101
|
Jin C, Moore D, Snell J, Paeng DG. An open-source phase correction toolkit for transcranial focused ultrasound. BMC Biomed Eng 2020; 2:9. [PMID: 32903384 PMCID: PMC7427913 DOI: 10.1186/s42490-020-00043-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 08/03/2020] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND The phase correction on transcranial focused ultrasound is essential to regulate unwanted focal point shift caused by skull bone aberration. The aim of the current study was to design and investigate the feasibility of a ray-based phase correction toolkit for transcranial focused ultrasound. RESULTS The peak pressure at focal area was improved by 140.5 ± 7.0% on target I and 134.8 ± 19.1% on target II using proposed phase correction toolkit, respectively. A total computation time of 402.1 ± 24.5 milliseconds was achieved for each sonication. CONCLUSION The designed ray-based phase correction software can be used as a lightweight toolkit to compensate aberrated phase within clinical environment.
Collapse
Affiliation(s)
- Changzhu Jin
- Department of Robotics Engineering, DGIST, Daegu, 42988 Korea
- DGIST-ETH Microrobot Research Center, DGIST, Daegu, 42988 Korea
| | - David Moore
- Focused Ultrasound Foundation, Charlottesville, VA 22903 USA
| | - John Snell
- Focused Ultrasound Foundation, Charlottesville, VA 22903 USA
| | - Dong-Guk Paeng
- Focused Ultrasound Foundation, Charlottesville, VA 22903 USA
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA 22903 USA
- Ocean System, Engineering/ Biomedical Engineering, Jeju National University, Jeju, 63243 Korea
| |
Collapse
|
102
|
Luo H, Kusunose J, Pinton G, Caskey CF, Grissom WA. Rapid quantitative imaging of high intensity ultrasonic pressure fields. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2020; 148:660. [PMID: 32873034 PMCID: PMC7414943 DOI: 10.1121/10.0001689] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 06/09/2020] [Accepted: 07/17/2020] [Indexed: 06/11/2023]
Abstract
High intensity focused ultrasound (FUS) is a noninvasive technique for treatment of tissues that can lie deep within the body. There is a need for methods to rapidly and quantitatively map FUS pressure beams for quality assurance and accelerate development of FUS systems and techniques. However, conventional ultrasound pressure beam mapping instruments, including hydrophones and optical techniques, are slow, not portable, and expensive, and most cannot map beams at actual therapeutic pressure levels. Here, a rapid projection imaging method to quantitatively map FUS pressure beams based on continuous-wave background-oriented schlieren (CW-BOS) imaging is reported. The method requires only a water tank, a background pattern, and a camera and uses a multi-layer deep neural network to reconstruct two-dimensional root-mean-square (RMS) projected pressure maps that resolve the ultrasound propagation dimension and one lateral dimension. In this work, the method was applied to collect beam maps over a 3 × 1 cm2 field-of-view with 0.425 mm resolution for focal pressures up to 9 MPa. Results at two frequencies and comparisons to hydrophone measurements show that CW-BOS imaging produces high-resolution quantitative RMS projected FUS pressure maps in under 10 s, the technique is linear and robust to beam rotations and translations, and it can map aberrated beams.
Collapse
Affiliation(s)
- Huiwen Luo
- Department of Biomedical Engineering, Vanderbilt University, Vanderbilt University Station B Number 351631, 2301 Vanderbilt Place, Nashville, Tennessee 37235-1631, USA
| | - Jiro Kusunose
- Department of Radiology and Radiological Sciences, Vanderbilt University, 1161 21st Avenue South, Nashville, Tennessee 37232, USA
| | - Gianmarco Pinton
- Department of Biomedical Engineering, University of North Carolina, 333 South Columbia Street, Chapel Hill, North Carolina 27514, USA
| | - Charles F Caskey
- Department of Radiology and Radiological Sciences, Vanderbilt University, 1161 21st Avenue South, Nashville, Tennessee 37232, USA
| | - William A Grissom
- Department of Biomedical Engineering, Vanderbilt University, Vanderbilt University Station B Number 351631, 2301 Vanderbilt Place, Nashville, Tennessee 37235-1631, USA
| |
Collapse
|
103
|
Wang JB, Di Ianni T, Vyas DB, Huang Z, Park S, Hosseini-Nassab N, Aryal M, Airan RD. Focused Ultrasound for Noninvasive, Focal Pharmacologic Neurointervention. Front Neurosci 2020; 14:675. [PMID: 32760238 PMCID: PMC7372945 DOI: 10.3389/fnins.2020.00675] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 06/02/2020] [Indexed: 12/13/2022] Open
Abstract
A long-standing goal of translational neuroscience is the ability to noninvasively deliver therapeutic agents to specific brain regions with high spatiotemporal resolution. Focused ultrasound (FUS) is an emerging technology that can noninvasively deliver energy up the order of 1 kW/cm2 with millimeter and millisecond resolution to any point in the human brain with Food and Drug Administration-approved hardware. Although FUS is clinically utilized primarily for focal ablation in conditions such as essential tremor, recent breakthroughs have enabled the use of FUS for drug delivery at lower intensities (i.e., tens of watts per square centimeter) without ablation of the tissue. In this review, we present strategies for image-guided FUS-mediated pharmacologic neurointerventions. First, we discuss blood–brain barrier opening to deliver therapeutic agents of a variety of sizes to the central nervous system. We then describe the use of ultrasound-sensitive nanoparticles to noninvasively deliver small molecules to millimeter-sized structures including superficial cortical regions and deep gray matter regions within the brain without the need for blood–brain barrier opening. We also consider the safety and potential complications of these techniques, with attention to temporal acuity. Finally, we close with a discussion of different methods for mapping the ultrasound field within the brain and describe future avenues of research in ultrasound-targeted drug therapies.
Collapse
Affiliation(s)
- Jeffrey B Wang
- Neuroradiology Division, Department of Radiology, Stanford University, Stanford, CA, United States
| | - Tommaso Di Ianni
- Neuroradiology Division, Department of Radiology, Stanford University, Stanford, CA, United States
| | - Daivik B Vyas
- Neuroradiology Division, Department of Radiology, Stanford University, Stanford, CA, United States
| | - Zhenbo Huang
- Neuroradiology Division, Department of Radiology, Stanford University, Stanford, CA, United States
| | - Sunmee Park
- Neuroradiology Division, Department of Radiology, Stanford University, Stanford, CA, United States
| | - Niloufar Hosseini-Nassab
- Neuroradiology Division, Department of Radiology, Stanford University, Stanford, CA, United States
| | - Muna Aryal
- Neuroradiology Division, Department of Radiology, Stanford University, Stanford, CA, United States
| | - Raag D Airan
- Neuroradiology Division, Department of Radiology, Stanford University, Stanford, CA, United States
| |
Collapse
|
104
|
Boutet A, Gwun D, Gramer R, Ranjan M, Elias GJB, Tilden D, Huang Y, Li SX, Davidson B, Lu H, Tyrrell P, Jones RM, Fasano A, Hynynen K, Kucharczyk W, Schwartz ML, Lozano AM. The relevance of skull density ratio in selecting candidates for transcranial MR-guided focused ultrasound. J Neurosurg 2020; 132:1785-1791. [PMID: 31051458 DOI: 10.3171/2019.2.jns182571] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 02/05/2019] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Transcranial MR-guided focused ultrasound (MRgFUS) is a minimally invasive treatment for movement disorders. Considerable interpatient variability in skull transmission efficiency exists with the current clinical devices, which is thought to be dependent on each patient's specific skull morphology. Lower skull density ratio (SDR) values are thought to impede acoustic energy transmission across the skull, attenuating or preventing the therapeutic benefits of MRgFUS. Patients with SDR values below 0.4 have traditionally been deemed poor candidates for MRgFUS. Although considerable anecdotal evidence has suggested that SDR is a reliable determinant of procedural and clinical success, relationships between SDR and clinical outcomes have yet to be formally investigated. Moreover, as transcranial MRgFUS is becoming an increasingly widespread procedure, knowledge of SDR distribution in the general population may enable improved preoperative counseling and preparedness. METHODS A total of 98 patients who underwent MRgFUS thalamotomy at the authors' institutions between 2012 and 2018 were analyzed (cohort 1). The authors retrospectively assessed the relationships between SDR and various clinical outcomes, including tremor improvement and adverse effects, as well as procedural factors such as sonication parameters. An SDR was also prospectively obtained in 163 random emergency department patients who required a head CT scan for various clinical indications (cohort 2). Patients' age and sex were used to explore relationships with SDR. RESULTS In the MRgFUS treatment group, 17 patients with a thalamotomy lesion had an SDR below 0.4. Patients with lower SDRs required more sonication energy; however, their low SDR did not influence their clinical outcomes. In the emergency department patient group, about one-third of the patients had a low SDR (< 0.4). SDR did not correlate with age or sex. CONCLUSIONS Although lower SDR values correlated with higher energy requirements during MRgFUS thalamotomy, within the range of this study population, the SDR did not appreciably impact or provide the ability to predict the resulting clinical outcomes. Sampling of the general population suggests that age and sex have no relationship with SDR. Other variables, such as local variances in bone density, should also be carefully reviewed to build a comprehensive appraisal of a patient's suitability for MRgFUS treatment.
Collapse
Affiliation(s)
- Alexandre Boutet
- 1University Health Network, Toronto
- 6Joint Department of Medical Imaging, University of Toronto
| | | | | | | | | | | | - Yuexi Huang
- 4Physical Sciences Platform, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, University of Toronto
| | | | | | - Hua Lu
- 6Joint Department of Medical Imaging, University of Toronto
| | - Pascal Tyrrell
- 5Department of Statistical Sciences, University of Toronto
- 6Joint Department of Medical Imaging, University of Toronto
| | - Ryan M Jones
- 4Physical Sciences Platform, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, University of Toronto
| | - Alfonso Fasano
- 2Krembil Research Institute, Toronto
- 7Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, UHN, Division of Neurology, University of Toronto
| | - Kullervo Hynynen
- 4Physical Sciences Platform, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, University of Toronto
- 8Department of Medical Biophysics, University of Toronto
- 9Institute of Biomaterials and Biomedical Engineering, University of Toronto
| | - Walter Kucharczyk
- 1University Health Network, Toronto
- 6Joint Department of Medical Imaging, University of Toronto
| | - Michael L Schwartz
- 10Division of Neurosurgery, Sunnybrook Health Sciences Center, University of Toronto, Ontario, Canada; and
| | | |
Collapse
|
105
|
Oishi K, Mori S, Troncoso JC, Lenz FA. Mapping tracts in the human subthalamic area by 11.7T ex vivo diffusion tensor imaging. Brain Struct Funct 2020; 225:1293-1312. [PMID: 32303844 PMCID: PMC7584118 DOI: 10.1007/s00429-020-02066-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 04/03/2020] [Indexed: 02/07/2023]
Abstract
The cortico-basal ganglia-thalamo-cortical feedback loops that consist of distinct white matter pathways are important for understanding in vivo imaging studies of functional and anatomical connectivity, and for localizing subthalamic white matter structures in surgical approaches for movement disorders, such as Parkinson's disease. Connectomic analysis in animals has identified fiber connections between the basal ganglia and thalamus, which pass through the fields of Forel, where other fiber pathways related to motor, sensory, and cognitive functions co-exist. We now report these pathways in the human brain on ex vivo mesoscopic (250 μm) diffusion tensor imaging and on tractography. The locations of the tracts were identified relative to the adjacent gray matter structures, such as the internal and external segments of the globus pallidus; the zona incerta; the subthalamic nucleus; the substantia nigra pars reticulata and compacta; and the thalamus. The connectome atlas of the human subthalamic region may serve as a resource for imaging studies and for neurosurgical planning.
Collapse
Affiliation(s)
- Kenichi Oishi
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, 208 Traylor Building, 720 Rutland Ave., Baltimore, MD, 21205, USA.
| | - Susumu Mori
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, 208 Traylor Building, 720 Rutland Ave., Baltimore, MD, 21205, USA
- Kennedy Krieger Institute, Baltimore, MD, USA
| | - Juan C Troncoso
- Division of Neuropathology, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Frederick A Lenz
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Meyer 8181 Neurosurgery, 600 North Wolfe Street, Baltimore, MD, 21287, USA.
| |
Collapse
|
106
|
Kubanek J, Brown J, Ye P, Pauly KB, Moore T, Newsome W. Remote, brain region-specific control of choice behavior with ultrasonic waves. SCIENCE ADVANCES 2020; 6:eaaz4193. [PMID: 32671207 PMCID: PMC7314556 DOI: 10.1126/sciadv.aaz4193] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 03/09/2020] [Indexed: 05/05/2023]
Abstract
The ability to modulate neural activity in specific brain circuits remotely and systematically could revolutionize studies of brain function and treatments of brain disorders. Sound waves of high frequencies (ultrasound) have shown promise in this respect, combining the ability to modulate neuronal activity with sharp spatial focus. Here, we show that the approach can have potent effects on choice behavior. Brief, low-intensity ultrasound pulses delivered noninvasively into specific brain regions of macaque monkeys influenced their decisions regarding which target to choose. The effects were substantial, leading to around a 2:1 bias in choices compared to the default balanced proportion. The effect presence and polarity was controlled by the specific target region. These results represent a critical step towards the ability to influence choice behavior noninvasively, enabling systematic investigations and treatments of brain circuits underlying disorders of choice.
Collapse
Affiliation(s)
- Jan Kubanek
- Department of Biomedical Engineering, University of Utah, 36 S Wasatch Dr, Salt Lake City, UT 84112, USA
| | - Julian Brown
- Department of Neurobiology, Stanford University, 318 Campus Dr, Stanford, CA 94305, USA
| | - Patrick Ye
- Department of Radiology, Stanford University, 1201 Welch Rd, Stanford, CA 94034, USA
| | - Kim Butts Pauly
- Department of Radiology, Stanford University, 1201 Welch Rd, Stanford, CA 94034, USA
| | - Tirin Moore
- Department of Neurobiology, Stanford University, 318 Campus Dr, Stanford, CA 94305, USA
| | - William Newsome
- Department of Neurobiology, Stanford University, 318 Campus Dr, Stanford, CA 94305, USA
| |
Collapse
|
107
|
Tang Y, Qian X, Lee DJ, Zhou Q, Yao J. From Light to Sound: Photoacoustic and Ultrasound Imaging in Fundamental Research of Alzheimer's Disease. OBM NEUROBIOLOGY 2020; 4:10.21926/obm.neurobiol.2002056. [PMID: 33083711 PMCID: PMC7571611 DOI: 10.21926/obm.neurobiol.2002056] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Alzheimer's disease (AD) causes severe cognitive dysfunction and has long been studied for the underlining physiological and pathological mechanisms. Several biomedical imaging modalities have been applied, including MRI, PET, and high-resolution optical microscopy, for research purposes. However, there is still a strong need for imaging tools that can provide high spatiotemporal resolutions with relatively deep penetration to enhance our understanding of AD pathology and monitor treatment progress in fundamental research. Photoacoustic (PA) imaging and ultrasound (US) imaging can potentially address these unmet needs in AD research. PA imaging provides functional information with endogenous and/or exogenous contrast, while US imaging provides structural information. Recent studies have demonstrated the ability to monitor physiological parameters in small-animal brains with PA and US imaging as well as the feasibility of using US imaging as a therapeutic tool for AD. This concise review aims to introduce recent advances in AD research using PA and US imaging, provide the fundamentals, and discuss the potentials and challenges for future advances.
Collapse
Affiliation(s)
- Yuqi Tang
- Department of Biomedical Engineering, Duke University,
Durham, NC, USA
| | - Xuejun Qian
- Department of Biomedical Engineering, University of
Southern California, Los Angeles, CA, USA
- USC Roski Eye institute, University of Southern California,
Los Angeles, CA, USA
| | - Darrin J. Lee
- Department of Neurological Surgery, University of Southern
California, Los Angeles, CA, USA
| | - Qifa Zhou
- Department of Biomedical Engineering, University of
Southern California, Los Angeles, CA, USA
- USC Roski Eye institute, University of Southern California,
Los Angeles, CA, USA
| | - Junjie Yao
- Department of Biomedical Engineering, Duke University,
Durham, NC, USA
| |
Collapse
|
108
|
Gagliardo C, Cannella R, Quarrella C, D'Amelio M, Napoli A, Bartolotta TV, Catalano C, Midiri M, Lagalla R. Intraoperative imaging findings in transcranial MR imaging-guided focused ultrasound treatment at 1.5T may accurately detect typical lesional findings correlated with sonication parameters. Eur Radiol 2020; 30:5059-5070. [PMID: 32346791 DOI: 10.1007/s00330-020-06712-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 12/28/2019] [Accepted: 02/04/2020] [Indexed: 02/06/2023]
Abstract
OBJECTIVES To assess the intraoperative neuroimaging findings in patients treated with transcranial MR-guided focused ultrasound (tcMRgFUS) thalamotomy using 1.5T equipment in comparison with the 48-h follow-up. METHODS Fifty prospectively enrolled patients undergoing unilateral tcMRgFUS thalamotomy for either medication-refractory essential tremor (n = 39) or Parkinson tremor (n = 11) were included. Two radiologists evaluated the presence and size of concentric lesional zones (zone I, zone II, and zone III) on 2D T2-weighted sequences acquired intraoperatively after the last high-energy sonication and at 48 h. Sonication parameters including number of sonications, delivered energy, and treatment temperatures were also recorded. Differences in lesion pattern and size were assessed using the McNemar test and paired t test, respectively. RESULTS Zones I, II, and III were visualized in 34 (68%), 50 (100%), and 44 (88%) patients, and 31 (62%), 50 (100%), and 45 (90%) patients after the last high-energy sonication for R1 and R2, respectively. All three concentric zones were visualized intraoperatively in 56-58% of cases. Zone I was significantly more commonly visualized at 48 h (p < 0.001). Diameter of zones I and II and the thickness of zone III significantly increased at 48 h (p < 0.001). Diameters of zones I and II measured intraoperatively demonstrated significant correlation with thermal map temperatures (p ≤ 0.001). Maximum temperature significantly correlated with zone III thickness at 48 h. A threshold of 60.5° had a sensitivity of 56.5-66.7% and a specificity of 70.5-75.5% for thickness > 6 mm at 48 h. CONCLUSIONS Intraoperative imaging may accurately detect typical lesional findings, before completing the treatment. These imaging characteristics significantly correlate with sonication parameters and 48-h follow-up. KEY POINTS • Intraoperative T2-weighted images allow the visualization of the zone I (coagulation necrosis) in most of the treated patients, while zone II (cytotoxic edema) is always detected. • Lesion size depicted with intraoperative transcranial MRgFUS imaging correlates well with procedure parameters. • Intraoperative transcranial MRgFUS imaging may have a significant added value for treating physicians.
Collapse
Affiliation(s)
- Cesare Gagliardo
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, Via del Vespro 129, 90127, Palermo, Italy.
| | - Roberto Cannella
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, Via del Vespro 129, 90127, Palermo, Italy
| | - Cettina Quarrella
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, Via del Vespro 129, 90127, Palermo, Italy
| | - Marco D'Amelio
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, Via del Vespro 129, 90127, Palermo, Italy
| | - Alessandro Napoli
- Department of Radiological, Oncological and Anatomopathological Sciences, 'Sapienza' University of Rome, Rome, Italy
| | - Tommaso Vincenzo Bartolotta
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, Via del Vespro 129, 90127, Palermo, Italy
| | - Carlo Catalano
- Department of Radiological, Oncological and Anatomopathological Sciences, 'Sapienza' University of Rome, Rome, Italy
| | - Massimo Midiri
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, Via del Vespro 129, 90127, Palermo, Italy
| | - Roberto Lagalla
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, Via del Vespro 129, 90127, Palermo, Italy
| |
Collapse
|
109
|
Bruno F, Catalucci A, Arrigoni F, Sucapane P, Cerone D, Cerrone P, Ricci A, Marini C, Masciocchi C. An experience-based review of HIFU in functional interventional neuroradiology: transcranial MRgFUS thalamotomy for treatment of tremor. Radiol Med 2020; 125:877-886. [PMID: 32266693 DOI: 10.1007/s11547-020-01186-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 03/24/2020] [Indexed: 12/16/2022]
Abstract
Tremor is a common and very disabling symptom in patients with essential tremor and Parkinson's disease. In the recent years, transcranial ablation of thalamic nuclei using magnetic resonance guided high-intensity focused ultrasound has emerged as a minimally invasive treatment for tremor. The aim of this review is to discuss, in the light of our single-center experience, the technique, current applications, results, and future perspectives of this novel technology.
Collapse
Affiliation(s)
- Federico Bruno
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, via Vetoio 1, 67100, L'Aquila, Italy.
| | | | - Francesco Arrigoni
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, via Vetoio 1, 67100, L'Aquila, Italy
| | | | - Davide Cerone
- Neurology Unit, San Salvatore Hospital, L'Aquila, Italy
| | - Paolo Cerrone
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, via Vetoio 1, 67100, L'Aquila, Italy
| | - Alessandro Ricci
- Department of Neurosurgery, San Salvatore Hospital, L'Aquila, Italy
| | - Carmine Marini
- Neurology Unit, Department of Medicine, Health and Environment Sciences, L'Aquila, Italy
| | - Carlo Masciocchi
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, via Vetoio 1, 67100, L'Aquila, Italy
| |
Collapse
|
110
|
Tohyama S, Walker MR, Sammartino F, Krishna V, Hodaie M. The Utility of Diffusion Tensor Imaging in Neuromodulation: Moving Beyond Conventional Magnetic Resonance Imaging. Neuromodulation 2020; 23:427-435. [DOI: 10.1111/ner.13107] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 12/08/2019] [Accepted: 01/02/2020] [Indexed: 12/18/2022]
Affiliation(s)
- Sarasa Tohyama
- Division of Brain, Imaging, and Behaviour–Systems Neuroscience, Krembil Research Institute, Toronto Western Hospital University Health Network Toronto ON Canada
- Institute of Medical Science, Faculty of Medicine University of Toronto Toronto ON Canada
| | - Matthew R. Walker
- Division of Brain, Imaging, and Behaviour–Systems Neuroscience, Krembil Research Institute, Toronto Western Hospital University Health Network Toronto ON Canada
| | - Francesco Sammartino
- Center for Neuromodulation, Department of Neurosurgery The Ohio State University Columbus OH USA
| | - Vibhor Krishna
- Center for Neuromodulation, Department of Neurosurgery The Ohio State University Columbus OH USA
| | - Mojgan Hodaie
- Division of Brain, Imaging, and Behaviour–Systems Neuroscience, Krembil Research Institute, Toronto Western Hospital University Health Network Toronto ON Canada
- Institute of Medical Science, Faculty of Medicine University of Toronto Toronto ON Canada
- Department of Surgery, Faculty of Medicine University of Toronto Toronto ON Canada
- Division of Neurosurgery, Krembil Neuroscience Centre, Toronto Western Hospital University Health Network Toronto ON Canada
| |
Collapse
|
111
|
Dixit N, Pauly JM, Scott GC. Thermo‐acoustic ultrasound for noninvasive temperature monitoring at lead tips during MRI. Magn Reson Med 2019; 84:1035-1047. [DOI: 10.1002/mrm.28152] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 11/14/2019] [Accepted: 12/09/2019] [Indexed: 12/29/2022]
Affiliation(s)
- Neerav Dixit
- Department of Electrical Engineering Stanford University Stanford CAUSA
| | - John M. Pauly
- Department of Electrical Engineering Stanford University Stanford CAUSA
| | - Greig C. Scott
- Department of Electrical Engineering Stanford University Stanford CAUSA
| |
Collapse
|
112
|
Allen SP, Steeves T, Fergusson A, Moore D, Davis RM, Vlaisialjevich E, Meyer CH. Novel acoustic coupling bath using magnetite nanoparticles for MR-guided transcranial focused ultrasound surgery. Med Phys 2019; 46:5444-5453. [PMID: 31605643 DOI: 10.1002/mp.13863] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 09/26/2019] [Accepted: 10/08/2019] [Indexed: 01/26/2023] Open
Abstract
PURPOSE Acoustic coupling baths, nominally composed of degassed water, play important roles during transcranial focused ultrasound surgery. However, this large water bolus also degrades the quality of intraoperative magnetic resonance (MR) guidance imaging. In this study, we test the feasibility of using dilute, aqueous magnetite nanoparticle suspensions to suppress these image degradations while preserving acoustic compatibility. We examine the effects of these suspensions on metrics of image quality and acoustic compatibility for two types of transcranial focused ultrasound insonation regimes: low-duty cycle histotripsy procedures and high-duty cycle thermal ablation procedures. METHODS Magnetic resonance guidance imaging was used to monitor thermal ablations of in vitro gel targets using a coupling bath composed of various concentrations of aqueous, suspended, magnetite nanoparticles in a clinical transcranial transducer under stationary and flowing conditions. Thermal deposition was monitored using MR thermometry simultaneous to insonation. Then, using normal degassed water as a coupling bath, various concentrations of aqueous, suspended, magnetite nanoparticles were placed at the center of this same transducer and insonated using high-duty cycle pulsing parameters. Passive cavitation detectors recorded cavitation emissions, which were then used to estimate the relative number of cavitation events per insonation (cavitation duty cycle) and the cavitation dose estimates of each nanoparticle concentration. Finally, the nanoparticle mixtures were exposed to low-duty cycle, histotripsy pulses. Passive cavitation detectors monitored cavitation emissions, which were used to estimate cavitation threshold pressures. RESULTS The nanoparticles reduced the MR signal of the coupling bath by 90% in T2- and T2*-weighted images and also removed almost all imaging artifacts caused by coupling bath motion. The coupling baths caused <5% changes in peak temperature change achieved during sonication, as observed via MR thermometry. At low duty cycle insonations, the nanoparticles decreased the cavitation threshold pressure by about 15 ± 7% in a manner uncorrelated with nanoparticle concentration. At high duty cycle insonations, the 0.5 cavitation duty cycle acoustic power threshold varied linearly with nanoparticle concentration. CONCLUSIONS Dilute aqueous magnetite nanoparticle suspensions effectively reduced MR imaging artifacts caused by the acoustic coupling bath. They also attenuated acoustic power deposition by <5%. For low duty cycle insonation regimes, the nanoparticles decreased the cavitation threshold by 15 ± 7%. However, for high-duty cycle regimes, the nanoparticles decreased the threshold for cavitation in proportion to nanoparticle concentration.
Collapse
Affiliation(s)
- Steven P Allen
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Tom Steeves
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA, USA
| | - Austin Fergusson
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, VA, USA
| | - Dave Moore
- The Focused Ultrasound Foundation, Charlottesville, VA, USA
| | - Richey M Davis
- Department of Chemical Engineering, Virginia Tech, Blacksburg, VA, USA
| | - Eli Vlaisialjevich
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, VA, USA.,Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, USA
| | - Craig H Meyer
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA.,Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
113
|
Ilyas A, Chen CJ, Ding D, Romeo A, Buell TJ, Wang TR, Kalani MYS, Park MS. Magnetic resonance-guided, high-intensity focused ultrasound sonolysis: potential applications for stroke. Neurosurg Focus 2019; 44:E12. [PMID: 29385918 DOI: 10.3171/2017.11.focus17608] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Stroke is one of the leading causes of death worldwide and a significant source of long-term morbidity. Unfortunately, a substantial number of stroke patients either are ineligible or do not significantly benefit from contemporary medical and interventional therapies. To address this void, investigators recently made technological advances to render transcranial MR-guided, high-intensity focused ultrasound (MRg-HIFU) sonolysis a potential therapeutic option for both acute ischemic stroke (AIS)-as an alternative for patients with emergent large-vessel occlusion (ELVO) who are ineligible for endovascular mechanical thrombectomy (EMT) or as salvage therapy for patients in whom EMT fails-and intracerebral hemorrhage (ICH)-as a neoadjuvant means of clot lysis prior to surgical evacuation. Herein, the authors review the technological principles behind MRg-HIFU sonolysis, its results in in vitro and in vivo stroke models, and its potential clinical applications. As a noninvasive transcranial technique that affords rapid clot lysis, MRg-HIFU thrombolysis may develop into a therapeutic option for patients with AIS or ICH. However, additional studies of transcranial MRg-HIFU are necessary to ascertain the merit of this treatment approach for thrombolysis in both AIS and ICH, as well as its technical limitations and risks.
Collapse
Affiliation(s)
- Adeel Ilyas
- Department of Neurosurgery, University of Alabama at Birmingham, Alabama
| | - Ching-Jen Chen
- Department of Neurological Surgery, University of Virginia Health System, Charlottesville, Virginia; and
| | - Dale Ding
- Department of Neurosurgery, Barrow Neurological Institute, Phoenix, Arizona
| | - Andrew Romeo
- Department of Neurosurgery, University of Alabama at Birmingham, Alabama
| | - Thomas J Buell
- Department of Neurological Surgery, University of Virginia Health System, Charlottesville, Virginia; and
| | - Tony R Wang
- Department of Neurological Surgery, University of Virginia Health System, Charlottesville, Virginia; and
| | - M Yashar S Kalani
- Department of Neurological Surgery, University of Virginia Health System, Charlottesville, Virginia; and
| | - Min S Park
- Department of Neurological Surgery, University of Virginia Health System, Charlottesville, Virginia; and
| |
Collapse
|
114
|
Jung NY, Park CK, Chang WS, Jung HH, Chang JW. Effects on cognition and quality of life with unilateral magnetic resonance-guided focused ultrasound thalamotomy for essential tremor. Neurosurg Focus 2019; 44:E8. [PMID: 29385928 DOI: 10.3171/2017.11.focus17625] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Although neurosurgical procedures are effective treatments for controlling involuntary tremor in patients with essential tremor (ET), they can cause cognitive decline, which can affect quality of life (QOL). The purpose of this study is to assess the changes in the neuropsychological profile and QOL of patients following MR-guided focused ultrasound (MRgFUS) thalamotomy for ET. METHODS The authors prospectively analyzed 20 patients with ET who underwent unilateral MRgFUS thalamotomy at their institute in the period from March 2012 to September 2014. Patients were regularly evaluated with the Clinical Rating Scale for Tremor (CRST), neuroimaging, and cognition and QOL measures. The Seoul Neuropsychological Screening Battery was used to assess cognitive function, and the Quality of Life in Essential Tremor Questionnaire (QUEST) was used to evaluate the postoperative change in QOL. RESULTS The total CRST score improved by 67.3% (from 44.75 ± 9.57 to 14.65 ± 9.19, p < 0.001) at 1 year following MRgFUS thalamotomy. Mean tremor scores improved by 68% in the hand contralateral to the thalamotomy, but there was no significant improvement in the ipsilateral hand. Although minimal cognitive decline was observed without statistical significance, memory function was much improved (p = 0.031). The total QUEST score also showed the same trend of improving (64.16 ± 17.75 vs 27.38 ± 13.96, p < 0.001). CONCLUSIONS The authors report that MRgFUS thalamotomy had beneficial effects in terms of not only tremor control but also safety for cognitive function and QOL. Acceptable postoperative changes in cognition and much-improved QOL positively support the clinical significance of MRgFUS thalamotomy as a new, favorable surgical treatment in patients with ET.
Collapse
Affiliation(s)
- Na Young Jung
- Department of Neurosurgery, Brain Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Chang Kyu Park
- Department of Neurosurgery, Brain Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Won Seok Chang
- Department of Neurosurgery, Brain Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hyun Ho Jung
- Department of Neurosurgery, Brain Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jin Woo Chang
- Department of Neurosurgery, Brain Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
115
|
Grissom WA, Allen S. Reducing temperature errors in transcranial MR-guided focused ultrasound using a reduced-field-of-view sequence. Magn Reson Med 2019; 83:1016-1024. [PMID: 31483525 DOI: 10.1002/mrm.27987] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 08/14/2019] [Accepted: 08/14/2019] [Indexed: 12/25/2022]
Abstract
PURPOSE To reduce temperature errors due to water motion in transcranial MR-guided focused ultrasound (tcMRgFUS) ablation. THEORY AND METHODS In tcMRgFUS, water is circulated in the transducer bowl around the patient's head for acoustic coupling and heat removal. The water moves during sonications that are monitored by MR thermometry, which causes it to alias into the brain and create temperature errors. To reduce these errors, a two-dimensional excitation pulse was implemented in a gradient-recalled echo thermometry sequence. The pulse suppresses water signal by selectively exciting the brain only, which reduces the imaging FOV. Improvements in temperature precision compared to the conventional full-FOV scan were evaluated in healthy subject scans outside the tcMRgFUS system, gel phantom scans in the system with heating, and in 2×-accelerated head phantom scans in the system without heating. RESULTS In vivo temperature precision (standard deviation of temperature errors) outside the tcMRgFUS system was improved 43% on average, due to the longer TR and TE of the reduced-FOV sequence. In the phantom heating experiments, the hot spot was less distorted in the reduced-FOV scans, and background temperature precision was improved 59% on average. In the accelerated head phantom temperature reconstructions, temperature precision was improved 89% using the reduced-FOV sequence. CONCLUSIONS Reduced-FOV temperature imaging alleviates temperature errors due to water bath motion in tcMRgFUS, and enables accelerated temperature mapping with greater precision.
Collapse
Affiliation(s)
- William A Grissom
- Vanderbilt University Institute of Imaging Science, Nashville, Tennessee.,Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
| | - Steven Allen
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia
| |
Collapse
|
116
|
Miller TR, Zhuo J, Eisenberg HM, Fishman PS, Melhem ER, Gullapalli R, Gandhi D. Targeting of the dentato-rubro-thalamic tract for MR-guided focused ultrasound treatment of essential tremor. Neuroradiol J 2019; 32:401-407. [PMID: 31407957 DOI: 10.1177/1971400919870180] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Magnetic resonance-guided focused ultrasound ablation of the thalamic ventral intermediate nucleus is a safe and effective treatment for medically refractory essential tremor. However, indirect targeting of the ventral intermediate nucleus using stereotactic coordinates from normal neuroanatomy can be inefficient. We therefore evaluated the feasibility of supplementing this method with direct targeting of the dentato-rubro-thalamic tract. METHODS We retrospectively identified four patients undergoing magnetic resonance-guided focused ultrasound ablation for essential tremor in which preoperative diffusion tractography imaging of the dentato-rubro-thalamic tract was fused with T2 weighted-imaging and utilized for intra-procedural targeting. The size and location of the dentato-rubro-thalamic tract and 24-hour lesion, as well as the center of the stereotactic coordinates, was evaluated. Finally, the amount of overlap between the dentato-rubro-thalamic tract and the lesion was calculated. RESULTS The 24-hour lesion size was homogeneous in the cohort (mean 31.3 mm2, range 30-32 mm2), while there was substantial variation in the dentato-rubro-thalamic tract area (mean 14.3 mm2, range 3-24 mm2). The center of the stereotactic coordinates and dentato-rubro-thalamic tract diverged by more than 1 mm in mediolateral and anterposterior directions in all patients, while the dentato-rubro-thalamic tract and lesion centers were in close proximity (mean mediolateral separation 1 mm, range 0.1-2.2 mm; mean anteroposterior separation 0.75 mm, range 0.4-1.2 mm). There was greater than 50% coverage of the dentato-rubro-thalamic tract by the lesion in all patients (mean 82.9%, range 66.7-100%). All patients experienced durable tremor relief. CONCLUSION Direct targeting of the dentato-rubro-thalamic tract using diffusion tractography imaging fused to T2 weighted-imaging may be a useful strategy for focused ultrasound treatment of essential tremor. Further investigation of the technique is warranted.
Collapse
Affiliation(s)
- Timothy R Miller
- Department of Diagnostic Radiology, University of Maryland Medical Center, USA
| | - Jiachen Zhuo
- Department of Diagnostic Radiology, University of Maryland Medical Center, USA
| | | | - Paul S Fishman
- Department of Neurology, University of Maryland Medical Center, USA
| | - Elias R Melhem
- Department of Diagnostic Radiology, University of Maryland Medical Center, USA
| | - Rao Gullapalli
- Department of Diagnostic Radiology, University of Maryland Medical Center, USA
| | - Dheeraj Gandhi
- Department of Diagnostic Radiology, University of Maryland Medical Center, USA.,Department of Neurosurgery, University of Maryland Medical Center, USA.,Department of Neurology, University of Maryland Medical Center, USA
| |
Collapse
|
117
|
Quah K, Poorman ME, Allen SP, Grissom WA. Simultaneous multislice MRI thermometry with a single coil using incoherent blipped-controlled aliasing. Magn Reson Med 2019; 83:479-491. [PMID: 31402493 DOI: 10.1002/mrm.27940] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 07/11/2019] [Accepted: 07/17/2019] [Indexed: 12/17/2022]
Abstract
PURPOSE To increase volume coverage in real-time MR thermometry for transcranial MR-guided focused ultrasound (tcMRgFUS) ablation, without multiple receive coils. THEORY AND METHODS Multiband excitation and incoherent blipped-controlled aliasing were implemented in a 2DFT pulse sequence used clinically for tcMRgFUS, and an extended k-space hybrid reconstruction was developed that recovers slice-separated temperature maps assuming that heating is focal, given slice-separated pretreatment images. Simulations were performed to characterize slice leakage, the number of slices that can be simultaneously imaged with low-temperature error, and robustness across random slice-phase k-space permutations. In vivo experiments were performed using a single receive coil without heating to measure temperature precision, and gel phantom FUS experiments were performed to test the method with heating and with a water bath. RESULTS Simulations showed that with large hot spots and identical magnitude images on each slice, up to three slices can be simultaneously imaged with less than 1 ∘ C temperature root-mean-square error. They also showed that hot spots do not alias coherently between slices, and that an average 86% of random slice-phase k-space permutations yielded less than 1 ∘ C temperature error. Temperature precision was not degraded compared to single-slice imaging in the in vivo SMS scans, and the gel phantom SMS temperature maps closely tracked single-slice temperature in the hot spot, with no coherent aliasing to other slices. CONCLUSIONS Incoherent controlled aliasing SMS enables accurate reconstruction of focal heating maps from two or three slices simultaneously, using a single receive coil and a sparsity-promoting temperature reconstruction.
Collapse
Affiliation(s)
- Kristin Quah
- Vanderbilt University Institute of Imaging Science, Nashville, Tennessee.,Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
| | - Megan E Poorman
- Department of Physics, University of Colorado, Boulder, Colorado
| | - Steven P Allen
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia
| | - William A Grissom
- Vanderbilt University Institute of Imaging Science, Nashville, Tennessee.,Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
| |
Collapse
|
118
|
Boutet A, Ranjan M, Zhong J, Germann J, Xu D, Schwartz ML, Lipsman N, Hynynen K, Devenyi GA, Chakravarty M, Hlasny E, Llinas M, Lozano CS, Elias GJB, Chan J, Coblentz A, Fasano A, Kucharczyk W, Hodaie M, Lozano AM. Focused ultrasound thalamotomy location determines clinical benefits in patients with essential tremor. Brain 2019; 141:3405-3414. [PMID: 30452554 DOI: 10.1093/brain/awy278] [Citation(s) in RCA: 137] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 09/17/2018] [Indexed: 11/13/2022] Open
Abstract
Magnetic resonance guided focused ultrasound (MRgFUS) thalamotomy is a novel and minimally invasive ablative treatment for essential tremor. The size and location of therapeutic lesions producing the optimal clinical benefits while minimizing adverse effects are not known. We examined these relationships in patients with essential tremor undergoing MRgFUS. We studied 66 patients with essential tremor who underwent MRgFUS between 2012 and 2017. We assessed the Clinical Rating Scale for Tremor (CRST) scores at 3 months after the procedure and tracked the adverse effects (sensory, motor, speech, gait, and dysmetria) 1 day (acute) and 3 months after the procedure. Clinical data associated with the postoperative Day 1 lesions were used to correlate the size and location of lesions with tremor benefit and acute adverse effects. Diffusion-weighted imaging was used to assess whether acute adverse effects were related to lesions encroaching on nearby major white matter tracts (medial lemniscus, pyramidal, and dentato-rubro-thalamic). The area of optimal tremor response at 3 months after the procedure was identified at the posterior portion of the ventral intermediate nucleus. Lesions extending beyond the posterior region of the ventral intermediate nucleus and lateral to the lateral thalamic border were associated with increased risk of acute adverse sensory and motor effects, respectively. Acute adverse effects on gait and dysmetria occurred with lesions inferolateral to the thalamus. Lesions inferolateral to the thalamus or medial to the ventral intermediate nucleus were also associated with acute adverse speech effects. Diffusion-weighted imaging revealed that lesions associated with adverse sensory and gait/dysmetria effects compromised the medial lemniscus and dentato-rubro-thalamic tracts, respectively. Lesions associated with adverse motor and speech effects encroached on the pyramidal tract. Lesions larger than 170 mm3 were associated with an increased risk of acute adverse effects. Tremor improvement and acute adverse effects of MRgFUS for essential tremor are highly dependent on the location and size of lesions. These novel findings could refine current MRgFUS treatment planning and targeting, thereby improving clinical outcomes in patients.
Collapse
Affiliation(s)
| | - Manish Ranjan
- Krembil Research Institute, Toronto, Ontario, Canada
| | - Jidan Zhong
- Krembil Research Institute, Toronto, Ontario, Canada
| | - Jurgen Germann
- Cerebral Imaging Centre, Douglas Mental Health University, McGill University, Montreal, Canada
| | - David Xu
- Krembil Research Institute, Toronto, Ontario, Canada
| | - Michael L Schwartz
- Division of Neurosurgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada
| | - Nir Lipsman
- Division of Neurosurgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada.,Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada
| | - Kullervo Hynynen
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Canada.,Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Canada
| | - Gabriel A Devenyi
- Cerebral Imaging Centre, Douglas Mental Health University, McGill University, Montreal, Canada.,Departments of Psychiatry, McGill University, Montreal, Canada
| | - Mallar Chakravarty
- Cerebral Imaging Centre, Douglas Mental Health University, McGill University, Montreal, Canada.,Departments of Psychiatry, McGill University, Montreal, Canada
| | | | | | | | | | - Jason Chan
- University Health Network, Toronto, ON, Canada
| | | | - Alfonso Fasano
- Krembil Research Institute, Toronto, Ontario, Canada.,Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, UHN, Division of Neurology, University of Toronto, Toronto, Ontario, Canada
| | - Walter Kucharczyk
- University Health Network, Toronto, ON, Canada.,Joint Department of Medical Imaging, University of Toronto, Toronto, Canada
| | - Mojgan Hodaie
- University Health Network, Toronto, ON, Canada.,Krembil Research Institute, Toronto, Ontario, Canada
| | - Andres M Lozano
- University Health Network, Toronto, ON, Canada.,Krembil Research Institute, Toronto, Ontario, Canada
| |
Collapse
|
119
|
Choi KH, Kim JH. Therapeutic Applications of Ultrasound in Neurological Diseases. ACTA ACUST UNITED AC 2019. [DOI: 10.31728/jnn.2019.00046] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
120
|
Lemaire T, Neufeld E, Kuster N, Micera S. Understanding ultrasound neuromodulation using a computationally efficient and interpretable model of intramembrane cavitation. J Neural Eng 2019; 16:046007. [PMID: 30952150 DOI: 10.1088/1741-2552/ab1685] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Low-intensity focused ultrasound stimulation (LIFUS) emerges as an attracting technology for noninvasive modulation of neural circuits, yet the underlying action mechanisms remain unclear. The neuronal intramembrane cavitation excitation (NICE) model suggests that LIFUS excites neurons through a complex interplay between microsecond-scale mechanical oscillations of so-called sonophores in the plasma membrane and the development of a millisecond-scale electrical response. This model predicts cell-type-specific responses that correlate indirectly with experimental data, but it is computationally expensive and difficult to interpret, which hinders its potential validation. Here, we introduce a multi-scale optimized neuronal intramembrane cavitation (SONIC) model to achieve fast, accurate simulations and confer interpretability in terms of effective electrical response. APPROACH The NICE system is recast in terms of smoothly evolving differential variables affected by cycle averaged internal variables that are a function of sonophore size and charge density, stimulus frequency and pressure amplitude. Problem separation allows to precompute lookup tables for these functions, which are interpolated at runtime to compute coarse-grained, electrophysiologically interpretable and spatially distributed predictions of neural responses. MAIN RESULTS The SONIC model accelerates computation by more than three orders of magnitude, accurately captures millisecond-scale electrical responses of various cortical and thalamic neurons and offers an increased interpretability to the effects of ultrasonic stimuli in terms of effective membrane dynamics. Using this model, we explain how different spiking behaviors can be achieved in cortical neurons by varying LIFUS parameters, and interpret predictions of spike amplitude and firing rate in light of the effective electrical system. We demonstrate the substantial influence of sonophore size on excitation thresholds, and use a nanoscale spatially extended SONIC model to suggest that partial sonophore membrane coverage has a limited impact on neuronal excitability. SIGNIFICANCE By providing an electrophysiologically interpretable description, the SONIC model clarifies cell-type-specific LIFUS neuromodulation according to the intramembrane cavitation hypothesis.
Collapse
Affiliation(s)
- Théo Lemaire
- Translational Neural Engineering Laboratory, Center for Neuroprosthetics and Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | | | | | | |
Collapse
|
121
|
Park Y, Jung NY, Na YC, Chang JW. Four‐year follow‐up results of magnetic resonance‐guided focused ultrasound thalamotomy for essential tremor. Mov Disord 2019; 34:727-734. [DOI: 10.1002/mds.27637] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 01/11/2019] [Accepted: 01/18/2019] [Indexed: 11/12/2022] Open
Affiliation(s)
- Yong‐Sook Park
- Department of NeurosurgeryChung‐Ang University College of Medicine Seoul Korea
| | - Na Young Jung
- Department of NeurosurgeryBrain Research Institute, Yonsei University College of Medicine Seoul Korea
| | - Young Cheol Na
- Department of NeurosurgeryCatholic Kwandong University College of Medicine, International St. Mary's Hospital Incheon Korea
| | - Jin Woo Chang
- Department of NeurosurgeryBrain Research Institute, Yonsei University College of Medicine Seoul Korea
| |
Collapse
|
122
|
Prada F, Kalani MYS, Yagmurlu K, Norat P, Del Bene M, DiMeco F, Kassell NF. Applications of Focused Ultrasound in Cerebrovascular Diseases and Brain Tumors. Neurotherapeutics 2019; 16:67-87. [PMID: 30406382 PMCID: PMC6361053 DOI: 10.1007/s13311-018-00683-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Oncology and cerebrovascular disease constitute two of the most common diseases afflicting the central nervous system. Standard of treatment of these pathologies is based on multidisciplinary approaches encompassing combination of interventional procedures such as open and endovascular surgeries, drugs (chemotherapies, anti-coagulants, anti-platelet therapies, thrombolytics), and radiation therapies. In this context, therapeutic ultrasound could represent a novel diagnostic/therapeutic in the armamentarium of the surgeon to treat these diseases. Ultrasound relies on mechanical energy to induce numerous physical and biological effects. The application of this technology in neurology has been limited due to the challenges with penetrating the skull, thus limiting a prompt translation as has been seen in treating pathologies in other organs, such as breast and abdomen. Thanks to pivotal adjuncts such as multiconvergent transducers, magnetic resonance imaging (MRI) guidance, MRI thermometry, implantable transducers, and acoustic windows, focused ultrasound (FUS) is ready for prime-time applications in oncology and cerebrovascular neurology. In this review, we analyze the evolution of FUS from the beginning in 1950s to current state-of-the-art. We provide an overall picture of actual and future applications of FUS in oncology and cerebrovascular neurology reporting for each application the principal existing evidences.
Collapse
Affiliation(s)
- Francesco Prada
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy.
- Department of Neurological Surgery, University of Virginia Health Science Center, Charlottesville, Virginia, USA.
- Focused Ultrasound Foundation, Charlottesville, Virginia, USA.
| | - M Yashar S Kalani
- Department of Neurological Surgery, University of Virginia Health Science Center, Charlottesville, Virginia, USA
| | - Kaan Yagmurlu
- Department of Neurological Surgery, University of Virginia Health Science Center, Charlottesville, Virginia, USA
| | - Pedro Norat
- Department of Neurological Surgery, University of Virginia Health Science Center, Charlottesville, Virginia, USA
| | - Massimiliano Del Bene
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
- Department of Experimental Oncology, IRCCS European Institute of Oncology, Milan, Italy
| | - Francesco DiMeco
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
- Department of Neurological Surgery, Johns Hopkins Medical School, Baltimore, Maryland, USA
| | - Neal F Kassell
- Focused Ultrasound Foundation, Charlottesville, Virginia, USA
| |
Collapse
|
123
|
Gagliardo C, Midiri M, Cannella R, Napoli A, Wragg P, Collura G, Marrale M, Bartolotta TV, Catalano C, Lagalla R. Transcranial magnetic resonance-guided focused ultrasound surgery at 1.5T: a technical note. Neuroradiol J 2018; 32:132-138. [PMID: 30561246 DOI: 10.1177/1971400918818743] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Magnetic resonance-guided focused ultrasound is one of the emerging non-invasive technologies offering both image guidance and thermal monitoring. In recent years transcranial application of this technology is starting to impact heavily the neuroscience field. We present here the imaging protocol and the technological methods successfully used with a transcranial magnetic resonance-guided focused ultrasound system certified for clinical treatments of functional neurological disorders, integrated for the first time with a 1.5T magnetic resonance scanner. Compared to the body radiofrequency coil (the one commonly used with transcranial magnetic resonance-guided focused ultrasound system integrated with 3T magnetic resonance scanners), the use of a dedicated two channel coil enabled a signal-to-noise ratio gain up to five times higher.
Collapse
Affiliation(s)
- Cesare Gagliardo
- 1 Department of Biopathology and Medical Biotechnologies, University of Palermo, Italy
| | - Massimo Midiri
- 1 Department of Biopathology and Medical Biotechnologies, University of Palermo, Italy
| | - Roberto Cannella
- 1 Department of Biopathology and Medical Biotechnologies, University of Palermo, Italy
| | - Alessandro Napoli
- 2 Department of Radiological, Oncological and Anatomopathological Sciences, 'Sapienza' University of Rome, Italy
| | - Paul Wragg
- 3 InSightec Ltd., Israel, European Applications, UK
| | - Giorgio Collura
- 1 Department of Biopathology and Medical Biotechnologies, University of Palermo, Italy.,4 Department of Physics and Chemistry, University of Palermo, Italy
| | - Maurizio Marrale
- 4 Department of Physics and Chemistry, University of Palermo, Italy
| | | | - Carlo Catalano
- 2 Department of Radiological, Oncological and Anatomopathological Sciences, 'Sapienza' University of Rome, Italy
| | - Roberto Lagalla
- 1 Department of Biopathology and Medical Biotechnologies, University of Palermo, Italy
| |
Collapse
|
124
|
Marrale M, Collura G, Napoli A, Geraci L, Catalano C, Midiri M, Lagalla R, Gagliardo C. 246. Analysis of signal-to-noise ratio for a 2-channels coil developed to enable transcranial Magnetic Resonance-guided Focused Ultrasound Surgery (tcMRgFUS) with 1.5 T MRI scanners. Phys Med 2018. [DOI: 10.1016/j.ejmp.2018.04.257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
125
|
Wang JB, Aryal M, Zhong Q, Vyas DB, Airan RD. Noninvasive Ultrasonic Drug Uncaging Maps Whole-Brain Functional Networks. Neuron 2018; 100:728-738.e7. [PMID: 30408444 PMCID: PMC6274638 DOI: 10.1016/j.neuron.2018.10.042] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 09/13/2018] [Accepted: 10/24/2018] [Indexed: 01/06/2023]
Abstract
Being able to noninvasively modulate brain activity, where and when an experimenter desires, with an immediate path toward human translation is a long-standing goal for neuroscience. To enable robust perturbation of brain activity while leveraging the ability of focused ultrasound to deliver energy to any point of the brain noninvasively, we have developed biocompatible and clinically translatable nanoparticles that allow ultrasound-induced uncaging of neuromodulatory drugs. Utilizing the anesthetic propofol, together with electrophysiological and imaging assays, we show that the neuromodulatory effect of ultrasonic drug uncaging is limited spatially and temporally by the size of the ultrasound focus, the sonication timing, and the pharmacokinetics of the uncaged drug. Moreover, we see secondary effects in brain regions anatomically distinct from and functionally connected to the sonicated region, indicating that ultrasonic drug uncaging could noninvasively map the changes in functional network connectivity associated with pharmacologic action at a particular brain target.
Collapse
Affiliation(s)
- Jeffrey B Wang
- Department of Radiology, Neuroradiology Division, Stanford University, Stanford, CA 94305, USA
| | - Muna Aryal
- Department of Radiology, Neuroradiology Division, Stanford University, Stanford, CA 94305, USA
| | - Qian Zhong
- Department of Radiology, Neuroradiology Division, Stanford University, Stanford, CA 94305, USA
| | - Daivik B Vyas
- Department of Radiology, Neuroradiology Division, Stanford University, Stanford, CA 94305, USA
| | - Raag D Airan
- Department of Radiology, Neuroradiology Division, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
126
|
Grasso G, Midiri M, Catalano C, Gagliardo C. Transcranial Magnetic Resonance-Guided Focused Ultrasound Surgery for Brain Tumor Ablation: Are We Ready for This Challenging Treatment? World Neurosurg 2018; 119:438-440. [DOI: 10.1016/j.wneu.2018.09.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
127
|
Jung NY, Chang JW. Magnetic Resonance-Guided Focused Ultrasound in Neurosurgery: Taking Lessons from the Past to Inform the Future. J Korean Med Sci 2018; 33:e279. [PMID: 30369860 PMCID: PMC6200905 DOI: 10.3346/jkms.2018.33.e279] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Accepted: 09/13/2018] [Indexed: 11/20/2022] Open
Abstract
Magnetic resonance-guided focused ultrasound (MRgFUS) is a new emerging neurosurgical procedure applied in a wide range of clinical fields. It can generate high-intensity energy at the focal zone in deep body areas without requiring incision of soft tissues. Although the effectiveness of the focused ultrasound technique had not been recognized because of the skull being a main barrier in the transmission of acoustic energy, the development of hemispheric distribution of ultrasound transducer phased arrays has solved this issue and enabled the performance of true transcranial procedures. Advanced imaging technologies such as magnetic resonance thermometry could enhance the safety of MRgFUS. The current clinical applications of MRgFUS in neurosurgery involve stereotactic ablative treatments for patients with essential tremor, Parkinson's disease, obsessive-compulsive disorder, major depressive disorder, or neuropathic pain. Other potential treatment candidates being examined in ongoing clinical trials include brain tumors, Alzheimer's disease, and epilepsy, based on MRgFUS abilities of thermal ablation and opening the blood-brain barrier. With the development of ultrasound technology to overcome the limitations, MRgFUS is gradually expanding the therapeutic field for intractable neurological disorders and serving as a trail for a promising future in noninvasive and safe neurosurgical care.
Collapse
Affiliation(s)
- Na Young Jung
- Department of Neurosurgery, Brain Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Jin Woo Chang
- Department of Neurosurgery, Brain Research Institute, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
128
|
Zeng J, Wu J, Li M, Wang P. A Novel Magnetic Nanoparticle for Early Detection of Amyloid Plaques in Alzheimer's Disease. Arch Med Res 2018; 49:282-285. [PMID: 30266531 DOI: 10.1016/j.arcmed.2018.09.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 09/14/2018] [Indexed: 01/15/2023]
Abstract
Early diagnosis of Alzheimer's disease (AD) remains challenging even with the assistance of imaging. Radiation exposure limits the application of positron emission tomography (PET) for amyloid imaging. Magnetic resonance imaging (MRI) offers superior spatial resolution without the disadvantage of radiation exposure. We developed Mn0.6Zn0.4Fe2O4 (MZF) modified by Pittsburgh compound B (PiB) to specifically bind to amyloid plaques. Coated with amphiphilic nanopolymer 6sPCL-b-P(MEO2MA-co-OEGMA), PiB-MZF was stable, biocompatible, and approximately 100 nm in size. The R2 relaxation rate of PiB-MZF was 169.93 mM-1S-1 demonstrating excellent superparamagnetism as a T2 negative contrast agent. PiB-MZF also showed no cytotoxicity in two cell lines. Immunohistochemistry indicated successful in vitro binding of PiB-MZF with Aβ plaque on 6 months old AD mice brain sections. In conclusion, PiB-MZF nanoparticles are preliminarily proven to have the potential for early detection of amyloid plaques and diagnosis of AD.
Collapse
Affiliation(s)
- Jiaqi Zeng
- Department of Radiology, Tongji Hospital of Tongji University, Shanghai, China
| | - Jiaqi Wu
- Department of Radiology, Tongji Hospital of Tongji University, Shanghai, China
| | - Minghua Li
- Department of Radiology, Tongji Hospital of Tongji University, Shanghai, China
| | - Peijun Wang
- Department of Radiology, Tongji Hospital of Tongji University, Shanghai, China.
| |
Collapse
|
129
|
Magnetic Resonance Imaging-guided High-intensity Focused Ultrasound Applications in Pediatrics: Early Experience at Children's National Medical Center. Top Magn Reson Imaging 2018; 27:45-51. [PMID: 29406415 DOI: 10.1097/rmr.0000000000000163] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Magnetic resonance imaging-guided high-intensity focused ultrasound (MR-HIFU) is a novel technology that integrates magnetic resonance imaging with therapeutic ultrasound. This unique approach provides a completely noninvasive method for precise thermal ablation of targeted tissues with real-time imaging feedback. Over the past 2 decades, MR-HIFU has shown clinical success in several adult applications ranging from treatment of painful bone metastases to uterine fibroids to prostate cancer and essential tremor. Although clinical experience in pediatrics is relatively small, the advantages of a completely noninvasive and radiation-free therapy are especially attractive to growing children. Unlike elderly patients, young children must deal with an entire lifetime of negative effects related to collateral tissue damage associated with invasive surgery, side effects of chemotherapy, and risk of secondary malignancy due to radiation exposure. These reasons provide a clear rationale and strong motivation to further advance clinical utility of MR-HIFU in pediatrics. We begin with an introduction to MR-HIFU technology and the clinical experience in adults. We then describe our early institutional experience in using MR-HIFU ablation to treat symptomatic benign, locally aggressive, and metastatic tumors in children and young adults. We also review some limitations and challenges encountered in treating pediatric patients and highlight additional pediatric applications which may be feasible in the near future.
Collapse
|
130
|
Elhelf IS, Albahar H, Shah U, Oto A, Cressman E, Almekkawy M. High intensity focused ultrasound: The fundamentals, clinical applications and research trends. Diagn Interv Imaging 2018; 99:349-359. [DOI: 10.1016/j.diii.2018.03.001] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 02/22/2018] [Accepted: 03/06/2018] [Indexed: 02/06/2023]
|
131
|
Tian Q, Wintermark M, Jeffrey Elias W, Ghanouni P, Halpern CH, Henderson JM, Huss DS, Goubran M, Thaler C, Airan R, Zeineh M, Pauly KB, McNab JA. Diffusion MRI tractography for improved transcranial MRI-guided focused ultrasound thalamotomy targeting for essential tremor. NEUROIMAGE-CLINICAL 2018; 19:572-580. [PMID: 29984165 PMCID: PMC6029558 DOI: 10.1016/j.nicl.2018.05.010] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 05/03/2018] [Accepted: 05/08/2018] [Indexed: 01/07/2023]
Abstract
Purpose To evaluate the use of diffusion magnetic resonance imaging (MRI) tractography for neurosurgical guidance of transcranial MRI-guided focused ultrasound (tcMRgFUS) thalamotomy for essential tremor (ET). Materials and methods Eight patients with medication-refractory ET were treated with tcMRgFUS targeting the ventral intermediate nucleus (Vim) of the thalamus contralateral to their dominant hand. Diffusion and structural MRI data and clinical evaluations were acquired pre-treatment and post-treatment. To identify the optimal target location, tractography was performed on pre-treatment diffusion MRI data between the treated thalamus and the hand-knob region of the ipsilateral motor cortex, the entire ipsilateral motor cortex and the contralateral dentate nucleus. The tractography-identified locations were compared to the lesion location delineated on 1 year post-treatment T2-weighted MR image. Their overlap was correlated with the clinical outcomes measured by the percentage change of the Clinical Rating Scale for Tremor scores acquired pre-treatment, as well as 1 month, 3 months, 6 months and 1 year post-treatment. Results The probabilistic tractography was consistent from subject-to-subject and followed the expected anatomy of the thalamocortical radiation and the dentatothalamic tract. Higher overlap between the tractography-identified location and the tcMRgFUS treatment-induced lesion highly correlated with better treatment outcome (r = −0.929, −0.75, −0.643, p = 0.00675, 0.0663, 0.139 for the tractography between the treated thalamus and the hand-knob region of the ipsilateral motor cortex, the entire ipsilateral motor cortex and the contralateral dentate nucleus, respectively, at 1 year post-treatment). The correlation for the tractography between the treated thalamus and the hand-knob region of the ipsilateral motor cortex is the highest for all time points (r = −0.719, −0.976, −0.707, −0.929, p = 0.0519, 0.000397, 0.0595, 0.00675 at 1 month, 3 months, 6 months and 1 year post-treatment, respectively). Conclusion Our data support the use of diffusion tractography as a complementary approach to current targeting methods for tcMRgFUS thalamotomy. Retrospectively used tractography to define a target for MRgFUS thalamotomy for ET. Larger overlap between tractography and lesion correlates with better outcomes. Strongest correlations for tract between the thalamus and motor hand-knob region Diffusion tractography is a complementary approach to current targeting methods.
Collapse
Affiliation(s)
- Qiyuan Tian
- Department of Electrical Engineering, Stanford University, Stanford, CA, United States; Department of Radiology, Stanford University, Stanford, CA, United States.
| | - Max Wintermark
- Department of Radiology, Stanford University, Stanford, CA, United States
| | - W Jeffrey Elias
- Department of Neurosurgery, University of Virginia, Charlottesville, VA, United States
| | - Pejman Ghanouni
- Department of Radiology, Stanford University, Stanford, CA, United States
| | - Casey H Halpern
- Department of Neurosurgery, Stanford University, Stanford, CA, United States
| | - Jaimie M Henderson
- Department of Neurosurgery, Stanford University, Stanford, CA, United States
| | - Diane S Huss
- Department of Physical Therapy, University of Virginia, Charlottesville, VA, United States
| | - Maged Goubran
- Department of Radiology, Stanford University, Stanford, CA, United States
| | - Christian Thaler
- Department of Radiology, Stanford University, Stanford, CA, United States; Department of Diagnostic and Interventional Neuroradiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Raag Airan
- Department of Radiology, Stanford University, Stanford, CA, United States
| | - Michael Zeineh
- Department of Radiology, Stanford University, Stanford, CA, United States
| | - Kim Butts Pauly
- Department of Electrical Engineering, Stanford University, Stanford, CA, United States; Department of Radiology, Stanford University, Stanford, CA, United States
| | - Jennifer A McNab
- Department of Radiology, Stanford University, Stanford, CA, United States
| |
Collapse
|
132
|
Magnetic Resonance-Guided Focused Ultrasound Neurosurgery for Essential Tremor: A Health Technology Assessment. ONTARIO HEALTH TECHNOLOGY ASSESSMENT SERIES 2018; 18:1-141. [PMID: 29805721 PMCID: PMC5963668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
BACKGROUND The standard treatment option for medication-refractory essential tremor is invasive neurosurgery. A new, noninvasive alternative is magnetic resonance-guided focused ultrasound (MRgFUS) neurosurgery. We aimed to determine the effectiveness, safety, and cost-effectiveness of MRgFUS neurosurgery for the treatment of moderate to severe, medication-refractory essential tremor in Ontario. We also spoke with people with essential tremor to gain an understanding of their experiences and thoughts regarding treatment options, including MRgFUS neurosurgery. METHODS We performed a systematic review of the clinical literature published up to April 11, 2017, that examined MRgFUS neurosurgery alone or compared with other interventions for the treatment of moderate to severe, medication-refractory essential tremor. We assessed the risk of bias of each study and the quality of the body of evidence according to the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) Working Group criteria. We performed a systematic review of the economic literature and created Markov cohort models to assess the cost-effectiveness of MRgFUS neurosurgery compared with other treatment options, including no surgery. We also estimated the budget impact of publicly funding MRgFUS neurosurgery in Ontario for the next 5 years. To contextualize the potential value of MRgFUS neurosurgery as a treatment option for essential tremor, we spoke with people with essential tremor and their families. RESULTS Nine studies met our inclusion criteria for the clinical evidence review. In noncomparative studies, MRgFUS neurosurgery was found to significantly improve tremor severity and quality of life and to significantly reduce functional disability (GRADE: very low). It was also found to be significantly more effective than a sham procedure (GRADE: high). We found no significant difference in improvements in tremor severity, functional disability, or quality of life between MRgFUS neurosurgery and deep brain stimulation (GRADE: very low). We found no significant difference in improvement in tremor severity compared with radiofrequency thalamotomy (GRADE: low). MRgFUS neurosurgery has a favourable safety profile.We estimated that MRgFUS neurosurgery has a mean cost of $23,507 and a mean quality-adjusted survival of 3.69 quality-adjusted life-years (QALYs). We also estimated that the mean costs and QALYs of radiofrequency thalamotomy and deep brain stimulation are $14,978 and 3.61 QALYs, and $57,535 and 3.94 QALYs, respectively. For people ineligible for invasive neurosurgery, we estimated the incremental cost-effectiveness ratio (ICER) of MRgFUS neurosurgery compared with no surgery as $43,075 per QALY gained. In people eligible for invasive neurosurgery, the ICER of MRgFUS neurosurgery compared with radiofrequency thalamotomy is $109,795 per QALY gained; when deep brain stimulation is compared with MRgFUS neurosurgery, the ICER is $134,259 per QALY gained. Of note however, radiofrequency thalamotomy is performed very infrequently in Ontario. We also estimated that the budget impact of publicly funding MRgFUS neurosurgery in Ontario at the current case load (i.e., 48 cases/year) would be about $1 million per year for the next 5 years.People with essential tremor who had undergone MRgFUS neurosurgery reported positive experiences with the procedure. The tremor reduction they experienced improved their ability to perform activities of daily living and improved their quality of life. CONCLUSIONS MRgFUS neurosurgery is an effective and generally safe treatment option for moderate to severe, medication-refractory essential tremor. It provides a treatment option for people ineligible for invasive neurosurgery and offers a noninvasive option for all people considering neurosurgery.For people ineligible for invasive neurosurgery, MRgFUS neurosurgery is cost-effective compared with no surgery. In people eligible for invasive neurosurgery, MRgFUS neurosurgery may be one of several reasonable options. Publicly funding MRgFUS neurosurgery for the treatment of moderate to severe, medication-refractory essential tremor in Ontario at the current case load would have a net budget impact of about $1 million per year for the next 5 years.People with essential tremor who had undergone MRgFUS neurosurgery reported positive experiences. They liked that it was a noninvasive procedure and reported a substantial reduction in tremor that resulted in an improvement in their quality of life.
Collapse
|
133
|
Kim SJ, Roh D, Jung HH, Chang WS, Kim CH, Chang JW. A study of novel bilateral thermal capsulotomy with focused ultrasound for treatment-refractory obsessive-compulsive disorder: 2-year follow-up. J Psychiatry Neurosci 2018; 43:170188. [PMID: 29717977 PMCID: PMC6158029 DOI: 10.1503/jpn.170188] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 12/02/2017] [Accepted: 01/04/2018] [Indexed: 11/01/2022] Open
Abstract
BACKGROUND Recently, a new thermal lesioning approach using magnetic-resonance-guided focused ultrasound (MRgFUS) was introduced for the treatment of neurologic disorders. However, only 2 studies have used this approach for treatment-refractory obsessive-compulsive disorder (OCD), and follow-up was short-term. We investigated the efficacy and safety of bilateral thermal lesioning of the anterior limb of the internal capsule using MRgFUS in patients with treatment-refractory OCD and followed them for 2 years. METHODS Eleven patients with treatment-refractory OCD were included in the study. Clinical outcomes were evaluated using the Yale-Brown Obsessive Compulsive Scale, the Clinical Global Impression scale (including improvement and severity), the Hamilton Rating Scale for Depression (HAM-D) and the Hamilton Rating Scale for Anxiety (HAM-A) at 1 week and 1, 3, 6, 12 and 24 months following MRgFUS. Neuropsychological functioning, Global Assessment of Functioning and adverse events were also assessed. RESULTS After MRgFUS, Yale-Brown Obsessive Compulsive Scale scores decreased significantly across the 24-month follow-up period (mean ± standard deviation, 34.4 ± 2.3 at baseline v. 21.3 ± 6.2 at 24 months, p < 0.001). Scores on the Hamilton rating scales for depression and anxiety also significantly decreased from baseline to 24 months (HAM-D, 19.0 ± 5.3 v. 7.6 ± 5.3, p < 0.001; HAM-A, 22.4 ± 5.9 v. 7.9 ± 3.9, p < 0.001). Global Assessment of Functioning scores improved significantly (35.8 ± 4.9 at baseline v. 56.0 ± 10.3 at 24 months, p < 0.001) and Memory Quotient significantly improved, but other neuropsychological functions were unchanged. The side effects of MRgFUS included headache and vestibular symptoms, but these were mild and transient. LIMITATIONS The main limitations of this study were the small sample size and the open-label design. CONCLUSION Bilateral thermal lesioning of the anterior limb of the internal capsule using MRgFUS may improve obsessive-compulsive, depressive and anxiety symptoms in patients with treatment-refractory OCD, without serious adverse effects.
Collapse
Affiliation(s)
- Se Joo Kim
- From the Department of Psychiatry and Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, South Korea (Se Joo Kim, Chan-Hyung Kim); the Department of Neurosurgery and Brain Research Institute, Yonsei University College of Medicine, Seoul, South Korea (Hyun Ho Jung, Won Seok Chang, Jin Woo Chang); and the Department of Psychiatry, Hallym University College of Medicine Clinical Imaging Research Centre, Chunchon, Gangwon, South Korea (Daeyoung Roh)
| | - Daeyoung Roh
- From the Department of Psychiatry and Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, South Korea (Se Joo Kim, Chan-Hyung Kim); the Department of Neurosurgery and Brain Research Institute, Yonsei University College of Medicine, Seoul, South Korea (Hyun Ho Jung, Won Seok Chang, Jin Woo Chang); and the Department of Psychiatry, Hallym University College of Medicine Clinical Imaging Research Centre, Chunchon, Gangwon, South Korea (Daeyoung Roh)
| | - Hyun Ho Jung
- From the Department of Psychiatry and Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, South Korea (Se Joo Kim, Chan-Hyung Kim); the Department of Neurosurgery and Brain Research Institute, Yonsei University College of Medicine, Seoul, South Korea (Hyun Ho Jung, Won Seok Chang, Jin Woo Chang); and the Department of Psychiatry, Hallym University College of Medicine Clinical Imaging Research Centre, Chunchon, Gangwon, South Korea (Daeyoung Roh)
| | - Won Seok Chang
- From the Department of Psychiatry and Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, South Korea (Se Joo Kim, Chan-Hyung Kim); the Department of Neurosurgery and Brain Research Institute, Yonsei University College of Medicine, Seoul, South Korea (Hyun Ho Jung, Won Seok Chang, Jin Woo Chang); and the Department of Psychiatry, Hallym University College of Medicine Clinical Imaging Research Centre, Chunchon, Gangwon, South Korea (Daeyoung Roh)
| | - Chan-Hyung Kim
- From the Department of Psychiatry and Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, South Korea (Se Joo Kim, Chan-Hyung Kim); the Department of Neurosurgery and Brain Research Institute, Yonsei University College of Medicine, Seoul, South Korea (Hyun Ho Jung, Won Seok Chang, Jin Woo Chang); and the Department of Psychiatry, Hallym University College of Medicine Clinical Imaging Research Centre, Chunchon, Gangwon, South Korea (Daeyoung Roh)
| | - Jin Woo Chang
- From the Department of Psychiatry and Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, South Korea (Se Joo Kim, Chan-Hyung Kim); the Department of Neurosurgery and Brain Research Institute, Yonsei University College of Medicine, Seoul, South Korea (Hyun Ho Jung, Won Seok Chang, Jin Woo Chang); and the Department of Psychiatry, Hallym University College of Medicine Clinical Imaging Research Centre, Chunchon, Gangwon, South Korea (Daeyoung Roh)
| |
Collapse
|
134
|
Widge AS, Malone DA, Dougherty DD. Closing the Loop on Deep Brain Stimulation for Treatment-Resistant Depression. Front Neurosci 2018; 12:175. [PMID: 29618967 PMCID: PMC5871707 DOI: 10.3389/fnins.2018.00175] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Accepted: 03/05/2018] [Indexed: 12/20/2022] Open
Abstract
Major depressive episodes are the largest cause of psychiatric disability, and can often resist treatment with medication and psychotherapy. Advances in the understanding of the neural circuit basis of depression, combined with the success of deep brain stimulation (DBS) in movement disorders, spurred several groups to test DBS for treatment-resistant depression. Multiple brain sites have now been stimulated in open-label and blinded studies. Initial open-label results were dramatic, but follow-on controlled/blinded clinical trials produced inconsistent results, with both successes and failures to meet endpoints. Data from follow-on studies suggest that this is because DBS in these trials was not targeted to achieve physiologic responses. We review these results within a technology-lifecycle framework, in which these early trial “failures” are a natural consequence of over-enthusiasm for an immature technology. That framework predicts that from this “valley of disillusionment,” DBS may be nearing a “slope of enlightenment.” Specifically, by combining recent mechanistic insights and the maturing technology of brain-computer interfaces (BCI), the next generation of trials will be better able to target pathophysiology. Key to that will be the development of closed-loop systems that semi-autonomously alter stimulation strategies based on a patient's individual phenotype. Such next-generation DBS approaches hold great promise for improving psychiatric care.
Collapse
Affiliation(s)
- Alik S Widge
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Donald A Malone
- Department of Psychiatry, Cleveland Clinic, Cleveland, OH, United States
| | - Darin D Dougherty
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
135
|
Auboire L, Sennoga CA, Hyvelin JM, Ossant F, Escoffre JM, Tranquart F, Bouakaz A. Microbubbles combined with ultrasound therapy in ischemic stroke: A systematic review of in-vivo preclinical studies. PLoS One 2018; 13:e0191788. [PMID: 29420546 PMCID: PMC5805249 DOI: 10.1371/journal.pone.0191788] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 12/29/2017] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Microbubbles (MBs) combined with ultrasound sonothrombolysis (STL) appears to be an alternative therapeutic strategy for acute ischemic stroke (IS), but clinical results remain controversial. OBJECTIVE The aim of this systematic review is to identify the parameters tested; to assess evidence on the safety and efficacy on preclinical data on STL; and to assess the validity and publication bias. METHODS Pubmed® and Web of ScienceTM databases were systematically searched from January 1995 to April 2017 in French and English. We included studies evaluating STL on animal stroke model. This systematic review was conducted in accordance with the PRISMA guidelines. Data were extracted following a pre-defined schedule by two of the authors. The CAMARADES criteria were used for quality assessment. A narrative synthesis was conducted. RESULTS Sixteen studies met the inclusion criteria. The result showed that ultrasound parameters and types of MBs were heterogeneous among studies. Numerous positive outcomes on efficacy were found, but only four studies demonstrated superiority of STL versus recombinant tissue-type plasminogen activator on clinical criteria. Data available on safety are limited. LIMITATIONS Quality assessment of the studies reviewed revealed a number of biases. CONCLUSION Further in vivo studies are needed to demonstrate a better efficacy and safety of STL compared to currently approved therapeutic options. SYSTEMATIC REVIEW REGISTRATION http://syrf.org.uk/protocols/.
Collapse
Affiliation(s)
- Laurent Auboire
- UMR Imagerie et Cerveau, Inserm U930, Université François-Rabelais de Tours, France
- CHRU de Tours, Service d’échographie-Doppler, Tours, France
| | - Charles A. Sennoga
- UMR Imagerie et Cerveau, Inserm U930, Université François-Rabelais de Tours, France
| | | | - Fréderic Ossant
- UMR Imagerie et Cerveau, Inserm U930, Université François-Rabelais de Tours, France
- CHRU de Tours, CIC-IT, Tours, France
| | - Jean-Michel Escoffre
- UMR Imagerie et Cerveau, Inserm U930, Université François-Rabelais de Tours, France
| | | | - Ayache Bouakaz
- UMR Imagerie et Cerveau, Inserm U930, Université François-Rabelais de Tours, France
| |
Collapse
|
136
|
Barbagallo G, Arabia G, Novellino F, Nisticò R, Salsone M, Morelli M, Rocca F, Quattrone A, Caracciolo M, Sabatini U, Cherubini A, Quattrone A. Increased glutamate + glutamine levels in the thalamus of patients with essential tremor: A preliminary proton MR spectroscopic study. Parkinsonism Relat Disord 2018; 47:57-63. [DOI: 10.1016/j.parkreldis.2017.11.345] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 10/12/2017] [Accepted: 11/27/2017] [Indexed: 11/30/2022]
|
137
|
Abstract
The understanding of brain function and the capacity to treat neurological and psychiatric disorders rest on the ability to intervene in neuronal activity in specific brain circuits. Current methods of neuromodulation incur a tradeoff between spatial focus and the level of invasiveness. Transcranial focused ultrasound (FUS) is emerging as a neuromodulation approach that combines noninvasiveness with focus that can be relatively sharp even in regions deep in the brain. This may enable studies of the causal role of specific brain regions in specific behaviors and behavioral disorders. In addition to causal brain mapping, the spatial focus of FUS opens new avenues for treatments of neurological and psychiatric conditions. This review introduces existing and emerging FUS applications in neuromodulation, discusses the mechanisms of FUS effects on cellular excitability, considers the effects of specific stimulation parameters, and lays out the directions for future work.
Collapse
Affiliation(s)
- Jan Kubanek
- Departments of Neurobiology and Radiology, Stanford University School of Medicine, Stanford, California
| |
Collapse
|
138
|
Hersh DS, Kim AJ, Winkles JA, Eisenberg HM, Woodworth GF, Frenkel V. Emerging Applications of Therapeutic Ultrasound in Neuro-oncology: Moving Beyond Tumor Ablation. Neurosurgery 2017; 79:643-654. [PMID: 27552589 DOI: 10.1227/neu.0000000000001399] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
: Transcranial focused ultrasound (FUS) can noninvasively transmit acoustic energy with a high degree of accuracy and safety to targets and regions within the brain. Technological advances, including phased-array transducers and real-time temperature monitoring with magnetic resonance thermometry, have created new opportunities for FUS research and clinical translation. Neuro-oncology, in particular, has become a major area of interest because FUS offers a multifaceted approach to the treatment of brain tumors. FUS has the potential to generate cytotoxicity within tumor tissue, both directly via thermal ablation and indirectly through radiosensitization and sonodynamic therapy; to enhance the delivery of therapeutic agents to brain tumors by transiently opening the blood-brain barrier or improving distribution through the brain extracellular space; and to modulate the tumor microenvironment to generate an immune response. In this review, we describe each of these applications for FUS, the proposed mechanisms of action, and the preclinical and clinical studies that have set the foundation for using FUS in neuro-oncology. ABBREVIATIONS BBB, blood-brain barrierCED, convection-enhanced delivery5-Ala, 5-aminolevulinic acidFUS, focused ultrasoundGBM, glioblastoma multiformeHSP, heat shock proteinMRgFUS, magnetic resonance-guided focused ultrasoundpFUS, pulsed focused ultrasound.
Collapse
Affiliation(s)
- David S Hersh
- *Department of Neurosurgery,‡Marlene and Stewart Greenebaum Cancer Center,¶Center for Biomedical Engineering and Technology,‖Department of Surgery,#Center for Vascular and Inflammatory Diseases, and**Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, Maryland;§Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland
| | | | | | | | | | | |
Collapse
|
139
|
Federau C, Goubran M, Rosenberg J, Henderson J, Halpern CH, Santini V, Wintermark M, Butts Pauly K, Ghanouni P. Transcranial MRI-guided high-intensity focused ultrasound for treatment of essential tremor: A pilot study on the correlation between lesion size, lesion location, thermal dose, and clinical outcome. J Magn Reson Imaging 2017; 48:58-65. [PMID: 29076274 DOI: 10.1002/jmri.25878] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 10/10/2017] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Transcranial MR-guided high-intensity focused ultrasound (tcMRgFUS) is a promising noninvasive method to treat medication-refractory essential tremor. PURPOSE/HYPOTHESIS To define the correlation between lesion size after ablation, thermal dose, and clinical outcome in tcMRgFUS treatment of essential tremor. STUDY TYPE Retrospective. POPULATION/SUBJECTS/PHANTOM/SPECIMEN/ANIMAL MODEL Eight patients with medication-refractory essential tremor were treated using a tcMRgFUS system at 3T. FIELD STRENGTH/SEQUENCE T2 -weighted images were acquired immediately and at 1 year posttreatment at 3T. ASSESSMENT An atlas of the thalamic nuclei and dose maps were warped to the posttreatment images. The thermal dose, the immediate posttreatment lesion volume and 1-year final lesion volume, and the volumes confined inside the ventral division of the ventral lateral posterior thalamic nucleus (VLpv) were correlated to clinical outcome at 1 month and 1 year using Pearson's coefficient. The spatial region of treatment correlating with maximal clinical outcome was derived in a normalized space from average maps of clinical tremor score improvement at 1 year. STATISTICAL TESTS Statistical significance was assessed using the Wilcoxon two-tailed rank test. RESULTS The correlations between thermal dose, lesion volume posttreatment and at 1 year, and outcome at 1 year were good (r = 0.73, 0.65, 0.73, respectively), and were slightly better than at 1 month (r = 0.57, 0.49, 0.65). Reducing the measurement to include only the portion within the VLpv did not significantly modify the correlations (P = 0.09). The center of the spatial region of treatment was found in the anterior commissure - posterior commissure plane, 14.3 mm lateral from the midline, and 8.3 mm rostral to the posterior commissure. DATA CONCLUSION In this pilot study a good correlation was found between the size of the lesion, the thermal dose, and the clinical outcome in patients treated for essential tremor with ablation of the VLpv with tcMRgFUS. LEVEL OF EVIDENCE 1 Technical Efficacy: Stage 4 J. Magn. Reson. Imaging 2017.
Collapse
Affiliation(s)
- Christian Federau
- University of Basle, Division of Diagnostic and Interventional Neuroradiology, Department of Radiology, Petersgraben, Basle, Switzerland.,Stanford University Medical Center, Department of Radiology, Neuroradiology Division, Stanford, California, USA
| | - Maged Goubran
- Stanford University Medical Center, Department of Radiology, Stanford, California, USA
| | - Jarrett Rosenberg
- Stanford University Medical Center, Department of Radiology, Stanford, California, USA
| | - Jaimie Henderson
- Stanford University Medical Center, Department of Neurosurgery, Stanford, California, USA
| | - Casey H Halpern
- Stanford University Medical Center, Department of Neurosurgery, Stanford, California, USA
| | - Veronica Santini
- Stanford University Medical Center, Department of Neurology, Stanford, California, USA
| | - Max Wintermark
- Stanford University Medical Center, Department of Radiology, Neuroradiology Division, Stanford, California, USA
| | - Kim Butts Pauly
- Stanford University Medical Center, Department of Radiology, Stanford, California, USA
| | - Pejman Ghanouni
- Stanford University Medical Center, Department of Radiology, Stanford, California, USA
| |
Collapse
|
140
|
Winkler SA, Picot PA, Thornton MM, Rutt BK. Direct SAR mapping by thermoacoustic imaging: A feasibility study. Magn Reson Med 2017; 78:1599-1606. [PMID: 27779779 PMCID: PMC5405009 DOI: 10.1002/mrm.26517] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 09/01/2016] [Accepted: 09/27/2016] [Indexed: 11/09/2022]
Abstract
PURPOSE To develop a new method capable of directly measuring specific absorption rate (SAR) deposited in tissue using the thermoacoustic signal induced by short radiofrequency (RF) pulse excitation. THEORY A detailed model based on the thermoacoustic wave generation and propagation is presented. METHODS We propose a new concept for direct measurement of SAR, to be used as a safety assessment/monitoring tool for MRI. The concept involves the use of short bursts of RF energy and the measurement of the resulting thermoacoustic excitation pattern by an array of ultrasound transducers, followed by image reconstruction to yield the 3D SAR distribution. We developed a simulation framework to model this thermoacoustic SAR mapping concept and verified the concept in vitro. RESULTS Simulations show good agreement between reconstructed and original SAR distributions with an error of 4.2, 7.2, and 8.4% of the mean SAR values in axial, sagittal, and coronal planes and support the feasibility of direct experimental mapping of SAR distributions in vivo. The in vitro experiments show good agreement with theory (r2 = 0.52). CONCLUSIONS A novel thermoacoustic method for in vivo mapping of local SAR patterns in MRI has been proposed and verified in simulation and in a phantom experiment. Magn Reson Med 78:1599-1606, 2017. © 2016 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Simone A. Winkler
- Department of Radiology, Stanford University, Stanford, California, USA
| | | | | | - Brian K. Rutt
- Department of Radiology, Stanford University, Stanford, California, USA
| |
Collapse
|
141
|
de Bever JT, Odéen H, Hofstetter LW, Parker DL. Simultaneous MR thermometry and acoustic radiation force imaging using interleaved acquisition. Magn Reson Med 2017; 79:1515-1524. [PMID: 28795419 DOI: 10.1002/mrm.26827] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 05/15/2017] [Accepted: 06/15/2017] [Indexed: 12/25/2022]
Abstract
PURPOSE A novel and practical method for simultaneously performing MR acoustic radiation force imaging (ARFI) and proton resonance frequency (PRF)-shift thermometry has been developed and tested. This could be an important tool for evaluating the success of MR-guided focused ultrasound procedures for which MR-thermometry measures temperature and thermal dose and MR-ARFI detects changes in tissue mechanical properties. METHODS MR imaging was performed using a gradient recalled echo segmented echo-planar imaging pulse sequence with bipolar motion encoding gradients (MEG). Images with ultrasound pulses (ON) and without ultrasound pulses (OFF) during the MEG were interleaved at the repetition time (TR) level. ARFI displacements were calculated by complex subtraction of ON-OFF images, and PRF temperature maps were calculated by baseline subtraction. Evaluations in tissue-mimicking phantoms and ex vivo porcine brain tissue were performed. Constrained reconstruction improved the temporal resolution of dynamic measurements. RESULTS Simultaneous maps of displacement and temperature were acquired in 2D and 3D while keeping tissue heating < 1°C. Accuracy of the temperature maps was comparable to the standard PRF sequence. Using constrained reconstruction and subsampled k-space (R = 4.33), 3D simultaneous temperature and displacement maps can be acquired every 4.7 s. CONCLUSION This new sequence acquires simultaneous temperature and displacement maps with minimal tissue heating, and can be applied dynamically for monitoring tissue mechanical properties during ablation procedures. Magn Reson Med 79:1515-1524, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Joshua T de Bever
- School of Computing, Utah Center for Advanced Imaging Research, University of Utah, Salt Lake City, Utah, USA.,Department of Radiology, Stanford University, Stanford, California, USA
| | - Henrik Odéen
- Department of Radiology and Imaging Sciences, Utah Center for Advanced Imaging Research, University of Utah, Salt Lake City, Utah, USA
| | - Lorne W Hofstetter
- Department of Radiology and Imaging Sciences, Utah Center for Advanced Imaging Research, University of Utah, Salt Lake City, Utah, USA
| | - Dennis L Parker
- Department of Radiology and Imaging Sciences, Utah Center for Advanced Imaging Research, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
142
|
|
143
|
|
144
|
Barbagallo G, Arabia G, Morelli M, Nisticò R, Novellino F, Salsone M, Rocca F, Quattrone A, Caracciolo M, Sabatini U, Cherubini A, Quattrone A. Thalamic neurometabolic alterations in tremulous Parkinson's disease: A preliminary proton MR spectroscopy study. Parkinsonism Relat Disord 2017; 43:78-84. [PMID: 28774469 DOI: 10.1016/j.parkreldis.2017.07.028] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 07/20/2017] [Accepted: 07/26/2017] [Indexed: 10/19/2022]
Abstract
INTRODUCTION The objective of this study was to investigate the thalamic biochemical changes in tremor-dominant Parkinson's disease (tPD) patients in comparison with essential tremor with resting tremor (rET) patients, by using proton MR spectroscopy (1H-MRS). METHODS Fourteen tPD patients, 12 rET patients and 10 controls participated in this study. All patients underwent dopamine transporter single-photon emission computed tomography (DAT-SPECT) with 123I-ioflupane, and a short-echo single-voxel 1H-MRS on a 3T scanner. A voxel of 10 × 15 × 10 mm involving the Vim nucleus was acquired in both thalami of all subjects. Peak areas of N-acetyl-aspartate (NAA), creatine (Cr), glycerophosphocholine (Cho), and glutamate (Glu) were measured for each voxel using LCModel. The NAA/Cr, Cho/Cr, and Glu/Cr ratios were then calculated. RESULTS DAT-SPECT was abnormal in tPD patients, whereas it was normal in rET patients. Patients with tPD showed a significant reduction of NAA/Cr and Cho/Cr in the thalami compared to rET and healthy controls; whereas there were no significant differences between rET patients and controls. The combination of thalamic NAA/Cr and Cho/Cr ratios showed a 100% accuracy in distinguishing tPD patients from rET patients and controls. CONCLUSIONS This study provides preliminary evidence that thalamic neurometabolic abnormalities occur in tremor-dominant phenotype of PD, and suggests that 1H-MRS can help differentiate patients with tPD from those with rET.
Collapse
Affiliation(s)
| | - Gennarina Arabia
- Institute of Neurology, University Magna Græcia, Catanzaro, Italy.
| | - Maurizio Morelli
- Institute of Neurology, University Magna Græcia, Catanzaro, Italy.
| | - Rita Nisticò
- Neuroimaging Unit, IBFM, National Research Council, Catanzaro, Italy.
| | - Fabiana Novellino
- Neuroimaging Unit, IBFM, National Research Council, Catanzaro, Italy.
| | - Maria Salsone
- Neuroimaging Unit, IBFM, National Research Council, Catanzaro, Italy.
| | - Federico Rocca
- Neuroimaging Unit, IBFM, National Research Council, Catanzaro, Italy.
| | - Andrea Quattrone
- Institute of Neurology, University Magna Græcia, Catanzaro, Italy.
| | | | - Umberto Sabatini
- Institute of Neuroradiology, University Magna Graecia, Catanzaro, Italy.
| | - Andrea Cherubini
- Neuroimaging Unit, IBFM, National Research Council, Catanzaro, Italy.
| | - Aldo Quattrone
- Institute of Neurology, University Magna Græcia, Catanzaro, Italy; Neuroimaging Unit, IBFM, National Research Council, Catanzaro, Italy.
| |
Collapse
|
145
|
Mead BP, Kim N, Miller GW, Hodges D, Mastorakos P, Klibanov AL, Mandell JW, Hirsh J, Suk JS, Hanes J, Price RJ. Novel Focused Ultrasound Gene Therapy Approach Noninvasively Restores Dopaminergic Neuron Function in a Rat Parkinson's Disease Model. NANO LETTERS 2017; 17:3533-3542. [PMID: 28511006 PMCID: PMC5539956 DOI: 10.1021/acs.nanolett.7b00616] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Therapies capable of decelerating, or perhaps even halting, neurodegeneration in Parkinson's disease (PD) remain elusive. Clinical trials of PD gene therapy testing the delivery of neurotrophic factors, such as the glial cell-line derived neurotrophic factor (GDNF), have been largely ineffective due to poor vector distribution throughout the diseased regions in the brain. In addition, current delivery strategies involve invasive procedures that obviate the inclusion of early stage patients who are most likely to benefit from GDNF-based gene therapy. Here, we introduce a two-pronged treatment strategy, composed of MR image-guided focused ultrasound (FUS) and brain-penetrating nanoparticles (BPN), that provides widespread but targeted GDNF transgene expression in the brain following systemic administration. MR image-guided FUS allows circulating gene vectors to partition into the brain tissue by noninvasive and transient opening of the blood-brain barrier (BBB) within the areas where FUS is applied. Once beyond the BBB, BPN provide widespread and uniform GDNF expression throughout the targeted brain tissue. After only a single treatment, our strategy led to therapeutically relevant levels of GDNF protein content in the FUS-targeted regions in the striatum of the 6-OHDA-induced rat model of PD, which lasted at least up to 10 weeks. Importantly, our strategy restored both dopamine levels and dopaminergic neuron density and reversed behavioral indicators of PD-associated motor dysfunction with no evidence of local or systemic toxicity. Our combinatorial approach overcomes limitations of current delivery strategies, thereby potentially providing a novel means to treat PD.
Collapse
Affiliation(s)
- Brian P. Mead
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia 22908, United States
| | - Namho Kim
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
| | - G. Wilson Miller
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia 22908, United States
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, Virginia 22908, United States
| | - David Hodges
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia 22908, United States
| | - Panagiotis Mastorakos
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
| | - Alexander L. Klibanov
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia 22908, United States
- Cardiovascular Division, University of Virginia, Charlottesville, Virginia 22908, United States
| | - James W. Mandell
- Department of Pathology, University of Virginia, Charlottesville, Virginia 22908, United States
| | - Jay Hirsh
- Department of Biology, University of Virginia, Charlottesville, Virginia 22908, United States
| | - Jung Soo Suk
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
| | - Justin Hanes
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
| | - Richard J. Price
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia 22908, United States
| |
Collapse
|
146
|
Rohani M, Fasano A. Focused Ultrasound for Essential Tremor: Review of the Evidence and Discussion of Current Hurdles. TREMOR AND OTHER HYPERKINETIC MOVEMENTS (NEW YORK, N.Y.) 2017; 7:462. [PMID: 28503363 PMCID: PMC5425801 DOI: 10.7916/d8z89jn1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 04/17/2017] [Indexed: 01/09/2023]
Abstract
Background While there is no breakthrough progress in the medical treatment of essential tremor (ET), in the past decades several remarkable achievements happened in the surgical field, such as radiofrequency thalamotomy, thalamic deep brain stimulation, and gamma knife thalamotomy. The most recent advance in this area is magnetic resonance-guided focused ultrasound (MRgFUS). Methods The purpose of this review is to discuss the new developments and trials of MRgFUS in the treatment of ET and other tremor disorders. Results MRgFUS is an incisionless surgery performed without anesthesia and ionizing radiation (no risk of cumulative dose and delayed side effects). Studies have shown the safety and effectiveness of unilateral MRgFUS-thalamotomy in the treatment of ET. It has been successfully used in a few patients with Parkinson’s disease-related tremor, and in fewer patients with fragile X-associated tremor/ataxia syndrome. The safety and long-term effects of the procedure are still unclear, as temporary and permanent adverse events have been reported as well as recurrence of tremor. Discussion MRgFUS is a promising new surgical approach with a number of unknowns and unsolved issues. It represents a valuable option particularly for patients who refused or could not be candidates for other procedures, deep brain stimulation in particular.
Collapse
Affiliation(s)
- Mohammad Rohani
- Department of Neurology, Hazrat Rasool Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Alfonso Fasano
- Morton and Gloria Shulman Movement Disorders Clinic and the Edmond J. Safra Program in Parkinson's Disease, Toronto Western Hospital and Division of Neurology, University of Toronto, Toronto, Ontario, Canada.,Krembil Research Institute, Toronto, Ontario, Canada
| |
Collapse
|
147
|
Ravikumar VK, Parker JJ, Hornbeck TS, Santini VE, Pauly KB, Wintermark M, Ghanouni P, Stein SC, Halpern CH. Cost-effectiveness of focused ultrasound, radiosurgery, and DBS for essential tremor. Mov Disord 2017; 32:1165-1173. [PMID: 28370272 DOI: 10.1002/mds.26997] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 02/22/2017] [Accepted: 03/05/2017] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Essential tremor remains a very common yet medically refractory condition. A recent phase 3 study demonstrated that magnetic resonance-guided focused ultrasound thalamotomy significantly improved upper limb tremor. The objectives of this study were to assess this novel therapy's cost-effectiveness compared with existing procedural options. METHODS Literature searches of magnetic resonance-guided focused ultrasound thalamotomy, DBS, and stereotactic radiosurgery for essential tremor were performed. Pre- and postoperative tremor-related disability scores were collected from 32 studies involving 83 magnetic resonance-guided focused ultrasound thalamotomies, 615 DBSs, and 260 stereotactic radiosurgery cases. Utility, defined as quality of life and derived from percent change in functional disability, was calculated; Medicare reimbursement was employed as a proxy for societal cost. Medicare reimbursement rates are not established for magnetic resonance-guided focused ultrasound thalamotomy for essential tremor; therefore, reimbursements were estimated to be approximately equivalent to stereotactic radiosurgery to assess a cost threshold. A decision analysis model was constructed to examine the most cost-effective option for essential tremor, implementing meta-analytic techniques. RESULTS Magnetic resonance-guided focused ultrasound thalamotomy resulted in significantly higher utility scores compared with DBS (P < 0.001) or stereotactic radiosurgery (P < 0.001). Projected costs of magnetic resonance-guided focused ultrasound thalamotomy were significantly less than DBS (P < 0.001), but not significantly different from radiosurgery. CONCLUSIONS Magnetic resonance-guided focused ultrasound thalamotomy is cost-effective for tremor compared with DBS and stereotactic radiosurgery and more effective than both. Even if longer follow-up finds changes in effectiveness or costs, focused ultrasound thalamotomy will likely remain competitive with both alternatives. © 2017 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
| | | | | | | | - Kim Butts Pauly
- Department of Radiology, Stanford University, Stanford, California, USA
| | - Max Wintermark
- Department of Radiology, Stanford University, Stanford, California, USA
| | - Pejman Ghanouni
- Department of Radiology, Stanford University, Stanford, California, USA
| | - Sherman C Stein
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | |
Collapse
|
148
|
Abstract
Access to the CNS and delivery of therapeutics across the blood-brain barrier remains a challenge for most treatments of major neurological diseases such as AD or PD. Focused ultrasound represents a potential approach for overcoming these barriers to treating AD and PD and perhaps other neurological diseases. Ultrasound (US) is best known for its imaging capabilities of organs in the periphery, but various arrangements of the transducers producing the acoustic signal allow the energy to be precisely focused (F) within the skull. Using FUS in combination with MRI and contrast agents further enhances accuracy by providing clear information on location. Varying the acoustic power allows FUS to be used in applications ranging from imaging, stimulation of brain circuits, to ablation of tissue. In several transgenic mouse models of AD, the use of FUS with microbubbles reduces plaque load and improves cognition and suggests the need to investigate this technology for plaque removal in AD. In PD, FUS is being explored as a way to non-invasively ablate the brain areas responsible for the tremor and dyskinesia associated with the disease, but has yet to be utilized for non-invasive delivery of putative therapeutics. The FUS approach also greatly increases the range of possible CNS therapeutics as it overcomes the issues of BBB penetration. In this review we discuss how the characteristics and various applications of FUS may advance the therapeutics available for treating or preventing neurodegenerative disorders with an emphasis on treating AD and PD.
Collapse
Affiliation(s)
- Diane B Miller
- Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Morgantown, WV 26505.
| | - James P O'Callaghan
- Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Morgantown, WV 26505.
| |
Collapse
|
149
|
Airan RD, Meyer RA, Ellens NPK, Rhodes KR, Farahani K, Pomper MG, Kadam SD, Green JJ. Noninvasive Targeted Transcranial Neuromodulation via Focused Ultrasound Gated Drug Release from Nanoemulsions. NANO LETTERS 2017; 17:652-659. [PMID: 28094959 PMCID: PMC5362146 DOI: 10.1021/acs.nanolett.6b03517] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Revised: 01/05/2017] [Indexed: 05/19/2023]
Abstract
Targeted, noninvasive neuromodulation of the brain of an otherwise awake subject could revolutionize both basic and clinical neuroscience. Toward this goal, we have developed nanoparticles that allow noninvasive uncaging of a neuromodulatory drug, in this case the small molecule anesthetic propofol, upon the application of focused ultrasound. These nanoparticles are composed of biodegradable and biocompatible constituents and are activated using sonication parameters that are readily achievable by current clinical transcranial focused ultrasound systems. These particles are potent enough that their activation can silence seizures in an acute rat seizure model. Notably, there is no evidence of brain parenchymal damage or blood-brain barrier opening with their use. Further development of these particles promises noninvasive, focal, and image-guided clinical neuromodulation along a variety of pharmacological axes.
Collapse
Affiliation(s)
- Raag D. Airan
- Department of Radiology
and Radiological Science, Johns Hopkins
University School of Medicine, Baltimore, Maryland 21231, United States
- Department
of Biomedical Engineering and the Translational Tissue Engineering
Center, Johns Hopkins University School
of Medicine, Baltimore, Maryland 21231, United
States
- Department of Radiology, Stanford
University, Stanford, California 94305, United States
| | - Randall A. Meyer
- Department
of Biomedical Engineering and the Translational Tissue Engineering
Center, Johns Hopkins University School
of Medicine, Baltimore, Maryland 21231, United
States
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland 21231, United States
| | - Nicholas P. K. Ellens
- Department of Radiology
and Radiological Science, Johns Hopkins
University School of Medicine, Baltimore, Maryland 21231, United States
| | - Kelly R. Rhodes
- Department
of Biomedical Engineering and the Translational Tissue Engineering
Center, Johns Hopkins University School
of Medicine, Baltimore, Maryland 21231, United
States
| | - Keyvan Farahani
- Department of Radiology
and Radiological Science, Johns Hopkins
University School of Medicine, Baltimore, Maryland 21231, United States
- National
Cancer Institute/National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Martin G. Pomper
- Department of Radiology
and Radiological Science, Johns Hopkins
University School of Medicine, Baltimore, Maryland 21231, United States
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland 21231, United States
- Department
of Oncology, Johns Hopkins University School
of Medicine, Baltimore, Maryland 21231, United
States
| | - Shilpa D. Kadam
- Neuroscience Laboratory, Hugo Moser Research Institute, Kennedy Krieger Institute, Baltimore, Maryland 21287, United States
- Department
of Neurology, Johns Hopkins Medical Institutions, Baltimore, Maryland 21287, United States
| | - Jordan J. Green
- Department
of Biomedical Engineering and the Translational Tissue Engineering
Center, Johns Hopkins University School
of Medicine, Baltimore, Maryland 21231, United
States
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland 21231, United States
- Department
of Oncology, Johns Hopkins University School
of Medicine, Baltimore, Maryland 21231, United
States
- Departments of Neurosurgery, Ophthalmology, and Materials Science
and Engineering, Johns Hopkins University
School of Medicine, Baltimore, Maryland 21231, United States
| |
Collapse
|
150
|
Ghali MGZ, Srinivasan VM, Mohan AC, Jones JY, Kan PT, Lam S. Pediatric cerebral cavernous malformations: Genetics, pathogenesis, and management. Surg Neurol Int 2016; 7:S1127-S1134. [PMID: 28194299 PMCID: PMC5299150 DOI: 10.4103/2152-7806.196921] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 06/14/2016] [Indexed: 12/15/2022] Open
Affiliation(s)
- Michael G Z Ghali
- Department of Neurobiology, Drexel University College of Medicine, Philadelphia, USA
| | - Visish M Srinivasan
- Department of Neurosurgery, Baylor College of Medicine, Texas Children's Hospital, Houston, Texas, USA
| | - Arvind C Mohan
- Department of Neurosurgery, Baylor College of Medicine, Texas Children's Hospital, Houston, Texas, USA
| | - Jeremy Y Jones
- Department of Radiology, Baylor College of Medicine, Texas Children's Hospital, Houston, Texas, USA
| | - Peter T Kan
- Department of Neurosurgery, Baylor College of Medicine, Texas Children's Hospital, Houston, Texas, USA
| | - Sandi Lam
- Department of Neurosurgery, Baylor College of Medicine, Texas Children's Hospital, Houston, Texas, USA
| |
Collapse
|