information bearer in the biogenesis of proteins from genes, but also as a regulator that participates in the control of gene expression. In bacteria, small RNA molecules (sRNAs) play controlling roles in numerous processes and help to orchestrate complex regulatory networks. Such processes include cell growth and development, response to stress and metabolic change, transcription termination, cell-to-cell communication, and the launching of programmes for host invasion. All these processes require recognition of target messenger RNAs by the sRNAs. This review summarizes recent results that have provided insights into how bacterial sRNAs are recruited into effector ribonucleoprotein complexes that can seek out and act upon target transcripts. The results hint at how sRNAs and their protein partners act as pattern-matching search engines that efficaciously regulate gene expression, by performing with specificity and speed while avoiding off-target effects. The requirements for efficient searches of RNA patterns appear to be common to all domains of life.
Collapse
|
121
|
Ryan D, Mukherjee M, Suar M. The expanding targetome of small RNAs in Salmonella Typhimurium. Biochimie 2017; 137:69-77. [DOI: 10.1016/j.biochi.2017.03.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2017] [Accepted: 03/10/2017] [Indexed: 10/20/2022]
|
122
|
Lahiry A, Stimple SD, Wood DW, Lease RA. Retargeting a Dual-Acting sRNA for Multiple mRNA Transcript Regulation. ACS Synth Biol 2017; 6:648-658. [PMID: 28067500 DOI: 10.1021/acssynbio.6b00261] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Multitargeting small regulatory RNAs (sRNAs) represent a potentially useful tool for metabolic engineering applications. Natural multitargeting sRNAs govern bacterial gene expression by binding to the translation initiation regions of protein-coding mRNAs through base pairing. We designed an Escherichia coli based genetic system to create and assay dual-acting retargeted-sRNA variants. The variants can be assayed for coordinate translational regulation of two alternate mRNA leaders fused to independent reporter genes. Accordingly, we began with the well-characterized E. coli native DsrA sRNA. The merits of using DsrA include its well-characterized separation of function into two independently folded stem-loop domains, wherein alterations at one stem do not necessarily abolish activity at the other stem. Expression of the sRNA and each reporter mRNA was independently controlled by small inducer molecules, allowing precise quantification of the regulatory effects of each sRNA:mRNA interaction in vivo with a microtiter plate assay. Using this system, we semirationally designed DsrA variants screened in E. coli for their ability to regulate key mRNA leader sequences from the Clostridium acetobutylicum n-butanol synthesis pathway. To coordinate intervention at two points in a metabolic pathway, we created bifunctional sRNA prototypes by combining sequences from two singly retargeted DsrA variants. This approach constitutes a platform for designing sRNAs to specifically target arbitrary mRNA transcript sequences, and thus provides a generalizable tool for retargeting and characterizing multitarget sRNAs for metabolic engineering.
Collapse
Affiliation(s)
- Ashwin Lahiry
- Department
of Microbiology, The Ohio State University, 484 W. 12th Avenue, Columbus, Ohio 43210, United States
| | - Samuel D. Stimple
- Department
of Chemical and Biomolecular Engineering, The Ohio State University, 151 W. Woodruff Avenue, Columbus, Ohio 43210, United States
| | - David W. Wood
- Department
of Chemical and Biomolecular Engineering, The Ohio State University, 151 W. Woodruff Avenue, Columbus, Ohio 43210, United States
- Department
of Microbiology, The Ohio State University, 484 W. 12th Avenue, Columbus, Ohio 43210, United States
| | - Richard A. Lease
- Department
of Chemical and Biomolecular Engineering, The Ohio State University, 151 W. Woodruff Avenue, Columbus, Ohio 43210, United States
| |
Collapse
|
123
|
Smirnov A, Wang C, Drewry LL, Vogel J. Molecular mechanism of mRNA repression in trans by a ProQ-dependent small RNA. EMBO J 2017; 36:1029-1045. [PMID: 28336682 PMCID: PMC5391140 DOI: 10.15252/embj.201696127] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Revised: 02/05/2017] [Accepted: 02/10/2017] [Indexed: 12/26/2022] Open
Abstract
Research into post-transcriptional control of mRNAs by small noncoding RNAs (sRNAs) in the model bacteria Escherichia coli and Salmonella enterica has mainly focused on sRNAs that associate with the RNA chaperone Hfq. However, the recent discovery of the protein ProQ as a common binding partner that stabilizes a distinct large class of structured sRNAs suggests that additional RNA regulons exist in these organisms. The cellular functions and molecular mechanisms of these new ProQ-dependent sRNAs are largely unknown. Here, we report in Salmonella Typhimurium the mode-of-action of RaiZ, a ProQ-dependent sRNA that is made from the 3' end of the mRNA encoding ribosome-inactivating protein RaiA. We show that RaiZ is a base-pairing sRNA that represses in trans the mRNA of histone-like protein HU-α. RaiZ forms an RNA duplex with the ribosome-binding site of hupA mRNA, facilitated by ProQ, to prevent 30S ribosome loading and protein synthesis of HU-α. Similarities and differences between ProQ- and Hfq-mediated regulation will be discussed.
Collapse
Affiliation(s)
- Alexandre Smirnov
- RNA Biology Group, Institute of Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Chuan Wang
- RNA Biology Group, Institute of Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Lisa L Drewry
- RNA Biology Group, Institute of Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Jörg Vogel
- RNA Biology Group, Institute of Molecular Infection Biology, University of Würzburg, Würzburg, Germany .,Helmholtz Institute for RNA-based Infection Research (HIRI), Würzburg, Germany
| |
Collapse
|
124
|
In vivo characterization of an Hfq protein encoded by the Bacillus anthracis virulence plasmid pXO1. BMC Microbiol 2017; 17:63. [PMID: 28288571 PMCID: PMC5348863 DOI: 10.1186/s12866-017-0973-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 03/07/2017] [Indexed: 12/15/2022] Open
Abstract
Background Bacterial Hfq proteins post-transcriptionally regulate gene expression, primarily by mediating the interaction between sRNAs (small RNAs) and their target mRNAs. The role of Hfq-based regulation has been well defined in Gram-negative bacteria, but comparatively less is known about the impact of Hfq proteins in Gram-positive species. The Gram-positive pathogen Bacillus anthracis (causative agent of anthrax) is distinct in that it expresses three homologs of Hfq: Hfq1 and Hfq2 from the chromosome, and Hfq3 from the pXO1 virulence plasmid. Results In this study, we utilized overexpression as a strategy to examine the impact of Hfq3 on B. anthracis physiology. The increase in Hfq3 protein levels led to anomalous cell shape and chain formation, which manifested as a severe growth defect. This phenotype was specific to B. anthracis, as Hfq3 expression in B. subtilis at similar levels was not toxic. Toxicity was dependent on residues on the distal face of Hfq3 that are involved in mRNA binding in other bacterial species. Conclusions Thus, we hypothesize that Hfq3 interacts with RNA(s) involved in essential functions in the B. anthracis cell, leading to increased binding upon overexpression that either sequesters or accelerates degradation of RNAs important for growth. These results not only aid in elucidating the role of Hfq proteins in B. anthracis, but also contribute to our current understanding of Hfq in Gram-positive bacteria. Electronic supplementary material The online version of this article (doi:10.1186/s12866-017-0973-y) contains supplementary material, which is available to authorized users.
Collapse
|
125
|
Abstract
RNA is involved in the regulation of multiple cellular processes, often by forming sequence-specific base pairs with cellular RNA or DNA targets that must be identified among the large number of nucleic acids in a cell. Several RNA-based regulatory systems in eukaryotes, bacteria and archaea, including microRNAs (miRNAs), small interfering RNAs (siRNAs), CRISPR RNAs (crRNAs) and small RNAs (sRNAs) that are dependent on the RNA chaperone protein Hfq, achieve specificity using similar strategies. Central to their function is the presentation of short 'seed sequences' within a ribonucleoprotein complex to facilitate the search for and recognition of targets.
Collapse
|
126
|
Affiliation(s)
- Jens Hör
- Institute of Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Jörg Vogel
- Institute of Molecular Infection Biology, University of Würzburg, Würzburg, Germany.,Helmholtz Institute for RNA-based Infection Research (HIRI), Würzburg, Germany
| |
Collapse
|
127
|
Sedlyarova N, Shamovsky I, Bharati BK, Epshtein V, Chen J, Gottesman S, Schroeder R, Nudler E. sRNA-Mediated Control of Transcription Termination in E. coli. Cell 2016; 167:111-121.e13. [PMID: 27662085 DOI: 10.1016/j.cell.2016.09.004] [Citation(s) in RCA: 162] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 07/12/2016] [Accepted: 09/01/2016] [Indexed: 12/16/2022]
Abstract
Bacterial small RNAs (sRNAs) have been implicated in various aspects of post-transcriptional gene regulation. Here, we demonstrate that sRNAs also act at the level of transcription termination. We use the rpoS gene, which encodes a general stress sigma factor σ(S), as a model system, and show that sRNAs DsrA, ArcZ, and RprA bind the rpoS 5'UTR to suppress premature Rho-dependent transcription termination, both in vitro and in vivo. sRNA-mediated antitermination markedly stimulates transcription of rpoS during the transition to the stationary phase of growth, thereby facilitating a rapid adjustment of bacteria to global metabolic changes. Next generation RNA sequencing and bioinformatic analysis indicate that Rho functions as a global "attenuator" of transcription, acting at the 5'UTR of hundreds of bacterial genes, and that its suppression by sRNAs is a widespread mode of bacterial gene regulation.
Collapse
Affiliation(s)
- Nadezda Sedlyarova
- Department of Biochemistry and Cellbiology, Max F. Perutz Laboratories, University of Vienna, Dr. Bohrgasse 9/5, 1030 Vienna, Austria; Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
| | - Ilya Shamovsky
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
| | - Binod K Bharati
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA; Howard Hughes Medical Institute, New York University School of Medicine, New York, NY 10016, USA
| | - Vitaly Epshtein
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
| | - Jiandong Chen
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Susan Gottesman
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Renée Schroeder
- Department of Biochemistry and Cellbiology, Max F. Perutz Laboratories, University of Vienna, Dr. Bohrgasse 9/5, 1030 Vienna, Austria
| | - Evgeny Nudler
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA; Howard Hughes Medical Institute, New York University School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
128
|
Hawver LA, Giulietti JM, Baleja JD, Ng WL. Quorum Sensing Coordinates Cooperative Expression of Pyruvate Metabolism Genes To Maintain a Sustainable Environment for Population Stability. mBio 2016; 7:e01863-16. [PMID: 27923919 PMCID: PMC5142617 DOI: 10.1128/mbio.01863-16] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 11/08/2016] [Indexed: 12/12/2022] Open
Abstract
Quorum sensing (QS) is a microbial cell-cell communication system that regulates gene expression in response to population density to coordinate collective behaviors. Yet, the role of QS in resolving the stresses caused by the accumulation of toxic metabolic by-products at high cell density is not well defined. In response to cell density, QS could be involved in reprogramming of the metabolic network to maintain population stability. Using unbiased metabolomics, we discovered that Vibrio cholerae mutants genetically locked in a low cell density (LCD) QS state are unable to alter the pyruvate flux to convert fermentable carbon sources into neutral acetoin and 2,3-butanediol molecules to offset organic acid production. As a consequence, LCD-locked QS mutants rapidly lose viability when grown with fermentable carbon sources. This key metabolic switch relies on the QS-regulated small RNAs Qrr1-4 but is independent of known QS regulators AphA and HapR. Qrr1-4 dictate pyruvate flux by translational repression of the enzyme AlsS, which carries out the first step in acetoin and 2,3-butanediol biosynthesis. Consistent with the idea that QS facilitates the expression of a common trait in the population, AlsS needs to be expressed cooperatively in a group of cells. Heterogeneous populations with high percentages of cells not expressing AlsS are unstable. All of the cells, regardless of their respective QS states, succumb to stresses caused by toxic by-product accumulation. Our results indicate that the ability of the bacteria to cooperatively control metabolic flux through QS is critical in maintaining a sustainable environment and overall population stability. IMPORTANCE Our work reveals a novel role for Vibrio cholerae quorum sensing (QS) in relieving the stresses caused by toxic metabolite accumulation when the population becomes crowded through metabolic reprogramming. QS enables V. cholerae switching from a low cell density energy-generating metabolism that is beneficial to individuals at the expense of the environment to a high cell density mode that preserves environmental habitability by sacrificing individual fitness. This cooperative switch provides a stable environment as the common good in maintaining the stability of the community. However, the common good can be exploited by uncooperative mutants that pollute the environment, causing population collapse. Our findings provide insights into the metabolic stress response of a major human pathogen, with implications for our understanding of microbial social biology and cooperation from an ecological and evolutionary perspective.
Collapse
Affiliation(s)
- Lisa A Hawver
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Jennifer M Giulietti
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - James D Baleja
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Wai-Leung Ng
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
- Program in Molecular Microbiology, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, Massachusetts, USA
| |
Collapse
|
129
|
The Phosphorolytic Exoribonucleases Polynucleotide Phosphorylase and RNase PH Stabilize sRNAs and Facilitate Regulation of Their mRNA Targets. J Bacteriol 2016; 198:3309-3317. [PMID: 27698082 DOI: 10.1128/jb.00624-16] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 09/25/2016] [Indexed: 12/18/2022] Open
Abstract
Gene regulation by base pairing between small noncoding RNAs (sRNAs) and their mRNA targets is an important mechanism that allows bacteria to maintain homeostasis and respond to dynamic environments. In Gram-negative bacteria, sRNA pairing and regulation are mediated by several RNA-binding proteins, including the sRNA chaperone Hfq and polynucleotide phosphorylase (PNPase). PNPase and its homolog RNase PH together represent the two 3' to 5' phosphorolytic exoribonucleases found in Escherichia coli; however, the role of RNase PH in sRNA regulation has not yet been explored and reported. Here, we have examined in detail how PNPase and RNase PH interact to support sRNA stability, activity, and base pairing in exponential and stationary growth conditions. Our results indicate that these proteins facilitate the stability and regulatory function of the sRNAs RyhB, CyaR, and MicA during exponential growth. PNPase further appears to contribute to pairing between RyhB and its mRNA targets. During stationary growth, each sRNA responded differently to the absence or presence of PNPase and RNase PH. Finally, our results suggest that PNPase and RNase PH stabilize only Hfq-bound sRNAs. Taken together, these results confirm and extend previous findings that PNPase participates in sRNA regulation and reveal that RNase PH serves a similar, albeit more limited, role as well. These proteins may, therefore, act to protect sRNAs from spurious degradation while also facilitating regulatory pairing with their targets. IMPORTANCE In many bacteria, Hfq-dependent base-pairing sRNAs facilitate rapid changes in gene expression that are critical for maintaining homeostasis and responding to stress and environmental changes. While a role for Hfq in this process was identified more than 2 decades ago, the identity and function of the other proteins required for Hfq-dependent regulation by sRNAs have not been resolved. Here, we demonstrate that PNPase and RNase PH, the two phosphorolytic RNases in E. coli, stabilize sRNAs against premature degradation and, in the case of PNPase, also accelerate regulation by sRNA-mRNA pairings for certain sRNAs. These findings are the first to demonstrate that RNase PH influences and supports sRNA regulation and suggest shared and distinct roles for these phosphorolytic RNases in this process.
Collapse
|
130
|
Waters SA, McAteer SP, Kudla G, Pang I, Deshpande NP, Amos TG, Leong KW, Wilkins MR, Strugnell R, Gally DL, Tollervey D, Tree JJ. Small RNA interactome of pathogenic E. coli revealed through crosslinking of RNase E. EMBO J 2016; 36:374-387. [PMID: 27836995 PMCID: PMC5286369 DOI: 10.15252/embj.201694639] [Citation(s) in RCA: 136] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 10/06/2016] [Accepted: 10/11/2016] [Indexed: 02/04/2023] Open
Abstract
RNA sequencing studies have identified hundreds of non‐coding RNAs in bacteria, including regulatory small RNA (sRNA). However, our understanding of sRNA function has lagged behind their identification due to a lack of tools for the high‐throughput analysis of RNA–RNA interactions in bacteria. Here we demonstrate that in vivo sRNA–mRNA duplexes can be recovered using UV‐crosslinking, ligation and sequencing of hybrids (CLASH). Many sRNAs recruit the endoribonuclease, RNase E, to facilitate processing of mRNAs. We were able to recover base‐paired sRNA–mRNA duplexes in association with RNase E, allowing proximity‐dependent ligation and sequencing of cognate sRNA–mRNA pairs as chimeric reads. We verified that this approach captures bona fide sRNA–mRNA interactions. Clustering analyses identified novel sRNA seed regions and sets of potentially co‐regulated target mRNAs. We identified multiple mRNA targets for the pathotype‐specific sRNA Esr41, which was shown to regulate colicin sensitivity and iron transport in E. coli. Numerous sRNA interactions were also identified with non‐coding RNAs, including sRNAs and tRNAs, demonstrating the high complexity of the sRNA interactome.
Collapse
Affiliation(s)
- Shafagh A Waters
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Sean P McAteer
- The Roslin Institute, University of Edinburgh, Edinburgh, UK
| | - Grzegorz Kudla
- MRC Human Genetic Unit, University of Edinburgh, Edinburgh, UK
| | - Ignatius Pang
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia.,Systems Biology Initiative, University of New South Wales, Sydney, NSW, Australia
| | - Nandan P Deshpande
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia.,Systems Biology Initiative, University of New South Wales, Sydney, NSW, Australia
| | - Timothy G Amos
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Kai Wen Leong
- Peter Doherty Institute, University of Melbourne, Melbourne, Victoria, Australia
| | - Marc R Wilkins
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia.,Systems Biology Initiative, University of New South Wales, Sydney, NSW, Australia
| | - Richard Strugnell
- Peter Doherty Institute, University of Melbourne, Melbourne, Victoria, Australia
| | - David L Gally
- The Roslin Institute, University of Edinburgh, Edinburgh, UK
| | - David Tollervey
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Jai J Tree
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
131
|
C-terminal domain of the RNA chaperone Hfq drives sRNA competition and release of target RNA. Proc Natl Acad Sci U S A 2016; 113:E6089-E6096. [PMID: 27681631 DOI: 10.1073/pnas.1613053113] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The bacterial Sm protein and RNA chaperone Hfq stabilizes small noncoding RNAs (sRNAs) and facilitates their annealing to mRNA targets involved in stress tolerance and virulence. Although an arginine patch on the Sm core is needed for Hfq's RNA chaperone activity, the function of Hfq's intrinsically disordered C-terminal domain (CTD) has remained unclear. Here, we use stopped flow spectroscopy to show that the CTD of Escherichia coli Hfq is not needed to accelerate RNA base pairing but is required for the release of dsRNA. The Hfq CTD also mediates competition between sRNAs, offering a kinetic advantage to sRNAs that contact both the proximal and distal faces of the Hfq hexamer. The change in sRNA hierarchy caused by deletion of the Hfq CTD in E. coli alters the sRNA accumulation and the kinetics of sRNA regulation in vivo. We propose that the Hfq CTD displaces sRNAs and annealed sRNA⋅mRNA complexes from the Sm core, enabling Hfq to chaperone sRNA-mRNA interactions and rapidly cycle between competing targets in the cell.
Collapse
|
132
|
Palma-Martínez I, Guerrero-Mandujano A, Ruiz-Ruiz MJ, Hernández-Cortez C, Molina-López J, Bocanegra-García V, Castro-Escarpulli G. Active Shiga-Like Toxin Produced by Some Aeromonas spp., Isolated in Mexico City. Front Microbiol 2016; 7:1552. [PMID: 27757103 PMCID: PMC5048074 DOI: 10.3389/fmicb.2016.01552] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 09/16/2016] [Indexed: 12/29/2022] Open
Abstract
RNA silencing is a conserved mechanism that utilizes small RNAs (sRNAs) to direct the regulation of gene expression at the transcriptional or post-transcriptional level. Plants utilizing RNA silencing machinery to defend pathogen infection was first identified in plant–virus interaction and later was observed in distinct plant–pathogen interactions. RNA silencing is not only responsible for suppressing RNA accumulation and movement of virus and viroid, but also facilitates plant immune responses against bacterial, oomycete, and fungal infection. Interestingly, even the same plant sRNA can perform different roles when encounters with different pathogens. On the other side, pathogens counteract by generating sRNAs that directly regulate pathogen gene expression to increase virulence or target host genes to facilitate pathogen infection. Here, we summarize the current knowledge of the characterization and biogenesis of host- and pathogen-derived sRNAs, as well as the different RNA silencing machineries that plants utilize to defend against different pathogens. The functions of these sRNAs in defense and counter-defense and their mechanisms for regulation during different plant–pathogen interactions are also discussed.
Collapse
Affiliation(s)
- Ingrid Palma-Martínez
- Laboratorio de Bacteriología Médica, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional Mexico City, Mexico
| | - Andrea Guerrero-Mandujano
- Laboratorio de Bacteriología Médica, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional Mexico City, Mexico
| | - Manuel J Ruiz-Ruiz
- Laboratorio de Bacteriología Médica, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico NacionalMexico City, Mexico; Laboratorio Central de Análisis Clínicos Unidad Médica de Alta Especialidad Hospital de Pediatría "Silvestre Frenk Freund," Centro Médico Nacional Siglo XXIMexico City, Mexico
| | - Cecilia Hernández-Cortez
- Laboratorio de Bacteriología Médica, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico NacionalMexico City, Mexico; Laboratorio de Bioquímica Microbiana, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico NacionalMexico City, Mexico
| | - José Molina-López
- Departamento de Salud Pública, Facultad de Medicina, Universidad Nacional Autónoma de México Mexico City, Mexico
| | | | - Graciela Castro-Escarpulli
- Laboratorio de Bacteriología Médica, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional Mexico City, Mexico
| |
Collapse
|
133
|
Grad-seq guides the discovery of ProQ as a major small RNA-binding protein. Proc Natl Acad Sci U S A 2016; 113:11591-11596. [PMID: 27671629 DOI: 10.1073/pnas.1609981113] [Citation(s) in RCA: 217] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The functional annotation of transcriptomes and identification of noncoding RNA (ncRNA) classes has been greatly facilitated by the advent of next-generation RNA sequencing which, by reading the nucleotide order of transcripts, theoretically allows the rapid profiling of all transcripts in a cell. However, primary sequence per se is a poor predictor of function, as ncRNAs dramatically vary in length and structure and often lack identifiable motifs. Therefore, to visualize an informative RNA landscape of organisms with potentially new RNA biology that are emerging from microbiome and environmental studies requires the use of more functionally relevant criteria. One such criterion is the association of RNAs with functionally important cognate RNA-binding proteins. Here we analyze the full ensemble of cellular RNAs using gradient profiling by sequencing (Grad-seq) in the bacterial pathogen Salmonella enterica, partitioning its coding and noncoding transcripts based on their network of RNA-protein interactions. In addition to capturing established RNA classes based on their biochemical profiles, the Grad-seq approach enabled the discovery of an overlooked large collective of structured small RNAs that form stable complexes with the conserved protein ProQ. We show that ProQ is an abundant RNA-binding protein with a wide range of ligands and a global influence on Salmonella gene expression. Given its generic ability to chart a functional RNA landscape irrespective of transcript length and sequence diversity, Grad-seq promises to define functional RNA classes and major RNA-binding proteins in both model species and genetically intractable organisms.
Collapse
|
134
|
Nikulin A, Mikhailina A, Lekontseva N, Balobanov V, Nikonova E, Tishchenko S. Characterization of RNA-binding properties of the archaeal Hfq-like protein from Methanococcus jannaschii. J Biomol Struct Dyn 2016; 35:1615-1628. [PMID: 27187760 DOI: 10.1080/07391102.2016.1189849] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The Sm and Sm-like proteins are widely distributed among bacteria, archaea and eukarya. They participate in many processes related to RNA-processing and regulation of gene expression. While the function of the bacterial Lsm protein Hfq and eukaryotic Sm/Lsm proteins is rather well studied, the role of Lsm proteins in Archaea is investigated poorly. In this work, the RNA-binding ability of an archaeal Hfq-like protein from Methanococcus jannaschii has been studied by X-ray crystallography, anisotropy fluorescence and surface plasmon resonance. It has been found that MjaHfq preserves the proximal RNA-binding site that usually recognizes uridine-rich sequences. Distal adenine-binding and lateral RNA-binding sites show considerable structural changes as compared to bacterial Hfq. MjaHfq did not bind mononucleotides at these sites and would not recognize single-stranded RNA as its bacterial homologues. Nevertheless, MjaHfq possesses affinity to poly(A) RNA that seems to bind at the unstructured positive-charged N-terminal tail of the protein.
Collapse
Affiliation(s)
- Alexey Nikulin
- a Institute of Protein Research , Russian Academy of Sciences , Pushchino , Moscow region , 142290 , Russia
| | - Alisa Mikhailina
- a Institute of Protein Research , Russian Academy of Sciences , Pushchino , Moscow region , 142290 , Russia
| | - Natalia Lekontseva
- a Institute of Protein Research , Russian Academy of Sciences , Pushchino , Moscow region , 142290 , Russia
| | - Vitalii Balobanov
- a Institute of Protein Research , Russian Academy of Sciences , Pushchino , Moscow region , 142290 , Russia
| | - Ekaterina Nikonova
- a Institute of Protein Research , Russian Academy of Sciences , Pushchino , Moscow region , 142290 , Russia
| | - Svetlana Tishchenko
- a Institute of Protein Research , Russian Academy of Sciences , Pushchino , Moscow region , 142290 , Russia
| |
Collapse
|
135
|
Cech GM, Szalewska-Pałasz A, Kubiak K, Malabirade A, Grange W, Arluison V, Węgrzyn G. The Escherichia Coli Hfq Protein: An Unattended DNA-Transactions Regulator. Front Mol Biosci 2016; 3:36. [PMID: 27517037 PMCID: PMC4963395 DOI: 10.3389/fmolb.2016.00036] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 07/13/2016] [Indexed: 11/17/2022] Open
Abstract
The Hfq protein was discovered in Escherichia coli as a host factor for bacteriophage Qβ RNA replication. Subsequent studies indicated that Hfq is a pleiotropic regulator of bacterial gene expression. The regulatory role of Hfq is ascribed mainly to its function as an RNA-chaperone, facilitating interactions between bacterial non-coding RNA and its mRNA target. Thus, it modulates mRNA translation and stability. Nevertheless, Hfq is able to interact with DNA as well. Its role in the regulation of DNA-related processes has been demonstrated. In this mini-review, it is discussed how Hfq interacts with DNA and what is the role of this protein in regulation of DNA transactions. Particularly, Hfq has been demonstrated to be involved in the control of ColE1 plasmid DNA replication, transposition, and possibly also transcription. Possible mechanisms of these Hfq-mediated regulations are described and discussed.
Collapse
Affiliation(s)
- Grzegorz M Cech
- Department of Molecular Biology, University of Gdańsk Gdańsk, Poland
| | | | - Krzysztof Kubiak
- Department of Molecular Biology, University of GdańskGdańsk, Poland; Laboratoire Léon Brillouin, CEA, Centre National de la Recherche Scientifique, Université Paris Saclay, CEA SaclayGif-sur-Yvette, France; IPCMS/Centre National de la Recherche ScientifiqueStrasbourg, France
| | - Antoine Malabirade
- Laboratoire Léon Brillouin, CEA, Centre National de la Recherche Scientifique, Université Paris Saclay, CEA Saclay Gif-sur-Yvette, France
| | - Wilfried Grange
- IPCMS/Centre National de la Recherche ScientifiqueStrasbourg, France; Universite Paris Diderot, UFR Science du VivantParis, France
| | - Veronique Arluison
- Laboratoire Léon Brillouin, CEA, Centre National de la Recherche Scientifique, Université Paris Saclay, CEA SaclayGif-sur-Yvette, France; Universite Paris Diderot, UFR Science du VivantParis, France
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, University of Gdańsk Gdańsk, Poland
| |
Collapse
|
136
|
Wroblewska Z, Olejniczak M. Hfq assists small RNAs in binding to the coding sequence of ompD mRNA and in rearranging its structure. RNA (NEW YORK, N.Y.) 2016; 22:979-94. [PMID: 27154968 PMCID: PMC4911921 DOI: 10.1261/rna.055251.115] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Accepted: 04/01/2016] [Indexed: 05/23/2023]
Abstract
The bacterial protein Hfq participates in the regulation of translation by small noncoding RNAs (sRNAs). Several mechanisms have been proposed to explain the role of Hfq in the regulation by sRNAs binding to the 5'-untranslated mRNA regions. However, it remains unknown how Hfq affects those sRNAs that target the coding sequence. Here, the contribution of Hfq to the annealing of three sRNAs, RybB, SdsR, and MicC, to the coding sequence of Salmonella ompD mRNA was investigated. Hfq bound to ompD mRNA with tight, subnanomolar affinity. Moreover, Hfq strongly accelerated the rates of annealing of RybB and MicC sRNAs to this mRNA, and it also had a small effect on the annealing of SdsR. The experiments using truncated RNAs revealed that the contributions of Hfq to the annealing of each sRNA were individually adjusted depending on the structures of interacting RNAs. In agreement with that, the mRNA structure probing revealed different structural contexts of each sRNA binding site. Additionally, the annealing of RybB and MicC sRNAs induced specific conformational changes in ompD mRNA consistent with local unfolding of mRNA secondary structure. Finally, the mutation analysis showed that the long AU-rich sequence in the 5'-untranslated mRNA region served as an Hfq binding site essential for the annealing of sRNAs to the coding sequence. Overall, the data showed that the functional specificity of Hfq in the annealing of each sRNA to the ompD mRNA coding sequence was determined by the sequence and structure of the interacting RNAs.
Collapse
Affiliation(s)
- Zuzanna Wroblewska
- Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University in Poznań, 61-614 Poznań, Poland
| | - Mikolaj Olejniczak
- Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University in Poznań, 61-614 Poznań, Poland
| |
Collapse
|
137
|
Barquist L, Burge SW, Gardner PP. Studying RNA Homology and Conservation with Infernal: From Single Sequences to RNA Families. CURRENT PROTOCOLS IN BIOINFORMATICS 2016; 54:12.13.1-12.13.25. [PMID: 27322404 PMCID: PMC5010141 DOI: 10.1002/cpbi.4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Emerging high-throughput technologies have led to a deluge of putative non-coding RNA (ncRNA) sequences identified in a wide variety of organisms. Systematic characterization of these transcripts will be a tremendous challenge. Homology detection is critical to making maximal use of functional information gathered about ncRNAs: identifying homologous sequence allows us to transfer information gathered in one organism to another quickly and with a high degree of confidence. ncRNA presents a challenge for homology detection, as the primary sequence is often poorly conserved and de novo secondary structure prediction and search remain difficult. This unit introduces methods developed by the Rfam database for identifying "families" of homologous ncRNAs starting from single "seed" sequences, using manually curated sequence alignments to build powerful statistical models of sequence and structure conservation known as covariance models (CMs), implemented in the Infernal software package. We provide a step-by-step iterative protocol for identifying ncRNA homologs and then constructing an alignment and corresponding CM. We also work through an example for the bacterial small RNA MicA, discovering a previously unreported family of divergent MicA homologs in genus Xenorhabdus in the process. © 2016 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Lars Barquist
- Institute for Molecular Infection Biology, University of Würzburg, Würzburg, D-97080 Germany
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA United Kingdom; Fax: +44 (0)1223 494919
| | - Sarah W. Burge
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA United Kingdom; Fax: +44 (0)1223 494919
| | - Paul P. Gardner
- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch, New Zealand
- Biomolecular Interaction Centre, University of Canterbury, Private Bag 4800, Christchurch, New Zealand
| |
Collapse
|
138
|
Hao Y, Updegrove TB, Livingston NN, Storz G. Protection against deleterious nitrogen compounds: role of σS-dependent small RNAs encoded adjacent to sdiA. Nucleic Acids Res 2016; 44:6935-48. [PMID: 27166377 PMCID: PMC5001591 DOI: 10.1093/nar/gkw404] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 05/02/2016] [Indexed: 11/16/2022] Open
Abstract
Here, we report the characterization of a set of small, regulatory RNAs (sRNAs) expressed from an Escherichia coli locus we have denoted sdsN located adjacent to the LuxR-homolog gene sdiA. Two longer sRNAs, SdsN137 and SdsN178 are transcribed from two σS-dependent promoters but share the same terminator. Low temperature, rich nitrogen sources and the Crl and NarP transcription factors differentially affect the levels of the SdsN transcripts. Whole genome expression analysis after pulse overexpression of SdsN137 and assays of lacZ fusions revealed that the SdsN137 directly represses the synthesis of the nitroreductase NfsA, which catalyzes the reduction of the nitrogroup (NO2) in nitroaromatic compounds and the flavohemoglobin HmpA, which has aerobic nitric oxide (NO) dioxygenase activity. Consistent with this regulation, SdsN137 confers resistance to nitrofurans. In addition, SdsN137 negatively regulates synthesis of NarP. Interestingly, SdsN178 is defective at regulating the above targets due to unusual binding to the Hfq protein, but cleavage leads to a shorter form, SdsN124, able to repress nfsA and hmpA.
Collapse
Affiliation(s)
- Yue Hao
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892-5430, USA
| | - Taylor B Updegrove
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892-5430, USA
| | - Natasha N Livingston
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892-5430, USA
| | - Gisela Storz
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892-5430, USA
| |
Collapse
|
139
|
Lee HJ, Gottesman S. sRNA roles in regulating transcriptional regulators: Lrp and SoxS regulation by sRNAs. Nucleic Acids Res 2016; 44:6907-23. [PMID: 27137887 PMCID: PMC5001588 DOI: 10.1093/nar/gkw358] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 04/21/2016] [Indexed: 11/13/2022] Open
Abstract
Post-transcriptional regulation of transcription factors contributes to regulatory circuits. We created translational reporter fusions for multiple central regulators in Escherichia coli and examined the effect of Hfq-dependent non-coding RNAs on these fusions. This approach yields an 'RNA landscape,' identifying Hfq-dependent sRNAs that regulate a given fusion. No significant sRNA regulation of crp or fnr was detected. hns was regulated only by DsrA, as previously reported. Lrp and SoxS were both found to be regulated post-transcriptionally. Lrp, ' L: eucine-responsive R: egulatory P: rotein,' regulates genes involved in amino acid biosynthesis and catabolism and other cellular functions. sRNAs DsrA, MicF and GcvB each independently downregulate the lrp translational fusion, confirming previous reports for MicF and GcvB. MicF and DsrA interact with an overlapping site early in the lrp ORF, while GcvB acts upstream at two independent sites in the long lrp leader. Surprisingly, GcvB was found to be responsible for significant downregulation of lrp after oxidative stress; MicF also contributed. SoxS, an activator of genes used to combat oxidative stress, is negatively regulated by sRNA MgrR. This study demonstrates that while not all global regulators are subject to sRNA regulation, post-transcriptional control by sRNAs allows multiple environmental signals to affect synthesis of the transcriptional regulator.
Collapse
Affiliation(s)
- Hyun-Jung Lee
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Susan Gottesman
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
140
|
Kim JN. Roles of two RyhB paralogs in the physiology of Salmonella enterica. Microbiol Res 2016; 186-187:146-52. [PMID: 27242152 DOI: 10.1016/j.micres.2016.04.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 04/07/2016] [Accepted: 04/10/2016] [Indexed: 11/18/2022]
Abstract
Salmonella has evolved complicated regulatory systems to regulate the expression of virulence determinants that are acquired by horizontal gene transfer in response to various environmental niches. Among these, small RNA (sRNA)-mediated regulation exhibits unique features, distinct from those of protein factor-mediated regulation, which may provide benefits for a pathogen coping with the complex stress conditions encountered during host infection. Specifically, iron acquisition by this pathogenic bacterium is important for cellular processes such as energy metabolism and DNA replication. Many studies on the role of RyhB sRNA have begun to unveil the essential nature of iron acquisition in allowing the organism to persist and develop pathogenicity. The Salmonella genome encodes two RyhB paralogs, RyhB-1 and RyhB-2, which are known to act singularly or together on target expression. Based on the mechanism of Escherichia coli RyhB function, this review proposes a possible model to show how two Salmonella RyhB paralogs regulate the level of target mRNAs by sensing environmental inputs or conditions. This review also describes the involvement of Salmonella RyhBs in diverse functions including nitrate homeostasis, adaptive system to oxidative stress, and intracellular survival. Thus, the two Salmonella RyhBs play a critical role in the regulation of gene expression that appears to be essential for persistence and pathogenesis of Salmonella spp.
Collapse
Affiliation(s)
- Jeong Nam Kim
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL 32610, United States.
| |
Collapse
|
141
|
Holmqvist E, Wright PR, Li L, Bischler T, Barquist L, Reinhardt R, Backofen R, Vogel J. Global RNA recognition patterns of post-transcriptional regulators Hfq and CsrA revealed by UV crosslinking in vivo. EMBO J 2016; 35:991-1011. [PMID: 27044921 PMCID: PMC5207318 DOI: 10.15252/embj.201593360] [Citation(s) in RCA: 232] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 02/26/2016] [Indexed: 12/22/2022] Open
Abstract
The molecular roles of many RNA‐binding proteins in bacterial post‐transcriptional gene regulation are not well understood. Approaches combining in vivo UV crosslinking with RNA deep sequencing (CLIP‐seq) have begun to revolutionize the transcriptome‐wide mapping of eukaryotic RNA‐binding protein target sites. We have applied CLIP‐seq to chart the target landscape of two major bacterial post‐transcriptional regulators, Hfq and CsrA, in the model pathogen Salmonella Typhimurium. By detecting binding sites at single‐nucleotide resolution, we identify RNA preferences and structural constraints of Hfq and CsrA during their interactions with hundreds of cellular transcripts. This reveals 3′‐located Rho‐independent terminators as a universal motif involved in Hfq–RNA interactions. Additionally, Hfq preferentially binds 5′ to sRNA‐target sites in mRNAs, and 3′ to seed sequences in sRNAs, reflecting a simple logic in how Hfq facilitates sRNA–mRNA interactions. Importantly, global knowledge of Hfq sites significantly improves sRNA‐target predictions. CsrA binds AUGGA sequences in apical loops and targets many Salmonella virulence mRNAs. Overall, our generic CLIP‐seq approach will bring new insights into post‐transcriptional gene regulation by RNA‐binding proteins in diverse bacterial species.
Collapse
Affiliation(s)
- Erik Holmqvist
- Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Patrick R Wright
- Bioinformatics Group, Department of Computer Science, Albert Ludwig University Freiburg, Freiburg, Germany
| | - Lei Li
- Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Thorsten Bischler
- Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Lars Barquist
- Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Richard Reinhardt
- Max Planck Genome Centre Cologne, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Rolf Backofen
- Bioinformatics Group, Department of Computer Science, Albert Ludwig University Freiburg, Freiburg, Germany BIOSS Centre for Biological Signaling Studies, University of Freiburg, Freiburg, Germany
| | - Jörg Vogel
- Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| |
Collapse
|
142
|
Zheng A, Panja S, Woodson SA. Arginine Patch Predicts the RNA Annealing Activity of Hfq from Gram-Negative and Gram-Positive Bacteria. J Mol Biol 2016; 428:2259-2264. [PMID: 27049793 DOI: 10.1016/j.jmb.2016.03.027] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 03/24/2016] [Accepted: 03/25/2016] [Indexed: 12/20/2022]
Abstract
The Sm-protein Hfq facilitates interactions between small non-coding RNA (sRNA) and target mRNAs. In enteric Gram-negative bacteria, Hfq is required for sRNA regulation, and hfq deletion results in stress intolerance and reduced virulence. By contrast, the role of Hfq in Gram-positive is less established and varies among species. The RNA binding and RNA annealing activity of Hfq from Escherichia coli, Pseudomonas aeruginosa, Listeria monocytogenes, Bacillus subtilis, and Staphylococcus aureus were compared using minimal RNAs and fluorescence spectroscopy. The results show that RNA annealing activity increases with the number of arginines in a semi-conserved patch on the rim of the Hfq hexamer and correlates with the previously reported requirement for Hfq in sRNA regulation. Thus, the amino acid sequence of the arginine patch can predict the chaperone function of Hfq in sRNA regulation in different organisms.
Collapse
Affiliation(s)
- Amy Zheng
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA
| | - Subrata Panja
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA.
| | - Sarah A Woodson
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA.
| |
Collapse
|
143
|
Updegrove TB, Zhang A, Storz G. Hfq: the flexible RNA matchmaker. Curr Opin Microbiol 2016; 30:133-138. [PMID: 26907610 PMCID: PMC4821791 DOI: 10.1016/j.mib.2016.02.003] [Citation(s) in RCA: 226] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 02/01/2016] [Accepted: 02/02/2016] [Indexed: 10/22/2022]
Abstract
The RNA chaperone protein Hfq is critical to the function of small, base pairing RNAs in many bacteria. In the past few years, structures and modeling of wild type Hfq and assays of various mutants have documented that the homohexameric Hfq ring can contact RNA at four sites (proximal face, distal face, rim and C-terminal tail) and that different RNAs bind to these sites in various configurations. These studies together with novel in vitro and in vivo experimental approaches are beginning to give mechanistic insights into how Hfq acts to promote small RNA-mRNA pairing and indicate that flexibility is integral to the Hfq role in RNA matchmaking.
Collapse
Affiliation(s)
- Taylor B Updegrove
- Division of Molecular and Cellular Biology, NICHD, National Institutes of Health, 18 Library Dr MSC 5430, Bethesda, MD 20892-5430, USA
| | - Aixia Zhang
- Division of Molecular and Cellular Biology, NICHD, National Institutes of Health, 18 Library Dr MSC 5430, Bethesda, MD 20892-5430, USA
| | - Gisela Storz
- Division of Molecular and Cellular Biology, NICHD, National Institutes of Health, 18 Library Dr MSC 5430, Bethesda, MD 20892-5430, USA.
| |
Collapse
|
144
|
Bandyra KJ, Sinha D, Syrjanen J, Luisi BF, De Lay NR. The ribonuclease polynucleotide phosphorylase can interact with small regulatory RNAs in both protective and degradative modes. RNA (NEW YORK, N.Y.) 2016; 22:360-72. [PMID: 26759452 PMCID: PMC4748814 DOI: 10.1261/rna.052886.115] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 11/29/2015] [Indexed: 05/22/2023]
Abstract
In all bacterial species examined thus far, small regulatory RNAs (sRNAs) contribute to intricate patterns of dynamic genetic regulation. Many of the actions of these nucleic acids are mediated by well-characterized chaperones such as the Hfq protein, but genetic screens have also recently identified the 3'-to-5' exoribonuclease polynucleotide phosphorylase (PNPase) as an unexpected stabilizer and facilitator of sRNAs in vivo. To understand how a ribonuclease might mediate these effects, we tested the interactions of PNPase with sRNAs and found that the enzyme can readily degrade these nucleic acids in vitro but, nonetheless, copurifies from cell extracts with the same sRNAs without discernible degradation or modification to their 3' ends, suggesting that the associated RNA is protected against the destructive activity of the ribonuclease. In vitro, PNPase, Hfq, and sRNA can form a ternary complex in which the ribonuclease plays a nondestructive, structural role. Such ternary complexes might be formed transiently in vivo, but could help to stabilize particular sRNAs and remodel their population on Hfq. Taken together, our results indicate that PNPase can be programmed to act on RNA in either destructive or stabilizing modes in vivo and may form complex, protective ribonucleoprotein assemblies that shape the landscape of sRNAs available for action.
Collapse
Affiliation(s)
- Katarzyna J Bandyra
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, United Kingdom
| | - Dhriti Sinha
- Department of Microbiology and Molecular Genetics, University of Texas Medical School, Houston, Texas 77030, USA
| | - Johanna Syrjanen
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, United Kingdom
| | - Ben F Luisi
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, United Kingdom
| | - Nicholas R De Lay
- Department of Microbiology and Molecular Genetics, University of Texas Medical School, Houston, Texas 77030, USA Graduate School of Biomedical Sciences, University of Texas Health Science Center, Houston, Texas 77030, USA
| |
Collapse
|
145
|
Ellis MJ, Haniford DB. Riboregulation of bacterial and archaeal transposition. WILEY INTERDISCIPLINARY REVIEWS-RNA 2016; 7:382-98. [DOI: 10.1002/wrna.1341] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 01/07/2016] [Accepted: 01/10/2016] [Indexed: 12/31/2022]
Affiliation(s)
- Michael J. Ellis
- Department of Biochemistry; University of Western Ontario; London Canada
| | - David B. Haniford
- Department of Biochemistry; University of Western Ontario; London Canada
| |
Collapse
|
146
|
Lalaouna D, Massé E. The spectrum of activity of the small RNA DsrA: not so narrow after all. Curr Genet 2015; 62:261-4. [PMID: 26607444 DOI: 10.1007/s00294-015-0533-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 10/27/2015] [Accepted: 10/28/2015] [Indexed: 11/28/2022]
Abstract
For a long time, the small regulatory RNA DsrA has been considered as a regulator with a narrow spectrum of action due to its restricted targetome. Since the first reports on DsrA characterization, only two targets of DsrA have been described: rpoS and hns mRNAs, encoding the sigma factor σS and the nucleoid-associated protein H-NS, respectively. Recently, the scope of DsrA targetome has been expanded by the characterization of two negatively regulated mRNAs, mreB and rbsD, involved in cell wall biosynthesis and ribose metabolism, respectively. In this review, we summarize new insights in DsrA-mediated regulation and emphasize the versatility of DsrA modes of action.
Collapse
Affiliation(s)
- David Lalaouna
- RNA Group, Department of Biochemistry, Université de Sherbrooke, 3201 Jean Mignault Street, Sherbrooke, QC, J1E 4K8, Canada
| | - Eric Massé
- RNA Group, Department of Biochemistry, Université de Sherbrooke, 3201 Jean Mignault Street, Sherbrooke, QC, J1E 4K8, Canada.
| |
Collapse
|