101
|
Kuo C, Pilling LC, Kuchel GA, Ferrucci L, Melzer D. Telomere length and aging-related outcomes in humans: A Mendelian randomization study in 261,000 older participants. Aging Cell 2019; 18:e13017. [PMID: 31444995 PMCID: PMC6826144 DOI: 10.1111/acel.13017] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 07/04/2019] [Accepted: 07/06/2019] [Indexed: 12/29/2022] Open
Abstract
Inherited genetic variation influencing leukocyte telomere length provides a natural experiment for testing associations with health outcomes, more robust to confounding and reverse causation than observational studies. We tested associations between genetically determined telomere length and aging‐related health outcomes in a large European ancestry older cohort. Data were from n = 379,758 UK Biobank participants aged 40–70, followed up for mean of 7.5 years (n = 261,837 participants aged 60 and older by end of follow‐up). Thirteen variants strongly associated with longer telomere length in peripheral white blood cells were analyzed using Mendelian randomization methods with Egger plots to assess pleiotropy. Variants in TERC, TERT, NAF1, OBFC1, and RTEL1 were included, and estimates were per 250 base pairs increase in telomere length, approximately equivalent to the average change over a decade in the general white population. We highlighted associations with false discovery rate‐adjusted p‐values smaller than .05. Genetically determined longer telomere length was associated with lowered risk of coronary heart disease (CHD; OR = 0.95, 95% CI: 0.92–0.98) but raised risk of cancer (OR = 1.11, 95% CI: 1.06–1.16). Little evidence for associations were found with parental lifespan, centenarian status of parents, cognitive function, grip strength, sarcopenia, or falls. The results for those aged 60 and older were similar in younger or all participants. Genetically determined telomere length was associated with increased risk of cancer and reduced risk of CHD but little change in other age‐related health outcomes. Telomere lengthening may offer little gain in later‐life health status and face increasing cancer risks.
Collapse
Affiliation(s)
- Chia‐Ling Kuo
- Department of Community Medicine and Health Care, Connecticut Convergence Institute for Translation in Regenerative Engineering, Institute for Systems Genomics University of Connecticut Health Farmington CT USA
| | - Luke C. Pilling
- Epidemiology and Public Health Group, University of Exeter Medical School, RILD Level 3 Royal Devon & Exeter Hospital Exeter UK
| | - George A. Kuchel
- Center on Aging, School of Medicine University of Connecticut Farmington CT USA
| | | | - David Melzer
- Epidemiology and Public Health Group, University of Exeter Medical School, RILD Level 3 Royal Devon & Exeter Hospital Exeter UK
- Center on Aging, School of Medicine University of Connecticut Farmington CT USA
| |
Collapse
|
102
|
Kruempel JC, Howington MB, Leiser SF. Computational tools for geroscience. TRANSLATIONAL MEDICINE OF AGING 2019; 3:132-143. [PMID: 33241167 PMCID: PMC7685266 DOI: 10.1016/j.tma.2019.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The rapid progress of the past three decades has led the geroscience field near a point where human interventions in aging are plausible. Advances across scientific areas, such as high throughput "-omics" approaches, have led to an exponentially increasing quantity of data available for biogerontologists. To best translate the lifespan and healthspan extending interventions discovered by basic scientists into preventative medicine, it is imperative that the current data are comprehensively utilized to generate testable hypotheses about translational interventions. Building a translational pipeline for geroscience will require both systematic efforts to identify interventions that extend healthspan across taxa and diagnostics that can identify patients who may benefit from interventions prior to the onset of an age-related morbidity. Databases and computational tools that organize and analyze both the wealth of information available on basic biogerontology research and clinical data on aging populations will be critical in developing such a pipeline. Here, we review the current landscape of databases and computational resources available for translational aging research. We discuss key platforms and tools available for aging research, with a focus on how each tool can be used in concert with hypothesis driven experiments to move closer to human interventions in aging.
Collapse
Affiliation(s)
- Joseph C.P. Kruempel
- Molecular & Integrative Physiology Department, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Marshall B. Howington
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Scott F. Leiser
- Molecular & Integrative Physiology Department, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
103
|
McCorrison J, Girke T, Goetz LH, Miller RA, Schork NJ. Genetic Support for Longevity-Enhancing Drug Targets: Issues, Preliminary Data, and Future Directions. J Gerontol A Biol Sci Med Sci 2019; 74:S61-S71. [PMID: 31724058 PMCID: PMC7330475 DOI: 10.1093/gerona/glz206] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Indexed: 12/16/2022] Open
Abstract
Interventions meant to promote longevity and healthy aging have often been designed or observed to modulate very specific gene or protein targets. If there are naturally occurring genetic variants in such a target that affect longevity as well as the molecular function of that target (eg, the variants influence the expression of the target, acting as "expression quantitative trait loci" or "eQTLs"), this could support a causal relationship between the pharmacologic modulation of the target and longevity and thereby validate the target at some level. We considered the gene targets of many pharmacologic interventions hypothesized to enhance human longevity and explored how many variants there are in those targets that affect gene function (eg, as expression quantitative trait loci). We also determined whether variants in genes associated with longevity-related phenotypes affect gene function or are in linkage disequilibrium with variants that do, and whether pharmacologic studies point to compounds exhibiting activity against those genes. Our results are somewhat ambiguous, suggesting that integrating genetic association study results with functional genomic and pharmacologic studies is necessary to shed light on genetically mediated targets for longevity-enhancing drugs. Such integration will require more sophisticated data sets, phenotypic definitions, and bioinformatics approaches to be useful.
Collapse
Affiliation(s)
- Jamison McCorrison
- Graduate Program in Bioinformatics and Systems Biology, University of California–San Diego, Phoenix, Arizona
| | - Thomas Girke
- Institute for Integrative Genome Biology, University of California, Riverside, Phoenix, Arizona
| | - Laura H Goetz
- Department of Quantitative Medicine and Systems Biology, The Translational Genomics Research Institute (TGen), Phoenix, Arizona
- Department of Medical Oncology, City of Hope National Medical Center, Duarte, California
| | - Richard A Miller
- Department of Pathology, Ann Arbor
- Glenn Center for the Biology of Aging, University of Michigan, Ann Arbor
| | - Nicholas J Schork
- Department of Quantitative Medicine and Systems Biology, The Translational Genomics Research Institute (TGen), Phoenix, Arizona
- Department of Population Sciences, City of Hope National Medical Center, Duarte, California
- Department of Psychiatry, University of California–San Diego
- Department of Family Medicine and Public Health, University of California–San Diego
| |
Collapse
|
104
|
Lin H, Lunetta KL, Zhao Q, Mandaviya PR, Rong J, Benjamin EJ, Joehanes R, Levy D, van Meurs JBJ, Larson MG, Murabito JM. Whole Blood Gene Expression Associated With Clinical Biological Age. J Gerontol A Biol Sci Med Sci 2019; 74:81-88. [PMID: 30010802 DOI: 10.1093/gerona/gly164] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 07/12/2018] [Indexed: 12/11/2022] Open
Abstract
Background Biologic age may better reflect an individual's rate of aging than chronologic age. Methods We conducted a transcriptome-wide association study with biologic age estimated with clinical biomarkers, which included: systolic blood pressure, forced expiratory volume at 1 second (FEV1), total cholesterol, fasting glucose, C-reactive protein, and serum creatinine. We assessed the association between the difference between biologic age and chronologic age (∆age) and gene expression in whole blood measured using the Affymetrix Human Exon 1.0st Array. Results Our discovery sample included 2,163 participants from the Framingham Offspring cohort (mean age 67 ± 9 years, 55% women). A total of 481 genes were significantly associated with ∆age (p < 2.8 × 10-6). Among them, 415 genes were validated (p < .05/481 = 1.0 × 10-4) in 2,946 participants from the Framingham Third Generation cohort (mean age 46 ± 9 years, 53% women). Many of the significant genes were involved in the ubiquitin-mediated proteolysis pathway. The replication in 414 Rotterdam Study participants (mean age 59 ± 8, 52% women) found 104 of 415 validated genes reached nominal significance (p < .05). Conclusion We identified and validated 415 genes associated with ∆age in a community-based cohort. Future functional characterization of the biologic age-related gene network may identify targets to test for interventions to delay aging in older adults.
Collapse
Affiliation(s)
- Honghuang Lin
- National Heart Lung and Blood Institute's and Boston University's Framingham Heart Study, Massachusetts.,Section of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, Massachusetts
| | - Kathryn L Lunetta
- National Heart Lung and Blood Institute's and Boston University's Framingham Heart Study, Massachusetts.,Department of Biostatistics, Boston University School of Public Health, Massachusetts
| | - Qiang Zhao
- Department of Biostatistics, Boston University School of Public Health, Massachusetts
| | - Pooja R Mandaviya
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Jian Rong
- National Heart Lung and Blood Institute's and Boston University's Framingham Heart Study, Massachusetts.,Department of Biostatistics, Boston University School of Public Health, Massachusetts
| | - Emelia J Benjamin
- National Heart Lung and Blood Institute's and Boston University's Framingham Heart Study, Massachusetts.,Section of Cardiovascular Medicine and Preventive Medicine, Department of Medicine, Boston University School of Medicine, Massachusetts.,Department of Epidemiology, Boston University School of Public Health, Massachusetts
| | - Roby Joehanes
- Hebrew SeniorLife, Harvard Medical School, Boston, Massachusetts
| | - Daniel Levy
- National Heart Lung and Blood Institute's and Boston University's Framingham Heart Study, Massachusetts.,Population Sciences Branch, National Heart, Lung, and Blood Institute, Bethesda, Maryland
| | - Joyce B J van Meurs
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Martin G Larson
- National Heart Lung and Blood Institute's and Boston University's Framingham Heart Study, Massachusetts.,Department of Biostatistics, Boston University School of Public Health, Massachusetts
| | - Joanne M Murabito
- National Heart Lung and Blood Institute's and Boston University's Framingham Heart Study, Massachusetts.,Section of General Internal Medicine, Department of Medicine, Boston University School of Medicine, Massachusetts
| |
Collapse
|
105
|
A Prospective Analysis of Genetic Variants Associated with Human Lifespan. G3-GENES GENOMES GENETICS 2019; 9:2863-2878. [PMID: 31484785 PMCID: PMC6723124 DOI: 10.1534/g3.119.400448] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
We present a massive investigation into the genetic basis of human lifespan. Beginning with a genome-wide association (GWA) study using a de-identified snapshot of the unique AncestryDNA database – more than 300,000 genotyped individuals linked to pedigrees of over 400,000,000 people – we mapped six genome-wide significant loci associated with parental lifespan. We compared these results to a GWA analysis of the traditional lifespan proxy trait, age, and found only one locus, APOE, to be associated with both age and lifespan. By combining the AncestryDNA results with those of an independent UK Biobank dataset, we conducted a meta-analysis of more than 650,000 individuals and identified fifteen parental lifespan-associated loci. Beyond just those significant loci, our genome-wide set of polymorphisms accounts for up to 8% of the variance in human lifespan; this value represents a large fraction of the heritability estimated from phenotypic correlations between relatives.
Collapse
|
106
|
West MD, Sternberg H, Labat I, Janus J, Chapman KB, Malik NN, de Grey ADNJ, Larocca D. Toward a unified theory of aging and regeneration. Regen Med 2019; 14:867-886. [DOI: 10.2217/rme-2019-0062] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Growing evidence supports the antagonistic pleiotropy theory of mammalian aging. Accordingly, changes in gene expression following the pluripotency transition, and subsequent transitions such as the embryonic–fetal transition, while providing tumor suppressive and antiviral survival benefits also result in a loss of regenerative potential leading to age-related fibrosis and degenerative diseases. However, reprogramming somatic cells to pluripotency demonstrates the possibility of restoring telomerase and embryonic regeneration pathways and thus reversing the age-related decline in regenerative capacity. A unified model of aging and loss of regenerative potential is emerging that may ultimately be translated into new therapeutic approaches for establishing induced tissue regeneration and modulation of the embryo-onco phenotype of cancer.
Collapse
Affiliation(s)
| | | | - Ivan Labat
- AgeX Therapeutics, Inc., Alameda, CA 94501, USA
| | | | | | - Nafees N Malik
- AgeX Therapeutics, Inc., Alameda, CA 94501, USA
- Juvenescence Ltd, London, UK
| | - Aubrey DNJ de Grey
- AgeX Therapeutics, Inc., Alameda, CA 94501, USA
- SENS Research Foundation, Mountain View, CA 94041, USA
| | | |
Collapse
|
107
|
Berg NVD, Rodríguez-Girondo M, de Craen AJM, Houwing-Duistermaat JJ, Beekman M, Slagboom PE. Longevity Around the Turn of the 20th Century: Life-Long Sustained Survival Advantage for Parents of Today's Nonagenarians. J Gerontol A Biol Sci Med Sci 2019; 73:1295-1302. [PMID: 29596573 PMCID: PMC6132126 DOI: 10.1093/gerona/gly049] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Indexed: 11/14/2022] Open
Abstract
Members of longevous families live longer than individuals from similar birth cohorts and delay/escape age-related diseases. Insight into this familial component of longevity can provide important knowledge about mechanisms protecting against age-related diseases. This familial component of longevity was studied in the Leiden Longevity Study which consists of 944 longevous siblings (participants), their parents (N = 842), siblings (N = 2,302), and spouses (N = 809). Family longevity scores were estimated to explore whether human longevity is transmitted preferentially through the maternal or paternal line. Standardized mortality ratios (SMRs) were estimated to investigate whether longevous siblings have a survival advantage compared with longevous singletons and we investigated whether parents of longevous siblings harbor a life-long sustained survival advantage compared with the general Dutch population by estimating lifetime SMRs (L-SMRs). We found that sibships with long-lived mothers and non-long-lived fathers had 0.41 (p = .024) less observed deaths than sibships with long-lived fathers and non-long-lived mothers and 0.48 (p = .008) less observed deaths than sibships with both parents non-long lived. Participants had 18.6 per cent less deaths compared with matched singletons and parents had a life-long sustained survival advantage (L-SMR = 0.510 and 0.688). In conclusion, genetic longevity studies may incorporate the maternal transmission pattern and genes influencing the entire life-course of individuals.
Collapse
Affiliation(s)
- Niels van den Berg
- Department of Molecular Epidemiology, Leiden University, Albinusdreef, Leiden, The Netherlands.,Department of Economic, Social, and Demographic History, Radboud University, Erasmusplein, Nijmegen, The Netherlands
| | - Mar Rodríguez-Girondo
- Department of Medical Statistics, Leiden University, Albinusdreef, Leiden, The Netherlands
| | - Anton J M de Craen
- Department of Gerontology and Geriatrics, Leiden University, Albinusdreef, Leiden, The Netherlands
| | | | - Marian Beekman
- Department of Molecular Epidemiology, Leiden University, Albinusdreef, Leiden, The Netherlands
| | - P Eline Slagboom
- Department of Molecular Epidemiology, Leiden University, Albinusdreef, Leiden, The Netherlands
| |
Collapse
|
108
|
Johnson AA. Lipid Hydrolase Enzymes: Pragmatic Prolongevity Targets for Improved Human Healthspan? Rejuvenation Res 2019; 23:107-121. [PMID: 31426688 DOI: 10.1089/rej.2019.2211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Compelling evidence suggests that lipid metabolism, which plays critical roles in fat storage, cell membrane maintenance, and cell signaling, is intricately linked to aging. Lipid hydrolases are important enzymes that catalyze the hydrolysis of more complex lipids into simpler lipids. Diverse interventions targeting lipid hydrolases can prolong or shorten life in model organisms. For example, the genetic removal of or RNAi knockdown against a phospholipase can reduce lifespan in Caenorhabditis elegans, Drosophila melanogaster, and Mus musculus. The removal of lysosomal acid lipase results in premature death in mice, while its overexpression in nematodes generates lean, long-lived individuals. The overexpression or inhibition of diacylglycerol lipase leads to enhanced or reduced longevity, respectively, in both worms and flies. Lifespan can also be extended by knocking down triacylglycerol lipases in yeast, overexpressing fatty acid amide hydrolase in worms, or removing hepatic lipase in a mouse model of coronary disease. Conversely, flies lacking the triacylglycerol lipase Brummer are obese and short lived. Linking sphingolipids and aging, removing the sphingomyelinase inositol phosphosphingolipid phospholipase shortens chronological lifespan in Saccharomyces cerevisiae, while inhibiting an acid sphingomyelinase in worms or inactivating alkaline ceramidase in flies extends lifespan. The clinical potential of manipulating these enzymes is highlighted by the FDA-approved obesity drug orlistat, which is an inhibitor of pancreatic and hepatic lipases that induces weight loss and improves insulin/glucose homeostasis. Additional research is warranted to better understand how these lipid hydrolases impact aging and to determine if clinical interventions targeting them are capable of improving human healthspan.
Collapse
|
109
|
Deelen J, Evans DS, Arking DE, Tesi N, Nygaard M, Liu X, Wojczynski MK, Biggs ML, van der Spek A, Atzmon G, Ware EB, Sarnowski C, Smith AV, Seppälä I, Cordell HJ, Dose J, Amin N, Arnold AM, Ayers KL, Barzilai N, Becker EJ, Beekman M, Blanché H, Christensen K, Christiansen L, Collerton JC, Cubaynes S, Cummings SR, Davies K, Debrabant B, Deleuze JF, Duncan R, Faul JD, Franceschi C, Galan P, Gudnason V, Harris TB, Huisman M, Hurme MA, Jagger C, Jansen I, Jylhä M, Kähönen M, Karasik D, Kardia SLR, Kingston A, Kirkwood TBL, Launer LJ, Lehtimäki T, Lieb W, Lyytikäinen LP, Martin-Ruiz C, Min J, Nebel A, Newman AB, Nie C, Nohr EA, Orwoll ES, Perls TT, Province MA, Psaty BM, Raitakari OT, Reinders MJT, Robine JM, Rotter JI, Sebastiani P, Smith J, Sørensen TIA, Taylor KD, Uitterlinden AG, van der Flier W, van der Lee SJ, van Duijn CM, van Heemst D, Vaupel JW, Weir D, Ye K, Zeng Y, Zheng W, Holstege H, Kiel DP, Lunetta KL, Slagboom PE, Murabito JM. A meta-analysis of genome-wide association studies identifies multiple longevity genes. Nat Commun 2019; 10:3669. [PMID: 31413261 PMCID: PMC6694136 DOI: 10.1038/s41467-019-11558-2] [Citation(s) in RCA: 214] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 07/17/2019] [Indexed: 12/16/2022] Open
Abstract
Human longevity is heritable, but genome-wide association (GWA) studies have had limited success. Here, we perform two meta-analyses of GWA studies of a rigorous longevity phenotype definition including 11,262/3484 cases surviving at or beyond the age corresponding to the 90th/99th survival percentile, respectively, and 25,483 controls whose age at death or at last contact was at or below the age corresponding to the 60th survival percentile. Consistent with previous reports, rs429358 (apolipoprotein E (ApoE) ε4) is associated with lower odds of surviving to the 90th and 99th percentile age, while rs7412 (ApoE ε2) shows the opposite. Moreover, rs7676745, located near GPR78, associates with lower odds of surviving to the 90th percentile age. Gene-level association analysis reveals a role for tissue-specific expression of multiple genes in longevity. Finally, genetic correlation of the longevity GWA results with that of several disease-related phenotypes points to a shared genetic architecture between health and longevity.
Collapse
Affiliation(s)
- Joris Deelen
- Max Planck Institute for Biology of Ageing, 50866, Cologne, Germany.
- Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Center, 2300 RC, Leiden, The Netherlands.
| | - Daniel S Evans
- California Pacific Medical Center Research Institute, San Francisco, CA, 94158, USA.
| | - Dan E Arking
- McKusick-Nathans Institute of Genetic Medicine, Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Niccolò Tesi
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, 1007 MB, Amsterdam, The Netherlands
- Department of Clinical Genetics, Amsterdam UMC, 1007 MB, Amsterdam, The Netherlands
- Delft Bioinformatics Lab, Delft University of Technology, 2600 GA, Delft, The Netherlands
| | - Marianne Nygaard
- The Danish Aging Research Center, Department of Public Health, University of Southern Denmark, 5000, Odense C, Denmark
| | - Xiaomin Liu
- BGI-Shenzhen, Shenzhen, 518083, China
- China National Genebank, BGI-Shenzhen, Shenzhen, 518120, China
| | - Mary K Wojczynski
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Mary L Biggs
- Department of Biostatistics, University of Washington, Seattle, WA, 98115, USA
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, 98101, USA
| | | | - Gil Atzmon
- Department of Biology, Faculty of Natural Science, University of Haifa, Haifa, 3498838, Israel
- Departments of Medicine and Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Erin B Ware
- Institute for Social Research, Survey Research Center, University of Michigan, Ann Arbor, MI, 48104, USA
| | - Chloé Sarnowski
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, 02118, USA
| | - Albert V Smith
- School of Public Health, Department of Biostatistics, University of Michigan, Ann Arbor, MI, 48109, USA
- Icelandic Heart Association, 201, Kópavogur, Iceland
| | - Ilkka Seppälä
- Department of Clinical Chemistry, Fimlab Laboratories and Finnish Cardiovascular Research Center-Tampere, Faculty of Medicine and Health Technology, Tampere University, 33520, Tampere, Finland
| | - Heather J Cordell
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, NE1 3BZ, UK
| | - Janina Dose
- Institute of Clinical Molecular Biology, Kiel University, 24105, Kiel, Germany
| | - Najaf Amin
- Department of Epidemiology, Erasmus MC, 3000 CA, Rotterdam, The Netherlands
| | - Alice M Arnold
- Department of Biostatistics, University of Washington, Seattle, WA, 98115, USA
| | | | - Nir Barzilai
- Departments of Medicine and Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | | | - Marian Beekman
- Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Center, 2300 RC, Leiden, The Netherlands
| | | | - Kaare Christensen
- The Danish Aging Research Center, Department of Public Health, University of Southern Denmark, 5000, Odense C, Denmark
- Clinical Biochemistry and Pharmacology, Odense University Hospital, 5000, Odense C, Denmark
- Department of Clinical Genetics, Odense University Hospital, 5000, Odense C, Denmark
| | - Lene Christiansen
- The Danish Aging Research Center, Department of Public Health, University of Southern Denmark, 5000, Odense C, Denmark
- Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, 2100, Copenhagen, Denmark
| | - Joanna C Collerton
- Institute of Health & Society, Newcastle University, Newcastle upon Tyne, NE4 5PL, UK
| | - Sarah Cubaynes
- MMDN, Univ. Montpellier, EPHE, Unité Inserm 1198, PSL Research University, 34095, Montpellier, France
| | - Steven R Cummings
- California Pacific Medical Center Research Institute, San Francisco, CA, 94158, USA
| | - Karen Davies
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, NE4 5PL, UK
| | - Birgit Debrabant
- Department of Public Health, University of Southern Denmark, 5000, Odense C, Denmark
| | - Jean-François Deleuze
- Fondation Jean Dausset-CEPH, 75010, Paris, France
- Centre National de Recherche en Génomique Humaine, CEA-Institut de Biologie François Jacob, 91000, Evry, France
| | - Rachel Duncan
- Institute of Health & Society, Newcastle University, Newcastle upon Tyne, NE4 5PL, UK
- Newcastle University Institute for Ageing, Newcastle University, Newcastle upon Tyne, NE4 5PL, UK
| | - Jessica D Faul
- Institute for Social Research, Survey Research Center, University of Michigan, Ann Arbor, MI, 48104, USA
| | - Claudio Franceschi
- Department of Applied Mathematics and Centre of Bioinformatics, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, 603022, Russia
- IRCCS Institute of Neurological Sciences of Bologna (ISNB), 40124, Bologna, Italy
| | - Pilar Galan
- EREN, UMR U1153 Inserm/U1125 Inra/Cnam/Paris 13, Université Paris 13, CRESS, 93017, Bobigny, France
| | - Vilmundur Gudnason
- Icelandic Heart Association, 201, Kópavogur, Iceland
- Faculty of Medicine, University of Iceland, 101, Reykjavik, Iceland
| | - Tamara B Harris
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, NIH, Bethesda, MD, 20892, USA
| | - Martijn Huisman
- Department of Epidemiology and Biostatistics, Vrije Universiteit Amsterdam, Amsterdam UMC, 1007 MB, Amsterdam, The Netherlands
- Amsterdam Public Health Research Institute, 1007 MB, Amsterdam, The Netherlands
| | - Mikko A Hurme
- Department of Microbiology and Immunology, Faculty of Medicine and Health Technology, Tampere University, 33014, Tampere, Finland
| | - Carol Jagger
- Institute of Health & Society, Newcastle University, Newcastle upon Tyne, NE4 5PL, UK
- Newcastle University Institute for Ageing, Newcastle University, Newcastle upon Tyne, NE4 5PL, UK
| | - Iris Jansen
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, 1007 MB, Amsterdam, The Netherlands
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, 1081 HV, Amsterdam, The Netherlands
| | - Marja Jylhä
- Faculty of Social Sciences (Health Sciences) and Gerontology Research Center (GEREC), Tampere University, 33104, Tampere, Finland
| | - Mika Kähönen
- Department of Clinical Physiology, Tampere University Hospital and Finnish Cardiovascular Research Center-Tampere, Faculty of Medicine and Health Technology, Tampere University, 33521, Tampere, Finland
| | - David Karasik
- Azrieli Faculty of Medicine, Bar Ilan University, Safed, 13010, Israel
- Hinda and Arthur Marcus Institute for Aging Research, Hebrew SeniorLife, Boston, MA, 02131, USA
| | - Sharon L R Kardia
- School of Public Health, Epidemiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Andrew Kingston
- Institute of Health & Society, Newcastle University, Newcastle upon Tyne, NE4 5PL, UK
- Newcastle University Institute for Ageing, Newcastle University, Newcastle upon Tyne, NE4 5PL, UK
| | - Thomas B L Kirkwood
- Newcastle University Institute for Ageing, Newcastle University, Newcastle upon Tyne, NE4 5PL, UK
| | - Lenore J Launer
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, NIH, Bethesda, MD, 20892, USA
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Fimlab Laboratories and Finnish Cardiovascular Research Center-Tampere, Faculty of Medicine and Health Technology, Tampere University, 33520, Tampere, Finland
| | - Wolfgang Lieb
- Institute of Epidemiology and Biobank PopGen, Kiel University, 24105, Kiel, Germany
| | - Leo-Pekka Lyytikäinen
- Department of Clinical Chemistry, Fimlab Laboratories and Finnish Cardiovascular Research Center-Tampere, Faculty of Medicine and Health Technology, Tampere University, 33520, Tampere, Finland
| | - Carmen Martin-Ruiz
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, NE4 5PL, UK
| | - Junxia Min
- Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou, 311058, China
| | - Almut Nebel
- Institute of Clinical Molecular Biology, Kiel University, 24105, Kiel, Germany
| | - Anne B Newman
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Chao Nie
- BGI-Shenzhen, Shenzhen, 518083, China
| | - Ellen A Nohr
- Research Unit of Gynecology and Obstetrics, Department of Clinical Research, University of Southern Denmark, 5000, Odense C, Denmark
| | - Eric S Orwoll
- Bone and Mineral Unit, Oregon Health Sciences University, Portland, OR, 97239, USA
| | - Thomas T Perls
- Department of Medicine, Geriatrics Section, Boston Medical Center, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Michael A Province
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Bruce M Psaty
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, 98101, USA
- Department of Epidemiology, University of Washington, Seattle, WA, 98101, USA
- Department of Health Services, University of Washington, Seattle, WA, 98101, USA
- Kaiser Permanente Washington Health Research Institute, Seattle, WA, 98101, USA
| | - Olli T Raitakari
- Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, 20521, Turku, Finland
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, 20014, Turku, Finland
| | - Marcel J T Reinders
- Delft Bioinformatics Lab, Delft University of Technology, 2600 GA, Delft, The Netherlands
| | - Jean-Marie Robine
- MMDN, Univ. Montpellier, EPHE, Unité Inserm 1198, PSL Research University, 34095, Montpellier, France
- CERMES3, UMR CNRS 8211-Unité Inserm 988-EHESS-Université Paris Descartes, 94801, Paris, France
| | - Jerome I Rotter
- Institute for Translational Genomics and Population Sciences, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, 90502, USA
- Division of Genetic Outcomes, Department of Pediatrics, Harbor-UCLA Medical Center, Torrance, CA, 90502, USA
| | - Paola Sebastiani
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, 02118, USA
| | - Jennifer Smith
- Institute for Social Research, Survey Research Center, University of Michigan, Ann Arbor, MI, 48104, USA
- School of Public Health, Epidemiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Thorkild I A Sørensen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Section of Metabolic Genetics, and Department of Public Health, Section of Epidemiology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen N, Denmark
- MRC Integrative Epidemiology Unit, Bristol University, BS8 2BN, Bristol, UK
| | - Kent D Taylor
- Institute for Translational Genomics and Population Sciences, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, 90502, USA
- Department of Pediatrics, Harbor-UCLA Medical Center, Torrance, CA, 90502, USA
| | - André G Uitterlinden
- Department of Epidemiology, Erasmus MC, 3000 CA, Rotterdam, The Netherlands
- Department of Internal Medicine, Erasmus MC, 3000 CA, Rotterdam, The Netherlands
| | - Wiesje van der Flier
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, 1007 MB, Amsterdam, The Netherlands
- Department of Epidemiology and Biostatistics, Vrije Universiteit Amsterdam, Amsterdam UMC, 1007 MB, Amsterdam, The Netherlands
| | - Sven J van der Lee
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, 1007 MB, Amsterdam, The Netherlands
- Department of Clinical Genetics, Amsterdam UMC, 1007 MB, Amsterdam, The Netherlands
| | - Cornelia M van Duijn
- Department of Epidemiology, Erasmus MC, 3000 CA, Rotterdam, The Netherlands
- Nuffield Department of Population Health, University of Oxford, Oxford, OX3 7LF, UK
| | - Diana van Heemst
- Department of Gerontology and Geriatrics, Leiden University Medical Center, 2300 RC, Leiden, The Netherlands
| | - James W Vaupel
- Max Planck Institute for Demographic Research, 18057, Rostock, Germany
| | - David Weir
- Institute for Social Research, Survey Research Center, University of Michigan, Ann Arbor, MI, 48104, USA
| | - Kenny Ye
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Yi Zeng
- Center for Healthy Aging and Development Studies, National School of Development and Raissun Institute for Advanced Studies, Peking University, 100871, Beijing, China
- Center for the Study of Aging and Human Development and Geriatrics Division, Medical School of Duke University, Durham, NC, 27710, USA
| | - Wanlin Zheng
- California Pacific Medical Center Research Institute, San Francisco, CA, 94158, USA
| | - Henne Holstege
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, 1007 MB, Amsterdam, The Netherlands
- Department of Clinical Genetics, Amsterdam UMC, 1007 MB, Amsterdam, The Netherlands
- Delft Bioinformatics Lab, Delft University of Technology, 2600 GA, Delft, The Netherlands
| | - Douglas P Kiel
- Hinda and Arthur Marcus Institute for Aging Research, Hebrew SeniorLife, Boston, MA, 02131, USA
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, 02215, USA
- Broad Institute of MIT & Harvard, Cambridge, MA, 02142, USA
| | - Kathryn L Lunetta
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, 02118, USA
| | - P Eline Slagboom
- Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Center, 2300 RC, Leiden, The Netherlands.
| | - Joanne M Murabito
- NHLBI's and Boston University's Framingham Heart Study, Framingham, MA, 01702, USA.
- Section of General Internal Medicine, Department of Medicine, Boston University School of Medicine, Boston, MA, 02118, USA.
| |
Collapse
|
110
|
Moore JH, Raghavachari N. Artificial Intelligence Based Approaches to Identify Molecular Determinants of Exceptional Health and Life Span-An Interdisciplinary Workshop at the National Institute on Aging. Front Artif Intell 2019; 2:12. [PMID: 33733101 PMCID: PMC7861312 DOI: 10.3389/frai.2019.00012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 07/08/2019] [Indexed: 01/01/2023] Open
Abstract
Artificial intelligence (AI) has emerged as a powerful approach for integrated analysis of the rapidly growing volume of multi-omics data, including many research and clinical tasks such as prediction of disease risk and identification of potential therapeutic targets. However, the potential for AI to facilitate the identification of factors contributing to human exceptional health and life span and their translation into novel interventions for enhancing health and life span has not yet been realized. As researchers on aging acquire large scale data both in human cohorts and model organisms, emerging opportunities exist for the application of AI approaches to untangle the complex physiologic process(es) that modulate health and life span. It is expected that efficient and novel data mining tools that could unravel molecular mechanisms and causal pathways associated with exceptional health and life span could accelerate the discovery of novel therapeutics for healthy aging. Keeping this in mind, the National Institute on Aging (NIA) convened an interdisciplinary workshop titled “Contributions of Artificial Intelligence to Research on Determinants and Modulation of Health Span and Life Span” in August 2018. The workshop involved experts in the fields of aging, comparative biology, cardiology, cancer, and computational science/AI who brainstormed ideas on how AI can be leveraged for the analyses of large-scale data sets from human epidemiological studies and animal/model organisms to close the current knowledge gaps in processes that drive exceptional life and health span. This report summarizes the discussions and recommendations from the workshop on future application of AI approaches to advance our understanding of human health and life span.
Collapse
Affiliation(s)
- Jason H Moore
- University of Pennsylvania, Philadelphia, PA, United States
| | | | | |
Collapse
|
111
|
van der Lee SJ, Conway OJ, Jansen I, Carrasquillo MM, Kleineidam L, van den Akker E, Hernández I, van Eijk KR, Stringa N, Chen JA, Zettergren A, Andlauer TFM, Diez-Fairen M, Simon-Sanchez J, Lleó A, Zetterberg H, Nygaard M, Blauwendraat C, Savage JE, Mengel-From J, Moreno-Grau S, Wagner M, Fortea J, Keogh MJ, Blennow K, Skoog I, Friese MA, Pletnikova O, Zulaica M, Lage C, de Rojas I, Riedel-Heller S, Illán-Gala I, Wei W, Jeune B, Orellana A, Then Bergh F, Wang X, Hulsman M, Beker N, Tesi N, Morris CM, Indakoetxea B, Collij LE, Scherer M, Morenas-Rodríguez E, Ironside JW, van Berckel BNM, Alcolea D, Wiendl H, Strickland SL, Pastor P, Rodríguez Rodríguez E, Boeve BF, Petersen RC, Ferman TJ, van Gerpen JA, Reinders MJT, Uitti RJ, Tárraga L, Maier W, Dols-Icardo O, Kawalia A, Dalmasso MC, Boada M, Zettl UK, van Schoor NM, Beekman M, Allen M, Masliah E, de Munain AL, Pantelyat A, Wszolek ZK, Ross OA, Dickson DW, Graff-Radford NR, Knopman D, Rademakers R, Lemstra AW, Pijnenburg YAL, Scheltens P, Gasser T, Chinnery PF, Hemmer B, Huisman MA, Troncoso J, Moreno F, Nohr EA, Sørensen TIA, Heutink P, Sánchez-Juan P, Posthuma D, Clarimón J, Christensen K, Ertekin-Taner N, Scholz SW, Ramirez A, Ruiz A, Slagboom E, van der Flier WM, et alvan der Lee SJ, Conway OJ, Jansen I, Carrasquillo MM, Kleineidam L, van den Akker E, Hernández I, van Eijk KR, Stringa N, Chen JA, Zettergren A, Andlauer TFM, Diez-Fairen M, Simon-Sanchez J, Lleó A, Zetterberg H, Nygaard M, Blauwendraat C, Savage JE, Mengel-From J, Moreno-Grau S, Wagner M, Fortea J, Keogh MJ, Blennow K, Skoog I, Friese MA, Pletnikova O, Zulaica M, Lage C, de Rojas I, Riedel-Heller S, Illán-Gala I, Wei W, Jeune B, Orellana A, Then Bergh F, Wang X, Hulsman M, Beker N, Tesi N, Morris CM, Indakoetxea B, Collij LE, Scherer M, Morenas-Rodríguez E, Ironside JW, van Berckel BNM, Alcolea D, Wiendl H, Strickland SL, Pastor P, Rodríguez Rodríguez E, Boeve BF, Petersen RC, Ferman TJ, van Gerpen JA, Reinders MJT, Uitti RJ, Tárraga L, Maier W, Dols-Icardo O, Kawalia A, Dalmasso MC, Boada M, Zettl UK, van Schoor NM, Beekman M, Allen M, Masliah E, de Munain AL, Pantelyat A, Wszolek ZK, Ross OA, Dickson DW, Graff-Radford NR, Knopman D, Rademakers R, Lemstra AW, Pijnenburg YAL, Scheltens P, Gasser T, Chinnery PF, Hemmer B, Huisman MA, Troncoso J, Moreno F, Nohr EA, Sørensen TIA, Heutink P, Sánchez-Juan P, Posthuma D, Clarimón J, Christensen K, Ertekin-Taner N, Scholz SW, Ramirez A, Ruiz A, Slagboom E, van der Flier WM, Holstege H. A nonsynonymous mutation in PLCG2 reduces the risk of Alzheimer's disease, dementia with Lewy bodies and frontotemporal dementia, and increases the likelihood of longevity. Acta Neuropathol 2019; 138:237-250. [PMID: 31131421 PMCID: PMC6660501 DOI: 10.1007/s00401-019-02026-8] [Show More Authors] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 05/03/2019] [Accepted: 05/05/2019] [Indexed: 12/12/2022]
Abstract
The genetic variant rs72824905-G (minor allele) in the PLCG2 gene was previously associated with a reduced Alzheimer's disease risk (AD). The role of PLCG2 in immune system signaling suggests it may also protect against other neurodegenerative diseases and possibly associates with longevity. We studied the effect of the rs72824905-G on seven neurodegenerative diseases and longevity, using 53,627 patients, 3,516 long-lived individuals and 149,290 study-matched controls. We replicated the association of rs72824905-G with reduced AD risk and we found an association with reduced risk of dementia with Lewy bodies (DLB) and frontotemporal dementia (FTD). We did not find evidence for an effect on Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS) and multiple sclerosis (MS) risks, despite adequate sample sizes. Conversely, the rs72824905-G allele was associated with increased likelihood of longevity. By-proxy analyses in the UK Biobank supported the associations with both dementia and longevity. Concluding, rs72824905-G has a protective effect against multiple neurodegenerative diseases indicating shared aspects of disease etiology. Our findings merit studying the PLCγ2 pathway as drug-target.
Collapse
Affiliation(s)
- Sven J van der Lee
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands.
- Department of Clinical Genetics, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands.
| | - Olivia J Conway
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL, 32224, USA
| | - Iris Jansen
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | | | - Luca Kleineidam
- Department for Neurodegenerative Diseases and Geriatric Psychiatry, University of Bonn, Bonn, Germany
- DZNE, German Center for Neurodegenerative Diseases, Bonn, Germany
- Division of Neurogenetics and Molecular Psychiatry, Department of Psychiatry and Psychotherapy, Faculty of Medicine, University Hospital Cologne, Cologne, Germany
| | - Erik van den Akker
- Molecular Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
- Pattern Recognition and Bioinformatics, Delft University of Technology, Delft, The Netherlands
| | - Isabel Hernández
- Research Center and Memory Clinic, Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain
- Centro de Investigacion Biomedica en Red en Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Kristel R van Eijk
- Department of Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Najada Stringa
- Amsterdam UMC-Vrije Universiteit Amsterdam, Department of Epidemiology and Biostatistics, Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
| | - Jason A Chen
- Interdepartmental Program in Bioinformatics, University of California, Los Angeles, USA
| | - Anna Zettergren
- Neuropsychiatric Epidemiology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, Centre for Ageing and Health (AgeCap) at the University of Gothenburg, Gothenburg, Sweden
| | - Till F M Andlauer
- Max Planck Institute of Psychiatry, Munich, Germany
- Department of Neurology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- German Competence Network Multiple Sclerosis (KKNMS), Munich, Germany
| | - Monica Diez-Fairen
- Movement Disorders and Memory Unit, Department of Neurology, University Hospital Mutua de Terrassa, Barcelona, Spain
- Fundacio per la Recerca Biomedica I Social Mutua Terrassa, Terrassa, Barcelona, Spain
| | - Javier Simon-Sanchez
- German Center for Neurodegenerative Diseases (DZNE)-Tübingen, Tübingen, Germany
- Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Alberto Lleó
- Centro de Investigacion Biomedica en Red en Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Memory Unit, Department of Neurology, IIB Sant Pau, Hospital de la Santa Creu i Sant Pau, Universitat Autonoma de Barcelona, Barcelona, Spain
| | - Henrik Zetterberg
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, UK
| | - Marianne Nygaard
- The Danish Aging Research Center, Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, Odense, Denmark
| | - Cornelis Blauwendraat
- Neurodegenerative Diseases Research Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD, 20892-3707, USA
| | - Jeanne E Savage
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Jonas Mengel-From
- Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, Odense, Denmark
| | - Sonia Moreno-Grau
- Research Center and Memory Clinic, Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Michael Wagner
- Department for Neurodegenerative Diseases and Geriatric Psychiatry, University of Bonn, Bonn, Germany
- DZNE, German Center for Neurodegenerative Diseases, Bonn, Germany
| | - Juan Fortea
- Centro de Investigacion Biomedica en Red en Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Memory Unit, Department of Neurology, IIB Sant Pau, Hospital de la Santa Creu i Sant Pau, Universitat Autonoma de Barcelona, Barcelona, Spain
| | - Michael J Keogh
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, NE1 3BZ, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Kaj Blennow
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Ingmar Skoog
- Neuropsychiatric Epidemiology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, Centre for Ageing and Health (AgeCap) at the University of Gothenburg, Gothenburg, Sweden
| | - Manuel A Friese
- German Competence Network Multiple Sclerosis (KKNMS), Munich, Germany
- Institut für Neuroimmunologie und Multiple Sklerose (INIMS), Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Olga Pletnikova
- Department of Pathology (Neuropathology), Johns Hopkins University Medical Center, Baltimore, MD, USA
| | - Miren Zulaica
- Centro de Investigacion Biomedica en Red en Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Instituto Biodonostia, San Sebastian, Spain
| | - Carmen Lage
- Centro de Investigacion Biomedica en Red en Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- University Hospital "Marques de Valdecilla", Santander, Spain
- IDIVAL, Santander, Spain
| | - Itziar de Rojas
- Research Center and Memory Clinic, Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain
- Centro de Investigacion Biomedica en Red en Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Steffi Riedel-Heller
- Institute of Social Medicine, Occupational Health and Public Health (ISAP), University of Leipzig, Leipzig, Germany
| | - Ignacio Illán-Gala
- Centro de Investigacion Biomedica en Red en Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Memory Unit, Department of Neurology, IIB Sant Pau, Hospital de la Santa Creu i Sant Pau, Universitat Autonoma de Barcelona, Barcelona, Spain
| | - Wei Wei
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Bernard Jeune
- Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, Odense, Denmark
| | - Adelina Orellana
- Research Center and Memory Clinic, Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain
- Centro de Investigacion Biomedica en Red en Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Florian Then Bergh
- German Competence Network Multiple Sclerosis (KKNMS), Munich, Germany
- Department of Neurology, University of Leipzig, Leipzig, Germany
| | - Xue Wang
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL, 32224, USA
| | - Marc Hulsman
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
- Department of Clinical Genetics, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
- Pattern Recognition and Bioinformatics, Delft University of Technology, Delft, The Netherlands
| | - Nina Beker
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Niccolo Tesi
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
- Department of Clinical Genetics, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
- Pattern Recognition and Bioinformatics, Delft University of Technology, Delft, The Netherlands
| | - Christopher M Morris
- Newcastle Brain Tissue Resource, Edwardson Building, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, NE4 5PL, UK
| | - Begoña Indakoetxea
- Centro de Investigacion Biomedica en Red en Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Instituto Biodonostia, San Sebastian, Spain
- Cognitive Disorders Unit, Department of Neurology, Hospital Universitario San Sebastian, San Sebastian, Spain
| | - Lyduine E Collij
- Department of Radiology and Nuclear Medicine, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Martin Scherer
- Department of Primary Medical Care, Center for Psychosocial Medicine, University Medical Center, Hamburg-Eppendorf, Germany
| | - Estrella Morenas-Rodríguez
- Centro de Investigacion Biomedica en Red en Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Memory Unit, Department of Neurology, IIB Sant Pau, Hospital de la Santa Creu i Sant Pau, Universitat Autonoma de Barcelona, Barcelona, Spain
| | - James W Ironside
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Bart N M van Berckel
- Department of Radiology and Nuclear Medicine, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Daniel Alcolea
- Centro de Investigacion Biomedica en Red en Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Memory Unit, Department of Neurology, IIB Sant Pau, Hospital de la Santa Creu i Sant Pau, Universitat Autonoma de Barcelona, Barcelona, Spain
| | - Heinz Wiendl
- German Competence Network Multiple Sclerosis (KKNMS), Munich, Germany
- Department of Neurology, Klinik für Neurologie mit Institut für Translationale Neurologie, University of Münster, Münster, Germany
| | | | - Pau Pastor
- Movement Disorders and Memory Unit, Department of Neurology, University Hospital Mutua de Terrassa, Barcelona, Spain
- Fundacio per la Recerca Biomedica I Social Mutua Terrassa, Terrassa, Barcelona, Spain
| | - Eloy Rodríguez Rodríguez
- Centro de Investigacion Biomedica en Red en Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- University Hospital "Marques de Valdecilla", Santander, Spain
- IDIVAL, Santander, Spain
| | - Bradley F Boeve
- Department of Neurology, Mayo Clinic Minnesota, Rochester, MN, 55905, USA
| | - Ronald C Petersen
- Department of Neurology, Mayo Clinic Minnesota, Rochester, MN, 55905, USA
| | - Tanis J Ferman
- Department of Psychiatry and Psychology, Mayo Clinic Florida, Jacksonville, FL, 32224, USA
| | - Jay A van Gerpen
- Department of Neurology, Mayo Clinic Florida, Jacksonville, FL, 32224, USA
| | - Marcel J T Reinders
- Delft Bioinformatics Lab, Delft University of Technology, Delft, The Netherlands
| | - Ryan J Uitti
- Department of Neurology, Mayo Clinic Florida, Jacksonville, FL, 32224, USA
| | - Lluís Tárraga
- Research Center and Memory Clinic, Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain
- Centro de Investigacion Biomedica en Red en Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Wolfgang Maier
- Department for Neurodegenerative Diseases and Geriatric Psychiatry, University of Bonn, Bonn, Germany
- DZNE, German Center for Neurodegenerative Diseases, Bonn, Germany
| | - Oriol Dols-Icardo
- Centro de Investigacion Biomedica en Red en Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Memory Unit, Department of Neurology, IIB Sant Pau, Hospital de la Santa Creu i Sant Pau, Universitat Autonoma de Barcelona, Barcelona, Spain
| | - Amit Kawalia
- Division of Neurogenetics and Molecular Psychiatry, Department of Psychiatry and Psychotherapy, Faculty of Medicine, University Hospital Cologne, Cologne, Germany
| | - Maria Carolina Dalmasso
- Division of Neurogenetics and Molecular Psychiatry, Department of Psychiatry and Psychotherapy, Faculty of Medicine, University Hospital Cologne, Cologne, Germany
- Fundación Instituto Leloir-IIBBA-CONICET, Buenos Aires, Argentina
| | - Mercè Boada
- Research Center and Memory Clinic, Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain
- Centro de Investigacion Biomedica en Red en Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Uwe K Zettl
- German Competence Network Multiple Sclerosis (KKNMS), Munich, Germany
- Department of Neurology, University of Rostock, Rostock, Germany
| | - Natasja M van Schoor
- Amsterdam UMC-Vrije Universiteit Amsterdam, Department of Epidemiology and Biostatistics, Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
| | - Marian Beekman
- Molecular Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Mariet Allen
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL, 32224, USA
| | - Eliezer Masliah
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Adolfo López de Munain
- Centro de Investigacion Biomedica en Red en Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Instituto Biodonostia, San Sebastian, Spain
- Department of Neurology, Hospital Universitario San Sebastian, San Sebastian, Spain
| | - Alexander Pantelyat
- Department of Neurology, Johns Hopkins University Medical Center, Baltimore, MD, 21287, USA
| | - Zbigniew K Wszolek
- Department of Neurology, Mayo Clinic Florida, Jacksonville, FL, 32224, USA
| | - Owen A Ross
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL, 32224, USA
| | - Dennis W Dickson
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL, 32224, USA
| | | | - David Knopman
- Department of Neurology, Mayo Clinic Minnesota, Rochester, MN, 55905, USA
| | - Rosa Rademakers
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL, 32224, USA
| | - Afina W Lemstra
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Yolande A L Pijnenburg
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Philip Scheltens
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Thomas Gasser
- Center of Neurology, Department of Neurodegenerative diseases, Hertie-Institute for Clinical Brain Research, University of Tuebingen, Tuebingen, Germany
| | - Patrick F Chinnery
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0QQ, UK
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Bernhard Hemmer
- Department of Neurology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- German Competence Network Multiple Sclerosis (KKNMS), Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Martijn A Huisman
- Amsterdam UMC-Vrije Universiteit Amsterdam, Department of Epidemiology and Biostatistics, Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
- Department of Sociology, VU University, Amsterdam, The Netherlands
| | - Juan Troncoso
- Department of Pathology (Neuropathology), Johns Hopkins University Medical Center, Baltimore, MD, USA
| | - Fermin Moreno
- Centro de Investigacion Biomedica en Red en Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Instituto Biodonostia, San Sebastian, Spain
- Cognitive Disorders Unit, Department of Neurology, Hospital Universitario San Sebastian, San Sebastian, Spain
| | - Ellen A Nohr
- Research Unit of Gynecology and Obstetrics, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Thorkild I A Sørensen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Section of Metabolic Genetics, Copenhagen, Denmark
- Department of Public Health, Section of Epidemiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- MRC Integrative Epidemiology Unit, Bristol University, Bristol, UK
| | - Peter Heutink
- German Center for Neurodegenerative Diseases (DZNE)-Tübingen, Tübingen, Germany
- Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Pascual Sánchez-Juan
- Centro de Investigacion Biomedica en Red en Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- University Hospital "Marques de Valdecilla", Santander, Spain
- IDIVAL, Santander, Spain
| | - Danielle Posthuma
- Department of Clinical Genetics, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Jordi Clarimón
- Centro de Investigacion Biomedica en Red en Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Memory Unit, Department of Neurology, IIB Sant Pau, Hospital de la Santa Creu i Sant Pau, Universitat Autonoma de Barcelona, Barcelona, Spain
| | - Kaare Christensen
- The Danish Aging Research Center, Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, Odense, Denmark
- Clinical Biochemistry and Pharmacology, Odense University Hospital, Odense, Denmark
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| | - Nilüfer Ertekin-Taner
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL, 32224, USA
- Department of Neurology, Mayo Clinic Florida, Jacksonville, FL, 32224, USA
| | - Sonja W Scholz
- Neurodegenerative Diseases Research Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD, 20892-3707, USA
- Department of Neurology, Johns Hopkins University Medical Center, Baltimore, MD, 21287, USA
| | - Alfredo Ramirez
- Department for Neurodegenerative Diseases and Geriatric Psychiatry, University of Bonn, Bonn, Germany
- Division of Neurogenetics and Molecular Psychiatry, Department of Psychiatry and Psychotherapy, Faculty of Medicine, University Hospital Cologne, Cologne, Germany
| | - Agustín Ruiz
- Research Center and Memory Clinic, Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain
- Centro de Investigacion Biomedica en Red en Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Eline Slagboom
- Molecular Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
- Dutch Society for Research on Ageing, Leiden, The Netherlands
| | - Wiesje M van der Flier
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Henne Holstege
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands.
- Department of Clinical Genetics, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands.
| |
Collapse
|
112
|
Morris BJ, Willcox BJ, Donlon TA. Genetic and epigenetic regulation of human aging and longevity. Biochim Biophys Acta Mol Basis Dis 2019; 1865:1718-1744. [PMID: 31109447 PMCID: PMC7295568 DOI: 10.1016/j.bbadis.2018.08.039] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 08/02/2018] [Accepted: 08/28/2018] [Indexed: 02/06/2023]
Abstract
Here we summarize the latest data on genetic and epigenetic contributions to human aging and longevity. Whereas environmental and lifestyle factors are important at younger ages, the contribution of genetics appears more important in reaching extreme old age. Genome-wide studies have implicated ~57 gene loci in lifespan. Epigenomic changes during aging profoundly affect cellular function and stress resistance. Dysregulation of transcriptional and chromatin networks is likely a crucial component of aging. Large-scale bioinformatic analyses have revealed involvement of numerous interaction networks. As the young well-differentiated cell replicates into eventual senescence there is drift in the highly regulated chromatin marks towards an entropic middle-ground between repressed and active, such that genes that were previously inactive "leak". There is a breakdown in chromatin connectivity such that topologically associated domains and their insulators weaken, and well-defined blocks of constitutive heterochromatin give way to generalized, senescence-associated heterochromatin, foci. Together, these phenomena contribute to aging.
Collapse
Affiliation(s)
- Brian J Morris
- Basic & Clinical Genomics Laboratory, School of Medical Sciences and Bosch Institute, University of Sydney, New South Wales 2006, Australia; Honolulu Heart Program (HHP)/Honolulu-Asia Aging Study (HAAS), Department of Research, Kuakini Medical Center, Honolulu, HI 96817, United States; Department of Geriatric Medicine, John A. Burns School of Medicine, University of Hawaii, Kuakini Medical Center Campus, Honolulu, HI 96813, United States.
| | - Bradley J Willcox
- Honolulu Heart Program (HHP)/Honolulu-Asia Aging Study (HAAS), Department of Research, Kuakini Medical Center, Honolulu, HI 96817, United States; Department of Geriatric Medicine, John A. Burns School of Medicine, University of Hawaii, Kuakini Medical Center Campus, Honolulu, HI 96813, United States.
| | - Timothy A Donlon
- Honolulu Heart Program (HHP)/Honolulu-Asia Aging Study (HAAS), Department of Research, Kuakini Medical Center, Honolulu, HI 96817, United States; Departments of Cell & Molecular Biology and Pathology, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813, United States.
| |
Collapse
|
113
|
Virtual Care 2.0—a Vision for the Future of Data-Driven Technology-Enabled Healthcare. CURRENT TREATMENT OPTIONS IN CARDIOVASCULAR MEDICINE 2019; 21:21. [DOI: 10.1007/s11936-019-0727-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
114
|
Singh PP, Demmitt BA, Nath RD, Brunet A. The Genetics of Aging: A Vertebrate Perspective. Cell 2019; 177:200-220. [PMID: 30901541 PMCID: PMC7592626 DOI: 10.1016/j.cell.2019.02.038] [Citation(s) in RCA: 165] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 02/21/2019] [Accepted: 02/22/2019] [Indexed: 02/07/2023]
Abstract
Aging negatively impacts vitality and health. Many genetic pathways that regulate aging were discovered in invertebrates. However, the genetics of aging is more complex in vertebrates because of their specialized systems. This Review discusses advances in the genetic regulation of aging in vertebrates from work in mice, humans, and organisms with exceptional lifespans. We highlight challenges for the future, including sex-dependent differences in lifespan and the interplay between genes and environment. We also discuss how the identification of reliable biomarkers of age and development of new vertebrate models can be leveraged for personalized interventions to counter aging and age-related diseases.
Collapse
Affiliation(s)
- Param Priya Singh
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | | | - Ravi D Nath
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Anne Brunet
- Department of Genetics, Stanford University, Stanford, CA 94305, USA; Glenn Laboratories for the Biology of Aging, Stanford, CA 94305, USA.
| |
Collapse
|
115
|
Bowman K, Jones L, Pilling LC, Delgado J, Kuchel GA, Ferrucci L, Fortinsky RH, Melzer D. Vitamin D levels and risk of delirium: A mendelian randomization study in the UK Biobank. Neurology 2019; 92:e1387-e1394. [PMID: 30770424 PMCID: PMC6511096 DOI: 10.1212/wnl.0000000000007136] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 11/14/2018] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVE To estimate effects of vitamin D levels on incident delirium hospital admissions using inherited genetic variants in mendelian randomization models, which minimize confounding and exclude reverse causation. METHODS Longitudinal analysis using the UK Biobank, community-based, volunteer cohort (2006-2010) with incident hospital-diagnosed delirium (ICD-10 F05) ascertained during ≤9.9 years of follow-up of hospitalization records (to early 2016). We included volunteers of European descent aged 60-plus years by end of follow-up. We used single-nucleotide polymorphisms previously shown to increase circulating vitamin D levels, and APOE variants. Cox competing models accounting for mortality were used. RESULTS Of 313,121 participants included, 544 were hospitalized with delirium during follow-up. Vitamin D variants were protective for incident delirium: hazard ratio = 0.74 per 10 nmol/L (95% confidence interval 0.62-0.87, p = 0.0004) increase in genetically instrumented vitamin D, with no evidence for pleiotropy (mendelian randomization-Egger p > 0.05). Participants with ≥1 APOE ε4 allele were more likely to develop delirium (e.g., ε4ε4 hazard ratio = 3.73, 95% confidence interval 2.68-5.21, p = 8.0 × 10-15 compared to ε3ε3), but there was no interaction with vitamin D variants. CONCLUSIONS AND RELEVANCE In a large community-based cohort, there is genetic evidence supporting a causal role for vitamin D levels in incident delirium. Trials of correction of low vitamin D levels in the prevention of delirium are needed.
Collapse
Affiliation(s)
- Kirsty Bowman
- From the Epidemiology and Public Health Group (K.B., L.J., L.C.P., J.D., D.M.), University of Exeter Medical School, Royal Devon & Exeter Hospital, Exeter, UK; UConn Center on Aging (G.A.K., R.H.F., D.M.), University of Connecticut, Farmington, CT; and National Institute on Aging (L.F.), Baltimore, MD
| | - Lindsay Jones
- From the Epidemiology and Public Health Group (K.B., L.J., L.C.P., J.D., D.M.), University of Exeter Medical School, Royal Devon & Exeter Hospital, Exeter, UK; UConn Center on Aging (G.A.K., R.H.F., D.M.), University of Connecticut, Farmington, CT; and National Institute on Aging (L.F.), Baltimore, MD
| | - Luke C Pilling
- From the Epidemiology and Public Health Group (K.B., L.J., L.C.P., J.D., D.M.), University of Exeter Medical School, Royal Devon & Exeter Hospital, Exeter, UK; UConn Center on Aging (G.A.K., R.H.F., D.M.), University of Connecticut, Farmington, CT; and National Institute on Aging (L.F.), Baltimore, MD
| | - João Delgado
- From the Epidemiology and Public Health Group (K.B., L.J., L.C.P., J.D., D.M.), University of Exeter Medical School, Royal Devon & Exeter Hospital, Exeter, UK; UConn Center on Aging (G.A.K., R.H.F., D.M.), University of Connecticut, Farmington, CT; and National Institute on Aging (L.F.), Baltimore, MD
| | - George A Kuchel
- From the Epidemiology and Public Health Group (K.B., L.J., L.C.P., J.D., D.M.), University of Exeter Medical School, Royal Devon & Exeter Hospital, Exeter, UK; UConn Center on Aging (G.A.K., R.H.F., D.M.), University of Connecticut, Farmington, CT; and National Institute on Aging (L.F.), Baltimore, MD
| | - Luigi Ferrucci
- From the Epidemiology and Public Health Group (K.B., L.J., L.C.P., J.D., D.M.), University of Exeter Medical School, Royal Devon & Exeter Hospital, Exeter, UK; UConn Center on Aging (G.A.K., R.H.F., D.M.), University of Connecticut, Farmington, CT; and National Institute on Aging (L.F.), Baltimore, MD
| | - Richard H Fortinsky
- From the Epidemiology and Public Health Group (K.B., L.J., L.C.P., J.D., D.M.), University of Exeter Medical School, Royal Devon & Exeter Hospital, Exeter, UK; UConn Center on Aging (G.A.K., R.H.F., D.M.), University of Connecticut, Farmington, CT; and National Institute on Aging (L.F.), Baltimore, MD
| | - David Melzer
- From the Epidemiology and Public Health Group (K.B., L.J., L.C.P., J.D., D.M.), University of Exeter Medical School, Royal Devon & Exeter Hospital, Exeter, UK; UConn Center on Aging (G.A.K., R.H.F., D.M.), University of Connecticut, Farmington, CT; and National Institute on Aging (L.F.), Baltimore, MD.
| |
Collapse
|
116
|
The Genetic Variability of APOE in Different Human Populations and Its Implications for Longevity. Genes (Basel) 2019; 10:genes10030222. [PMID: 30884759 PMCID: PMC6471373 DOI: 10.3390/genes10030222] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/01/2019] [Accepted: 03/12/2019] [Indexed: 12/11/2022] Open
Abstract
Human longevity is a complex phenotype resulting from the combinations of context-dependent gene-environment interactions that require analysis as a dynamic process in a cohesive ecological and evolutionary framework. Genome-wide association (GWAS) and whole-genome sequencing (WGS) studies on centenarians pointed toward the inclusion of the apolipoprotein E (APOE) polymorphisms ε2 and ε4, as implicated in the attainment of extreme longevity, which refers to their effect in age-related Alzheimer's disease (AD) and cardiovascular disease (CVD). In this case, the available literature on APOE and its involvement in longevity is described according to an anthropological and population genetics perspective. This aims to highlight the evolutionary history of this gene, how its participation in several biological pathways relates to human longevity, and which evolutionary dynamics may have shaped the distribution of APOE haplotypes across the globe. Its potential adaptive role will be described along with implications for the study of longevity in different human groups. This review also presents an updated overview of the worldwide distribution of APOE alleles based on modern day data from public databases and ancient DNA samples retrieved from literature in the attempt to understand the spatial and temporal frame in which present-day patterns of APOE variation evolved.
Collapse
|
117
|
Belloy ME, Napolioni V, Greicius MD. A Quarter Century of APOE and Alzheimer's Disease: Progress to Date and the Path Forward. Neuron 2019; 101:820-838. [PMID: 30844401 PMCID: PMC6407643 DOI: 10.1016/j.neuron.2019.01.056] [Citation(s) in RCA: 357] [Impact Index Per Article: 59.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 01/08/2019] [Accepted: 01/27/2019] [Indexed: 12/11/2022]
Abstract
Alzheimer's disease (AD) is considered a polygenic disorder. This view is clouded, however, by lingering uncertainty over how to treat the quasi "monogenic" role of apolipoprotein E (APOE). The APOE4 allele is not only the strongest genetic risk factor for AD, it also affects risk for cardiovascular disease, stroke, and other neurodegenerative disorders. This review, based mostly on data from human studies, ranges across a variety of APOE-related pathologies, touching on evolutionary genetics and risk mitigation by ethnicity and sex. The authors also address one of the most fundamental question pertaining to APOE4 and AD: does APOE4 increase AD risk via a loss or gain of function? The answer will be of the utmost importance in guiding future research in AD.
Collapse
Affiliation(s)
- Michaël E Belloy
- Department of Neurology and Neurological Sciences, FIND Lab, Stanford University, Stanford, CA 94304, USA
| | - Valerio Napolioni
- Department of Neurology and Neurological Sciences, FIND Lab, Stanford University, Stanford, CA 94304, USA
| | - Michael D Greicius
- Department of Neurology and Neurological Sciences, FIND Lab, Stanford University, Stanford, CA 94304, USA.
| |
Collapse
|
118
|
Tamosauskaite J, Atkins JL, Pilling LC, Kuo CL, Kuchel GA, Ferrucci L, Melzer D. Hereditary Hemochromatosis Associations with Frailty, Sarcopenia and Chronic Pain: Evidence from 200,975 Older UK Biobank Participants. J Gerontol A Biol Sci Med Sci 2019; 74:337-342. [PMID: 30657865 PMCID: PMC6376086 DOI: 10.1093/gerona/gly270] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Iron is essential for life but contributes to oxidative damage. In Northern-European ancestry populations, HFE gene C282Y mutations are relatively common (0.3%-0.6% rare homozygote prevalence) and associated with excessive iron absorption, fatigue, diabetes, arthritis, and liver disease, especially in men. Iron excess can be prevented or treated but diagnosis is often delayed or missed. Data on sarcopenia, pain, and frailty are scarce. METHODS Using 200,975 UK Biobank volunteers aged 60-70 years, we tested associations between C282Y homozygosity with Fried frailty, sarcopenia, and chronic pain using logistic regression adjusted for age and technical genetic covariates. As iron overload is progressive (with menstruation protective), we included specific analyses of older (65-70 years) females and males. RESULTS One thousand three hundred and twelve (0.65%) participants were C282Y homozygotes; 593 were men (0.62%) and 719 were women (0.68%). C282Y homozygote men had increased likelihoods of reporting chronic pain (odds ratio [OR] 1.23: 95% confidence interval [CI] 1.05-1.45, p = .01) and diagnoses of polymyalgia rheumatica, compared to common "wild-type" genotype. They were also more likely to have sarcopenia (OR 2.38: 1.80-3.13, p = 9.70 × 10-10) and frailty (OR 2.01: 1.45-2.80, p = 3.41 × 10-05). C282Y homozygote women (n = 312, 0.7%) aged 65-70 were more likely to be frail (OR 1.73: 1.05-2.84, p = .032) and have chronic knee, hip, and back pain. Overall, 1.50% of frail men and 1.51% of frail women in the 65-70 age group were C282Y homozygous. CONCLUSIONS HFE C282Y homozygosity is associated with substantial excess sarcopenia, frailty, and chronic pain at older ages. Given the availability of treatment, hereditary hemochromatosis is a strong candidate for precision medicine approaches to improve outcomes in late life.
Collapse
Affiliation(s)
- Jone Tamosauskaite
- Epidemiology and Public Health Group, University of Exeter Medical School, UK
| | - Janice L Atkins
- Epidemiology and Public Health Group, University of Exeter Medical School, UK
| | - Luke C Pilling
- Epidemiology and Public Health Group, University of Exeter Medical School, UK
| | - Chia-Ling Kuo
- Center on Aging, University of Connecticut Health Center, Farmington
- Department of Community Medicine and Health Care, Connecticut Institute for Clinical and Translational Science, Institute for Systems Genomics, University of Connecticut Health, Farmington
| | - George A Kuchel
- Center on Aging, University of Connecticut Health Center, Farmington
| | | | - David Melzer
- Epidemiology and Public Health Group, University of Exeter Medical School, UK
- Center on Aging, University of Connecticut Health Center, Farmington
- Address correspondence to: David Melzer, MBBCh, PhD, Epidemiology and Public Health Group, University of Exeter Medical School, RILD Building, RD&E Wonford, Barrack Road, Exeter, EX2 5DW, UK. E-mail:
| |
Collapse
|
119
|
Timmers PR, Mounier N, Lall K, Fischer K, Ning Z, Feng X, Bretherick AD, Clark DW, Shen X, Esko T, Kutalik Z, Wilson JF, Joshi PK. Genomics of 1 million parent lifespans implicates novel pathways and common diseases and distinguishes survival chances. eLife 2019; 8:39856. [PMID: 30642433 PMCID: PMC6333444 DOI: 10.7554/elife.39856] [Citation(s) in RCA: 152] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 11/20/2018] [Indexed: 12/31/2022] Open
Abstract
We use a genome-wide association of 1 million parental lifespans of genotyped subjects and data on mortality risk factors to validate previously unreplicated findings near CDKN2B-AS1, ATXN2/BRAP, FURIN/FES, ZW10, PSORS1C3, and 13q21.31, and identify and replicate novel findings near ABO, ZC3HC1, and IGF2R. We also validate previous findings near 5q33.3/EBF1 and FOXO3, whilst finding contradictory evidence at other loci. Gene set and cell-specific analyses show that expression in foetal brain cells and adult dorsolateral prefrontal cortex is enriched for lifespan variation, as are gene pathways involving lipid proteins and homeostasis, vesicle-mediated transport, and synaptic function. Individual genetic variants that increase dementia, cardiovascular disease, and lung cancer - but not other cancers - explain the most variance. Resulting polygenic scores show a mean lifespan difference of around five years of life across the deciles. Editorial note This article has been through an editorial process in which the authors decide how to respond to the issues raised during peer review. The Reviewing Editor's assessment is that all the issues have been addressed (see decision letter).
Collapse
Affiliation(s)
- Paul Rhj Timmers
- Centre for Global Health Research, Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, United Kingdom
| | - Ninon Mounier
- Institute of Social and Preventive Medicine, University Hospital of Lausanne, Lausanne, Switzerland.,Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Kristi Lall
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia.,Institute of Mathematics and Statistics, University of Tartu, Tartu, Estonia
| | - Krista Fischer
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia.,Institute of Mathematics and Statistics, University of Tartu, Tartu, Estonia
| | - Zheng Ning
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Xiao Feng
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Andrew D Bretherick
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - David W Clark
- Centre for Global Health Research, Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, United Kingdom
| | | | - Xia Shen
- Centre for Global Health Research, Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, United Kingdom.,Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.,State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Tõnu Esko
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia.,Broad Institute of Harvard and MIT, Cambridge, United States
| | - Zoltán Kutalik
- Institute of Social and Preventive Medicine, University Hospital of Lausanne, Lausanne, Switzerland.,Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - James F Wilson
- Centre for Global Health Research, Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, United Kingdom.,MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Peter K Joshi
- Centre for Global Health Research, Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, United Kingdom.,Institute of Social and Preventive Medicine, University Hospital of Lausanne, Lausanne, Switzerland
| |
Collapse
|
120
|
Genomic stability, anti-inflammatory phenotype, and up-regulation of the RNAseH2 in cells from centenarians. Cell Death Differ 2019; 26:1845-1858. [PMID: 30622304 DOI: 10.1038/s41418-018-0255-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 11/09/2018] [Accepted: 11/19/2018] [Indexed: 12/26/2022] Open
Abstract
Current literature agrees on the notion that efficient DNA repair favors longevity across evolution. The DNA damage response machinery activates inflammation and type I interferon signaling. Both pathways play an acknowledged role in the pathogenesis of a variety of age-related diseases and are expected to be detrimental for human longevity. Here, we report on the anti-inflammatory molecular make-up of centenarian's fibroblasts (low levels of IL-6, type 1 interferon beta, and pro-inflammatory microRNAs), which is coupled with low level of DNA damage (measured by comet assay and histone-2AX activation) and preserved telomere length. In the same cells, high levels of the RNAseH2C enzyme subunit and low amounts of RNAseH2 substrates, i.e. cytoplasmic RNA:DNA hybrids are present. Moreover, RNAseH2C locus is hypo-methylated and RNAseH2C knock-down up-regulates IL-6 and type 1 interferon beta in centenarian's fibroblasts. Interestingly, RNAseH2C locus is hyper-methylated in vitro senescent cells and in tissues from atherosclerotic plaques and breast tumors. Finally, extracellular vesicles from centenarian's cells up-regulate RNAseH2C expression and dampen the pro-inflammatory phenotype of fibroblasts, myeloid, and cancer cells. These data suggest that centenarians are endowed with restrained DNA damage-induced inflammatory response, that may facilitate their escape from the deleterious effects of age-related chronic inflammation.
Collapse
|
121
|
van den Berg N, Rodríguez-Girondo M, van Dijk IK, Mourits RJ, Mandemakers K, Janssens AAPO, Beekman M, Smith KR, Slagboom PE. Longevity defined as top 10% survivors and beyond is transmitted as a quantitative genetic trait. Nat Commun 2019; 10:35. [PMID: 30617297 PMCID: PMC6323124 DOI: 10.1038/s41467-018-07925-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 12/04/2018] [Indexed: 11/30/2022] Open
Abstract
Survival to extreme ages clusters within families. However, identifying genetic loci conferring longevity and low morbidity in such longevous families is challenging. There is debate concerning the survival percentile that best isolates the genetic component in longevity. Here, we use three-generational mortality data from two large datasets, UPDB (US) and LINKS (Netherlands). We study 20,360 unselected families containing index persons, their parents, siblings, spouses, and children, comprising 314,819 individuals. Our analyses provide strong evidence that longevity is transmitted as a quantitative genetic trait among survivors up to the top 10% of their birth cohort. We subsequently show a survival advantage, mounting to 31%, for individuals with top 10% surviving first and second-degree relatives in both databases and across generations, even in the presence of non-longevous parents. To guide future genetic studies, we suggest to base case selection on top 10% survivors of their birth cohort with equally long-lived family members.
Collapse
Affiliation(s)
- Niels van den Berg
- Department of Biomedical Data Sciences, Section of Molecular Epidemiology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands.
- Department of Family and Consumer Studies, Population Sciences, Huntsman Cancer Institute, University of Utah, 225 S. 1400 E. Rm 228, Salt Lake City, UT, USA.
- Radboud Group for Historical Demography and Family History, Radboud University, Erasmusplein 1, 6525 HT, Nijmegen, The Netherlands.
| | - Mar Rodríguez-Girondo
- Department of Biomedical Data Sciences, Section of Medical Statistics, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Ingrid K van Dijk
- Radboud Group for Historical Demography and Family History, Radboud University, Erasmusplein 1, 6525 HT, Nijmegen, The Netherlands
| | - Rick J Mourits
- Radboud Group for Historical Demography and Family History, Radboud University, Erasmusplein 1, 6525 HT, Nijmegen, The Netherlands
| | - Kees Mandemakers
- International Institute of Social History, Cruquiusweg 31, 1019 AT, Amsterdam, The Netherlands
| | - Angelique A P O Janssens
- Radboud Group for Historical Demography and Family History, Radboud University, Erasmusplein 1, 6525 HT, Nijmegen, The Netherlands
| | - Marian Beekman
- Department of Biomedical Data Sciences, Section of Molecular Epidemiology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Ken R Smith
- Department of Family and Consumer Studies, Population Sciences, Huntsman Cancer Institute, University of Utah, 225 S. 1400 E. Rm 228, Salt Lake City, UT, USA
| | - P Eline Slagboom
- Department of Biomedical Data Sciences, Section of Molecular Epidemiology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Str. 9b, 50931, Cologne, Germany
| |
Collapse
|
122
|
Abstract
Exceptional longevity represents an extreme phenotype. Current centenarians are survivors of a cohort who display delayed onset of age-related diseases and/or resistance to otherwise lethal illnesses occurring earlier in life. Characteristics of aging are heterogeneous, even among long-lived individuals. Associations between specific clinical or genetic biomarkers exist, but there is unlikely to be a single biomarker predictive of long life. Careful observations in the oldest old offer some empirical strategies that favor increased health span and life span, with implications for compression of disability, identification and implementation of lifestyle behaviors that promote independence, identification and measurement of more reliable markers associated with longevity, better guidance for appropriate health screenings, and promotion of anticipatory health discussions in the setting of more accurate prognostication. Comprehensive PubMed literature searches were performed, with an unbiased focus on mechanisms of longevity. Overall, the aggregate literature supports that the basis for exceptional longevity is multifactorial and involves disparate combinations of genes, environment, resiliency, and chance, all of which are influenced by culture and geography.
Collapse
Affiliation(s)
- Robert J Pignolo
- Division of Geriatric Medicine and Gerontology, Mayo Clinic, Rochester, MN.
| |
Collapse
|
123
|
Schork NJ, Raghavachari N, On behalf of Workshop Speakers and Participants. Report: NIA workshop on translating genetic variants associated with longevity into drug targets. GeroScience 2018; 40:523-538. [PMID: 30374935 PMCID: PMC6294726 DOI: 10.1007/s11357-018-0046-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 10/03/2018] [Indexed: 12/16/2022] Open
Abstract
To date, candidate gene and genome-wide association studies (GWAS) have led to the discovery of longevity-associated variants (LAVs) in genes such as FOXO3A and APOE. Unfortunately, translating variants into drug targets is challenging for any trait, and longevity is no exception. Interdisciplinary and integrative multi-omics approaches are needed to understand how LAVs affect longevity-related phenotypes at the molecular physiologic level in order to leverage their discovery to identify new drug targets. The NIA convened a workshop in August 2017 on emerging and novel in silico (i.e., bioinformatics and computational) approaches to the translation of LAVs into drug targets. The goal of the workshop was to identify ways of enabling, enhancing, and facilitating interactions among researchers from different disciplines whose research considers either the identification of LAVs or the mechanistic or causal pathway(s) and protective factors they influence for discovering drug targets. Discussions among the workshop participants resulted in the identification of critical needs for enabling the translation of LAVs into drug targets in several areas. These included (1) the initiation and better use of cohorts with multi-omics profiling on the participants; (2) the generation of longitudinal information on multiple individuals; (3) the collection of data from non-human species (both long and short-lived) for comparative biology studies; (4) the refinement of computational tools for integrative analyses; (5) the development of novel computational and statistical inference techniques for assessing the potential of a drug target; (6) the identification of available drugs that could modulate a target in a way that could potentially provide protection against age-related diseases and/or enhance longevity; and (7) the development or enhancement of databases and repositories of relevant information, such as the Longevity Genomics website ( https://www.longevitygenomics.org ), to enhance and help motivate future interdisciplinary studies. Integrative approaches that examine the influence of LAVs on molecular physiologic phenotypes that might be amenable to pharmacological modulation are necessary for translating LAVs into drugs to enhance health and life span.
Collapse
Affiliation(s)
- Nicholas J. Schork
- Department of Quantitative Medicine, The Translational Genomics Research Institute, Phoenix, AZ USA
| | | | | |
Collapse
|
124
|
Pulst SM. The complex structure of ATXN2 genetic variation. Neurol Genet 2018; 4:e299. [PMID: 30588499 PMCID: PMC6290488 DOI: 10.1212/nxg.0000000000000299] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 11/02/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Stefan M Pulst
- Department of Neurology, University of Utah, Salt Lake City, UT
| |
Collapse
|
125
|
Shadyab AH, Manson JE, Li W, Gass M, Brunner RL, Naughton MJ, Cannell B, Howard BV, LaCroix AZ. Parental longevity predicts healthy ageing among women. Age Ageing 2018; 47:853-860. [PMID: 30124748 DOI: 10.1093/ageing/afy125] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Accepted: 07/19/2018] [Indexed: 12/16/2022] Open
Abstract
Objective to examine the association of parental longevity with healthy survival to age 90 years. Methods this was a prospective study among a racially and ethnically diverse cohort of 22,735 postmenopausal women from the Women's Health Initiative recruited from 1993 to 1998 and followed through 2017. Women reported maternal and paternal ages at death and current age of alive parents. Parental survival categories were <70, 70-79 (reference), 80-89 and ≥90 years (longevity). Healthy ageing was defined as reaching age 90 without major chronic conditions (coronary heart disease, stroke, diabetes, cancer, or hip fracture) or physical limitations. Results women whose mothers survived to ≥90 years were more likely to attain healthy ageing (OR, 1.25; 95% CI, 1.11-1.42) and less likely to die before age 90 (OR, 0.75; 95% CI, 0.68-0.83). Women whose fathers survived to ≥90 years did not have significantly increased odds of healthy ageing but showed 21% (OR, 0.79; 95% CI, 0.70-0.90) decreased odds of death before age 90. Women whose mother and father both lived to 90 had the strongest odds of healthy ageing (OR, 1.38; 95% CI, 1.09-1.75) and decreased odds of death (OR, 0.68; 95% CI, 0.54-0.85). The proportion of healthy survivors was highest among women whose mother and father lived to 90 (28.6%), followed by those whose mother only lived to 90 (23.2%). Conclusions parental longevity predicted healthy ageing in a national cohort of postmenopausal women, supporting the view that genetic, environmental, and behavioral factors transmitted across generations may influence ageing outcomes among offspring.
Collapse
Affiliation(s)
- Aladdin H Shadyab
- Division of Epidemiology, Department of Family Medicine and Public Health, University of California San Diego School of Medicine, La Jolla, CA, USA
| | - JoAnn E Manson
- Department of Epidemiology, Harvard T.H. Chan School of Public Health and Division of Preventive Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Wenjun Li
- Division of Preventive and Behavioral Medicine, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Margery Gass
- North American Menopause Society, Cleveland, OH, USA
| | - Robert L Brunner
- Department of Family and Community Medicine, University of Nevada School of Medicine, Reno, NV, USA
| | - Michelle J Naughton
- Division of Population Sciences, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Brad Cannell
- Department of Biostatistics and Epidemiology, School of Public Health, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Barbara V Howard
- MedStar Health Research Institute and Georgetown-Howard Universities Center for Clinical and Translational Science, Hyattsville, MD, USA
| | - Andrea Z LaCroix
- Division of Epidemiology, Department of Family Medicine and Public Health, University of California San Diego School of Medicine, La Jolla, CA, USA
| |
Collapse
|
126
|
Stanaway IB, Hall TO, Rosenthal EA, Palmer M, Naranbhai V, Knevel R, Namjou-Khales B, Carroll RJ, Kiryluk K, Gordon AS, Linder J, Howell KM, Mapes BM, Lin FTJ, Joo YY, Hayes MG, Gharavi AG, Pendergrass SA, Ritchie MD, de Andrade M, Croteau-Chonka DC, Raychaudhuri S, Weiss ST, Lebo M, Amr SS, Carrell D, Larson EB, Chute CG, Rasmussen-Torvik LJ, Roy-Puckelwartz MJ, Sleiman P, Hakonarson H, Li R, Karlson EW, Peterson JF, Kullo IJ, Chisholm R, Denny JC, Jarvik GP, Crosslin DR. The eMERGE genotype set of 83,717 subjects imputed to ~40 million variants genome wide and association with the herpes zoster medical record phenotype. Genet Epidemiol 2018; 43:63-81. [PMID: 30298529 PMCID: PMC6375696 DOI: 10.1002/gepi.22167] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 08/10/2018] [Accepted: 08/28/2018] [Indexed: 12/30/2022]
Abstract
The Electronic Medical Records and Genomics (eMERGE) network is a network of medical centers with electronic medical records linked to existing biorepository samples for genomic discovery and genomic medicine research. The network sought to unify the genetic results from 78 Illumina and Affymetrix genotype array batches from 12 contributing medical centers for joint association analysis of 83,717 human participants. In this report, we describe the imputation of eMERGE results and methods to create the unified imputed merged set of genome‐wide variant genotype data. We imputed the data using the Michigan Imputation Server, which provides a missing single‐nucleotide variant genotype imputation service using the minimac3 imputation algorithm with the Haplotype Reference Consortium genotype reference set. We describe the quality control and filtering steps used in the generation of this data set and suggest generalizable quality thresholds for imputation and phenotype association studies. To test the merged imputed genotype set, we replicated a previously reported chromosome 6 HLA‐B herpes zoster (shingles) association and discovered a novel zoster‐associated loci in an epigenetic binding site near the terminus of chromosome 3 (3p29).
Collapse
Affiliation(s)
- Ian B Stanaway
- Department of Biomedical Informatics Medical Education, School of Medicine, University of Washington, Seattle, Washington
| | - Taryn O Hall
- Department of Biomedical Informatics Medical Education, School of Medicine, University of Washington, Seattle, Washington
| | - Elisabeth A Rosenthal
- Division of Medical Genetics, School of Medicine, University of Washington, Seattle, Washington
| | - Melody Palmer
- Division of Medical Genetics, School of Medicine, University of Washington, Seattle, Washington
| | - Vivek Naranbhai
- Department of Biomedical Informatics Medical Education, School of Medicine, University of Washington, Seattle, Washington.,Harvard Medical School, Harvard University, Cambridge, Massachusetts
| | - Rachel Knevel
- Harvard Medical School, Harvard University, Cambridge, Massachusetts
| | - Bahram Namjou-Khales
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Robert J Carroll
- Departments of Biomedical Informatics and Medicine, Vanderbilt University, Nashville, Tennessee
| | - Krzysztof Kiryluk
- Department of Medicine, Columbia University, New York City, New York
| | - Adam S Gordon
- Division of Medical Genetics, School of Medicine, University of Washington, Seattle, Washington
| | - Jodell Linder
- Vanderbilt Institute for Clinical and Translational Research, School of Medicine, Vanderbilt University, Nashville, Tennessee
| | - Kayla Marie Howell
- Vanderbilt Institute for Clinical and Translational Research, School of Medicine, Vanderbilt University, Nashville, Tennessee
| | - Brandy M Mapes
- Vanderbilt Institute for Clinical and Translational Research, School of Medicine, Vanderbilt University, Nashville, Tennessee
| | - Frederick T J Lin
- Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | | | - M Geoffrey Hayes
- Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Ali G Gharavi
- Department of Medicine, Columbia University, New York City, New York
| | | | - Marylyn D Ritchie
- Department of Genetics, University of Pennsylvania, Philadelphia, Pennsylvania
| | | | | | - Soumya Raychaudhuri
- Harvard Medical School, Harvard University, Cambridge, Massachusetts.,Program in Medical and Population Genetics, Broad Institute of Massachusetts Technical Institute and Harvard University, Cambridge, Massachusetts
| | - Scott T Weiss
- Harvard Medical School, Harvard University, Cambridge, Massachusetts
| | - Matt Lebo
- Harvard Medical School, Harvard University, Cambridge, Massachusetts
| | - Sami S Amr
- Harvard Medical School, Harvard University, Cambridge, Massachusetts
| | - David Carrell
- Kaiser Permanente Washington Health Research Institute (Formerly Group Health Cooperative-Seattle), Kaiser Permanente, Seattle, Washington
| | - Eric B Larson
- Kaiser Permanente Washington Health Research Institute (Formerly Group Health Cooperative-Seattle), Kaiser Permanente, Seattle, Washington
| | - Christopher G Chute
- Schools of Medicine, Public Health, and Nursing, Johns Hopkins University, Baltimore, Maryland
| | | | | | - Patrick Sleiman
- Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | | | - Rongling Li
- National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Elizabeth W Karlson
- Department of Genetics, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Josh F Peterson
- Departments of Biomedical Informatics and Medicine, Vanderbilt University, Nashville, Tennessee
| | | | - Rex Chisholm
- Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Joshua Charles Denny
- Departments of Biomedical Informatics and Medicine, Vanderbilt University, Nashville, Tennessee
| | - Gail P Jarvik
- Division of Medical Genetics, School of Medicine, University of Washington, Seattle, Washington
| | -
- National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - David R Crosslin
- Department of Biomedical Informatics Medical Education, School of Medicine, University of Washington, Seattle, Washington
| |
Collapse
|
127
|
Age at death, the return of an old metric whose importance is growing. Aging Clin Exp Res 2018; 30:1147-1149. [PMID: 30242632 DOI: 10.1007/s40520-018-1037-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 08/31/2018] [Indexed: 10/28/2022]
|
128
|
Abstract
Longer human lives have led to a global burden of late-life disease. However, some older people experience little ill health, a trait that should be extended to the general population. Interventions into lifestyle, including increased exercise and reduction in food intake and obesity, can help to maintain healthspan. Altered gut microbiota, removal of senescent cells, blood factors obtained from young individuals and drugs can all improve late-life health in animals. Application to humans will require better biomarkers of disease risk and responses to interventions, closer alignment of work in animals and humans, and increased use of electronic health records, biobank resources and cohort studies.
Collapse
|
129
|
Zeng Y, Nie C, Min J, Chen H, Liu X, Ye R, Chen Z, Bai C, Xie E, Yin Z, Lv Y, Lu J, Li J, Ni T, Bolund L, Land KC, Yashin A, O’Rand AM, Sun L, Yang Z, Tao W, Gurinovich A, Franceschi C, Xie J, Gu J, Hou Y, Liu X, Xu X, Robine JM, Deelen J, Sebastiani P, Slagboom E, Perls T, Hauser E, Gottschalk W, Tan Q, Christensen K, Shi X, Lutz M, Tian XL, Yang H, Vaupel J. Sex Differences in Genetic Associations With Longevity. JAMA Netw Open 2018; 1:e181670. [PMID: 30294719 PMCID: PMC6173523 DOI: 10.1001/jamanetworkopen.2018.1670] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Accepted: 05/15/2018] [Indexed: 01/09/2023] Open
Abstract
IMPORTANCE Sex differences in genetic associations with human longevity remain largely unknown; investigations on this topic are important for individualized health care. OBJECTIVE To explore sex differences in genetic associations with longevity. DESIGN SETTING AND PARTICIPANTS This population-based case-control study used sex-specific genome-wide association study and polygenic risk score (PRS) analyses to examine sex differences in genetic associations with longevity. Five hundred sixty-four male and 1614 female participants older than 100 years were compared with a control group of 773 male and 1526 female individuals aged 40 to 64 years. All were Chinese Longitudinal Healthy Longevity Study participants with Han ethnicity who were recruited in 1998 and 2008 to 2014. MAIN OUTCOMES AND MEASURES Sex-specific loci and pathways associated with longevity and PRS measures of joint effects of sex-specific loci. RESULTS Eleven male-specific and 11 female-specific longevity loci (P < 10-5) and 35 male-specific and 25 female-specific longevity loci (10-5 ≤ P < 10-4) were identified. Each of these loci's associations with longevity were replicated in north and south regions of China in one sex but were not significant in the other sex (P = .13-.97), and loci-sex interaction effects were significant (P < .05). The associations of loci rs60210535 of the LINC00871 gene with longevity were replicated in Chinese women (P = 9.0 × 10-5) and US women (P = 4.6 × 10-5) but not significant in Chinese and US men. The associations of the loci rs2622624 of the ABCG2 gene were replicated in Chinese women (P = 6.8 × 10-5) and European women (P = .003) but not significant in both Chinese and European men. Eleven male-specific pathways (inflammation and immunity genes) and 34 female-specific pathways (tryptophan metabolism and PGC-1α induced) were significantly associated with longevity (P < .005; false discovery rate < 0.05). The PRS analyses demonstrated that sex-specific associations with longevity of the 4 exclusive groups of 11 male-specific and 11 female-specific loci (P < 10-5) and 35 male-specific and 25 female-specific loci (10-5 ≤P < 10-4) were jointly replicated across north and south discovery and target samples. Analyses using the combined data set of north and south showed that these 4 groups of sex-specific loci were jointly and significantly associated with longevity in one sex (P = 2.9 × 10-70 to 1.3 × 10-39) but not jointly significant in the other sex (P = .11 to .70), while interaction effects between PRS and sex were significant (P = 4.8 × 10-50 to 1.2 × 10-16). CONCLUSION AND RELEVANCE The sex differences in genetic associations with longevity are remarkable, but have been overlooked by previously published genome-wide association studies on longevity. This study contributes to filling this research gap and provides a scientific basis for further investigating effects of sex-specific genetic variants and their interactions with environment on healthy aging, which may substantially contribute to more effective and targeted individualized health care for male and female elderly individuals.
Collapse
Affiliation(s)
- Yi Zeng
- Center for the Study of Aging and Human Development, Medical School of Duke University, Durham, North Carolina
- Center for Healthy Aging and Development Studies, National School of Development, Raissun Institute for Advanced Studies, Peking University, Beijing, China
| | - Chao Nie
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China
- BGI–Shenzhen, Shenzhen, China
| | - Junxia Min
- The First Affiliated Hospital, Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou, China
| | - Huashuai Chen
- Center for the Study of Aging and Human Development, Medical School of Duke University, Durham, North Carolina
- Business School of Xiangtan University, Xiangtan, China
| | | | - Rui Ye
- BGI–Shenzhen, Shenzhen, China
| | | | - Chen Bai
- Center for Healthy Aging and Development Studies, National School of Development, Raissun Institute for Advanced Studies, Peking University, Beijing, China
| | - Enjun Xie
- The First Affiliated Hospital, Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhaoxue Yin
- Division of Non-Communicable Disease Control and Community Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yuebin Lv
- National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jiehua Lu
- Department of Sociology, Peking University, Beijing, China
| | - Jianxin Li
- Department of Sociology, Peking University, Beijing, China
| | - Ting Ni
- School of Life Sciences, Fudan University, Shanghai, China
| | - Lars Bolund
- BGI–Shenzhen, Shenzhen, China
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Kenneth C. Land
- Duke Population Research Institute, Duke University, Durham, North Carolina
| | - Anatoliy Yashin
- Duke Population Research Institute, Duke University, Durham, North Carolina
| | - Angela M. O’Rand
- Duke Population Research Institute, Duke University, Durham, North Carolina
| | - Liang Sun
- The MOH Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing, China
| | - Ze Yang
- The MOH Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing, China
| | - Wei Tao
- School of Life Sciences, Peking University, Beijing, China
| | | | | | - Jichun Xie
- Department of Biostatistics and Bioinformatics, Duke University, Durham, North Carolina
| | - Jun Gu
- School of Life Sciences, Peking University, Beijing, China
| | | | | | - Xun Xu
- BGI–Shenzhen, Shenzhen, China
| | - Jean-Marie Robine
- French National Institute on Health and Medical Research and Ecole Pratique des Hautes Etudes, University of Montpellier, Montpellier, France
| | - Joris Deelen
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | | | - Eline Slagboom
- Department of Molecular Epidemiology, Leiden University Medical Center, Leiden, the Netherlands
| | | | - Elizabeth Hauser
- Molecular Physiology Institute, Medical Center, Duke University, Durham, North Carolina
| | - William Gottschalk
- Department of Neurology, Medical Center, Duke University, Durham, North Carolina
| | - Qihua Tan
- University of Southern Denmark, Odense, Denmark
| | | | - Xiaoming Shi
- National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Mike Lutz
- Department of Neurology, Medical Center, Duke University, Durham, North Carolina
| | - Xiao-Li Tian
- Human Aging Research Institute and School of Life Science, Nanchang University, Jiangxi, China
| | - Huanming Yang
- BGI–Shenzhen, Shenzhen, China
- James D. Watson Institute of Genome Sciences, Hangzhou, China
| | - James Vaupel
- Max Planck Institute for Demographic Research, Rostock, Germany
| |
Collapse
|
130
|
Bekpen C, Xie C, Nebel A, Tautz D. Involvement of SPATA31 copy number variable genes in human lifespan. Aging (Albany NY) 2018; 10:674-688. [PMID: 29676996 PMCID: PMC5940121 DOI: 10.18632/aging.101421] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 04/14/2018] [Indexed: 12/22/2022]
Abstract
The SPATA31 (alias FAM75A) gene family belongs to the core duplicon families that are thought to have contributed significantly to hominoid evolution. It is also among the gene families with the strongest signal of positive selection in hominoids. It has acquired new protein domains in the primate lineage and a previous study has suggested that the gene family has expanded its function into UV response and DNA repair. Here we show that over-expression of SPATA31A1 in fibroblast cells leads to premature senescence due to interference with aging-related transcription pathways. We show that there are considerable copy number differences for this gene family in human populations and we ask whether this could influence mutation rates and longevity in humans. We find no evidence for an influence on germline mutation rates, but an analysis of long-lived individuals (> 96 years) shows that they carry significantly fewer SPATA31 copies in their genomes than younger individuals in a control group. We propose that the evolution of SPATA31 copy number is an example for antagonistic pleiotropy by providing a fitness benefit during the reproductive phase of life, but negatively influencing the overall life span.
Collapse
Affiliation(s)
| | - Chen Xie
- Max-Planck Institute for Evolutionary Biology, 24306 Plön, Germany
| | - Almut Nebel
- Institute of Clinical Molecular Biology, Kiel University, 24105 Kiel, Germany
| | - Diethard Tautz
- Max-Planck Institute for Evolutionary Biology, 24306 Plön, Germany
| |
Collapse
|
131
|
Teschke R, Xuan TD. Viewpoint: A Contributory Role of Shell Ginger (Alpinia zerumbet (Pers.) B.L. Burtt & R.M. Sm) for Human Longevity in Okinawa, Japan? Nutrients 2018; 10:nu10020166. [PMID: 29385084 PMCID: PMC5852742 DOI: 10.3390/nu10020166] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 01/26/2018] [Accepted: 01/29/2018] [Indexed: 12/17/2022] Open
Abstract
The longevity of the population in the Okinawa Islands of Japan has been ascribed to genetic factors and the traditional Okinawa cuisine, which is low in calories and high in plant content. This diet includes shell ginger (Alpinia zerumbet (Pers.) B.L. Burtt & R.M. Sm) of the ginger family (Zingiberaceae). Due to its local popularity, Alpinia zerumbet has become the subject of a good deal of study at the University of the Ryukyus in Okinawa. Personal local experience and review of the literature now suggest that culinary shell ginger may contribute to longevity among the population in Okinawa. This is supported by its abundant phytochemical content, with antioxidant and anti-obesity properties. The major bioactive phytochemicals are dihydro-5,6-dehydrokawain (DDK; 80-410 mg g-1 fresh weight), 5,6-dehydrokawain (DK; ≤100 mg g-1), and essential oils, phenols, phenolic acids, and fatty acids (≤150 mg g-1 each). Further, Alpinia zerumbet extends the lifespan in animals by 22.6%. In conclusion, culinary shell ginger may significantly contribute to human longevity in Okinawa.
Collapse
Affiliation(s)
- Rolf Teschke
- Department of Internal Medicine II, Division of Gastroenterology and Hepatology, Klinikum Hanau, D-63450 Hanau, Teaching Hospital of the Medical Faculty, Goethe University Frankfurt/ Main, Frankfurt/ Main, Germany.
| | - Tran Dang Xuan
- Division of Development Technology, Graduate School for International Development and Cooperation (IDEC), Hiroshima University, Higashi Hiroshima 739-8529, Japan.
| |
Collapse
|